

Freeport-McMoRan Chino Mines Company P.O. Box 10 Bayard, NM 88023 Sherry Burt-Kested Manager, Environmental Services Telephone: 575-912-5927 e-mail: sburtkes@fmi.com

May 5, 2021

Certified Mail #70182290000117918161

Ms. Rebecca Roose, Director Water Protection Division New Mexico Environment Department P.O. Box 5469 Santa Fe, New Mexico 87502

Dear Ms.Roose:

Re: Apache Tejo Wash Assessment Report Smelter Tailing Soils Investigation Unit – Chino AOC

Freeport-McMoRan Chino Mines Company (Chino) submits under separate cover the Assessment Report for the Apache Tejo Wash, Smelter Tailing Soil Investigation Unit (STSIU) under the Chino Administrative Order on Consent (AOC). This report is provided in response to the New Mexico Environment Department (NMED) request for a ground survey of the drainage in a letter dated September 22, 2009. A draft assessment, with informal review by the NMED, has been in place while access issues to private property were addressed in order to finalize the report. This report was submitted today to Mr. David Mercer.

Please contact Ms. Pam Pinson at (575) 912-5213 with any questions or comments concerning this assessment report.

Sincerely,

un fort feated

Sherry Burt-Kested Manager, Environmental Services

SBK:pp 20210503-001

c: (via email) Joseph Fox, NMED David Mercer, NMED Petra Sanchez, US EPA Mike Steward, FCX

REPORT

ASSESSMENT REPORT FOR APACHE TEJO WASH Smelter/Tailing Soil Investigation Unit

Submitted to:

Freeport-McMoRan Chino Mines Company 99 Santa Rita Mine Road Vanadium, New Mexico 99023

Submitted by:

Golder Associates Inc.

7458 N. La Cholla Blvd., Tucson, Arizona, USA 85741

+1 520 888-8818

19130958

April 29, 2021

Distribution List

Pam Pinson, Freeport-McMoRan Chino Mines Co. - pdf and source files

Michael Steward, Freeport-McMoRan Inc. - pdf

New Mexico Environmental Department - pdf, 3 hard copies

Table of Contents

1.0	INTRO		.1
	1.1	Purpose and Scope	.1
	1.2	Organization of This Report	.1
2.0	PREL	IMINARY EVALUATION	.2
	2.1	Background and Setting	.2
	2.2	Reconnaissance Findings	.3
	2.3	Property Ownership	.4
3.0	MATE	RIALS CHARACTERIZATION	.4
	3.1	Big Berm Tailing	.4
	3.1.1	Data Collection	.5
	3.1.2	Results	.6
	3.1.2.1	Acid Base Accounting and Paste pH/EC	.6
	3.1.2.2	2 Total Metals	.7
	3.1.2.3	Leachable Metals	.7
	3.1.3	Interpretations	.8
	3.2	Channel Sediment	.9
	3.2.1	Data Collection	.9
	3.2.2	Results	10
	3.2.2.1	Acid Base Accounting and Paste pH/EC	10
	3.2.2.2	Total Metals	10
	3.2.2.3	Leachable Metals	11
	3.2.3	Interpretations	11
4.0	FOLL	OW-UP FIELD INSPECTION	12
5.0	ASSE	SSMENT	12
6.0	REFE	RENCES	16

TABLES

- Table 1: Existing Groundwater Data in the Vicinity of Apache Tejo Wash
- Table 2: Big Berm Samples and Testing
- Table 3: Big Berm Paste pH/EC Results
- Table 4: Big Berm Acid Base Accounting Results
- Table 5: Big Berm Total Metals Results
- Table 6: Big Berm Predicted Cupric Ion Activity
- Table 7: Big Berm SPLP Results
- Table 8: Channel Samples and Testing
- Table 9: Channel Paste pH/EC Results
- Table 10: Channel Acid Base Accounting Results
- Table 11: Channel Samples Total Metals Results
- Table 12: Channel Samples Predicted Cupric Ion Activity
- Table 13: Channel SPLP Results

FIGURES

- Figure 1: Apache Tejo Wash Location Map
- Figure 2: Groundwater Contour Map
- Figure 3: Apache Tejo Wash and Vicinity in 1935
- Figure 4: Reconnaissance of Apache Tejo Wash
- Figure 5: Property Ownership (2012) Along Apache Tejo Wash
- Figure 6: Big Berm Test Pit Locations
- Figure 7: Big Berm Acid Neutralization Potential vs. Acid Generation Potential
- Figure 8: Big Berm Paste pH vs. Sulfide Sulfur
- Figure 9: Big Berm Paste pH vs. Acid Neutralization Potential
- Figure 10: Big Berm Tailing Extent
- Figure 11: Big Berm Cross-Section A-A'
- Figure 12: Big Berm Cross-Section B-B'
- Figure 13: Big Berm Cross-Section C-C'
- Figure 14: Channel Sample Locations
- Figure 15: Channel Acid Neutralization Potential vs. Acid Generation Potential
- Figure 16: Channel Paste pH vs. Sulfide Sulfur

Figure 17: Channel Paste pH vs. Acid Neutralization Potential

Figure 18: Trends with Distance Downstream in the Channel

APPENDICES

APPENDIX A

Big Berm Characterization Data Appendix A-1: Sampling and Analysis Appendix A-2: Test Pit Logs Appendix A-3: Paste pH/EC, Total Metals, and ABA Data Appendix A-4: SPLP Data

APPENDIX B

Channel Characterization Data

Appendix B-1: Sampling and Analysis Appendix B-2: Sample Descriptions Appendix B-3: Paste pH/EC, Total Metals, and ABA Data Appendix B-4: SPLP Data

APPENDIX C

Photograph Comparisons

1.0 INTRODUCTION

Freeport-McMoRan Chino Mines Company (Chino) became aware of potential historical releases from the Chino tailing impoundments to Apache Tejo Wash in approximately 2004. Chino retained Golder Associates (Golder) in late 2004 to inspect the wash, and in 2005 and 2006 to characterize potentially impacted materials along the wash. In mid-2009, Chino and New Mexico Environment Division (NMED) staff visited a portion of Apache Tejo Wash. NMED subsequently requested the following work in a letter dated September 22, 2009:

"Please submit an IRA Work Plan to NMED for review. The Work Plan should include a section describing potential remedial alternatives (i.e., cover in-place, consolidate onto existing tailing pile, etc.) to address tailing removal and the selection of the best alternative. Also include a ground survey of the entire Apache Tejo drainage system, adjacent to the tailing ponds and extending to Whitewater Creek, to determine if other deposits of tailing exist that might recontaminate the proposed IRA area or groundwater."

In 2009, Chino constructed a headcut control structure at the southwest corner of the Big Berm (Figure 1) to prevent headcutting into contained tailings. Chino has also kept NMED informed of progress on land status issues. In January 2020, Golder conducted a follow-up inspection of selected areas of Apache Tejo Wash to document current conditions.

1.1 Purpose and Scope

The purpose of this Assessment Report is to document completion of the NMED request for a "ground survey" of the entire Apache Tejo drainage system. The "ground survey" includes historical information, as well as reconnaissance results and property ownership information. The "ground survey" covers the entire wash from the Chino tailing impoundments to Whitewater Creek, including two tributaries to Apache Tejo Wash. This Assessment Report goes beyond the "ground survey" and presents characterization data for tailing and other materials along the wash. These data are interpreted with respect to the potential for exposure and the potential for re-release to other media, including groundwater.

1.2 Organization of This Report

This report is organized into six sections and three appendices as follows:

- Section 1.0 Introduction describes the purpose, scope, and organization of the report
- Section 2.0 Preliminary Evaluation presents the background and setting, 2004 reconnaissance findings, and property ownership
- Section 3.0 Materials Characterization compiles characterization data for the Big Berm tailing and the channel sediment
- Section 4.0 2020 Site Inspection Follow-up summarizes a follow-up site inspection and photograph comparison of Apache Tejo Wash performed in January and February 2020
- Section 5.0 Assessment summarizes the potential for exposure and re-release to other media
- Section 6.0 References lists references cited in the report
 - Appendix A contains the laboratory data for the Big Berm samples;
 - Appendix B contains the laboratory data for the channel samples
 - Appendix C contains a photograph comparison for selected sites along Apache Tejo Wash over time

2.0 PRELIMINARY EVALUATION

This section describes the background and setting, reconnaissance, and property ownership.

2.1 Background and Setting

The Apache Tejo Wash is located to the west and south of the Chino Tailing Ponds (Figure 1). Its headwaters lie near the south edge of the Town of Hurley. The wash then runs adjacent to the west perimeter of the Chino Tailing Ponds, past the Apache Tejo well field, and under Highway 180. From there, the wash traverses open rangeland until it joins Whitewater Creek where both Apache Tejo Wash and Whitewater Creek abut the railroad. Apache Tejo Wash has two tributaries, both of which are located to the east of the main stem and have their headwaters near the Chino Tailing Ponds. The lengths of these watercourses in the Apache Tejo Wash system are:

- Main stem 58,000 feet
- Tributary 1 12,000 feet
- Tributary 2 20,000 feet

Recent groundwater elevation data are sparse along Apache Tejo Wash; however, to the east in Lower Whitewater Creek, groundwater flow directions typically mimic the surface flow directions. Figure 2 shows the groundwater elevations and general direction of groundwater flow near the Apache Tejo Wash. The direction of groundwater flow is generally to the south/southeast.

Recharge to the hydrogeologic system in the vicinity of the Apache Tejo Wash occurs by infiltration along drainages during times of surface runoff, by groundwater discharge from the underlying and surrounding bedrock, and possibly by infiltration of precipitation. Groundwater discharges to the south as underflow (groundwater flow through the Gila Conglomerate). The hydraulic conductivity of the Gila Conglomerate is considered moderate, with a geometric mean from updated hydraulic testing data from within the area south of the tailing of approximately 6.0 feet per day (ft/d). Recent alluvium, located at shallow depth, principally along the channels, has a much higher hydraulic conductivity relative to the Gila Conglomerate; however, the recent alluvium generally lies above the water table, which varies from approximately 60 feet below ground surface (ft bgs) southeast of Hurley, to over 150 ft bgs south of Pond 7 (Golder 2008).

Only one monitoring well (i.e., Stark Test Well #6) is available in the vicinity of Apache Tejo Wash and it is located off-channel approximately ½ mile to the southwest of the confluence of the main stem and Tributary 2 (Figure 2). Groundwater quality data are available from sampling events in 1997, 2009, and 2020 (Table 1). These data indicate circumneutral pH, low total dissolved solids and low sulfate. Most metals were non-detect and were below New Mexico groundwater standards. Iron exceeded the New Mexico groundwater standard for domestic water supply in a 2009 sampling event, but this is an outlier or error because iron was not detected in the samples collected in 1997 or 2020. Although the cause will remain unknown this many years later, the elevated iron level in 2009 may have been due to insufficient purge volume or sampling handling.

Land use in the vicinity of Apache Tejo Wash consists of mining (i.e., tailing ponds, pipelines) and ranching. There are only two residences along the wash: the first located at the Apache Tejo well field on the east side of the channel, and the second located near the intersection of Highway 180 and the Airport Road on the west side of the channel (aka, "Edwards Ranch"). Chino owns both of these properties and leases Edwards Ranch to tenants. Chino also maintains a water supply pipeline from the Lower Whitewater Creek well field to the west of Apache Tejo Wash (Figure 1). Chino staff stated that Edwards Ranch is supplied with domestic water from the Chino water supply pipeline. Chino staff also stated that the residence on the east side of Highway 180 is no longer available for residential use.

The older Chino Tailing Ponds have historically released tailing to Apache Tejo Wash, but the number and duration of occurrences is uncertain. Figure 3 shows Apache Tejo Wash circa 1935, and what may be tailing leaving the west side of the ponds into the wash. Later, Chino constructed a berm in Apache Tejo Wash at the southwest corner of Tailing Pond C. Since that time and until completion of tailings reclamation in 2013, Chino inspected and maintained this berm under its Storm Water Pollution Prevention Plan. The berm was removed as part of closure of the tailing ponds by 2012, and storm water now reports to Apache Tejo Wash.

2.2 Reconnaissance Findings

Reconnaissance was conducted in two steps. In 2004, Golder visited the reaches most likely to have historical accumulations of impacted materials based on inspection of aerial photographs. In 2005, the remaining portions of Apache Tejo Wash were visited, except for a short portion at the downstream end (below Station 8) where rattlesnakes in the Sacaton grass made walking unsafe due to lack of visibility. Section 4.0 discusses follow-up reconnaissance of this area in 2020 during the non-snake season. Reconnaissance consisted of walking the channel, digging shallow holes for observation, and taking notes and photographs. The reconnaissance identified six accumulations of impacted materials, including five areas of tailings accumulations and one area stained and ferricrete-cemented sediments. They were assigned convenient names based on local features but were also identified by stationing in thousands of feet from the zero station where Apache Tejo Wash joins Lower Whitewater Creek. From upstream to downstream, the historical areas of impact (Figure 4) along the main stem of Apache Tejo Wash are:

- Training Berm (Sta. 53.0 to 51.2). The channel is incised at this location and a row of surface tailing is present on the top of the east bank. The tailing appears to have been removed from the channel, and they may have been intended to direct side runoff into the wash and protect some nearby buildings. A driveway and culvert at the downstream end may also have created backwater conditions that allowed tailing deposition. The tailing is not covered by recent sediment and vegetation is sparse, possibly due to residual acidity from the tailings and/or movement of sand during high winds.
- Willow Thicket (Sta. 51.0 to 49.0). The channel is broad and shallow at this location and the tailing are present in a thick grove of willows that were watered by occasional overflows from Chino's water tanks for the Apache Tejo well field. The tailing is partially covered by recent sediment and vegetation.
- Edwards Berm/Road (Sta. 47.0 to 46.0). The channel is broad and shallow at this location and the tailing apparently accumulated behind culverts in the former driveway from Highway 180 to the ranch. A headcut has formed at the downstream end of the accumulation where the culverts washed out some years ago. There is also a row of surface tailing along the east side of the area that appears to have been removed from the channel and may have been intended to act as a berm. The tailing accumulation is covered with recent sediment and vegetation, except for the row of tailing on the east bank where vegetation is sparse.
- Former Stock Tank (Sta. 36.8). What appears to be a former stock tank, now breached, contains tailing and iron-stained sediment upstream. The tailing accumulation has been dissected by flow and is partially covered by recent sediment and vegetation.
- Big Berm (Sta. 32.8 to 32.5). This is the largest accumulation of tailing along the wash. The accumulation was formed by a berm that may have been constructed as part of a Civilian Conservation Corps range improvement project in the 1930s. A headcut is present at the southwest corner of the berm and sediment

stained by percolating solutions is visible in its banks. The headcut has not breached the accumulation, however, and a grade control structure was placed in the headcut in 2009. A small area of surface tailing is present on the east bank. The accumulation is covered by recent sediment and vegetated, except for the small area of surface tailing.

Southern Headcuts (Sta. 23.0 to 21.0). Two headcuts start on the west bank of the wash, opposite from the mouth of Tributary 2, and extend upstream into a large overbank. The sides of the headcuts show buried stained sediment, ferricrete, and manganocrete, but have naturally been covered by several feet of sediment that is visibly clean and vegetated.

In between the accumulations in the main stem, most of the bed and banks are covered by recent, visibly cleaner sediment. However, intermittent areas of stained sediment, ferricrete, and manganocrete are visible in the channel banks but these intermittent areas have naturally been covered by sediment that is visibly clean and vegetated. Similar impacts are present in the channel bed in some locations beneath approximately 1 to 2 feet of visibly clean sediment, as observed in hand-dug holes.

The two tributaries were generally free of visual impacts. Some tailing was observed at the upstream end of Tributary 1 adjacent to the Chino Tailing Ponds and some stained sediment was observed just upstream of its confluence with the main stem, presumably caused by backwater from the main stem. No impacts were observed in Tributary 1 between these two points. In Tributary 2, no impacts were observed except at its confluence with the main stem where backwater likely resulted in some stained sediment. Notably, an active stock pond at Sta. 5.5 on Tributary 2 (a possible location for accumulation) did not exhibit any tailing or stained sediment.

To summarize the findings of the reconnaissance, Apache Tejo Wash contains tailing and sediment stained by solutions, although in most locations these releases are covered by recent, cleaner sediment. It is inferred from the thickness of the overlying layer of cleaner sediment that the releases are decades old. The extent of releases along Apache Tejo Wash is considerably less and inferred to be older than the impacts along Lower Whitewater Creek, as documented in the Hanover/Whitewater Creek Remedial Investigation (Golder 2000) and Chino Mine Site-Wide Stage 1, Task 1 Addendum (Golder 2016).

2.3 Property Ownership

Private and public entities own land along Apache Tejo Wash (Figure 5). The private landowners are primarily Chino and the LT Ranch, although there are a few smaller ranch owners with parcels along the wash. The public land managers are the State of New Mexico and the U.S. Bureau of Land Management.

3.0 MATERIALS CHARACTERIZATION

This section summarizes the two materials characterization efforts that Chino has undertaken. The first sampling event in early 2006 used backhoe test pits to characterize the nature and extent of tailing at the Big Berm. The second sampling event in late 2006 used hand-dug pits to characterize the nature of potentially affected materials along the length of the wash.

3.1 Big Berm Tailing

The "Big Berm" is an accumulation of tailing behind a berm constructed across Apache Tejo Wash (Figure 6). It was named the Big Berm out of convenience, as it is the largest historical accumulation along the wash. The berm is approximately 15 feet high and constructed of what appears to be local earthen fill. In addition to the accumulation of tailing upstream of the berm, tailing was visible on the surface of the slope to the east of the Big

Berm. The purpose of the investigation was to estimate the lateral and vertical extent of tailing, to characterize the chemical nature of the tailing, and to identify potential impacts to adjacent sediment.

3.1.1 Data Collection

This section summarizes the sampling that Golder performed between March 7 and March 16, 2006 at the Big Berm site. The investigation targeted the area of tailing accumulation behind the berm, the surface tailing on the slope to the east, and stained sediment immediately downstream of the berm. The field activities included mapping of the surface conditions via visual observations and subsurface conditions via test pits, as well as test pit description and sample collection.

Seventy-one test pits were excavated to visually delineate the extent of tailing and potentially impacted materials (Figure 6). Test pit locations were distributed based on the judgment of the field geologist to provide sufficient coverage to map the lateral and vertical extent of tailing and the stained downstream sediment. Composite and grab samples were collected during test pit excavation. Test pit logs are included in Appendix A.

The materials encountered were classified to document the range of visible variability, although these visible classes do not necessarily translate to chemical differences.

Material Type	Relative Position	Number of Samples
O dim ant	Overlying	3
Sealment	Underlying	6
	Surface	1
lallings	Buried	5
Stained Sediment (Downstream of Berm)	Not Classified	7

A total of 22 samples from 12 test pits were analyzed to represent the material types and positions:

Materials encountered upstream of the berm included overlying sediment, buried tailing, and underlying sediment. Sediment overlying the buried tailing was a mixture of tailing and sediment deposited by water in a layer from 1 to 2 feet thick. While the overlying sediment was mixed with weathered tailing, it was distinct from the buried tailing in that it was brown, contained roots, reacted with hydrochloric acid (HCl), and supported vegetation. The lateral extent of the overlying sediment correlates with the visual change in vegetation in the aerial photograph in Figure 6. Buried tailing was identifiable by texture, bedding, oxidation staining, and lack of organic materials. Buried tailing was approximately 4 feet thick at the upstream extent of the accumulation, thickening to up to 9 feet thick near the berm. Underlying sediment consisted of pre-existing alluvium below the buried tailing.

Surface tailing on the slope to the east of the Big Berm area was visually identifiable as an area of dune sand. While the tailing was mixed to some degree with windblown soil and supported some grasses and yucca plants, the material was clearly discernable as tailing by its texture and slightly orange color compared to surrounding and underlying materials. The surface tailing can be seen on Figure 6 with the shape of a white barchan dune, implying a windblown origin. The surface tailing was up to 2.5 feet thick.

Stained sediment was encountered to the southwest (i.e., downstream) of the berm (Figure 6). Iron and manganese staining was observed in zones above and below caliche layers in the headcuts and test pits. Although the stained sediment was buried, it is exposed in the sidewalls of the headcuts. For this reason, the stained sediment associated with the Big Berm was not classified with respect to position.

Laboratory analysis consisted of paste pH/paste electrical conductivity (paste pH/EC), acid base accounting (ABA), neutralization potential (NP), total metals, and leachable metals (although not every sample was assigned every analysis). Test pit identification numbers, sample depths, material types/positions, and analyses performed are summarized in Table 2. SVL Analytical (SVL) of Kellogg, Idaho analyzed the samples. Appendix A contains the laboratory data packages.

3.1.2 Results

This section presents the results for paste pH/EC, ABA, NP, total metals, and leachable metals testing. All samples were subjected to paste pH/EC. Based on these results and the test pit logs, a subset of samples were selected to represent the various materials encountered and advanced to ABA, NP, and total metals testing (Table 2). Two samples of buried tailing were also subjected to leachable metals testing with the Synthetic Precipitation Leaching Procedure (SPLP). Based on the visual observations, these two samples represented unmixed tailing and were therefore considered to be worst case with respect to the potential for metals leaching from tailing.

3.1.2.1 Acid Base Accounting and Paste pH/EC

Results of paste pH/EC testing are listed in Table 3. Paste pH results for overlying sediment and downstream stained sediment ranged from 7.2 to 7.9 standard units (su). Paste pH results for underlying sediment ranged from 5.9 to 7.7 su. Paste pH for buried and surface tailing ranged from 4.4 to 7.7 su. EC ranged from 0.13 to 2.71 milliSiemens (mS) with the higher values associated with buried tailing and underlying stained sediment.

ABA and NP results are presented in Table 4. Figures 7 through 9 provide graphical analysis of the results. In accordance with the Prediction Manual for Drainage Chemistry from Sulfidic Geologic Materials (MEND 2009), the following screening criteria were used to classify samples in terms of their potential to generate acid rock drainage (ARD):

ARD Potential	Screening Criterion	Comments
PAG	ANP/AGP < 1	Likely to generate acidity unless sulfide minerals are non-reactive
Uncertain	1 < ANP/AGP < 2	Neither clearly acid generating nor acid consuming
non-PAG	ANP/AGP > 2	Acid consuming, low acid generation potential

Notes:

ANP = acid neutralization potential

AGP = acid generation potential

PAG = Potentially ARD Generating

Non-PAG = Non-Potentially ARD Generating

ARD = Acid Rock Drainage

The material classifications based on MEND (2009) are shown in Table 4. Based on ANP/AGP ratios, of the nine samples analyzed, one buried tailing sample was classified as Potentially Acid Generating (PAG). The other eight samples were classified as Not Potentially Acid Generating (non-PAG). Figure 7 shows ANP values versus AGP values. Also included are the linear expressions of the ARD criteria (MEND 2009). Figure 8 plots pyritic sulfur content against paste pH. The majority of the samples are circumneutral with low sulfide contents ranging from less than 0.01% to 0.6%.

Note that for the tailing sample classified as PAG (TP-2 3 to 5 feet), the sulfide sulfur content is so low (0.04%) that acid generation through oxidation is considered unlikely. The low values for paste pH likely reflect past reactivity, which may have resulted in formation of oxidation products, such as jarosites, that contain stored acidity, which is released when they dissolve.

Figure 9 graphically compares paste pH to NP. This graph includes five additional samples from sediment underlying the buried tailing that were analyzed for paste pH and NP. The graph indicates that overlying, underlying, and stained sediment generally had higher paste pH and the potential to neutralize acid. Conversely, tailing had lower paste pH and little potential to neutralize acid.

3.1.2.2 Total Metals

Total metals analysis results are listed in Table 5. Metals concentrations in the tailing are generally similar to or lower than concentrations in the overlying, underlying, and stained sediment. Underlying sediment and stained sediment are higher in manganese and iron concentrations than tailing and overlying sediment, as would be expected based on staining and mixing observed in the field. Table 5 also compares total metals concentrations for the Big Berm to NMED issued Pre-Feasibility Study Remedial Action Criteria (pre-FS RAC) for the Smelter and Tailing Soils Investigation Unit (S/TSIU) (NMED 2011). Concentrations in tailings and sediment for all metals are well below their Human Health Risk Pre-FS RAC.

Table 5 also compares total metals concentrations to NMED pre-FS RAC for ecological risk (NMED 2011). Copper concentrations for the Big Berm are well below the Ecological Risk pre-FS RAC for ground-feeding birds. The pre-FS RAC for vegetation is based on cupric ion activity [pCu2+] when copper concentrations in soil are greater than or equal to 327 mg/kg (a value determined to be background by NMED); therefore, Table 5 includes a screen against this value in order to identify samples to evaluate for pCu. Three samples had copper concentrations higher than 327 mg/kg (i.e., TP-2 0-2 feet, TP-8 0-2 feet and TP 8 4-6 feet).

Table 6 compares cupric ion activity [pCu2+] for the three samples with copper concentrations greater than 327 mg/kg to NMED pre-FS RAC for vegetation (NMED 2011). A relationship between the paste pH and total copper concentrations was developed by Newfields (2008) to predict the available copper (predicted pCu²⁺), and predicted pCu²⁺ may be compared to the pre-FS RAC of \geq 5 (i.e., a value <5 is an exceedance). Two equations are presented in Newfields (2008), one applicable to "all locations" and one specific to the "ephemeral drainage.

- All locations: 3.28+(1.12 x pH)-(0.64 x ln[Cutot]
- Ephemeral drainage: -0.56+(1.32 x pH)-(0.18 x ln[Cutot]

The calculated predicted pCu2+ for the three samples collected at the Big Berm were greater than the pCu²⁺ pre-FS RAC and, therefore, the pCu²⁺ is acceptable for all locations.

3.1.2.3 Leachable Metals

Leachable metals results, as measured via SPLP, are presented in Table 7. Silver, arsenic, beryllium, cadmium, cobalt, chromium, mercury, lithium, nickel, lead, and selenium were below detection limits in leachate from the two

samples of tailing analyzed. Iron, copper, and zinc were detected at low levels. These two samples of tailing represented presumed worst case conditions, as previously mentioned in the introductory paragraph of Section 3.1.2. Overall leaching behavior of the tailing would be somewhat less than these two samples.

3.1.3 Interpretations

The extent of the buried and surface tailing is delineated on Figure 10. Tailing thickness, areas, and volumes are listed for each material. The buried tailing comprised approximately 7 acres (ac) and 37,500 cubic yards (cy), while the surface tailing was smaller at 1.8 ac and 5,700 cy. The buried tailing was approximately 4 feet thick at the upstream extent of the accumulation, thickening to up to 9 feet thick near the berm. The surface tailing to the east of the Big Berm was up to 2.5 feet thick. The buried tailing is covered by a layer of mixed weathered tailing and sediment which is approximately 1 to 2 feet thick and well vegetated. Cross-sections through both areas are shown on Figures 11 through 13.

The extent of impacts to the sediment underlying the buried tailing upstream of the berm was variable. In some test pits, the underlying material appeared visually unaffected and in others, the underlying sediment was visually impacted. Visual impacts include yellow/orange and dark grey staining by iron and manganese precipitates, respectively. The horizontal extent of visual impacts to underlying sediment is expected to mirror the surface footprint of the buried tailing (Figure 10).

The extent of the stained sediment downstream of the berm was less well defined by the test pits (Figure 6). Vertically, the stained sediment was present in zones above and below caliche layers in the headcuts. Test pits were excavated up to 10 feet deep, and stained sediment was present in thin zones to that depth in most pits. Horizontally, staining decreased in thickness and frequency with distance from the berm, which suggests the downstream sediment was stained by lateral seepage through the berm.

Chemical characterization of the buried and surface tailing indicated that it will not generate acid by sulfide oxidation now or in the future. However, paste pH values indicated that residual soluble acidity is present in both the buried and surface tailing. This is consistent with the fact that iron was detected in leachate at low levels from the tailing during SPLP testing. The lack of sulfides and the presence of soluble acidity indicates that the tailing is near the end stage of weathering. The SPLP results for the buried tailing show that metals other than iron have a low potential to leach, similarly suggesting that the tailing may be near the end stage of weathering. Given that the underlying sediment contains significant neutralizing potential, seepage of the residual acidity is likely to have been neutralized in the vadose zone and metals have been attenuated.

The sediment overlying the buried tailing also does not contain sulfide-related acidity or residual soluble acidity. While visually clean and supporting vegetation, however, the overlying sediment does contain some elevated metals concentrations, which may be related more to upstream conditions than the underlying tailing.

Elevated metals in the Big Berm samples include copper concentrations that are below the pre-FS RACs for Human Health Risk and Ecological Risk (ground-feeding birds). Three samples had copper concentrations above background that warranted evaluation of pCu2+ for potential risk to vegetation. The calculated predicted pCu2+ for these three samples was acceptable when compared to the pCu2+ Pre-FS RAC for vegetation.

The stained sediment downstream of the berm does not have the potential for sulfide oxidation, but as with the tailing, the stained sediment has some residual soluble acidity. This soluble acidity has been, and is likely to continue to be, neutralized by the surrounding sediment, that sources mainly from the Gila Conglomerate, which has neutralizing potential. Visual observation of iron and manganese precipitates in the vadose zone downstream

of the berm in the intermittent caliche layers indicate that iron, manganese, and perhaps other metals have precipitated in circumneutral pH environments.

3.2 Channel Sediment

The purpose of the investigation was to evaluate the nature of the potentially affected materials in the bed and banks of the wash. Although the extent was not specifically addressed by this investigation, the potentially affected materials did not appear to be thick around and under the channel based on the hand-dug pits.

3.2.1 Data Collection

This section summarizes the October 2006 sampling and analysis that Golder performed between October 8 and 9, 2006. The investigation targeted surface and near surface materials between the Chino Tailing Ponds (Sta. 58) and the Southern Headcuts (Sta. 21). The field activities included sample collection from hand-dug holes and sample description.

Eleven holes were dug by hand to collect samples (Figure 14). Sample locations were selected on the judgment of the field staff to represent the various materials observed. Point (a.k.a. grab) samples were collected. Sample descriptions are included in Appendix B.

The materials encountered were classified to document the range of visible variability, although these visible classes do not necessarily translate to chemical differences. A total of 24 samples from 11 locations were collected to represent the material types and positions:

Material Type	Relative Position	Number of Samples
Sediment	Overlying	10
	Underlying	1
Tailings	Surface	4
	Buried	5
Stained Sediment	Overlying	2
	Underlying	2

The above terms derived from the observations while sampling. The sediment consisted of unconsolidated sands and gravels originating from the watershed and reworked by water. The tailing were a uniform particle size (i.e., clay to sand), multi-colored depending on the degree of weathering (yellowish to whitish to orangish), and sometimes thinly banded. The stained sediment had the same visual characteristics as unstained sediment, but with added reddish and blackish coatings of iron and manganese, respectively. The terms overlying and underlying refer to the relative vertical sequence of sediment or stained sediment layers above or below a tailing layer at a particular location. If multiple layers were not present or not sampled, then the position was classified as buried or surface.

Laboratory analysis consisted of paste pH/EC, ABA, total metals, and leachable metals (although not every sample was assigned every analysis). Sample identification numbers, sample depths, material types/positions,

and analyses performed are summarized in Table 8. SVL of Kellogg, Idaho analyzed the samples. Appendix B contains the laboratory data packages.

3.2.2 Results

This section presents the results for paste pH/EC, ABA, total metals, and leachable metals testing. All samples were subjected to paste pH/EC and ABA testing. Based on these results and the sample descriptions, a subset of samples were selected to represent the various materials encountered and advanced to total and leachable metals (i.e., SPLP) testing (Table 8).

3.2.2.1 Acid Base Accounting and Paste pH/EC

Results of paste pH/EC testing are listed in Table 9. Paste pH ranged from 4.6 to 8.6 su, the majority of which were circumneutral. Paste EC ranged from 0.24 to 5.15 mS, with an average of 1.62 mS.

ABA results are presented in Table 10. Figures 15 through 17 provide graphical analysis of the results. The results were classified in accordance with screening criteria based on MEND (2009), as previously presented in Section 3.1.2.1.

Based on ANP/AGP ratios alone (Table 9), the majority of the 24 samples analyzed (i.e., 17 samples), regardless of type or position, were classified as non-PAG. Of the other samples, two sediment and four tailing samples were classified as PAG. One other tailings sample was classified as having an uncertain potential to generate ARD. Figure 15 shows ANP versus AGP values. Also included are the linear expressions of the ARD criteria. Figure 16 relates pyritic sulfur content to the paste pH graphically. The majority of the samples are circumneutral with low sulfide contents ranging from 0.01% to 0.26%. One sediment sample and one tailing sample had pH values of 4.64 and 5.04, but also have very low sulfide contents of 0.04% and 0.08%, respectively, indicating that acid generation through oxidation is considered unlikely. The low values for paste pH likely reflect past reactivity, which may have resulted in formation of oxidation products, such as jarosites, that contain stored acidity, which is released when they dissolve. Note that of the six samples classified as PAG, 5 were east of Highway 180 adjacent to active tailings operations.

Figure 17 graphically compares paste pH to NP. The graph indicates that the overlying sediment generally had a higher potential to neutralize acid (i.e., higher NP and paste pH) than the tailing or stained sediment.

3.2.2.2 Total Metals

Total metals analysis results are listed in Table 11. The results from two paired overlying sediment and underlying tailing (AT-1006-01 and -03; AT-1006-07 and -08) suggests that overlying sediment, when not stained, generally had lower metals concentrations than the underlying tailing. However, the stained sediment has similar concentrations as tailing, regardless of position, and had the highest arsenic values. Table 11 also compares total metals concentrations to the NMED issued Pre-FS RAC (NMED 2011). Concentrations in tailings and sediment for all metals are below their Human Health Risk Pre-FS RAC except for arsenic which exceeds the Pre-FS RAC in one stained sediment sample (i.e., AT-1006-16).

Table 11 also compares total metals concentrations to NMED pre-FS RAC for ecological risk (NMED 2011). Copper concentrations in channel sediments are well below the Ecological Risk pre-FS RAC for ground-feeding birds. The pre-FS RAC for vegetation is based on cupric ion activity [pCu2+] when copper concentrations in soil are greater than or equal to 327 mg/kg (a value determined to be background by NMED); therefore, Table 11 includes a screen against this value in order to identify samples to evaluate for pCu. Only three samples had copper concentrations higher than 327 mg/kg (i.e., AT-1006-02, AT-1006-03, and AT-1006-13).

- All locations: 3.28+(1.12 x pH)-(0.64 x ln[Cutot]
- Ephemeral drainage: -0.56+(1.32 x pH)-(0.18 x ln[Cutot]

The calculated predicted pCu2+ for the three channel samples were equal to or greater than the pCu²⁺ pre-FS RAC and, therefore, the pCu²⁺ is acceptable for all locations.

presented in Newfields (2008), one applicable to "all locations" and one specific to the "ephemeral drainage.

3.2.2.3 Leachable Metals

Leachable metals results, as measured via SPLP, are presented in Table 13. Silver, arsenic, boron, beryllium, cadmium, cobalt, chromium, mercury, lithium, molybdenum, nickel, lead, and selenium were generally below detection limits regardless of material type or position. Aluminum, boron, copper, iron, manganese and zinc were detected in most or all samples regardless of material type or position.

3.2.3 Interpretations

Chemical characterization of the overlying sediment (whether stained or not) showed that it was generally not acid generating. The underlying sediment (whether stained or not) generally had slightly more potential to generate acid than the overlying sediment, presumably representing seepage from tailing into the underlying materials. The overlying sediment had a higher potential to neutralize acid, as well as generally higher paste pH, than the tailing or underlying sediment. The tailing (whether buried or surface) had a mixed potential to generate acid, with some samples exhibiting no potential to generate acid and others potentially acid generating. Staining, or the lack thereof, did not influence the potential to generate acid. Overall, these results suggest the tailing is proceeding to the end stage of weathering and some tailing is already at the end stage. In addition, the recent, incoming sediment is providing some degree of containment over the underlying materials.

Elevated metals in the channel sediments include copper concentrations that are below the pre-FS RACs for Human Health Risk and Ecological Risk (ground-feeding birds). Three samples had copper concentrations above background that warranted evaluation of pCu2+ for potential risk to vegetation. The calculated predicted pCu2+ for these three samples was acceptable when compared to the pCu2+ Pre-FS RAC for vegetation.

Figure 18 shows trends with distance downstream for selected ABA results (i.e., sulfur forms), selected total metals (i.e., copper, iron, manganese), and selected leachable metals (i.e., copper, iron, manganese). The sulfide represents the original acid producing minerals and the sulfate represents how much of the original sulfide has oxidized. Both sulfur forms decreased with distance downstream, which is inferred to represent the pattern from the original deposition of the tailing solids some 50 to 80 years ago. The total iron and manganese concentrations appear to increase with distance downstream, although there are some high iron values upstream. The leachable metals concentrations seem to increase with distance downstream. This pattern in total and leachable metals is inferred to represent remnant recalcitrant minerals upstream (with the converse depletion in the leachable forms), flushing of metals in dissolved form downstream, and subsequent downstream precipitation of metals in iron hydroxide coatings on particles.

Overall, chemical characterization indicates a geochemically maturing system with weathered original source materials but redistribution of constituents in dissolved form. Given that there have been no releases for many

19130958

years, the incoming runoff and sediment from the watershed would be mixing with the original materials, with constituents in dissolved form possibly moving downstream faster than constituents in particulate form.

4.0 FOLLOW-UP FIELD INSPECTION

Two follow-up inspections were performed, one by Golder in 2020 and one by Chino staff in 2020.

The purpose of the 2020 follow-up site inspection was to revisit areas previously identified as having tailings accumulations or stained soils and identify changes such as erosion, headcutting, aggradation, and changes in vegetation. Two Golder staff familiar with the site performed the inspection.

Golder performed the site inspection January 8 and 9, 2020 of the Apache Tejo Wash north of the Highway 180 from Sta. 55 north of the Training Berm to Edwards Ranch (Sta. 50), the Former Stock Tank (Sta. 37), the Big Berm (Sta. 33) and the Southern Headcuts (Sta. 24). No additional sampling was performed during the follow-up inspection.

Golder staff photographed channel conditions along Apache Tejo Wash on five occasions from 2004 to 2020. In addition, aerial images from 1935, 1974, 1996, and 2016 were compiled. Appendix C presents a comparison of photographs and aerial images over time to evaluate changes along Apache Tejo Wash. Overall interpretations are as follows with detailed interpretations presented in the appendix:

- **Channel.** Significant changes to the channel over time were not observed in most locations.
- Tailings accumulations. Volunteer revegetation increased over time at the tailings accumulations. As shown in Appendix C, the 1935 aerial photograph show the accumulation areas described in this report free of significant tailings deposits. The next aerial photograph available (1974), shows the Willow Thicket, Edwards Ranch, Former Stock Tank, and the Big Berm to have unvegetated tailings accumulations that appear to have been deposited in one event, or possibly a few clustered events. Aerial photographs taken after 1974 show the accumulations progressively being revegetated with volunteer vegetation.
- Headcuts: At Edwards Ranch and the Big Berm, headcuts were largely stable in recent years. At the southern-most headcuts, the originally observed headcut was stable but another headcut in the main stem of the wash has developed and migrated upstream in recent years.

Overall, the potential for redistribution of metals in historic mine materials appears to be decreasing over time, although headcut migration may continue in selected areas.

During second follow-up field inspection, Chino staff visited the downstream reach in March 2021. No tailings or staining were observed between Station 9 and Station 8. The confluence of Apache Tejo Wash and Lower Whitewater Creek is located just south of Station 8. Downstream of Station 8, the Lower Whitewater Creek Distributary Area (Figure 4) has incorporated Apache Tejo Wash into its system. This area has been defined as:

Lower Whitewater Creek Distributary Area (Stations 0 to 8) – The confluence of Apache Tejo Wash and Lower Whitewater Creek has some surface tailing in the channel and surrounding area that have been deposited by wind and runoff from the Lower Whitewater Creek Distributary Area. Chino has characterized the Distributary Area under Stage 1 reporting for site-wide abatement (Golder 2016).

5.0 ASSESSMENT

This section assesses the potential for tailing to be re-released or contaminants to migrate, as well as the potential for human and ecological exposure to contaminants. The potential for re-release or migration is

evaluated with respect to groundwater, surface water, sediment, and air. The potential for human and ecological exposure is evaluated with respect to the NMED issued Pre-FS RAC for the Smelter and Tailings Soils Investigation Unit (NMED 2011).

The potential for constituents to infiltrate to groundwater is low. The tailing in the channel and the Big Berm generally showed little to no potential to generate acid or leach metals, in part being decades old and thus close to the end of sulfide weathering. The depth to groundwater is on the order of 100 feet along the wash, and the vadose zone is comprised of alluvium and Gila Conglomerate with neutralizing potential. In addition, groundwater quality from a well downstream of the Big Berm meets NM standards (Table 1), except for a 2009 sample where the iron concentration of 3.5 mg/l exceeded the standard for domestic water supply. However, this iron exceedance did not occur in a 1997 sample (non-detect) nor a 2020 sample (also non-detect), suggesting that the 2009 value of 3.5 mg/l was an outlier or error.

There is limited potential to re-release constituents to surface water because recent, cleaner sediment has covered much of the historical tailing along the wash, with the exception of a few accumulations near the tailings operations north of Highway 180, and an accumulation near the former Stock Tank at Sta. 37. Clean sediment will continue to enter the channel over time. Although the metals are generally not leachable from the tailings and sediments upgradient of the Southern Headcuts, there is evidence of downstream legacy impacts of metals in dissolved form, based on soil staining and the occurrence of particles coated or cemented with iron and manganese in the banks of the headcuts area near Sta. 23. However, the wash is ephemeral, there are no receiving water bodies except for an active stock tank on Tributary 2, and the surrounding soils have neutralizing capacity due to the presence of carbonates. As previously noted in Section 2.2, neither this stock tank nor Tributary 2 upstream of it were visually affected.

Aerial photographs bracket the tailings release to the Apache Tejo Wash to between 1935 and 1974. Since 1974, aerial photographs and site inspections indicated that the tailings accumulations have been progressively stabilized with volunteer vegetation. There is localized potential to re-release constituents to sediment at the headcuts where tailing and stained sediment are exposed and being eroded. Scour of surface sediments during large future storm events is possible; however, mixing of the scoured surface sediments and tailings with downstream sediments would dilute the materials and further attenuate the constituents. Headcuts were present at Edwards Ranch, Big Berm, and the Southern Headcuts in early 2009. With the exception of the Big Berm, the headcuts appeared stable. Chino installed a grade control structure across the headcut at the Big Berm in May 2009, to prevent upstream migration into the buried tailing contained behind the berm.

There is negligible potential to re-release constituents via wind because there is little surface tailing. The limited tailing present is partially vegetated and without long upwind fetches of barren ground, both of which reduce the potential for wind erosion. In addition, exposed areas of surface tailing are surrounded by carbonate soils that are being mixed with the tailing by inflowing sediment and by wind deposition.

All of the samples of tailings and sediments upgradient of the Southern Headcuts have concentrations below the Pre-FS RAC for human health. The Southern Headcuts sediment samples (AT-1006-16 and AT-1006-23) from the stream banks have concentrations of arsenic above human health Pre-FS RAC. The potential for human exposure is low because receptors are few, exposure duration is limited, and the area is secured by fences and locked gates. Land use consists of ranching and mining. Receptors are adult workers who are present only sporadically and for short time periods. These receptors include ranchers maintaining water tanks and fences, and mine workers inspecting and maintaining pipelines. These activities occur on the uplands and not in the wash where exceedances are localized at a limited number of sites.

All samples of tailings and sediments have concentrations of copper below the Pre-FS RAC for ecological risk to ground-feeding birds. Three Big Berm samples and three channel samples had copper concentrations above background and warranted evaluation of pCu2+ for potential risk to vegetation. The calculated predicted pCu2+ for these six samples was acceptable when compared to the pCu2+ Pre-FS RAC for vegetation.

No further action, other than visual inspections, is recommended for the tailings accumulations and sediments, given the advanced degree of weathering of the tailing, the limited potential for human and ecological exposure, and the containment by recent sediment and recovery of natural revegetation. Documented visual inspections of the headcuts will be performed annually after the monsoon season until requirements are established in the Record of Decision. If additional evaluation of the potential to affect groundwater is warranted it will be addressed by site-wide abatement under Discharge Plan DP-1340.

Signature Page

Golder Associates Inc.

Jen Pepe Senior Engineer

JP/KJ/rm

Kot R John

Kent R. Johnejack, PE Principal/Program Leader

Golder and the G logo are trademarks of Golder Associates Corporation

https://golderassociates.sharepoint.com/sites/118951/project files/6 deliverables/rev1 april 2021 final revised assessment report/19130958-r-rev1-a-t assessment report-20210429.docx

6.0 **REFERENCES**

- Golder. (Golder Associates Inc.). 2000. Administrative Order on Consent Phase 1 Remedial Investigation Report – Hanover/Whitewater Creeks Investigation Units. Prepared for Chino Mines Company. May 25.
- Golder. 2008. Chino Mines Sitewide Stage 1 Abatement Final Investigative Report, Volume 1. Prepared for Chino Mines Company, Hurley, New Mexico. July 17.
- Golder. 2016. Chino Mine Site-Wide Stage 1 Task 1 Addendum: Surface Water and Vadose Zone Investigations Characterization of the Distributary Area on Lower Whitewater Creek Prepared for Chino Mines Company, Vanadium New Mexico, (Golder Project Number 043-2551-004) March 29.
- MEND. (New Mexico Environment Department). 2009. Prediction Manual for Drainage Chemistry from Sulfidic Geologic Materials. MEND Report 1.20.1. Mining Environment Neutral Drainage Program, Natural Resources Canada. December 2009. Price. 1997.
- Newfields. 2008. Ecological Risk Assessment for the Hanover/Whitewater Creeks Investigation Unit. Prepared for New Mexico Environment Department, November 2008.
- NMED. 2011. Pre-Feasibility Remedial Action Criteria, Smelter and Tailings Soils Investigation Unit. NMED letter to Chino Mines Company, March 3.

Tables

Table 1: Existing Groundwater Quality Data in the Vacinity of Apache Tejo Wash

		Field Meas	surements									Metal	ls/Metallo	oids (Tota	I Recov	erable)											N	lajor lor	IS					1	Ion-metallics			
Sample ID	Sample Date	Temperature	EC	AI	Sb	As	Ba	Be	Cd	Cr	Co	Cu	Fe	Pb	Mn	Hg	Ni	Se	SiO ₂	Ag	Sr	ті	U	Zn	Ca	Mg	Na	к	CI	F	SO42-	Nitrate (as N)	Nitrite (as N)	Hardness (as CaCO ₃)	Alkalinity	TDS	EC	рН
		(°F)	(umhos/cm)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L as CaCO ₃)	(mg/L)	mhos/c	(su)
NM GW S Humai	andard for Health	NS	NS	NS	NS	0.1	1.0	NS	0.01	0.05	NS	NS	NS	0.05	NS	0.002	NS	0.05	NS	0.05	NS	NS	1.6	NS	10	NS	NS	NS	NS	NS	NS							
Other NM C for Dome Su	W Standard stic Water oply	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	1.0	1.0	NS	0.2	NS	NS	NS	NS	NS	NS	NS	NS	10.0	NS	NS	NS	NS	250	NS	600	NS	NS	NS	NS	1,000	NS	6-9
Other NM C for Irrig	W Standard	NS	NS	5.0	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.2	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Otenia 0	8/1/1997ª	74	340	0.016			<0.250						<0.050		< 0.020				16.2		0.170				35.0	14.4	38.5	4.04	9.90	0.99	49.4	0.72		144*	144	345*		7.65
Starks 6	6/29/2009 ^b				<0.020	<0.025	0.055	< 0.002	< 0.002	<0.006		0.012	3.5	<0.0075	0.098	< 0.0002	< 0.01	< 0.040	65.1	< 0.005		<0.015		0.011	47.2	16.3	28.6		9.63	1.02	46.3	0.8	0.135	185		319		8.08
rest wen	10/05/2020 ^b		347	<0.08		<0.025	0.0137	< 0.002	< 0.002	<0.006	<0.006	<0.01	<0.1	<0.0075	<0.008		<0.01	< 0.04		< 0.005			<0.001	<0.01	31.5	9.8	28.9	1.95	8.24	0.288	27.8					239	380	7.96
Notes: °F = degrees fah umhos/cm = mid	Notes: °F = degrees fahrenheit umhos/cm = micromhos per centimeter																																					

mg/L = milligrams per liter mg/L as CaCO₃ = milligrams per liter as calcium carbonate

su = standard units (at a temperature of 21° C)

NS = No standard

*denotes a value calculated by the laboratory a = Sample collected by Schumaker and Associates, Albuquerque b = Sample collected by Chino Mines

Bold = Exceeds at least one standard

Table 2: Big Berm Samples and Testing

Test Pit ID	Sample Depth (ft bgs)	Visual Material Type	Position	Paste pH/EC	Acid Base Accounting	Neutralization Potential	Total Metals ^{-a-}	SPLP ^{-a-}
TP-2	0-2	Sediment	Overlying	Х	Х		Х	
TP-2	3-5	Tailing	Buried	Х	Х		Х	х
TP-2	5-6	Sediment	Underlying	Х	Х		Х	
TP-2	8-10	Sediment	Underlying	Х		Х		
TP-8	0-2	Sediment	Overlying	Х	Х		Х	
TP-8	2-4	Tailing	Buried	Х	Х		Х	х
TP-8	4-6	Sediment	Underlying	Х	Х		Х	
TP-8	8-10	Sediment	Underlying	Х		Х		
TP-9	0-2	Sediment	Overlying	Х				
TP-9	4-5	Tailing	Buried	Х				
TP-9	7-8	Sediment	Underlying	Х				
TP-14	2-5	Tailing	Buried	Х				
TP-14	7-10	Tailing	Buried	Х				
TP-36	0-1	Tailing	Surface	Х	Х		Х	
TP-36	2-3	Sediment	Underlying	Х		Х		
TP-55	3-4	Stained Sediment	NA	Х	Х		Х	
TP-56	6	Stained Sediment	NA	Х				
TP-67	7-8	Stained Sediment	NA	Х	Х		Х	
TP-68	9-10	Stained Sediment	NA	Х				
TP-69	0-2	Stained Sediment	NA	Х				
TP-71	2-3	Stained Sediment	NA	Х				
TP-73	2-4	Stained Sediment	NA	Х				

Note:

ft bgs = feet below ground surface

EC = electrical conductivity

-a- Total metals and leachable metals analyzed include Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mn, Mo, Na, Ni, Se, Pb, and Zn.

SPLP = Synthetic Precipitation Leaching Procedure

--- denotes not analyzed

NA = Not applicable. Stained sediment was sampled downstream of the berm in an area with no tailings accumulation.

Table 3: Big Berm Paste pH/EC Results

Test Pit	Sample Depth (ft bgs)	Visual Material Type	Position	Paste EC (mS)	Paste pH (su)
TP-2	0-2	Sediment	Overlying	0.66	7.33
TP-2	3-5	Tailing	Buried	1.7	4.46
TP-2	5	Sediment	Underlying	1.53	6.72
TP-2	8-10	Sediment	Underlying	2.06	6.97
TP-8	0-2	Sediment	Overlying	0.74	7.62
TP-8	2-4	Tailing	Buried	0.42	6.25
TP-8	4-6	Sediment	Underlying	1.96	5.85
TP-8	8-10	Sediment	Underlying	1.91	7.13
TP-9	0-2	Sediment	Overlying	0.41	7.2
TP-9	4-5	Tailing	Buried	0.29	7.74
TP-9	7-8	Sediment	Underlying	0.58	7.58
TP-14	2-5	Tailing	Buried	2.57	6.83
TP-14	7-10	Tailing	Buried	2.71	4.47
TP-36	0-1	Tailing	Surface	0.13	4.87
TP-36	2-3	Sediment	Underlying	0.33	7.74
TP-55	3-4	Stained Sediment	NA	0.22	7.73
TP-56	6	Stained Sediment	NA	0.16	7.87
TP-67	7-8	Stained Sediment	NA	0.84	7.59
TP-68	9-10	Stained Sediment	NA	1.3	7.64
TP-69	0-2	Stained Sediment	NA	0.19	7.9
TP-71	2-3	Stained Sediment	NA	0.32	7.77
TP-73	2-4	Stained Sediment	NA	0.82	7.93

Notes:

EC = electrical conductivity

ft bgs = feet below ground surface

mS = milliSiemens

su = standard units

NA = Not Analyzed

Table 4: Big Berm Acid Base Accounting Results

						ABA I	Results			Sı	ulfur		
Sample Name	Sample Depth (ft bgs)	Visual Material Type	Position	Paste pH ^{-a-}	Net Neutralizing Potential	ANP/AGP	AGP	ANP	Unidentifiable	Sulfide	Sulfate	Total	ARD Potential
				(su)	(tCaCO ₃ /kt)		(tCaCO ₃ /kt)	(tCaCO ₃ /kt)	%	%	%	%	
Test Pit Samples													
TP-2	0-2	Sediment	Surface	7.33	19.3	11.2	1.9	21.2	0.4	0.06	0.05	0.15	non-PAG
TP-2	3-5	Tailing	Buried	4.46	-1	0.23	1.3	< 0.3	0.05	0.04	0.46	0.55	PAG
TP-2	5	Sediment	Underlying	6.72	15.9	54	0.3	16.2	< 0.01	0.01	0.01	0.02	non-PAG
TP-2	8-10	Sediment	Underlying	6.97	NA	NA	NA	11.5	NA	NA	NA	NA	Not Classified
TP-8	0-2	Sediment	Overlying	7.62	54.7	183	< 0.3	55	< 0.01	< 0.01	< 0.01	< 0.01	non-PAG
TP-8	2-4	Tailing	Buried	6.25	6.9	12.5	0.6	7.5	0.05	0.02	0.2	0.27	non-PAG
TP-8	4-6	Sediment	Underlying	5.85	21.2	71.7	< 0.3	21.5	< 0.01	< 0.01	0.04	0.04	non-PAG
TP-8	8-10	Sediment	Underlying	7.13	NA	NA	NA	24	NA	NA	NA	NA	Not Classified
TP-36	0-1	Tailing	Surface	4.87	1.6	2.78	0.9	2.5	0.05	0.03	0.17	0.25	non-PAG
TP-36	2-3	Sediment	Underlying	7.74	NA	NA	NA	175	NA	NA	NA	NA	Not Classified
TP-55	3-4	Stained Sediment	Not Applicable	7.73	20.2	68.3	< 0.3	20.5	< 0.01	< 0.01	< 0.01	< 0.01	non-PAG
TP-67	7-8	Stained Sediment	Not Applicable	7.59	12.2	41.7	< 0.3	12.5	< 0.01	< 0.01	0.01	0.01	non-PAG

Notes:

ABA = acid base accounting

ANP = acid neutralizing potential

AGP = acid generating potential - calculated based on sulfide sulfur

su = standard units

tCaCO3/kt = tons calcium carbonate per kiloton of sediment

PAG = Potentially Acid Rock Drainage Generating

non-PAG = Not Potentially Net Acid Rock Drainage Generating

< = concentration less than detection limit

-a- Saturated paste pH

-b- Classified as "likely to generate acid" based on ANP/AGP ratio, but sample does not contain sufficient sulfide content to generate acid.

NA = not analyzed

Table 5: Big Berm Total Metals Results

Test Pit	Sample Depth	Visual Material Type	Position	Ca	к	Na	Ag	AI	As	в	Ва	Be	Cd	Co	Cr	Cu	Fe	Hg	Li	Mn	Мо	Ni	Pb	Se	Zn
	(it bys)			(mg/kg)																					
Pre	FS RAC Hu	man Health Risk (HHR)						28				70			5000	100,000								
Pre	nts)*													327											
Pre-FS RA	C Ecologica	l Risk (ground-fee	eding birds)													1600									
Test Pit Samp	les																								
TP-2	0-2	Sediment	Overlying	6,810	1,410	65	< 0.5	6,200	5.5	< 4	420	0.47	0.32	8.64	10.4	389	17,800	< 0.033	6.1	332	25.6	8.3	11.1	< 4	123
TP-2	3-5	Tailing	Buried	3,140	1,170	68	< 0.5	3,060	< 2.5	< 4	170	< 0.2	< 0.2	2.75	4.99	254	14,000	< 0.033	2.1	57.4	32	3.1	5.4	< 4	38.8
TP-2	5	Sediment	Underlying	6,420	2,950	64	< 0.5	12,900	2.8	< 4	141	0.92	0.46	9.94	16.6	73.7	24,700	< 0.033	12.1	571	2.52	14.8	17.9	< 4	77.6
TP-8	0-2	Sediment	Overlying	21,600	1,740	74	< 0.5	8,840	10.4	< 4	544	0.79	0.73	10.8	12.9	356	19,600	< 0.033	9.6	481	5.82	12.5	14.8	< 4	221
TP-8	2-4	Tailing	Buried	1,340	926	60	< 0.5	2,990	< 2.5	< 4	217	< 0.2	< 0.2	3.95	5.29	150	15,600	< 0.033	2	89.7	31.4	3.2	6.1	< 4	43
TP-8	4-6	Sediment	Underlying	9,390	1,580	76	< 0.5	14,900	6.7	< 4	280	1.07	0.67	21.1	17.3	731	23,700	< 0.033	21.3	1,370	2.77	18.9	11	< 4	219
TP-36	0-1	Tailing	Surface	1,060	871	< 50	< 0.5	2,870	3.1	< 4	215	0.22	< 0.2	4.47	5.03	234	12,200	< 0.033	2.1	126	27.3	3.8	6.1	< 4	54.3
TP-55	3-4	Stained Sediment	Not Applicable	9,900	2,560	80	< 0.5	17,200	8.1	4.1	271	1.08	0.65	16.9	18.9	60.9	27,900	< 0.033	23.5	1,130	2.72	20.1	18.7	< 4	159
TP-67	7-8	Stained Sediment	Not Applicable	6,510	1,790	68	1.31	10,200	15.7	< 4	284	1.77	0.73	10.2	15.7	48.3	30,200	< 0.033	10.3	1,510	1.68	11.5	19.8	< 4	308

Notes:

* Pre-FS RAC for plants is based on cupric ion activity (pCu2+) when copper concentrations in soil are greater than or equal to 327 mg/kg (a value determined by the New Mexico Environmental Department (2011) to be background)

BOLD indicates a copper concentration in soil to identify samples to evaluate for pCu2+

--- no criteria exists for this constituent

Table 6: Big Berm Predicted Cupric Ion Activity

Test Pit	Sample Depth (ft bos)	Visual Material Type	Position	Paste pH	Cu	pCU2+	pCU2+
	(11 093)			(mg/kg)	(mg/kg)	All Locations	Ephemeral Drainage
Pro	e-FS RAC Eco	ological Risk (pla		327	5	5	
Test Pit Samp	les						
TP-2	0-2	Sediment	Overlying	7.33	389	8	8
TP-8	0-2	Sediment	Overlying	7.62	356	8	8
TP-8	4-6	Sediment	Underlying	5.85	731	6	6

Notes:

Pre-FS RAC approved by New Mexico Environment Department of Environmental Quality (NMED 2011)

Calculated predicted cupric ion activities (pCu2+) equal to or greater than the Pre-FS RAC indicated a lack of potential toxicity

--- no criterion exists for this parameter

Table 7: Big Berm SPLP Results

	Sample	Visual		Ca	K	Na	Ag	AI	As	В	Ba	Be	Cd	Со	Cr	Cu	Fe	Hg	Li	Mn	Мо	Ni	Pb	Se	Zn
Test Pit	Depth (ft bgs)	Material Type	Postion	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
TP-2	3-5	Tailing	Buried	12.1	1.78	5.93	<0.0050	0.88	<0.025	0.059	0.0234	<0.0020	<0.0020	< 0.0060	<0.0060	0.042	1.22	< 0.00020	< 0.005	0.008	0.123	<0.010	<0.008	< 0.040	0.013
TP-8	2-4	Tailing	Buried	3.87	<0.50	4.48	<0.0050	0.75	<0.025	0.063	0.0249	<0.0020	< 0.0020	<0.0060	< 0.0060	0.027	2.86	< 0.00020	< 0.005	< 0.004	0.0113	<0.010	<0.008	< 0.040	0.012

Notes:

ft bgs = feet below ground surface

mg/L = milligrams per liter

19130958

Table 8: Channel Samples and Testing

Sample ID	Station ID (thousands of feet)	Visual Material Type	Position	Paste pH/EC	Acid Base Accounting	Total Metals ^{-a-}	SPLP ^{-a-}
AT-1006-01	56.0	Sediment	Underlying	х	х		
AT-1006-02	56.0	Sediment	Overlying	х	х	Х	х
AT-1006-03	56.0	Tailing	Buried	х	х	Х	х
AT-1006-04	53.0	Tailing	Buried	х	х		
AT-1006-05	51.0	Tailing	Buried	х	х		
AT-1006-06	51.0	Sediment	Overlying	х	х		
AT-1006-07	46.0	Sediment	Overlying	х	х	Х	х
AT-1006-08	46.0	Tailing	Buried	х	х	Х	х
AT-1006-09	46.0	Stained Sediment	Underlying	х	х		
AT-1006-10	47.0	Tailing	Surface	х	х		
AT-1006-11	40.0	Tailing	Buried	х	х		
AT-1006-12	40.0	Sediment	Overlying	х	х	Х	х
AT-1006-13	37.0	Tailing	Surface	х	х	Х	х
AT-1006-14	37.0	Stained Sediment	Underlying	х	х		
AT-1006-15	32.5	Sediment	Overlying	х	х	Х	х
AT-1006-16	32.5	Stained Sediment	Overlying	х	х	Х	х
AT-1006-17	32.5	Tailing	Surface	х	х	Х	х
AT-1006-18	32.5	Sediment	Overlying	х	х	Х	х
AT-1006-19	27.0	Sediment	Overlying	х	х	Х	х
AT-1006-20	27.0	Sediment	Overlying	х	х		
AT-1006-21	24.5	Sediment	Overlying	х	Х	Х	Х
AT-1006-22	24.5	Tailing	Surface	х	Х		
AT-1006-23	24.5	Stained Sediment	Overlying	х	Х	Х	Х
AT-1006-24	23.0	Sediment	Overlying	x	Х	X	X

Notes:

-a- Total metals and leachable metals analyzed include Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mn, Mo, Na, Ni, Se, Pb, and Zn.

SPLP = Synthetic Precipitation Leaching Procedure

--- denotes not analyzed

Table 9: Channel Paste pH/EC Results

Sample ID	Station ID (thousands of feet)	Visual Material Type	Position	Paste EC (mS)	Paste pH (su)
AT-1006-01	56.0	Sediment	Underlying	2.2	4.6
AT-1006-02	56.0	Sediment	Overlying	2.19	8.4
AT-1006-03	56.0	Tailing	Buried	0.83	6.8
AT-1006-04	53.0	Tailing	Buried	2.79	7.2
AT-1006-05	51.0	Tailing	Buried	2.79	6.6
AT-1006-06	51.0	Sediment	Overlying	5.15	7.7
AT-1006-07	46.0	Sediment	Overlying	2.78	7.8
AT-1006-08	46.0	Tailing	Buried	3.14	7.5
AT-1006-09	46.0	Stained Sediment	Underlying	0.34	7.5
AT-1006-10	47.0	Tailing	Surface	2.62	7.1
AT-1006-11	40.0	Tailing	Buried	0.4	7.9
AT-1006-12	40.0	Sediment	Overlying	0.31	8.0
AT-1006-13	37.0	Tailing	Surface	3.09	5.0
AT-1006-14	37.0	Stained Sediment	Underlying	2.91	7.6
AT-1006-15	32.5	Sediment	Overlying	0.28	8.1
AT-1006-16	32.5	Stained Sediment	Overlying	0.28	8.0
AT-1006-17	32.5	Tailing	Surface	0.39	7.8
AT-1006-18	32.5	Sediment	Overlying	1.31	7.5
AT-1006-19	27.0	Sediment	Overlying	0.26	8.0
AT-1006-20	27.0	Sediment	Overlying	0.24	7.5
AT-1006-21	24.5	Sediment	Overlying	0.76	7.5
AT-1006-22	24.5	Tailing	Surface	1.63	7.3
AT-1006-23	24.5	Stained Sediment	Overlying	1.91	8.0
AT-1006-24	23.0	Sediment	Overlying	0.36	7.9

Notes:

EC = electrical conductivity

mS = milliSiemens

su = standard units

Table 10: Channel Acid Base Accounting Results

						ABA	A Results			Su	ılfur			
Sample ID	Station ID (thousands of feet)	Visual Material Type	Position	Paste pH ^{-a-}	Net Neutralizing Potential	ANP/AGP	AGP	ANP	Unidentifiable	Sulfide	Sulfate	Total	Material Classification	
				(su)	(tCaCO ₃ /kt)		(tCaCO ₃ /kt)	(tCaCO ₃ /kt)	%	%	%	%		
Channel Samples	S													
AT-1006-01	56.0	Sediment	Underlying	4.64	-1.15	0.12	1.30	< 0.30	0.02	0.04	0.27	0.33	PAG	
AT-1006-02	56.0	Sediment	Overlying	8.44	-0.75	0.17	0.90	< 0.30	0.02	0.03	0.27	0.32	PAG	
AT-1006-03	56.0	Tailing	Buried	6.76	0.10	1.08	1.30	1.40	0.03	0.04	0.12	0.19	Uncertain	
AT-1006-04	53.0	Tailing	Buried	7.17	-5.50	0.32	8.10	2.60	0.09	0.26	0.64	0.99	PAG	
AT-1006-05	51.0	Tailing	Buried	6.58	-1.75	0.08	1.90	< 0.30	0.09	0.06	0.48	0.63	PAG	
AT-1006-06	51.0	Sediment	Overlying	7.72	173	1,153	< 0.30	173	< 0.01	< 0.01	0.15	0.16	non-PAG	
AT-1006-07	46.0	Sediment	Overlying	7.83	84.9	284	0.30	85.2	< 0.01	0.01	0.21	0.23	non-PAG	
AT-1006-08	46.0	Tailing	Buried	7.51	14.9	8.84	1.90	16.8	< 0.01	0.06	0.31	0.38	non-PAG	
AT-1006-09	46.0	Stained Sediment	Underlying	7.48	6.00	3.40	2.50	8.50	0.01	0.08	< 0.01	0.08	non-PAG	
AT-1006-10	47.0	Tailing	Surface	7.08	-5.15	0.03	5.30	< 0.30	0.08	0.17	0.25	0.5	PAG	
AT-1006-11	40.0	Tailing	Buried	7.92	8.70	10.7	0.90	9.60	< 0.01	0.03	0.08	0.12	non-PAG	
AT-1006-12	40.0	Sediment	Overlying	8.03	33.1	37.8	0.90	34	0.04	0.03	< 0.01	0.02	non-PAG	
AT-1006-13	37.0	Tailing	Surface	5.04	-2.35	0.06	2.50	< 0.30	0.08	0.08	0.69	0.85	PAG	
AT-1006-14	37.0	Stained Sediment	Underlying	7.59	7.80	3.79	2.80	10.6	0.01	0.09	0.03	0.13	non-PAG	
AT-1006-15	32.5	Sediment	Overlying	8.10	15.0	88.7	< 0.30	15.1	0.01	< 0.01	0.01	0.02	non-PAG	
AT-1006-16	32.5	Stained Sediment	Overlying	8.03	11.1	6.05	2.20	13.3	< 0.01	0.07	< 0.01	< 0.01	non-PAG	
AT-1006-17	32.5		Surface	7.81	9.05	61.3	< 0.30	9.20	< 0.01	< 0.01	0.01	< 0.01	non-PAG	
AT-1006-18	32.5	Sediment	Overlying	7.46	6.30	3.86	2.20	8.50	< 0.01	0.07	< 0.01	0.04	non-PAG	
AT-1006-19	27.0	Sediment	Overlying	7.97	17.3	58.7	0.30	17.6	0.01	0.01	0.01	0.03	non-PAG	
AT-1006-20	27.0	Sediment	Overlying	7.54	16.2	109	< 0.30	16.3	< 0.01	< 0.01	0.03	0.03	non-PAG	
AT-1006-21	24.5	Sediment	Overlying	7.50	116	773	< 0.30	116	< 0.01	< 0.01	< 0.01	< 0.01	non-PAG	
AT-1006-22	24.5	Tailing	Surface	7.27	300	2,000	< 0.30	300	< 0.01	< 0.01	< 0.01	< 0.01	non-PAG	
AT-1006-23	24.5	Stained Sediment	Overlying	7.95	12	83	< 0.30	12.4	< 0.01	< 0.01	0.01	0.01	non-PAG	
AT-1006-24	23.0	Sediment	Overlying	7.88	19.8	13.4	1.60	21.4	0.07	0.05	0.05	0.17	non-PAG	

Notes:

ABA = acid base accounting

ANP = acid neutralizing potential

AGP = acid generating potential - calculated based on sulfide sulfur

PAG = Potentially Acid Rock Drainage Generating

non-PAG = Not Potentially Net Acid Rock Drainage Generating

su = standard units

tCaCO3/kt = tons calcium carbonate per kiloton of sediment

< = concentration less than detection limit

-a- Saturated paste pH

19130958

Table 11: Channel Samples Total Metals Results

Sample ID S (thous	Station ID			Са	к	Na	Ag	AI	As	в	Ва	Be	Cd	Co	Cr	Cu	Fe	Hg	Li	Mn	Мо	Ni	Pb	Se	Zn
	(thousands of feet)	Visual Material Type	Position	(mg/kg)	(mg/kg)																				
Pre-FS RAC Human Health Risk (HHR)									28				70			5000	100,000								
Pre-FS RAC Ecological Risk (plants)*															327										
Pre-FS RAC Ecological Risk (ground-feeding birds)																1600									
Channel Samples				1						1				1	1		1							,,	
AT-1006-01	56.0	Sediment	Underlying																					<u>↓</u> ↓	
AT-1006-02	56.0	Sediment	Overlying	19,200	1,260	161	0.134	8,010	< 2.5	< 4	113	0.51	< 0.2	9.42	37.5	464	19,600	< 0.033	8	528	8.7	8.1	31.1	< 0.3	84.4
AT-1006-03	56.0	Tailing	Buried	8,470	1,540	88	0.176	8,950	5.3	8	138	0.65	< 0.2	7.77	45.1	582	82,600	< 0.033	5.4	628	19.8	< 1	34	0.47	106
AT-1006-04	53.0	Tailing	Buried																						
AT-1006-05	51.0	Tailing	Buried																						
AT-1006-06	51.0	Sediment	Overlying)	
AT-1006-07	46.0	Sediment	Overlying	39,800	2,840	115	0.731	13,300	10.6	7	909	1.19	< 0.2	7.06	35.4	62.8	21,200	0.043	14.7	402	2.5	12.8	21.9	< 0.3	358
AT-1006-08	46.0	Tailing	Buried	11,200	1,090	235	0.458	12,300	25	8	2,320	1.39	< 0.2	7.23	42.5	90.7	57,100	< 0.033	12.5	295	3.1	< 1	27.2	< 0.3	530
AT-1006-09	46.0	Stained Sediment	Underlying																						
AT-1006-10	47.0	Tailing	Surface																						
AT-1006-11	40.0	Tailing	Buried																						
AT-1006-12	40.0	Sediment	Overlying	20,800	995	200	0.219	8,140	7.1	5	630	0.78	< 0.2	6.54	34.8	102	20,700	< 0.033	8.8	529	3.1	8.1	12.2	< 0.3	156
AT-1006-13	37.0	Tailing	Surface	6,290	2,010	166	0.313	6,070	5.3	< 4	560	0.39	< 0.2	6.14	46.1	461	21,400	< 0.033	4.5	186	31.1	2.5	8.76	1.52	94.8
AT-1006-14	37.0	Stained Sediment	Underlying																						
AT-1006-15	32.5	Sediment	Overlying	11,600	1,320	123	0.252	9,730	5.9	5	172	0.94	< 0.2	9.88	49.8	82.6	43,300	< 0.033	9	871	4.7	3.9	20.5	< 0.3	136
AT-1006-16	32.5	Stained Sediment	Overlying	11,100	1,380	176	0.247	10,200	30.1	5	546	1.06	< 0.2	15.6	31.1	60.3	48,700	< 0.033	10.3	2630	3.5	6.8	16	< 0.3	158
AT-1006-17	32.5	Tailing	Surface	7.120	2.020	115	1.06	11.300	< 2.5	< 4	218	1.51	< 0.2	6.65	32.2	34	15.200	< 0.033	11.2	804	1.5	10.5	17.7	< 0.3	283
AT-1006-18	32.5	Sediment	Overlying	7,470	1,930	138	0.309	14,200	5.3	< 4	166	1.12	< 0.2	11.1	34.7	42.1	28,100	< 0.033	16.5	761	2.3	10.8	17.5	< 0.3	151
AT-1006-19	27.0	Sediment	Overlying	12,900	1,400	279	0.263	9,430	9.3	< 4	581	0.8	0.58	10.4	47.1	174	57,000	< 0.033	9.3	739	4.8	22.4	21.8	< 0.3	152
AT-1006-20	27.0	Sediment	Overlying																						
AT-1006-21	24.5	Sediment	Overlying	30,700	2,470	138	0.358	13,200	5.4	< 4	264	0.87	0.52	8.75	25.2	29.1	20,300	< 0.033	13	446	2.8	16	16.7	< 0.3	168
AT-1006-22	24.5	Tailing	Surface																					I	
AT-1006-23	24.5	Stained Sediment	Overlying	12,400	1,670	325	0.267	11,700		< 4	508	0.82	0.72	12.8	33.7	41.5	48,300	< 0.033	13.8	1360	3.7	28.1	16.1	< 0.3	127
AT-1006-24	23.0	Sediment	Overlying	11,100	1,180	241	0.24	10,500	6.5	< 4	180	0.58	< 0.2	7.84	35	41.7	26,100	< 0.033	10.4	510	4.2	16.8	16.8	< 0.3	120

Notes:

* Pre-FS RAC for plants is based on cupric ion activity (pCu2+) when copper concentrations in soil are greater than or equal to 327 mg/kg (a value determined by the New Mexico Environmental Department (2011) to be background) BOLD indicates a copper concentration in soil to identify samples to evaluate for pCu2+

BOLD ITALICS indicates an arsenic concentration greater than the Pre-FS Human Health Risk

---- denotes not analyzed or no criterion exists for this constituent

Table 12: Channel Samples Predicted Cupric Ion Activity

Test Pit	Station Number (Thousands	Visual Material Type	Position	Paste pH	Cu	pCU2+	pCU2+	
	of Feet)			(mg/kg)	(mg/kg)	All Locations	Ephemeral Drainage	
Pro	e-FS RAC Eco	ological Risk (pla		327	5	5		
Test Pit Samp								
AT-1006-02	56.0	Sediment	Overlying	8.44	464	9	9	
AT-1006-03	56.0	Tailing	Buried	6.76	582	7	7	
AT-1006-13	37.0	Tailing	Surface	5.04	461	5	5	

Notes:

Pre-FS RAC approved by New Mexico Environment Department of Environmental Quality (NMED 2011)

Calculated predicted cupric ion activities (pCu2+) equal to or greater than the Pre-FS RAC indicated a lack of potential toxicity

--- no criterion exists for this parameter

Table 13: Channel SPLP Results

Sample ID (thousands of foot)	Visual Material	Position	Ca	к	Na	Ag	AI	As	В	Ва	Be	Cd	Co	Cr	Cu	Fe	Hg	Li	Mn	Мо	Ni	Pb	Se	Zn	
	(thousands of feet)	Гуре		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
AT-1006-01	56.0	Sediment	Underlying																						
AT-1006-02	56.0	Sediment	Overlying	10.8	1.62	2.78	< 0.0001	0.44	< 0.025	< 0.04	0.0062	< 0.002	< 0.002	< 0.006	< 0.006	0.0249	0.34	< 0.0002	< 0.02	0.0067	< 0.008	< 0.01	< 0.0075	< 0.003	< 0.01
AT-1006-03	56.0	Tailing	Buried	13.2	1.31	1.62	< 0.0001	0.24	< 0.025	< 0.04	0.0193	< 0.002	< 0.002	< 0.006	< 0.006	0.0154	0.35	< 0.0002	< 0.02	0.0083	< 0.008	< 0.01	< 0.0075	< 0.003	< 0.01
AT-1006-04	53.0	Tailing	Buried																						
AT-1006-05	51.0	Tailing	Buried																						
AT-1006-06	51.0	Sediment	Overlying																						
AT-1006-07	46.0	Sediment	Overlying	121	2.96	1.86	< 0.0001	< 0.03	< 0.025	< 0.04	0.0424	< 0.002	< 0.002	< 0.006	< 0.006	0.0048	< 0.06	< 0.0002	< 0.02	< 0.004	0.023	< 0.01	< 0.0075	< 0.003	< 0.01
AT-1006-08	46.0	Tailing	Buried	81.1	1.09	4.92	< 0.0001	0.07	< 0.025	< 0.04	0.0357	< 0.002	< 0.002	< 0.006	< 0.006	0.0014	< 0.06	< 0.0002	< 0.02	< 0.004	< 0.008	< 0.01	< 0.0075	< 0.003	< 0.01
AT-1006-09	46.0	Stained Sediment	Underlying																						
AT-1006-10	47.0	Tailing	Surface																						
AT-1006-11	40.0	Tailing	Buried																						
AT-1006-12	40.0	Sediment	Overlying	8.69	2.11	3.3	< 0.0001	0.36	< 0.025	< 0.04	0.0529	< 0.002	< 0.002	< 0.006	< 0.006	0.0055	0.35	< 0.0002	< 0.02	0.0073	< 0.008	< 0.01	< 0.0075	< 0.003	< 0.01
AT-1006-13	37.0	Tailing	Surface	151	8.89	1.65	< 0.0001	0.1	< 0.025	< 0.04	0.036	< 0.002	< 0.002	0.0208	< 0.006	1.27	< 0.06	< 0.0002	< 0.02	0.49	< 0.008	0.014	< 0.0075	< 0.003	0.159
AT-1006-14	37.0	Stained Sediment	Underlying																						
AT-1006-15	32.5	Sediment	Overlying	8.33	2.19	5.37	0.00033	1.76	< 0.025	0.05	0.019	< 0.002	< 0.002	< 0.006	< 0.006	0.0221	1.45	< 0.0002	< 0.02	0.0412	< 0.008	< 0.01	< 0.0075	< 0.003	0.017
AT-1006-16	32.5	Stained Sediment	Overlying	8.25	1.27	3.97	< 0.0001	0.32	< 0.025	< 0.04	0.0165	< 0.002	< 0.002	< 0.006	< 0.006	0.0015	0.44	< 0.0002	< 0.02	0.0067	< 0.008	< 0.01	< 0.0075	< 0.003	< 0.01
AT-1006-17	32.5	Tailing	Surface	8.32	1.19	10.9	< 0.0001	3.39	< 0.025	< 0.04	0.0154	< 0.002	< 0.002	< 0.006	< 0.006	0.0062	2.53	< 0.0002	< 0.02	0.0186	< 0.008	< 0.01	< 0.0075	< 0.003	0.051
AT-1006-18	32.5	Sediment	Overlying	19.6	1.51	1.9	< 0.0001	0.31	< 0.025	< 0.04	0.0307	< 0.002	< 0.002	< 0.006	< 0.006	0.0016	0.18	< 0.0002	< 0.02	< 0.004	< 0.008	< 0.01	< 0.0075	< 0.003	< 0.01
AT-1006-19	27.0	Sediment	Overlying	8.1	2.42	5.59	< 0.0001	2.52	< 0.025	< 0.04	0.0306	< 0.002	< 0.002	< 0.006	< 0.006	0.0359	2.22	< 0.0002	< 0.02	0.0424	< 0.008	< 0.01	< 0.0075	< 0.003	0.023
AT-1006-20	27.0	Sediment	Overlying																						
AT-1006-21	24.5	Sediment	Overlying	16.5	1.88	3.12	< 0.0001	0.67	< 0.025	< 0.04	0.0458	< 0.002	< 0.002	< 0.006	< 0.006	0.0028	0.45	< 0.0002	< 0.02	0.0055	< 0.008	< 0.01	< 0.0075	< 0.003	< 0.01
AT-1006-22	24.5	Tailing	Surface																						
AT-1006-23	24.5	Stained Sediment	Overlying	20.4	1.2	5.86	< 0.0001	0.06	< 0.025	< 0.04	0.0591	< 0.002	< 0.002	< 0.006	< 0.006	< 0.001	0.08	< 0.0002	< 0.02	< 0.004	< 0.008	< 0.01	< 0.0075	< 0.003	< 0.01
AT-1006-24	23.0	Sediment	Overlying	7.67	2.48	3.8	< 0.0001	1.36	< 0.025	< 0.04	0.0268	< 0.002	< 0.002	< 0.006	< 0.006	0.0053	1.13	< 0.0002	< 0.02	0.0199	< 0.008	< 0.01	< 0.0075	< 0.003	0.012
Notes:																									

mg/L = milligrams per liter

--- denotes not analyzed

Figures

5178 5176	2126 2174 5174 5174 5174					
 LEGEND ➡ Test Pit Location ➡ Direction of Surface Water Flow Contour 		CLIENT Freeport-McMoRan Chino Mines Company PROJECT ASSESSMENT REPORT FOR APACHE TEJO WASH				
	0 100 200	TITLE BIG BERM T	EST PIT LOCATIC	DNS		
		CONSULTANT		YYYY-MM-DD	2021-04-29	
				DESIGNED	HJ	[
		G 🕥		PREPARED	HJ	
REFERENCE(S)		- 💙 🔍	OLDLK	REVIEWED	JP	
1. SERVICE LAYER GEOGRAPHICS, CM	CREDITS: SOURCE: ESRI, MAXAR, GEOEYE, EARTHSTAR NES/AIRBUS DS, USDA, USGS, AEROGRID, IGN, AND THE GIS			APPROVED	KJ	
USER COMMUNITY	1	PROJECT NO. 19130958	PHASE -	RE 1	EV.	FIGURE

	Ар	proximate u	luantities	04
		Area (acres)	Volume (cubic yards)
	Overlying Soil	7		17,000
	Buried Tailing	7		37,500
	Surface Tailing	1.8		5,700
		and the		1 1 1 1 5 1
2634509		2635165		
Buried Tailing Thickness	Freeport-N	lcMoRan		
🖶 Wind Blown Tailing Thickness		es Company		
Buried Tailing	ASSESSME	NT REPORT FOR A	PACHE TEJO	WASH
Surface Tailing				
Cross Section Location	BIG BERM 1	AILING EXTENT		
Contour FEET				
	CONSULTANT		YYYY-MM-DD	2021-04-29
			DESIGNED	HJ
	💽 💽 G	OLDER	PREPARED	HJ
			REVIEWED	JP
GEOGRAPHICS, CNES/AIRBUS DS, USDA, USGS, AEROGRID, IGN, AND TH	AR IE GIS		APPROVED	KJ
USER COMMUNITY	PROJECT NO. 19130958	PHASE -	RE 1	v. FIGURE 10

NOTES

- 1.) ELEVATIONS ARE APPROXIMATE.
- 2.) VERTICAL EXAGGERATION = 10.

CLIENT	
Freeport-McMoRan	
Chino Mines Company	

GOLDER

CONSULTANT

50

FEET

YYYY-MM-DD	2021-03-15
DESIGNED	HJ
PREPARED	HJ
REVIEWED	JP
APPROVED	KJ

PROJECT ASSESSMENT REPORT FOR APACHE TEJO WASH

TITLE

BIG BERM CROSS-SECTION A-A'

PROJECT NO. 19130958

PHASE -

REV. 1

FIGURE 1

50		0		50
SCA	LE 1"	to 50'		FEET
	HORI	ZONTA	L SCALE	-

CONSULTANT

NOTES

.

- 1.) ELEVATIONS ARE APPROXIMATE.
- 2.) VERTICAL EXAGGERATION = 25.

CLIENT	
Freeport-McMoRan	
Chino Mines Company	

GOLDER

YYYY-MM-DD	2021-03-15
DESIGNED	HJ
PREPARED	HJ
REVIEWED	JP
APPROVED	KJ

PROJECT ASSESSMENT REPORT FOR APACHE TEJO WASH

TITLE

BIG BERM CROSS-SECTION B-B'

PROJECT NO. 19130958 PHASE

REV. 1 FIGURE -

CROSS SECTION C-D-E-F VIEW TO EAST

7.5	0	7.5	150	0	150
SCALE 1"	to 75'	FEET	SCALE 1'	' to 150'	FEET
VE	RTICAL SCA	LE	HOF	RIZONTAL SO	CALE

NOTES

1.) ELEVATIONS ARE APPROXIMATE.

2.) VERTICAL EXAGGERATION = 20.

^{CLIENT} Freeport-McMoRan Chino Mines Company	
CONSULTANT	YYYY-MM-DD

2021-03-15

ASSESSMENT REPORT FOR APACHE TEJO WASH

TITLE

BIG BERM CROSS-SECTION C-C'

PROJECT NO. 19130958 PHASE

REV. **1**

0 1 In It THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEEN MODIFIED FROM

APPENDIX A

Big Berm Characterization Data

APPENDIX A-1 SAMPLING AND ANALYSIS

Appendix A1 – Big Berm Sampling and Analysis

This appendix summarizes the field data collection and laboratory analyses performed for the Big Berm area. A one-time sampling event was conducted between March 7, 2006 and March 16, 2006 by Jeff Clark of the Golder Associates, Inc. (Golder) Tucson, Arizona office. Seventy-one test pits were excavated to visually delineate the extent of tailings and impacted soils. A total of 22 samples were collected from 12 test pits:

- Surface tailing 1 sample,
- Buried tailing 5 samples,
- Overlying sediment 3 samples,
- Underlying sediment 6 samples, and
- Stained sediment (downstream of the berm) 7 samples.

A description of the sample types and sampling rationale is presented in Section 3.1 of the main text of this report. Test pit locations are shown on Figure 6 of the main text. Test pits were excavated using a rubber-tired backhoe operated by James Hamilton Construction Company under contract to Chino Mines Company.

Samples were either grab or composite samples collected from the pit wall or the backhoe bucket. All samples were collected by hand (using disposable nitrile gloves) directly into 1-gallon Ziploc[™] bags and stored in an iced cooler pending shipment to the laboratory. The project number, sample number, date, and sampler's initials were written on the outside of each sample bag. Samples were stored in coolers, on ice, until shipment to the laboratory. All samples were shipped under chain of custody.

Samples were selected judgmentally in the field, based on visual identification of tailing accumulations, overlying and underlying sediment, and downstream sediment. Sample locations were mapped using an aerial photograph and verified using a handheld GPS unit. Each test pit location was photographed, described and sketched in field notes. Test pit logs are included in Appendix A2.

Samples were analyzed by SVL Analytical of Kellogg, Idaho for:

- Paste pH by ASA Monograph 9.
- Paste Electrical Conductivity by ASA Monograph 9.
- Acid Base Accounting (ABA) and sulfur forms by the Modified Sobek method.
- Total Metals Analysis by SW-846 Method 3050/6010B
- Synthetic Precipitation Leaching Procedure (SPLP) by Unites States Environmental Protection Agency Method 1312.

Samples were air dried and crushed to 3/8-inch according to SPLP Method 1312. A sub-sample was then pulverized to -160 mesh (approximately 0.09 millimeters) for ABA testing. Total metals analysis was performed on the bulk sample as received.

Total metals and SPLP analysis included aluminum, arsenic, boron, barium, beryllium, calcium, cadmium, cobalt, chromium, copper, iron, mercury, lead, lithium, manganese, molybdenum, nickel, potassium, selenium, silver, sodium, and zinc. Table A1 lists the laboratory methods and practical quantitation limits. Laboratory data packages are compiled in Appendices A3 and A4.

April 2021

	Total Me	tals	SPLP	
Analyte	Analytical Method	Practical Quantitation Limit (mg/kg)	Analytical Method	Practical Quantitation Limit (mg/L)
Aluminum (Al)	6010B	3	6010B	0.03
Arsenic (As)	6010B	2.5	6010B	0.025
Barium (Ba)	6010B	0.2	6010B	0.002
Beryllium (Be)	6010B	0.2	6010B	0.002
Boron (B)	6010B	4	6010B	0.04
Cadmium (Cd)	6010B	0.2	6010B	0.002
Calcium (Ca)	6010B	4	6010B	0.04
Chromium (Cr)	6010B	0.6	6010B	0.006
Cobalt (Co)	6010B	0.6	6010B	0.006
Copper (Cu)	6010B	1	6010B	0.001
Iron (Fe)	6010B	6	6010B	0.06
Lead (Pb)	6010B	0.75	6010B	0.0075
Lithium (Li)	6010B	0.5	6010B	0.005
Manganese (Mn)	6010B	0.4	6010B	0.004
Mercury (Hg)	7471A	0.033	7470A	0.0002
Molybdenum (Mo)	6010B	0.8	6010B	0.008
Nickel (Ni)	6010B	1	6010B	0.01
Potassium (K)	6010B	50	6010B	0.5
Selenium (Se)	6010B	4	6010B	0.003
Silver (Ag)	6010B	0.5	6010B	0.0001
Sodium (Na)	6010B	50	6010B	0.5
Zinc (Zn)	6010B	1	6010B	0.005

Table A-1:	List of Constituents and	Practical Quantitation I	Limits for Total Metal	s and SPLP Analysis
------------	--------------------------	---------------------------------	------------------------	---------------------

Notes:

SPLP = Synthetic Precipitation Leaching Procedure

mg/kg = milligrams per kilogram

mg/L = milligrams per liter

APPENDIX A-2 TEST PIT LOGS

Client:Chino MinesProject:Apache TejoProject No.:093-92578Location:Hurley, NMNAD 27:N: 3610052 E: 0770283

Lithology:

Depth	USCS	Description
0 - 1 ft.	SM	loose, pale yellowish brown, very fine to medium <u>SAND</u> , little to some fines, dry, no HCl reaction, rootlets, (weathered tailings). 85% Sand, 15% fines. Coarse: round to sub-round. Fines: non-plastic.
1 - 9 ft.	SP	compact, pale yellowish orange, very fine to medium <u>SAND</u> , trace fines, dry, no HCl reaction, (tailings). 95% Sand, 5% fines. Coarse: round to sub-round. Fines: non-plastic.
9 - 9.2 ft.	CL	firm, moderate brown, fine to coarse, <u>SANDY CLAY</u> , little fine to coarse gravel, little oversize, damp, weak HCl reaction (alluvium). 10% Oversize, 15% Gravel, 25% Sand, 50% fines. Coarse: round. Fines: moderate plasticity.
9.2 - 12 ft.	СН	soft, medium gray to pale yellowish brown, <u>SILTY CLAY</u> , trace fine sand, moist, no HCl reaction (possible tailings/alluvium). 5% Sand, 95% fines. Coarse: round. Fines: moderate to high plasticity.

Date: 3/7/2006

Client:Chino MinesProject:Apache TejoProject No.:093-92578Location:Hurley, NMNAD 27:N: 3610112 E: 0770303

Lithology:

Depth	USCS	Description
0 - 1 ft.	SP	loose, pale yellowish brown, very fine to medium <u>SAND</u> , little to some fines, dry, no HCl reaction, rootlets, (weathered tailings). 90% Sand, 10% fines. Coarse: round to sub-round. Fines: non-plastic
1 - 5 ft.	SP	compact, pale yellowish brown to pale yellowish orange, very fine to medium <u>SAND</u> , trace fines, dry, no HCl reaction, (tailings). 90-95% Sand, 5-10% fines. Coarse: round to sub-round. Fines: non-plastic.
5 - 10 ft.	CL	firm, moderate brown to moderate reddish brown, <u>SILTY CLAY</u> , and fine to coarse sand, some fine to coarse gravel, some oversize, moist, weak HCl reaction, grades coarser with depth, (alluvium). 15% Oversize, 15% Gravel, 35% Sand 35% fines. Coarse: round to sub-round. Fines: low plasticity

Page 2 of 9 Golder Associates

Date: 3/7/2006

Client:	Chino Mines
Project:	Apache Tejo
Project No.:	093-92578
Location:	Hurley, NM
NAD 27:	N: 3610224 E: 0770376

Depth	USCS	Description
0 - 2 ft.	SP	loose, pale yellowish brown, very fine to medium <u>SAND</u> , trace fines, dry, weak HCl reaction, rootlets, (weathered tailings). 95% Sand, 5% fines. Coarse: round to sub-round. Fines: non-plastic.
2 - 4 ft.	SW	loose, grayish orange, fine to coarse <u>SAND</u> , little to some fine to coarse gravel, trace oversize, trace fines, dry, no HCl reaction (alluvium). 5% Oversize, 15% Gravel, 75% Sand, 5% fines. Coarse: sub-round. Fines: low plasticity.

Date: 3/7/2006

Client:	Chino Mines	
Project:	Apache Tejo	
Project No.:	093-92578	
Location:	Hurley, NM	
NAD 27:	N: 3610358 E:	0770390

Depth	USCS	Description
0 - 2.2 ft.	SW	loose to compact, pale yellowish brown, fine to coarse <u>SAND</u> , some fine to coarse gravel, trace oversize, trace fines, dry, weak HCl reaction, rootlets, (weathered tailings). Grades coarser with depth. 5% Oversize, 15% Gravel, 75% Sand, 5% fines. Coarse: round to sub-round. Fines: non-plastic
2.2 - 9 ft.	SP	compact, very thinly bedded, dark yellowish orange, very fine to medium <u>SAND</u> , trace fines, dry, no HCl reaction, (tailings). 95% Sand, 5% fines. Coarse: round to sub-round. Fines: non-plastic.
9 - 12 ft.	SC	dense, moderate brown, fine to coarse, <u>SAND</u> , some fine to coarse gravel, little to some oversize, some fines, damp, weak HCl reaction (alluvium). 15% Oversize, 25% Gravel, 30% Sand, 30% fines. Coarse: round. Fines: moderate plasticity.

Date: 3/7/2006

Chino Mines
Apache Tejo
093-92578
Hurley, NM
N: 3610351 E: 0770410

Depth	USCS	Description
0 - 0.2 ft.	SP	loose, dark yellowish orange, very fine to medium <u>SAND</u> , dry, no HCI reaction, (tailings). 100% Sand. Coarse: round to sub-round.
0.2 - 2 ft.	SP	dense, moderate brown with white, fine to coarse <u>SAND and GRAVEL</u> , some fines, dry, strong HCl reaction, with caliche (alluvium). 35% Gravel, 45% Sand, 20% fines. Coarse: round to sub-round. Fines: moderate plasticity.

Client:Chino MinesProject:Apache TejoProject No.:093-92578Location:Hurley, NMNAD 27:N: 3610356 E: 0770466

Lithology:

Depth	USCS	Description
0 - 1.5 ft.	SW	loose, pale yellowish brown, fine to coarse <u>SAND</u> , little to some fine to coarse gravel, trace fines, dry, strong HCl reaction, rootlets, (alluvium with tailings). Pinches out to west. 15% Gravel, 80% Sand, 5% fines. Coarse: sub-round.
1.5 - 3 ft.	SP	compact, dark yellowish orange, very fine to medium <u>SAND</u> , trace fines, dry, no HCI reaction, (tailings). Pinches out to west. 95% Sand, 5% fines. Coarse: round. Fines: non-plastic.
3 - 4 ft.	SP	dense, moderate brown with white, fine to coarse <u>SAND and GRAVEL</u> , some fines, dry, strong HCl reaction, with caliche (tailings). 5% Oversize, 25% Gravel, 45% Sand, 25% fines. Coarse: round to sub-round. Fines: low plasticity.

Page 6 of 9 Golder Associates

Client:Chino MinesProject:Apache TejoProject No.:093-92578Location:Hurley, NMNAD 27:N: 3610384E:0770377

Lithology:

Depth	USCS	Description
0 - 2.5 ft.	SW	loose, pale yellowish brown, very fine to medium <u>SAND</u> , little to some fine to coarse gravel, trace fines, dry, weak HCl reaction, rootlets, (alluvium with tailings). 15% Gravel, 80% Sand, 5% fines. Coarse: round to sub-round.
2.5 - 6.5 ft.	SP	compact, pale yellowish orange, very fine to medium <u>SAND</u> , little fines, dry, no HCl reaction, (tailings). 90% Sand, 10% fines. Coarse: round to sub-round. Fines: low-plasticity.
6.5 - 9 ft.	SC/SW	dense, dark reddish brown, fine to coarse, <u>SAND</u> , some fine to coarse gravel, trace oversize, damp, weak HCl reaction (alluvium). 5% Oversize, 20% Gravel, 55% Sand, 20% fines. Coarse: round. Fines: low plasticity.
9 - 10 ft.	SC/SW	dense, moderate brown, fine to coarse, <u>SAND</u> , some fine to coarse gravel, trace oversize, damp, weak HCl reaction (alluvium). 5% Oversize, 20% Gravel, 55% Sand, 20% fines. Coarse: round. Fines: low plasticity.

Client:Chino MinesProject:Apache TejoProject No.:093-92578Location:Hurley, NMNAD 27:N: 3610426 E: 0770381

Lithology:

Depth	USCS	Description
0 - 2 ft.	SW	loose, pale yellowish brown, very fine to medium <u>SAND</u> , little to some fine to coarse gravel, trace fines, dry, weak HCl reaction, rootlets, (alluvium with tailings). Grades coarser with depth. 25% Gravel, 60% Sand, 15% fines. Coarse: round to sub-round. Fines: low-plasticity.
2 - 4 ft.	SP	compact, pale yellowish orange, very fine to medium <u>SAND</u> , trace fines, dry, no HCI reaction, (tailings). 95% Sand, 5% fines. Coarse: round to sub-round.
4 - 8 ft.	SW	dense, dark reddish brown, fine to coarse, <u>SAND</u> , some fine to coarse gravel, little oversize, little fines, dry, weak HCl reaction, stained, (alluvium). 15% Oversize, 25% Gravel, 50% Sand, 10% fines. Coarse: round. Fines: moderate-plasticity.
8 - 10 ft.	SW	dense, dark reddish brown, fine to coarse, <u>SAND</u> , some fine to coarse gravel, little oversize, little fines, dry, weak HCl reaction, (alluvium). 15% Oversize, 25%

Gravel, 50% Sand, 10% fines. Coarse: round. Fines: moderate-plasticity.

Date: 3/7/2006

Client:Chino MinesProject:Apache TejoProject No.:093-92578Location:Hurley, NMNAD 27:N: 3610381E: 0770256

Litholoav:

Depth	USCS	Description
0 - 2 ft.	SW	loose, pale yellowish brown, very fine to medium <u>SAND</u> , little to some fine to coarse gravel, trace fines, dry, weak HCl reaction, rootlets, (alluvium with tailings). Grades coarser with depth. 25% Gravel, 60% Sand, 15% fines. Coarse: round to sub-round. Fines: low-plasticity.
2 - 4 ft.	SP	compact, grayish orange, thinly bedded, very fine to medium <u>SAND</u> , little fines, dry, no HCI reaction, (tailings). 90% Sand, 10% fines. Coarse: round to subround Fines: low-plasticity.
4 - 6 ft.	CL	stiff, dusky brown, blocky, <u>SILTY CLAY</u> , little fine to coarse sand, damp, weak HCl reaction (alluvium). 10% Sand, 90% fines. Coarse: round. Fines: moderate plasticity.
6 - 10 ft.	SW/SC	dense, dark reddish brown to moderate brown, fine to coarse <u>SAND and</u> <u>GRAVEL</u> , some oversize, little fines, moist, no HCI reaction (alluvium). 15% Oversize, 25% Gravel, 45% Sand, 15% fines. Coarse: round. Fines: low- plasticity.

Date: 3/7/2006

Client:	Chino Mines	
Project:	Apache Tejo	
Project No.:	093-92578	
Location:	Hurley, NM	
NAD 27:	N: 3610182 E:	0770312

Depth	USCS	Description
0 - 2 ft.	CL	firm, pale yellowish brown, very fine to medium <u>SILTY CLAY and SAND</u> , dry, weak HCI reaction, rootlets, (alluvium with tailings). 25% Gravel, 60% Sand, 15% fines. Coarse: round. Fines: low-plasticity.
2 - 7 ft.	ML/CL	firm, yellowish gray, very thinly bedded, <u>CLAYEY SILT</u> , little to some fine sand, moist, no HCl reaction, (tailings). 10-15% Sand, 85-90% fines. Coarse: round. Fines: low to moderate plasticity.
7 - 7.1 ft.	SM	compact, dark yellowish orange, very thinly bedded, <u>SILTY SAND</u> , moist, no HCl reaction (tailings). 75% Sand, 25% fines. Coarse: round. Fines: low plasticity.
7.1 - 10 ft.	ML	firm, olive gray, thinly bedded, <u>CLAYEY SILT</u> , trace fine sand, moist, no HCI reaction (lacustral). 5% Sand, 15% fines. Coarse: round. Fines: low to moderate plasticity.

Date: 3/8/2006

Client:	Chino Mines
Project:	Apache Tejo
Project No.:	093-92578
Location:	Hurley, NM
NAD 27:	N: 3610102 E: 0770221

Lithology:

0 - 3 ft.

Depth USCS Description

SM stiff, moderate brown, fine to coarse <u>SILTY SAND</u>, trace fine to coarse gravel, dry, moderate to strong HCI reaction, (alluvium). Grades coarser with depth.
 Caliche at three feet. 10% Gravel, 60% Sand, 30% fines. Coarse: sub-rounded.
 Fines: moderate plasticity.

Client:Chino MinesProject:Apache TejoProject No.:093-92578Location:Hurley, NMNAD 27:N: 3610092E: 0770254

Lithology:

Depth	USCS	Description
0 - 0.5 ft.	SM	loose, pale yellowish brown, very fine to medium <u>SILTY SAND</u> , dry, strong HCl reaction, rootlets, (alluvium with tailings). 80% Sand, 20% fines. Coarse: round to sub-round. Fines: low plasticity.
0.5 - 1 ft.	SM	compact, moderate yellowish brown to grayish orange, very fine to medium <u>SAND</u> , little fines, dry, weak HCl reaction, rootlets, (tailings). 85% Sand, 15% fines. Coarse: round to sub-round. Fines: low plasticity.
1 - 2 ft.	SC	dense, moderate brown, fine to coarse <u>CLAYEY SAND</u> , little fine to coarse gravel, damp, moderate to strong HCI reaction, grades coarser with depth, (alluvium). 10% Gravel, 60% Sand, 30% fines. Coarse: round to sub-round.

Fines: low plasticity.

Page 3 of 10 Golder Associates Date: 3/8/2006

Client:Chino MinesProject:Apache TejoProject No.:093-92578Location:Hurley, NMNAD 27:N: 3610086 E: 0770278

Lithology:

Depth	USCS	Description
0 - 1.7 ft.	SM	loose, pale yellowish brown, fine to medium <u>SAND</u> , little to some fines, dry, weak HCl reaction, rootlets, (alluvium with weathered tailings). 80% Sand, 20% fines. Coarse: round to sub-round. Fines: low plasticity.
1.7 - 2.2 ft.	ML	firm, yellowish gray, <u>SILT</u> , some fine sand, dry, no HCl reaction (tailings). 20% Sand, 80% fines. Coarse: round. Fines: low plasticity.
2.2 - 2.5 ft.	SP	loose, grayish orange, fine to medium <u>SAND</u> , little fines, dry, no HCl reaction (tailings). 90% Sand, 10% fines. Coarse: round. Fines: low plasticity.
2.5 - 4.0 ft.	SC	compact/stiff, semi-cohesive, moderate brown, fine to medium <u>CLAYEY SAND</u> , little fines, dry, no HCI reaction (tailings). 90% Sand, 10% fines. Coarse: round. Fines: low plasticity.

Client:Chino MinesProject:Apache TejoProject No.:093-92578Location:Hurley, NMNAD 27:N: 3610077 E: 0770291

Lithology:

Depth	USCS	Description
0 - 0.5 ft.	SP	compact, pale yellowish brown, fine to medium <u>SAND</u> , little fines, dry, weak HCl reaction, rootlets, (weathered tailings). 90% Sand, 10% fines. Coarse: round to sub-round. Fines: low plasticity.
0.5 - 7 ft.	SP	compact, very thinly bedded, grayish yellow to moderate yellowish brown, very fine to medium <u>SAND</u> , trace fines, dry, no HCl reaction, (tailings). 95% Sand, 5% fines. Coarse: round.
7 - 10 ft.	ML	firm, varved, medium gray and orange, <u>CLAYEY SILT</u> , trace fine sand, moist, no HCl reaction (tailings/possible alluvium). Iron staining. 5% Sand, 95% fines. Fines: moderate plasticity.
10 - 11.5 ft.	ML	firm, varved, medium gray and orange, <u>CLAYEY SILT</u> , some fine sand, moist, no HCl reaction (tailings/possible alluvium). Iron staining. 25% Sand, 75% fines. Fines: moderate plasticity.

Client:Chino MinesProject:Apache TejoProject No.:093-92578Location:Hurley, NMNAD 27:N: 3610072 E: 0770322

Lithology:

Depth	USCS	Description
0 - 1.3 ft.	SP	loose, pale yellowish brown, fine to medium <u>SAND</u> , trace fines, dry, weak HCl reaction, rootlets, (weathered tailings). 95% Sand, 5% fines. Coarse: round to sub-round. Fines: low plasticity.
1.3 - 5 ft.	SP	compact, very thinly bedded, grayish yellow to moderate yellowish brown, very fine to medium <u>SAND</u> , trace fines, dry, no HCl reaction, (tailings). 90% Sand, 10% fines. Coarse: round.
5 - 7.5 ft.	ML	firm, varved, medium gray and orange, <u>CLAYEY SILT</u> , trace fine sand, moist, no HCI reaction (tailings/possible alluvium). Iron staining. 5% Sand, 95% fines. Fines: low plasticity.
7.5 - 8 ft.	CL	firm, moderate brown to dusky brown, <u>CLAYEY SILT</u> , trace fine to coarse sand, moist, no HCI reaction (alluvium). 5% Sand, 75% fines. Fines: moderate plasticity.

Page 6 of 10 Golder Associates

Client:Chino MinesProject:Apache TejoProject No.:093-92578Location:Hurley, NMNAD 27:N: 3610076 E: 0770346

Lithology:

Depth	USCS	Description	
0 - 0.5 ft.	SP	loose, pale yellowish brown, fine to medium <u>SAND</u> , little fines, dry, weak HCl reaction, rootlets, (weathered tailings). 90% Sand, 10% fines. Coarse: round. Fines: low plasticity.	
0.5 - 2.5 ft.	SP	compact, dark yellowish orange, very fine to medium <u>SAND</u> , trace fines, dry, no HCl reaction, rootlets, (tailings). 95% Sand, 5% fines. Coarse: round.	
2.5 - 3.5 ft.	SC	compact, moderate brown, fine to coarse <u>CLAYEY SAND</u> , dry, no HCl reaction, rootlets, (alluvium). 95% Sand, 5% fines. Coarse: sub-round. Fines: moderate plasticity.	

Date: 3/8/2006

Client:Chino MinesProject:Apache TejoProject No.:093-92578Location:Hurley, NMNAD 27:N: 3610059 E: 0770360

Lithology:

Depth USCS Description

SP

0 - 2.5 ft.

loose, pale yellowish brown, fine to medium <u>SAND</u>, little fines, dry, weak HCI reaction rootlets tailings in upper six inches (alluvium) 90% Sand 10% fine

reaction, rootlets, tailings in upper six inches, (alluvium). 90% Sand, 10% fines. Coarse: round. Fines: low plasticity.

Client:Chino MinesProject:Apache TejoProject No.:093-92578Location:Hurley, NMNAD 27:N: 3610078 E: 0770373

Date: 3/8/2006

Depth	USCS	Description
0 - 1 ft.	SP	loose, pale yellowish brown, fine to medium <u>SAND</u> , trace fines, dry, no HCI reaction, rootlets, (tailings). 95% Sand, 5% fines. Coarse: round.

1 - 2 ft. SW dense, moderate reddish brown, fine to coarse, <u>SAND</u>, trace fine to coarse gravel, some fines, dry, strong HCl reaction, (alluvium). 5% Gravel, 65% Sand, 30% fines. Coarse: sub-round. Fines: moderate plasticity.

Client:	Chino Mines	
Project:	Apache Tejo	
Project No.:	093-92578	
Location:	Hurley, NM	
NAD 27:	N: 3610094 E:	0770352

Lithology:

Depth	USCS	Description
0 - 1.5 ft.	SM	loose, pale yellowish brown, very fine to medium <u>SAND</u> , some fines, dry, no HCl reaction, rootlets, (weathered tailings). 80% Sand, 20% fines. Coarse: round. Fines: low-plasticity.
1.5 - 6 ft.	SP	
		compact, dark yellowish orange, thinly bedded, very fine to medium <u>SAND</u> , trace fines, dry, no HCl reaction, (tailings). 95% Sand, 5% fines. Coarse: round.
6 - 7 ft.	SC	dense, moderate brown to dusky brown, <u>CLAYEY SAND</u> , trace fine to coarse gravel, damp, strong HCl reaction (alluvium). 5% Gravel, 70% Sand, 25% fines. Coarse: sub-round. Fines: moderate plasticity.

Page 10 of 10 Golder Associates

Client:Chino MinesProject:Apache TejoProject No.:093-92578Location:Hurley, NMNAD 27:N: 3610127 E: 0770367

Lithology:

Depth	USCS	Description
0 - 1.3 ft.	SM	loose, pale yellowish brown, very fine to medium <u>SAND</u> , some fines, dry, no HCI reaction, rootlets, (weathered tailings). 80% Sand, 20% fines. Coarse: round. Fines: low-plasticity.
1.3 - 3.5 ft.	SP	compact, dark yellowish orange, thinly bedded, very fine to medium <u>SAND</u> , trace fines, dry, no HCl reaction, (tailings). 95% Sand, 5% fines. Coarse: round.
6 - 7 ft.	SC	dense, moderate brown to dusky brown, <u>CLAYEY SAND</u> , trace fine to coarse gravel, damp, strong HCl reaction (alluvium). 5% Gravel, 70% Sand, 25% fines. Coarse: sub-round. Fines: moderate plasticity.

Date: 3/8/2006

Client:	Chino Mines	
Project:	Apache Tejo	
Project No.:	093-92578	
Location:	Hurley, NM	
NAD 27:	N: 3610102 E:	0770221

Lithology:

Depth	USCS	Description
0 - 1 ft	SP	loose, dark yellowish brown, medium <u>SAND</u> , dry, no HCl reaction, (tailings).
		100% Sand. Coarse: rounded.

1 - 2 ft. SM compact, pale yellowish brown, fine to medium <u>SILTY SAND</u>, trace fine to coarse gravel, dry, strong HCl reaction, rootlets, (alluvium). 5% Gravel, 70% Sand, 25% fines. Coarse: sub-round. Fines: low plasticity.

Client:	Chino Mines	Date: 3/8/2006
Project:	Apache Tejo	
Project No.:	093-92578	
Location:	Hurley, NM	
NAD 27:	N: 3610110 E: 0770412	
Lithology:		

Depth USCS Description

0 - 1 ft.

SM compact, dark reddish brown, fine to coarse <u>SILTY SAND</u>, dry, strong HCI reaction, rootlets, (alluvium). 80% Sand, 20% fines. Coarse: sub-round. Fines: low plasticity.

Date: 3/8/2006

Chino Mines		
Apache Tejo		
093-92578		
Hurley, NM		
N: 3610103 E: 0770426		

Lithology:

Depth	USCS	Description
0 - 0.8 ft	SP	loose, dark yellowish brown, medium <u>SAND</u> , dry, no HCl reaction, (tailings). 100% Sand. Coarse: rounded.

0.8 - 1.8 ft. SM compact, dark reddish brown, fine to coarse <u>SILTY SAND</u>, dry, strong HCI reaction, rootlets, (alluvium). 80% Sand, 20% fines. Coarse: sub-round. Fines: low plasticity.

Date: 3/8/2006

Client:	Chino Mines
Project:	Apache Tejo
Project No.:	093-92578
Location:	Hurley, NM
NAD 27:	N: 3610090 E: 0770453

Lithology:

Depth	USCS	Description	
0 - 0.8 ft	SP	loose, dark yellowish brown, medium <u>SAND</u> , dry, no HCl reaction, (tailings). 100% Sand. Coarse: rounded.	
0.8 - 1.2 ft.	SC	stiff, dark reddish brown, fine to coarse <u>CLAYEY SAND</u> , trace fine to coarse gravel, dry, strong HCl reaction, rootlets, (alluvium). 5% Gravel, 70% Sand, 25% fines. Coarse: sub-round. Fines: moderate plasticity.	

Date: 3/8/2006

Chino Mines		
Apache Tejo		
093-92578		
Hurley, NM		
N: 3610123 E: 0770443	3	
	Chino Mines Apache Tejo 093-92578 Hurley, NM N: 3610123 E: 0770443	

Lithology:

Depth	USCS	Description
0 - 2 ft	SP	loose, dark yellowish brown, medium <u>SAND</u> , dry, no HCl reaction, (tailings). 100% Sand. Coarse: rounded.

2 - 2.5 ft. SC stiff, dark reddish brown, fine to coarse <u>CLAYEY SAND</u>, trace fine to coarse gravel, dry, strong HCI reaction, rootlets, (alluvium). 5% Gravel, 70% Sand, 25% fines. Coarse: sub-round. Fines: moderate plasticity.

Date: 3/8/2006

Client:	Chino Mines		
Project:	Apache Tejo		
Project No.:	093-92578		
Location:	Hurley, NM		
NAD 27:	N: 3610142 E: 0770455		

Lithology:

Depth	USCS	Description
0 - 0.2 ft	SP	loose, dark yellowish brown, medium <u>SAND</u> , dry, no HCl reaction, (tailings). 100% Sand. Coarse: rounded.

0.2 - 0.5 ft. SC stiff, dark reddish brown, fine to coarse <u>CLAYEY SAND</u>, trace fine to coarse gravel, dry, strong HCl reaction, rootlets, (alluvium). 5% Gravel, 70% Sand, 25% fines. Coarse: sub-round. Fines: moderate plasticity.

Date: 3/8/2006

Client:	Chino Mines		
Project:	Apache Tejo		
Project No.:	093-92578		
Location:	Hurley, NM		
NAD 27:	N: 3610153 E: 0770468		

Lithology:

Depth	USCS	Description
0 - 2.5 ft	SP	loose, dark yellowish brown, medium <u>SAND</u> , dry, no HCl reaction, (tailings). 100% Sand. Coarse: rounded.
2.5 - 3 ft.	SC	stiff, dark reddish brown, fine to coarse CLAYEY SAND, trace fine to coarse

fines. Coarse: sub-round. Fines: moderate plasticity.

gravel, dry, strong HCl reaction, rootlets, (alluvium). 5% Gravel, 70% Sand, 25%

Client:	Chino Mines		
Project:	Apache Tejo		
Project No.:	093-92578		
Location:	Hurley, NM		
NAD 27:	N: 3610453 E: 0770188		

Date: 3/8/2006

Litho	logy:
-------	-------

Depth	USCS	Description
0 - 1.5 ft	SP	loose, dark yellowish brown, medium <u>SAND</u> , dry, no HCI reaction, (tailings). 100% Sand. Coarse: rounded.
1.5 - 2 ft.	SC	stiff, dark reddish brown, fine to coarse <u>CLAYEY SAND</u> , trace fine to coarse gravel, dry, strong HCl reaction, rootlets, (alluvium). 5% Gravel, 70% Sand, 25%

fines. Coarse: sub-round. Fines: moderate plasticity.

Date: 3/8/2006

Client:	Chino Mines
Project:	Apache Tejo
Project No.:	093-92578
Location:	Hurley, NM
NAD 27:	N: 3610196 E: 0770469

Lithology:

Depth	USCS	Description
0 - 0.3 ft	SP	loose, dark yellowish brown, medium <u>SAND</u> , dry, no HCI reaction, (tailings). 100% Sand. Coarse: rounded.
0.3 - 1 ft.	SC	stiff, dark reddish brown, fine to coarse <u>CLAYEY SAND</u> , trace fine to coarse gravel, dry, strong HCl reaction, rootlets, with caliche (alluvium). 5% Gravel, 70%

TEST PIT LOG: TP-29

Date: 3/8/2006

Client:	Chino Mines
Project:	Apache Tejo
Project No.:	093-92578
Location:	Hurley, NM
NAD 27:	N: 3610228 E: 0770426

Lithology:

Depth	USCS	Description
0 - 1 ft	SP	loose, dark yellowish brown, medium <u>SAND</u> , dry, no HCl reaction, (tailings). 100% Sand. Coarse: rounded.

1 - 1.3 ft. SC stiff, dark reddish brown, fine to coarse CLAYEY SAND, trace fine to coarse gravel, dry, strong HCl reaction, rootlets, with caliche (alluvium). 5% Gravel, 70% Sand, 25% fines. Coarse: sub-round. Fines: moderate plasticity.

Date: 3/8/2006

Chino Mines
Apache Tejo
093-92578
Hurley, NM
N: 3610267 E: 0770425

Lithology:

Depth	USCS	Description
0 - 1 ft	SP	loose, dark yellowish brown, medium <u>SAND</u> , dry, no HCl reaction, (tailings). 100% Sand. Coarse: rounded.

1 - 1.3 ft. SC stiff, dark reddish brown, fine to coarse <u>CLAYEY SAND</u>, trace fine to coarse gravel, dry, strong HCl reaction, rootlets, with caliche (alluvium). 5% Gravel, 70% Sand, 25% fines. Coarse: sub-round. Fines: moderate plasticity.

Date: 3/8/2006

Chino Mines
Apache Tejo
093-92578
Hurley, NM
N: 3610238 E: 0770461

Lithology:

Depth	USCS	Description
0 - 0.2 ft	SP	loose, moderate yellowish brown, medium <u>SAND</u> , trace fine gravel dry, no HCl reaction, (tailings with native topsoil). 100% Sand. Coarse: rounded.
0.2 - 0.5 ft.	SM	stiff, light brown, fine to coarse <u>SILTY SAND</u> , trace fine to coarse gravel, dry, strong HCl reaction, rootlets, with caliche (alluvium). 5% Gravel, 70% Sand, 25% fines. Coarse: sub-round. Fines: low plasticity.

Client:	Chino Mines
Project:	Apache Tejo
Project No.:	093-92578
Location:	Hurley, NM
NAD 27:	N: 3610207 E: 0770473

Date: 3/8/2006

0,		
Depth	USCS	Description
0 - 1.3 ft	SP	loose, dark yellowish brown, medium <u>SAND</u> , dry, no HCl reaction, (tailings). 100% Sand. Coarse: rounded.

1.3 - 1.8 ft. CL stiff, dark reddish brown, fine to coarse <u>SANDY CLAY</u>, dry, strong HCl reaction, rootlets, (alluvium). 40% Sand, 60% fines. Coarse: sub-round. Fines: moderate plasticity.

Date: 3/8/2006

Chino Mines
Apache Tejo
093-92578
Hurley, NM
N: 3610179 E: 0770503

Lithology:

Depth	USCS	Description
0 - 0.1 ft	SP	loose, dark yellowish brown, medium <u>SAND</u> , dry, no HCl reaction, (tailings). 100% Sand. Coarse: rounded.

0.1 - 0.5 ft. CL stiff, dark reddish brown, fine to coarse <u>SANDY CLAY</u>, dry, strong HCl reaction, rootlets, (alluvium). 40% Sand, 60% fines. Coarse: sub-round. Fines: moderate plasticity.

Chino Mines
Apache Tejo
093-92578
Hurley, NM
N: 3610134 E: 0770506

Date: 3/8/2006

Depth USCS Description 0 - 0.2 ft SP loose, dark yellowish brown, medium <u>SAND</u> , dry, no HCl reaction, (tailings 100% Sand. Coarse: rounded.				
0 - 0.2 ft SP loose, dark yellowish brown, medium <u>SAND</u> , dry, no HCl reaction, (tailings 100% Sand. Coarse: rounded.	Depth	USCS	Description	
	0 - 0.2 ft	SP	loose, dark yellowish brown, medium <u>SAND</u> , dry, no HCl reaction, (tailings). 100% Sand. Coarse: rounded.	

0.2 - 2.5 ft. CL stiff, dark reddish brown, fine to coarse <u>SANDY CLAY</u>, dry, strong HCl reaction, rootlets, (alluvium). 40% Sand, 60% fines. Coarse: sub-round. Fines: moderate plasticity.

Client:	Chino Mines	
Project:	Apache Tejo	
Project No.:	093-92578	
Location:	Hurley, NM	
NAD 27:	N: 3610104 E:	0770476

Date: 3/8/2006

•		
Depth	USCS	Description
0 - 0.2 ft	SP	loose, dark yellowish brown, medium <u>SAND</u> , dry, no HCl reaction, (tailings). 100% Sand. Coarse: rounded.

0.2 - 0.5 ft. CL stiff, dark reddish brown, fine to coarse <u>SANDY CLAY</u>, dry, strong HCl reaction, rootlets, (alluvium). 40% Sand, 60% fines. Coarse: sub-round. Fines: moderate plasticity.

Date: 3/8/2006

Client:	Chino Mines
Project:	Apache Tejo
Project No.:	093-92578
Location:	Hurley, NM
NAD 27:	N: 3610123 E: 0770463

Lithology:

Depth	USCS	Description
0 - 1.5 ft	SP	loose, dark yellowish brown, medium <u>SAND</u> , dry, no HCl reaction, (tailings). 100% Sand. Coarse: rounded.

1.5 - 2.5 ft. CL stiff, dark reddish brown, fine to coarse <u>SANDY CLAY</u>, dry, strong HCl reaction, rootlets, (alluvium). 40% Sand, 60% fines. Coarse: sub-round. Fines: moderate plasticity.

Client:Chino MinesProject:Apache TejoProject No.:093-92578Location:Hurley, NMNAD 27:N: 3610157 E: 0770340

Lithology:

Depth	USCS	Description
0 - 1.8 ft.	SM	loose, pale yellowish brown, very fine to medium <u>SAND</u> , some fines, dry, no HCI reaction, rootlets, (weathered tailings and alluvium). 80% Sand, 20% fines. Coarse: round. Fines: low-plasticity.
1.8 - 2.7 ft.	SP	compact, pale yellowish gray, thinly bedded, very fine to medium <u>SAND</u> , little fines, dry, no HCl reaction, (tailings). 90% Sand, 10% fines. Coarse: round. Fines: low plasticity.
2.7 - 4 ft.	CL	stiff, moderate brown, fine to coarse <u>SANDY CLAY</u> , trace fine to coarse gravel, damp, weak HCl reaction (alluvium). 5% Gravel, 30% Sand, 65% fines. Coarse: sub-round. Fines: moderate plasticity.

Client:Chino MinesProject:Apache TejoProject No.:093-92578Location:Hurley, NMNAD 27:N: 3610153 E: 0770387

Lithology:

Depth	USCS	Description
0 - 0.3 ft.	SM	loose, pale yellowish brown, very fine to medium <u>SAND</u> , some fines, dry, no HCI reaction, rootlets, (weathered tailings and alluvium). 80% Sand, 20% fines. Coarse: round. Fines: low-plasticity.
0.3 - 2 ft.	SP	compact, pale yellowish gray, thinly bedded, very fine to medium <u>SAND</u> , little fines, dry, no HCl reaction, (tailings). 90% Sand, 10% fines. Coarse: round. Fines: low plasticity.
2 - 4 ft.	SC	dense, dark reddish brown, fine to coarse <u>CLAYEY SAND</u> , trace fine to coarse gravel, dry, strong HCl reaction, rootlets, (alluvium). 5% Gravel, 70% Sand, 25% fines. Coarse: sub-round. Fines: moderate plasticity.

Date: 3/8/2006

Client:	Chino Mines
Project:	Apache Tejo
Project No.:	093-92578
Location:	Hurley, NM
NAD 27:	N: 3610213 E: 0770402

Lithology:

Depth	USCS	Description
0 - 0.3 ft.	SM	loose, pale yellowish brown, very fine to medium <u>SAND</u> , some fines, dry, no HCI reaction, rootlets, (weathered tailings and alluvium). 80% Sand, 20% fines. Coarse: round. Fines: low-plasticity.
2 - 4 ft.	CL	stiff, dark reddish brown, fine to coarse <u>SANDY CLAY</u> , trace fine gravel, dry, strong HCI reaction, rootlets, (alluvium). 5% Gravel, 25% Sand, 70% fines. Coarse: sub-round. Fines: moderate plasticity.

Client:Chino MinesProject:Apache TejoProject No.:093-92578Location:Hurley, NMNAD 27:N: 3610248 E: 0770405

Lithology:

Depth	USCS	Description
0 - 0.1 ft.	SM	loose, pale yellowish brown, very fine to medium <u>SAND</u> , some fines, dry, no HCI reaction, rootlets, (weathered tailings and alluvium). 80% Sand, 20% fines. Coarse: round. Fines: low-plasticity.
0.1 - 0.2 ft.	SP	compact, pale yellowish gray, thinly bedded, very fine to medium <u>SAND</u> , little fines, dry, no HCl reaction, (tailings). 90% Sand, 10% fines. Coarse: round. Fines: low plasticity.
0.2 - 3 ft.	ML	dense, moderate brown, fine to coarse <u>SANDY SILT</u> , little fine to coarse gravel, dry, strong HCl reaction, rootlets, (alluvium). 10% Gravel, 25% Sand, 65% fines. Coarse: sub-round. Fines: moderate plasticity.

Date: 3/8/2006

Client:	Chino Mines	
Project:	Apache Tejo	
Project No.:	093-92578	
Location:	Hurley, NM	
NAD 27:	N: 3610285 E:	0770393

Lithology:

Depth	USCS	Description
0 - 0.2 ft	SP	loose, moderate yellowish brown, medium <u>SAND</u> , trace fine gravel dry, no HCl reaction, (tailings with native topsoil). 100% Sand. Coarse: rounded.
0.2 - 1 ft.	SM	dense, moderate brown, fine to coarse <u>SANDY SILT</u> , little fine to coarse gravel, dry, strong HCl reaction, rootlets, with caliche (alluvium). 10% Gravel, 25% Sand, 65% fines. Coarse: sub-round. Fines: moderate plasticity.

Client:Chino MinesProject:Apache TejoProject No.:093-92578Location:Hurley, NMNAD 27:N: 3610319E: 0770412

Lithology:

Depth	USCS	Description
0 - 1 ft.	SM	loose, pale yellowish brown, very fine to medium <u>SAND</u> , some fines, dry, no HCl reaction, rootlets, (weathered tailings and alluvium). 80% Sand, 20% fines. Coarse: round. Fines: low-plasticity.
1 - 4 ft.	SM	compact, pale yellowish gray, thinly bedded, very fine to medium <u>SAND</u> , little to some fines, dry, no HCl reaction, (tailings). 80% Sand, 20% fines. Coarse: round. Fines: low plasticity.
4 - 5 ft.	SM	dense, dark reddish brown, fine to coarse <u>SILTY SAND</u> , trace fine to coarse gravel, dry, strong HCl reaction, rootlets, (alluvium). 5% Gravel, 70% Sand, 25% fines. Coarse: sub-round. Fines: low plasticity.

Client:Chino MinesProject:Apache TejoProject No.:093-92578Location:Hurley, NMNAD 27:N: 3610326 E: 0770381

Lithology:

Depth	USCS	Description
0 - 0.5 ft.	SM	loose, pale yellowish brown, very fine to medium <u>SAND</u> , some fines, dry, weak HCl reaction, rootlets, (weathered tailings and alluvium). 80% Sand, 20% fines. Coarse: round. Fines: low-plasticity.
0.5 - 0.7 ft.	SM	compact, pale yellowish gray, thinly bedded, very fine to medium <u>SAND</u> , some fines, dry, no HCl reaction, (tailings). 90% Sand, 10% fines. Coarse: round. Fines: low plasticity.
0.7 - 1.5 ft.	CL	hard, dusky brown, fine to coarse <u>SANDY CLAY</u> , trace fine to coarse gravel, dry, strong HCl reaction, rootlets, (alluvium). 5% Gravel, 30% Sand, 65% fines. Coarse: sub-round. Fines: moderate plasticity.

 Client:
 Chino Mines

 Project:
 Apache Tejo

 Project No.:
 093-92578

 Location:
 Hurley, NM

 NAD 27:
 N: 3610292
 E: 0770377

Lithology:

Depth	USCS	Description
0 - 0.5 ft.	SM	loose, pale yellowish brown, very fine to medium <u>SAND</u> , some fines, dry, moderate HCl reaction, rootlets, (weathered tailings and alluvium). 80% Sand, 20% fines. Coarse: round. Fines: low-plasticity.
0.5 - 1.5 ft.	SM	compact, yellowish gray, thinly bedded, very fine to medium <u>SAND</u> , some fines, dry, no HCl reaction, (tailings). 90% Sand, 10% fines. Coarse: round. Fines: low plasticity.
1.5 - 2.5 ft.	SC	hard, dusky brown, fine to coarse <u>CLAYEY SAND</u> , trace fine gravel, dry, strong HCI reaction, rootlets, (alluvium). 5% Gravel, 65% Sand, 30% fines. Coarse: subround. Fines: moderate plasticity.

Page 5 of 10 Golder Associates

Date: 3/9/2006

Client:Chino MinesProject:Apache TejoProject No.:093-92578Location:Hurley, NMNAD 27:N: 3610104 E: 0770476

Lithology:

Depth	USCS	Description
0 - 5 ft.	SC	dense, pale yellowish brown, fine to coarse <u>CLAYEY SAND</u> , some fine to coarse gravel, dry, strong HCl reaction, rootlets, (alluvium). Grades coarser with depth, with caliche. 15% Gravel, 55% Sand, 30% Fines. Coarse: sub-round. Fines: low-
5 - 6 ft.	CL	stiff, dark reddish brown, fine to coarse <u>GRAVELY CLAY</u> , some fine to coarse sand, dry, weak HCI reaction, rootlets, (alluvium). Grades coarser with depth. 15% Gravel, 35% Sand, 60% fines. Coarse: sub-round. Fines: moderate
6 - 9 ft.	CL	stiff/dense, moderate brown, fine to coarse <u>CLAYEY GRAVEL</u> , some fine to coarse sand, dry, strong HCI reaction, (alluvium). Grades coarser with depth. 45% Gravel, 30% Sand, 20% fines. Coarse: sub-round. Fines: moderate

Page 6 of 10 Golder Associates

Client:Chino MinesProject:Apache TejoProject No.:093-92578Location:Hurley, NMNAD 27:N: 3610250 E: 0770367

Lithology:

Linelogy.		
Depth	USCS	Description
0 - 0.8 ft.	SM	loose, pale yellowish brown, fine to medium <u>SILTY SAND</u> , dry, moderate HCI reaction, rootlets, (alluvium with weathered tailings). Grades coarser with depth, with caliche. 70% Sand, 30% Fines. Coarse: round to sub-round. Fines: low-plasticity.
0.8 - 1.7 ft.	SM	compact, yellowish gray, thinly bedded, very fine to medium <u>SAND</u> , some fines, dry, no HCl reaction, (tailings). 80% Sand, 20% fines. Coarse: round. Fines: low plasticity.
1.7 - 2.5 ft.	SC	stiff/dense, moderate brown to dusky brown, fine to coarse CLAYEY SAND, trace

.7 - 2.5 ft. SC stiff/dense, moderate brown to dusky brown, fine to coarse <u>CLAYEY SAND</u>, trace fine to coarse gravel, dry, weak HCl reaction, (alluvium). Grades coarser with depth. 5% Gravel, 55% Sand, 40% fines. Coarse: sub-round. Fines: moderate plasticity.

Page 7 of 10 Golder Associates Date: 3/9/2006

Client:Chino MinesProject:Apache TejoProject No.:093-92578Location:Hurley, NMNAD 27:N: 3610218 E: 0770341

moderate plasticity.

Lithology:

Depth	USCS	Description
0 - 1 ft.	SM	loose, pale yellowish brown, fine to medium <u>SILTY SAND</u> , dry, weak HCI reaction, rootlets, (alluvium with weathered tailings). Grades coarser with depth, with caliche. 80% Sand, 20% Fines. Coarse: round to sub-round. Fines: low-plasticity.
1 - 3 ft.	ML	firm, yellowish gray, thinly bedded, <u>SILT,</u> trace fine sand, dry, no HCl reaction, (tailings). 5% Sand, 95% fines. Coarse: round. Fines: low plasticity.
3 - 4 ft.	SC	firm, olive gray, <u>SILTY CLAY</u> , trace fine sand, moist, no HCl reaction, (alluvium). Grades coarser with depth. 5% Sand, 95% fines. Coarse: sub-round. Fines:

Page 8 of 10 Golder Associates Date: 3/9/2006

Date: 3/9/2006

Client:	Chino Mines
Project:	Apache Tejo
Project No.:	093-92578
Location:	Hurley, NM
NAD 27:	N: 3610220 E: 0770322

Lithology:

Depth	USCS	Description
0 - 1 ft.	SM	loose, pale yellowish brown, very fine to medium <u>SAND</u> , some fines, dry, strong HCI reaction, rootlets, (weathered tailings and alluvium). 80% Sand, 20% fines. Coarse: round. Fines: low-plasticity.
1 - 3.5 ft.	CL	very stiff, moderate brown, fine to coarse SANDY CLAY, little fines, dry, weak

3.5 ft. CL very stiff, moderate brown, fine to coarse <u>SANDY CLAY</u>, little fines, dry, weak HCl reaction, (alluvium). Grades coarser with depth. 5% Oversize, 5% Gravel, 25% Sand, 65% Fines. Coarse: round. Fines: low plasticity.

Client:Chino MinesProject:Apache TejoProject No.:093-92578Location:Hurley, NMNAD 27:N: 3610178 E: 0770319

Lithology:

Depth	USCS	Description
0 - 1.8 ft.	SM	loose, pale yellowish brown, very fine to medium <u>SAND</u> , some fines, dry, weak HCI reaction, rootlets, (weathered tailings and alluvium). 80% Sand, 20% fines. Coarse: round. Fines: low-plasticity.
1.8 - 2.2 ft.	ML	compact, yellowish gray, thinly bedded, very fine to medium <u>SAND</u> , some fines, dry, no HCl reaction, (tailings). 80% Sand, 20% fines. Coarse: round. Fines: low plasticity.
2.2 - 5 ft.	ML	compact, yellowish gray, <u>CLAYEY SILT</u> , some fines, dry, no HCI reaction, (tailings). 10% Sand, 90% fines. Coarse: round. Fines: low plasticity.
5 - 5.5 ft.	CL	firm, light olive gray, <u>SILTY CLAY</u> , trace fine gravel, dry, no HCl reaction, rootlets, iron oxide staining, (alluvium). 5% Sand, 95% fines. Fines: moderate plasticity.

Page 10 of 10 Golder Associates

Client:	Chino Mines
Project:	Apache Tejo
Project No.:	093-92578
Location:	Hurley, NM
NAD 27:	N: 3610191 E: 0770280

Lithology:

Depth	USCS	Description
0 - 0.6 ft	ML	loose, pale yellowish brown, fine to medium <u>SANDY SILT</u> , dry, moderate HCl reaction, (tailings with native topsoil). 40% Sand. Coarse: rounded to subrounded. Fines: low plasticity.

0.6 - 3 ft. CL very stiff, moderate brown, <u>SILTY CLAY</u>, trace fine to coarse gravel, dry, no HCl reaction, rootlets, with caliche (alluvium). 5% Oversize, 5% Gravel, 20% Sand, 70% fines. Coarse: sub-round. Fines: moderate plasticity.

Client:Chino MinesProject:Apache TejoProject No.:093-92578Location:Hurley, NMNAD 27:N: 3610285 E: 0770393

Lithology:

	Depth	USCS	Description
0	- 0.5 ft.	ML	loose, pale yellowish brown, fine to medium <u>SANDY SILT</u> , dry, strong HCI reaction, rootlets, (alluvium with tailings). 45% Sand, 55% fines. Coarse: round. Fines: low-plasticity.
0.	.5 - 1 ft.	ML	stiff, pale yellowish gray, thinly bedded, very fine to medium <u>SANDY SILT</u> , dry, no HCI reaction, (tailings). 35% Sand, 10% fines. Coarse: round. Fines: low plasticity.
	1 - 2 ft.	CL	very stiff, moderate brown, fine <u>SANDY CLAY</u> , trace fine gravel, dry, weak HCl reaction, rootlets, (alluvium). 5% Gravel, 30% Sand, 65% fines. Coarse: subround. Fines: moderate plasticity.

Client:	Chino Mines	
Project:	Apache Tejo	
Project No.:	093-92578	
Location:	Hurley, NM	
NAD 27:	N: 3610115 E:	0770293

Lithology:

Depth	USCS	Description
0 - 2 ft.	SM	loose, pale yellowish brown, fine to medium <u>SILTY SAND</u> , dry, strong HCI reaction, rootlets, (alluvium with tailings). 70% Sand, 30% fines. Coarse: subround to round. Fines: low-plasticity.
2 - 4 ft.	SM	compact, pale yellowish gray, thinly bedded, very fine to medium <u>SILTY SAND</u> , dry, no HCl reaction, (tailings). 35% Sand, 10% fines. Coarse: round. Fines: low plasticity.
4 - 4.5 ft.	CL	firm, olive gray, <u>SILTY CLAY</u> , trace fine sand, moist, no HCI reaction, rootlets, (alluvium). 5% Sand, 95% fines. Fines: moderate plasticity.

Client:Chino MinesProject:Apache TejoProject No.:093-92578Location:Hurley, NMNAD 27:N: 3610128 E: 0770241

Lithology:

Depth	USCS	Description
0 - 0.5 ft.	SC	loose, pale yellowish brown, fine to coarse <u>SILTY SAND</u> , trace fine to coarse gravel, dry, strong HCl reaction, rootlets, (alluvium with tailings). Grades coarser with depth, with caliche. 5% Gravel, 70% Sand, 25% Fines. Coarse: sub-round. Fines: low-plasticity.

0.5 - 4 ft. CL dense, moderate brown, fine to coarse <u>SANDY GRAVEL</u>, some fines, dry, no HCl reaction, rootlets, (alluvium). Grades coarser with depth. 50% Gravel, 30% Sand, 20% fines. Coarse: sub-round. Fines: moderate plasticity.

Date: 3/9/2006

Chino Mines
Apache Tejo
093-92578
Hurley, NM
N: 361039 E: 0770197

Lithology:

Depth USCS Description SM

0 - 3 ft.

dense, dark reddish brown, fine to coarse SAND and gravel, some fines, dry, weak HCl reaction, rootlets, possible staining, with caliche, (alluvium). 40% Gravel, 40% sand, 20% fines. Coarse: sub-rounded. Fines: moderate plasticity.

Client:Chino MinesProject:Apache TejoProject No.:093-92578Location:Hurley, NMNAD 27:N: 3610015E: 0770292

Lithology:

Depth	USCS	Description
0 - 0.5 ft.	CL	stiff, pale yellowish brown, fine to coarse <u>SANDY CLAY</u> , dry, strong HCl reaction, rootlets, (alluvium with weathered tailings). 40% Sand, 60% Fines. Coarse: round to sub-round. Fines: moderate plasticity.
0.5 - 1.5 ft.	SM	loose, pale yellowish gray, fine to medium <u>SILTY SAND</u> , dry, no HCl reaction, rootlets, (tailings). 80% Sand, 20% fines. Coarse: round. Fines: low plasticity.
1.5 - 2 ft.	CL	dense, moderate brown, fine to coarse <u>SAND</u> , and gravel, damp, weak HCl reaction, (alluvium). Grades coarser with depth. 30% Gravel, 60% Sand, 10% fines. Coarse: sub-round. Fines: moderate plasticity.
2 - 6 ft.	SC	dense, dark reddish brown, fine to coarse <u>SAND</u> , some fines, some fine to coarse gravel, little oversize, damp, weak HCl reaction, trace iron oxide staining, (alluvium). Grades coarser with depth. 10% Oversize, 30% Gravel, 30% Sand, 30% fines. Coarse: sub-round. Fines: moderate plasticity.

Page 6 of 8 Golder Associates

Date: 3/9/2006

Client:	Chino Mines
Project:	Apache Tejo
Project No.:	093-92578
Location:	Hurley, NM
NAD 27:	N: 3609975 E: 0770270

Lithology:

Depth
0 - 0.5 ft.

USCS Description

ML loose, pale yellowish brown to light brown, fine to coarse <u>SANDY SILT</u>, dry, strong HCl reaction, (alluvium). 40% Sand, 60% Fines. Coarse: sub-rounded. Fines: low-plasticity.

0.5 - 8 ft. SW

dense, light brown, fine to coarse <u>SAND</u> and gravel, little oversize, little fines, dry, weak HCl reaction, (alluvium). Iron oxide staining from 6 to 6.5 ft. 10% Oversize, 30% Gravel, 50% Sand, 10% fines. Coarse: sub-rounded. Fines: low plasticity.

Client:Chino MinesProject:Apache TejoProject No.:093-92578Location:Hurley, NMNAD 27:N: 3610102 E: 0770318

Lithology:

Depth	USCS	Description
0 - 2 ft.	SM	loose, pale yellowish brown, fine to medium <u>SILTY SAND</u> , dry, no HCl reaction, rootlets, (alluvium with weathered tailings). 80% Sand, 20% fines. Coarse: round to sub-round. Fines: low-plasticity.
2 - 7 ft.	SP	compact, yellowish gray, thinly bedded, fine to medium <u>SAND</u> , trace fines, dry, no HCI reaction, (tailings). 90% Sand, 10% fines. Coarse: round. Fines: low plasticity.
7 - 9 ft.	GC/GW	dense, dark reddish brown, fine to coarse <u>SANDY GRAVEL</u> , trace oversize, little fines, dry, weak HCI reaction, (alluvium). Grades coarser with depth. 5% Oversize, 50% gravel, 30% sand, 15% fines. Coarse: sub-round. Fines: moderate plasticity.

Date: 3/15/2006

Client:Chino MinesProject:Apache TejoProject No.:093-92578Location:Hurley, NMNAD 27:N: 3610075 E: 0770217

Lithology:

Depth	USCS	Description
0 - 0.5 ft.	SC	loose, pale yellowish brown, fine to coarse <u>SILTY SAND</u> , trace fine to coarse gravel, dry, strong HCl reaction, rootlets, (alluvium with tailings). Grades coarser with depth, with caliche. 5% Gravel, 70% Sand, 25% Fines. Coarse: sub-round. Fines: low-plasticity.
0.5 - 0.8 ft.	SM	loose, pale yellowish gray, fine to medium <u>SILTY SAND</u> , dry, no HCI reaction, rootlets, (tailings). 85% Sand, 15% fines. Coarse: round. Fines: low plasticity.
0.8 - 2.5 ft.	CL	dense, dark reddish brown, fine to coarse <u>SANDY CLAY</u> , little fine gravel, dry, no HCI reaction, rootlets, possible staining, (alluvium). Grades coarser with depth. 10% Gravel, 40% sand, 50% fines. Coarse: sub-rounded. Fines: moderate plasticity.
2.5 - 9 ft.	SW	dense dark reddish brown fine to coarse SAND and gravel little fines dry weak

dense, dark reddish brown, fine to coarse <u>SAND</u> and gravel, little fines, dry, weak HCl reaction, rootlets, (alluvium). Grades coarser with depth. 10% Gravel, 40% sand, 50% fines. Coarse: sub-rounded. Fines: moderate plasticity.

Page 1 of 6 Golder Associates Date: 3/15/2006

Client: Project: Project No.: Location: NAD 27:	Chino M Apache 093-929 Hurley, M N: 361	Mines Date: 3/15/2006 e Tejo 578 NM 060 E: 0770221
Lithology:		
Depth	USCS	Description
0 - 0.5 ft.	SC	loose, pale yellowish brown, fine to coarse <u>SILTY SAND</u> , trace fine to coarse gravel, dry, no HCl reaction, rootlets, (alluvium with tailings). Grades coarser with depth, with caliche. 5% Gravel, 70% Sand, 25% Fines. Coarse: sub-round. Fines: low-plasticity.
0.5 - 3.5 ft.	SM	loose, pale yellowish gray, fine to medium <u>SILTY SAND</u> , dry, no HCI reaction, rootlets, (tailings). Grades finer with depth. 80% Sand, 20% fines. Coarse: round. Fines: low plasticity.
3.5 - 5.5 ft.	ML	firm, pale yellowish gray, <u>SILT</u> , trace to little fine to medium sand, moist, no HCI reaction, rootlets, (tailings). Grades finer with depth. 10% Sand, 90% fines. Coarse: round. Fines: low plasticity.
5.5 - 6.5 ft.	ML	firm, light olive gray, <u>SILTY CLAY</u> , trace fine sand, moist, no HCI reaction, rootlets, (possible tailings). 5% Sand, 90% fines. Coarse: round. Fines: moderate plasticity.
6.5 - 7.5 ft.	SW	dense, dark reddish brown, fine to coarse <u>SAND</u> , little fine to coarse gravel, little fines, moist, weak HCl reaction, (alluvium). Grades coarser with depth. 10% Gravel, 80% sand, 10% fines. Coarse: sub-rounded. Fines: moderate plasticity.
7.5 - 8 ft.	SW	dense, moderate brown, fine to coarse <u>SAND</u> , little to some fine to coarse gravel, trace oversize, trace fines, moist, weak HCl reaction, (alluvium). Grades coarser with depth. 5% Oversize, 15% gravel, 75% sand, 5% fines. Coarse: sub-rounded.

Page 2 of 6 Golder Associates

Client:Chino MinesProject:Apache TejoProject No.:093-92578Location:Hurley, NMNAD 27:N: 3609023 E: 0770223

Lithology:

Depth	USCS	Description
0 - 3 ft.	CL	stiff, moderate brown, <u>SILTY CLAY</u> , some fine to coarse sand, trace fine gravel,
		dry, no HCl reaction, (alluvium with tailings at surface). Grades coarser with depth. 5% Gravel, 15% sand, 80% fines. Coarse: sub-round. Fines: moderate plasticity.

0.5 - 8 ft. SC dense, moderate brown to light brown, fine to coarse <u>SAND</u> and gravel, little oversize, little fines, dry, weak to moderate HCl reaction, (alluvium). Trace iron oxide staining from 6 to 8 ft. 10% Oversize, 30% Gravel, 40% Sand, 20% fines. Coarse: sub-rounded. Fines: moderate plasticity.

Date: 3/16/2006

Date: 3/15/2006

Client:	Chino Mines
Project:	Apache Tejo
Project No.:	093-92578
Location:	Hurley, NM
NAD 27:	N: 3610019 E: 0770258

Lithology:

Depth	USCS	Description
0 - 0.5 ft.	ML	loose, pale yellowish brown, fine to coarse <u>SILT</u> , trace fine to coarse gravel, dry, strong HCI reaction, rootlets, (tailings). Grades coarser with depth, with caliche. 5% Gravel, 70% Sand, 25% Fines. Coarse: sub-round. Fines: low-plasticity.
0.5 - 3 ft.	CL	stiff, dusky brown, blocky, <u>SILTY CLAY</u> , some fine to coarse sand, dry, no HCI reaction, rootlets, (alluvium). 15% Sand, 85% fines. Coarse: sub-round. Fines: moderate plasticity.
3 - 7 ft.	CL	dense, moderate reddish brown, fine to coarse <u>SAND</u> and gravel, some fines, trace oversize, damp, weak HCl reaction, (alluvium). Grades coarser with depth, trace staining. 5% Oversize, 30% gravel, 40% sand, 25% fines. Coarse: sub-rounded. Fines: moderate plasticity.
2.5 - 9 ft.	CL	stiff, light olive brown, fine to coarse <u>SANDY CLAY</u> , trace fine gravel, damp, no HCl reaction, (alluvium). Iron and manganese staining. 5% Gravel, 25% sand, 70% fines. Coarse: sub-rounded. Fines: moderate plasticity.
9 - 11 ft.	CL	stiff, light olive brown, fine to coarse <u>SAND</u> , little clay, little fine gravel, damp, weak HCl reaction, (alluvium). Iron and manganese staining. 10% Gravel, 80% sand, 10% fines. Coarse: sub-rounded. Fines: moderate plasticity.

Client:Chino MinesProject:Apache TejoProject No.:093-92578Location:Hurley, NMNAD 27:N: 3609997 E: 0770274

Lithology:

Depth	USCS	Description
0 - 1 ft.	ML	loose, pale yellowish brown, fine to coarse <u>SANDY SILT</u> , dry, no HCl reaction, rootlets, (alluvium with tailings). 35% Sand, 65% fines. Coarse: round to subround. Fines: low-plasticity.
1 - 4 ft.	SM	loose, pale yellowish gray, fine to medium <u>SILTY SAND</u> , dry, no HCl reaction, rootlets, (tailings). Grades finer with depth. 80% Sand, 20% fines. Coarse: round. Fines: low plasticity.
4 - 10.5 ft.	SC	dense, dark reddish brown, fine to coarse <u>SAND</u> and gravel, some fines, little oversize, damp, no HCl reaction, (alluvium). Grades coarser with depth, trace staining. 10% Oversize, 35% gravel, 40% sand, 15% fines. Coarse: subrounded. Fines: moderate plasticity.

Date: 3/15/2006

Date: 3/15/2006

Client:	Chino Mines
Project:	Apache Tejo
Project No.:	093-92578
Location:	Hurley, NM
NAD 27:	N: 3609998 E: 0770231

Lithology:

Depth USCS Description

0 - 10 ft. SW/SC dense, dark reddish brown, fine to coarse SAND and gravel, little fines, little oversize, damp, various HCl reaction, (alluvium). Grades coarser with depth, intermittent staining, intermittent caliche. 10% Oversize, 30% gravel, 50% sand, 10% fines. Coarse: sub-rounded. Fines: moderate plasticity.

Date: 3/15/2006

Client:	Chino Mines
Project:	Apache Tejo
Project No.:	093-92578
Location:	Hurley, NM
NAD 27:	N: 3609985 E: 0770261

Lithology:

Depth	USCS	Description
0 - 0.5 ft.	GM	loose, pale yellowish brown, fine to coarse <u>SILTY GRAVEL</u> , some fine to coarse sand, dry, weak HCl reaction, (alluvium). 60% Gravel, 20% sand, 20% fines. Coarse: sub-rounded. Fines: low plasticity.
0.5 - 1.8 ft.	SW/SC	dense, dusky brown, fine to coarse <u>SAND</u> and gravel, little fines, little oversize, dry, various HCl reaction, (alluvium). Grades coarser with depth, intermittent staining, intermittent caliche. 10% Oversize, 30% gravel, 50% sand, 10% fines. Coarse: sub-rounded. Fines: moderate plasticity.

1.8 - 10 ft. SW/SC dense, moderate brown, fine to coarse <u>SAND</u> and gravel, little fines, little oversize, damp, various HCl reaction, (alluvium). Grades coarser with depth, intermittent staining, intermittent caliche. 10% Oversize, 30% gravel, 50% sand, 10% fines. Coarse: sub-rounded. Fines: moderate plasticity.

Date: 3/16/2006

Client:	Chino Mines
Project:	Apache Tejo
Project No.:	093-92578
Location:	Hurley, NM
NAD 27:	N: 3609968 E: 0770256

Lithology:

Depth USCS Description

0 - 10 ft. GW/GC

dense, moderate brown to light brown, fine to coarse <u>GRAVEL</u> and sand, little fines, little oversize, damp, various HCl reaction, (alluvium). Grades coarser with depth, intermittent staining, intermittent caliche. 10-20% Oversize, 30-40% gravel, 50% sand, 10% fines. Coarse: sub-rounded. Fines: moderate plasticity.

Date: 3/16/2006

Client:	Chino Mines					
Project:	Apache Tejo					
Project No.:	093-92578					
Location:	Hurley, NM					
NAD 27:	N: 3609977 E: 0770230					

Lithology:

Depth USCS Description

0 - 10 ft. GW/GC

dense, moderate brown to light brown, fine to coarse <u>GRAVEL</u> and sand, little fines, little oversize, damp, various HCl reaction, (alluvium). Grades coarser with depth, intermittent staining, intermittent caliche. 10-20% Oversize, 30-40% gravel, 50% sand, 10% fines. Coarse: sub-rounded. Fines: moderate plasticity.

TEST PIT LOG: TP-73

Date: 3/16/2006

Client:	Chino Mines
Project:	Apache Tejo
Project No.:	093-92578
Location:	Hurley, NM
NAD 27:	N: 3609983 E: 0770284

Lithology:

Depth USCS Description

0 - 10 ft. GW/GC

> dense, moderate brown to light brown, fine to coarse GRAVEL and sand, little fines, little oversize, damp, various HCl reaction, (alluvium). Grades coarser with depth, intermittent staining, intermittent caliche. 10-20% Oversize, 30-40% gravel, 50% sand, 10% fines. Coarse: sub-rounded. Fines: moderate plasticity.

Date: 3/16/2006

Client:Chino MinesProject:Apache TejoProject No.:093-92578Location:Hurley, NMNAD 27:N: 3610005 E: 0770354

Lithology:

Depth	USCS	Description
0 - 0.5 ft.	ML	loose, pale yellowish brown, fine to coarse <u>SANDY SILT</u> , trace fine to coarse gravel, dry, strong HCl reaction, rootlets, (alluvium). 5% Gravel, 25% sand, 70% Fines. Coarse: round to sub-round. Fines: low plasticity.
0.5 - 6 ft.	CL	very stiff to hard, moderate yellowish brown, <u>SILTY CLAY</u> , little fine to coarse sand, trace fine to coarse gravel, dry, strong HCI reaction, with partially cemented (alluvium with caliche). 5% Gravel, 20% sand, 75% fines. Coarse: sub-round. Fines: moderate plasticity.
6 - 10 ft.	СН	very stiff, blocky, moderate reddish brown to dark reddish brown, SILTY CLAY,

5 - 10 ft. CH very stiff, blocky, moderate reddish brown to dark reddish brown, <u>SILTY CLAY</u>, trace fine to coarse sand, trace fine gravel, dry, strong HCl reaction, partially cemented (alluvium). 5% Gravel, 10% sand, 85% fines. Coarse: sub-round. Fines: moderate to high plasticity.

Date: 3/16/2006

Chino Mines

Apache Tejo

N: 3610067 E: 0770067

Hurley, NM

_		_	
L	ith	OUV-	
_		UUUV.	

Project No.: 093-92578

Client:

Project:

Location:

NAD 27:

Depth	USCS	Description
0 - 1 ft.	CL	very stiff, blocky, moderate reddish brown to dark reddish brown, SILTY CLAY,
		little fine to coarse sand, trace fine gravel, dry, strong HCl reaction, partially
		cemented (alluvium). 5% gravel, 10% sand, 85% fines. Coarse: sub-round.
		Fines: moderate plasticity.

1 - 8 ft. CH very stiff, blocky, moderate yellowish brown to very light gray, <u>SILTY CLAY</u>, some fine to coarse sand, little fine to coarse gravel, dry, strong HCI reaction, heavily calcified (alluvium). 10% gravel, 15% sand, 85% fines. Coarse: sub-round. Fines: moderate to high plasticity.

 Client:
 Chino Mines

 Project:
 Apache Tejo

 Project No.:
 093-92578

 Location:
 Hurley, NM

 NAD 27:
 N: 3610067 E: 0770432

Lithology:

Depth	USCS	Description
0 - 1.5 ft.	CL	very stiff, blocky, moderate reddish brown to dark reddish brown, <u>SILTY CLAY</u> , little to some fine to coarse sand, trace fine gravel, dry, strong HCI reaction, partially cemented (alluvium). 5% gravel, 15% sand, 80% fines. Coarse: sub- round. Fines: moderate plasticity.
1.5 - 4 ft.	СН	very stiff, blocky, moderate yellowish brown to very light gray, <u>SILTY CLAY</u> , some fine to coarse sand, little fine to coarse gravel, dry, strong HCl reaction, heavily calcified (alluvium). 10% gravel, 15% sand, 85% fines. Coarse: sub-round. Fines: moderate to high plasticity.

4 - 8 ft. CH very stiff, blocky, light brown, <u>SILTY CLAY</u>, some fine to coarse sand, trace fine gravel, dry, strong HCI reaction, lightly calcified (alluvium). 5% gravel, 15% sand, 85% fines. Coarse: sub-round. Fines: moderate to high plasticity.

Page 2 of 3 Golder Associates Date: 3/16/2006

Client:Chino MinesProject:Apache TejoProject No.:093-92578Location:Hurley, NMNAD 27:N: 3610067 E: 0770396

Lithology:

Depth	USCS	Description
0 - 0.5 ft.	ML	loose, pale yellowish brown, fine to coarse <u>SANDY SILT</u> , dry, strong HCI reaction, rootlets, (alluvium with tailings). 30% Sand, 60% Fines. Coarse: round to subround. Fines: low plasticity.
0.5 - 1.5 ft.	CL	stiff, moderate yellowish brown with very light gray, <u>SILTY CLAY</u> , little fine to coarse sand, trace fine gravel, dry, strong HCl reaction, heavily calcified (alluvium). 5% Gravel, 20% sand, 75% fines. Coarse: sub-round. Fines: moderate plasticity.
1.5 - 7 ft.	СН	very stiff, light brown, SILTY CLAY, little fine to coarse sand, trace fine gravel,

.5 - 7 ft. CH very stiff, light brown, <u>SILTY CLAY</u>, little fine to coarse sand, trace fine gravel, dry, strong HCI reaction, lightly calcified (alluvium). 5% gravel, 10% sand, 85% fines. Coarse: sub-round. Fines: moderate to high plasticity.

Date: 3/16/2006

APPENDIX A-3 PASTE PH/EC, TOTAL METALS AND ABA DATA SVL ANALYTICAL, INC. One Government Gulch • P.O. Box 929 • Kellogg, Idaho 83837-0929

Certificate: AZ AZ0538 Phone: (208)784-1258 Fax: (208)783-089⁺

CLIENT	I : GALLAGHER	& KENNED	Y			SVL JOB:	121809
	T GAMDIE TD.	TTD 55.2 /	£+ '			SWIEDE.	490301
CLIENI	Collected.	2/00/06	I L				
Sampre	e Corrected:	3/09/06					
Sampre	e keceipt :	3/2//06				Matrix:	SOIL
Date o	of Report :	4/10/06	As Re	ceived Basis			i i i i i i i i i i i i i i i i i i i
Dei	t a um i mati i an		**			~ 7 7	
De	termination	Result	Units	Dilution	Method	Analyzed	
AB	P	20.5	TCaCO3/10	00T	EPA600	4/07/06	
Ac	id Generatinα	<0.3	TCaC03/10	000	FDAGOO	4/07/06	
Ac	id Neut Pot	20 5	TCaC03/10	001	ETAGOU EDAGOO	4/07/06	
FIL	FOURTCAL COND	0.22	mmboc/cm	001	LFAUUU	4/0//00	
	Dacto	7 7 2	munios/em		ASA M9	4/04/00	
pii No.	raste n Ent Cultur C	1.13	0		ASA M9	4/04/06	
INO1	n-Ext Sullur,S	<0.01	* *		LECO	4/0//06	
Py	ritic Sulfur,S	<0.01	*		LECO	4/07/06	
Su.	liate Sulfur,S	<0.01	8		LECO	4/07/06	
To	tal Sulfur, S	<0.01	8		LECO	4/07/06	
Ca.	lcium	9900	mg/kg		6010B	4/09/06	
Pot	tassium _	2560	mg/kg		6010B	4/09/06	
So	dium :	80	mg/kg		6010B	4/09/06	
Si	lver	<0.50	mg/kg		6010B	4/09/06	•
Alı	uminum	17200	mg/kg		6010B	4/09/06	
Ars	senic	8.1	ma/ka		6010B	4/09/06	
Bor	ron	4.1	mg/kg		6010B	4/09/06	
Bar	rium	271	ma/ka		6010B	4/09/06	
Bei	rvllium	1.08	ma/ka		6010B	4/09/06	
Car	dmium	0 65	mg/kg		6010B	4/09/06	
Col	halt	16 0	mg/kg		6010B	4/00/06	
Chi	romium	10.5	111g/ Kg		6010B	4/09/06	
		10.9	mg/kg		6010B	4/09/06	
	pper	60.9	mg/kg		6010B	4/09/06	
lro	on	27900	mg/kg		6010B	4/09/06	
Mei	rcury	<0.033	mg/kg		7471A	3/30/06	
Lit	thium	23.5	mg/kg		6010B	4/09/06	
Mai	nganese	1130	mg/kg		6010B	4/09/06	`
Mo:	lybdenum	2.72	mg/kg		6010B	4/09/06	
Nic	ckel	20.1	mg/kg		6010B	4/09/06	
Lea	ad	18.7	mg/kg		6010B	4/09/06	
Se:	lenium	<4.0	mg/kg		6010B	4/09/06	
Zir	nc	159	mg/kg		6010B	4/09/06	
M2:BA	M1 : K	B7:CU	M3:AT.	.CA, FE.MN			
		- 3					
Review	ved By:			1 Serie	Date	4/10/08	
			,			4/10/05 13:24	

SVL ANALYTICAL	, :	INC.				Cer	tificate: A7 A70539
One Government Gulch	•	P.O. Box 929	Kellogg, Idaho	83837-0929	Phone: (208)784-1258		Fax: (208)783-0891

CLIENT : GALLAGHER PROJECT: 0632562	& KENNEDY				SVL JOB: SAMPLE:	121809 498502
CLIENT SAMPLE ID:	TP-56:6ft				01111111	190902
Sample Collected:	3/09/06					
Sample Receipt :	3/27/06				Matrix:	SOTI
Date of Report :	4/10/06	As Re	ceived Basis			DOLL
Determination	Result	Units	Dilution	Method	Analyzed	
ELECTRICAL COND.	0.16	mmhos/cm		ASA M9	4/04/06	
pH Paste	7.87			ASA M9	4/04/06	

Naun ____Date_<u>4/10/06</u> 4/10/06 13:24 Reviewed By:_____

AZ: AZ0538 CA: NO. 2080 CO: 9/1/05 ID: ID00019 MT: 6/6/05 NV: 8/1/05 WA: C1268

-

SVL	ANAL	YTICAL,	INC.
-----	------	---------	------

0	ne Government Gulch P.O. Box 929 Kel	llogg, Ida	aho 83837-09	929	Phone: (208)784-1258	Fax:	ate: AZ AZ0538 (208)783-0891
	CLIENT : GALLAGHER & KENNEDY PROJECT: 0632562 CLIENT SAMPLE ID: TP-67:7-8ft				SVL	JOB: MPLE:	121809 498503
	Sample Collected: 3/15/06 Sample Receipt : 3/27/06 Date of Report : 4/10/06	As R	eceived	Basis	Ма	trix:	SOIL

	Determination	Result	Units	Dilution	Method	Analyzed
	ABP	12.5	TCaCO3/100	от	EPA600	4/07/06
	Acid Generating	<0.3	TCaCO3/100	OT	EPA600	4/07/06
	Acid Neut. Pot.	12.5	TCaCO3/100	ОТ	EPA600	4/07/06
	ELECTRICAL COND.	0.84	mmhos/cm		ASA M9	4/04/06
	pH Paste	7.59			ASA M9	4/04/06
	Non-Ext Sulfur,S	<0.01	욯		LECO	4/07/06
	Pyritic Sulfur,S	<0.01	용		LECO	4/07/06
	Sulfate Sulfur,S	0.01	ક		LECO	4/07/06
	Total Sulfur, S	0.01	号		LECO	4/07/06
	Calcium	6510	mg/kg		6010B	4/09/06
	Potassium	1790	mg/kg		6010B	4/09/06
	Sodium	68	mg/kg		6010B	4/09/06
	Silver	1.31	mg/kg		6010B	4/09/06
	Aluminum	10200	mg/kg		6010B	4/09/06
	Arsenic	15.7	mg/kg		6010B	4/09/06
	Boron	<4.0	mg/kg		6010B	4/09/06
	Barium	284	mg/kg		6010B	4/09/06
	Beryllium	1.77	mg/kg		6010B	4/09/06
1	Cadmium	0.73	mg/kg		6010B	4/09/06
	Cobalt	10.2	mg/kg		6010B	4/09/06
	Chromium	15.7	mg/kg		6010B	4/09/06
	Copper	48.3	mg/kg		6010B	4/09/06
	Iron	30200	mg/kg		6010B	4/09/06
	Mercury	<0.033	mg/kg		7471A	3/30/06
	Lithium	10.3	mg/kg		6010B	4/09/06
	Manganese	1510	mg/kg		6010B	4/09/06
	Molybdenum	1.68	mg/kg		6010B	4/09/06
	Nickel	11.5	mg/kg		6010B	4/09/06
	Lead	19.8	mg/kg		6010B	4/09/06
	Selenium .	<4.0	mg/kg		6010B	4/09/06
	Zinc	308	mg/kg		6010B	4/09/06
M2:BA	M1:K	B7:CU	M3:AL,C	CA, FE, MN		
Revi	lewed By:			NEUNÍ	Date 4	6/10/66

AZ: AZ0538 CA: NO. 2080 CO: 9/1/05 ID: ID00019 MT: 6/6/05 NV: 8/1/05 WA: C1268

4/10/06 13:24

Certificate: AZ AZ0538

SVL ANALYTICAL,	INC.				Contriction to the	
One Covernment Culah	D 0 D-1 020	14 3 3			Certificate: A	Z AZ0538
	P.U. BOX 929	Kellogg, Idaho	83837-0929	Phone: (208)784-1258	Fax: (208)	793_0001
		 				100-0091

CLIENT : GALLAGHER PROJECT: 0632562	& KENNED	Y .			SVL JOB:	121809
CLIENT SAMPLE ID: Sample Collected:	TP-68:9-1 3/15/06	Oft				190904
Sample Receipt : Date of Report :	3/27/06		coirrod Docio		Matrix:	SOIL
			Cerved Basis			
Determination	Result	Units	Dilution	Method	Analyzed	
ELECTRICAL COND.	1.30	mmhos/cm		ASA M9	4/04/06	x
pH Paste	7.64			ASA M9	4/04/06	
					· · ·	

Reviewed By:_____ Date 4/10/66 4/10/06 13:24

SVL ANALYTICAL, INC.

-

Certificate: AZ AZ0538 One Government Gulch = P.O. Box 929 = Kellogg, Idaho 83837-0929 = Phone: (208)784-1258 = Fax: (208)783-0891

CLIENT : GALLAGHER PROJECT: 0632562	& KENNED	Y .			SVL JOB:	121809
CLIENT SAMPLE ID:	TP-69:0-2:	ft			SAMPLE:	498505
Sample Collected: Sample Receipt :	3/15/06				Motoriare	GOTT
Date of Report :	4/10/06	As Red	ceived Basis		Matrix:	SOLL
Determination	Result	Units	Dilution	Method	Analyzed	
· · · · · · · · · · · · · · · · · · ·					-marg roa	
ELECTRICAL COND.	0.19	mmhos/cm		ASA M9	4/04/06	
pH Paste	7.90			ASA M9	4/04/06	
	_		A	· · · · · ·		

Afami Date <u>4/10/06</u> 4/10/06 13:24 Reviewed By:_____

SVL ANALYTICAL, INC. One Govern

.

Dne Government Gulch P.O.	Box 929 🔳	Kellogg, Idał	no 83837-0929 .	Phone: (208)78	Certific 4-1258 • Fax:	ate: AZ AZ0532 (208)783-089
CLIENT : GALLAGHEF PROJECT: 0632562 CLIENT SAMPLE ID:	* * KENNED	Y . ft			SVL JOB: SAMPLE:	121809 498506
Sample Receipt : Date of Report :	3/27/06 4/10/06	As Re	ceived Basis		Matrix:	SOIL
Determination	Result	Units	Dilution	Method	Analyzed	
ELECTRICAL COND. pH Paste	0.32 7.77	mmhos/cm		ASA M9 ASA M9	4/04/06 4/04/06	
			· A			

1931 Date 4/10/06 4/10/06 13:24 Reviewed By:_____

SV One	L ANALYTICAL, INC. Government Gulch P.O	. Box 929 🔹	Kellogg, I	daho 83837-0929	 Phone: (208)784 	Certific 4-1258 • Fax	ate: AZ AZ0538 : (208)783-0891
	CLIENT : GALLAGHEN PROJECT: 0632562 CLIENT SAMPLE ID:	R & KENNED	ΟΥ			SVL JOB: SAMPLE:	121809 498507
	Sample Collected: Sample Receipt : Date of Report :	3/16/06 3/27/06 4/10/06	As	Received Bas	is	Matrix:	SOIL
	Determination	Result	Units	Dilution	Method	Analyzed	
	ELECTRICAL COND. pH Paste	0.82 7.93	mmhos/c	CIM	ASA M9 ASA M9	4/04/06 4/04/06	

Reviewed By: _____ Date 4/10/166 4/10/06 13:24

AZ: AZ0538 CA: NO. 2080 CO: 9/1/05 ID: ID00019 MT: 6/6/05 NV: 8/1/05 WA: C1268

÷

SVL ANALYTICAL, INC.

Quality Control Report Part I Prep Blank and Laboratory Control Sample

Client :GALLAGHE	R & KEN	NEDY						
	T			·····	·		SVL JOB	No: 121809
Analyte	Method	Matrix	Units .	Prep Blank	True-	-LCSFound	LCS %R	Date
Silver	6010B	SOIL	mg/kg	<0.50	5.00	5 JJ	104 0	1/00/00
Aluminum	6010B	SOIL	mg/kg	<3.0	100	106	104.6	4/09/06
Arsenic	6010B	SOIL	mg/kg	<2.50	100	01 2	106.0	4/09/06
Boron	6010B	SOIL	mg/kg	<4.0	100	91.3	91.3	4/09/06
Barium	6010B	SOIL	ma/ka	<0.20	100	91.9	91.9	4/09/06
Beryllium	6010B	SOIL	ma/ka	<0.20	100	99.3	99.3	4/09/06
Calcium	6010B	SOIL	ma/ka	<4 0	2000	95.0	95.6	4/09/06
Cadmium	6010B	SOIL	ma/ka	<0.20	100	1950	97.5	4/09/06
Cobalt	6010B	SOIL	ma/ka	<0.20	100	92.9	92.9	4/09/06
Chromium	6010B	SOIL	ma/ka	<0.00	100	92.9	92.9	4/09/06
Copper	6010B	SOIL	$m\alpha/k\alpha$	<1 0 P7	100	96.4	96.4	4/09/06
Iron	6010B	SOTL	mg/kg	<6 0	100	96.0	96.0	4/09/06
Potassium	6010B	SOTT	mg/kg	<0.0	1000	965	96.5	4/09/06
Lithium	6010B	SOTL	mg/kg		2000	1970	98.5	4/09/06
Manganese	6010B	SOTE	mg/kg	<0.50	100	101	101.0	4/09/06
Molybdenum	6010B	SOTL	mg/kg	<0.40	100	96.2	96.2	4/09/06
Sodium	6010B	SOTI	mg/kg	<0.80	100	96.3	96.3	4/09/06
Nickel	6010B	SOTT	mg/kg	<50	1900	1840	96.8	4/09/06
Lead	60105	SOIL	mg/kg	<1.0	100	90.7	90.7	4/09/06
Selenium	6010B	SOIL	mg/kg	<0.750	100	93.0	93.0	4/09/06
Zinc	6010B	SOIL	mg/kg	<4.0	100	82.4	82.4	4/09/06
Mercury	74712	SOIL	mg/kg	<1.0	100	91.9	91.9	4/09/06
Acid Generating	FDAGOO	SOIL	mg/kg	<0.0333	0.834	0.843	101.1	3/30/06
Acid Neut Dot	EPACOU	SOIL	TCaCO3/k	N/A	9.36	8.44	90.2	4/07/06
FLECTRICAL COND	LPAOUU	SOIL	TCaCO3/k	N/A	52.0	56.0	107.7	4/07/06
DH Pacto	ASA M9	SOIL	mmhos/cm	0.010	0.400	0.420	105.0	4/04/06
Non Fist Culture C	ASA M9	SOIL		5.50	8.45	8.42	99.6	4/04/06
Buritia Culfur, S	LECO	SOIL	8	<0.010	N/A		N/A	4/07/06
Sulfate Sulfur,S	LECO	SOIL	8	<0.010	N/A		N/A	4/07/06
Motal Cultur, S	LECO	SOIL	8	<0.010	N/A		N/A	4/07/06
	LECO	SOIL	°8	<0.010	0.298	0.270	90.6	4/07/06

LEGEND:

LCS = Laboratory Control Sample

LCS %R = LCS Percent Recovery

N/A = Not Applicable

SVL ANALYTICAL, INC.

ſT

Quality Control Report Part II Duplicate and Spike Analysis

Clie	nt :GAL	LAGI	HE	R & KENNI	EDY		_						SVI	L JOB No	b: 121809
mark Makhad Mar			COC SAL		PR TD		Duplicate		or	MSD-	M	atrix Sp	ike		Analysis
Test	Methoa	MC	×	Units	Resu	1t	Foun	d		RPD%	Result	SPK A	DD	% R	Date
Ag	6010B	s	1	mg/kg	<0.50		5.5	3	м	3.6	5.73	5.00		114.6	4/09/06
Al	6010B	S	1	mg/kg	17200	М3	22000	М3	м	2.2	22500 МЗ	100		R >45	4/09/06
As	6010B	S	1	mg/kg	8.09		98.0		м	4.0	102	100		93.9	4/09/06
В	6010B	S	1	mg/kg	4.1		92.8		м	2.6	95.2	100		91.1	4/09/06
Ba	6010B	S	1	mg/kg	271	M2	315	M2	м	4.0	328 M2	100		57.0	4/09/06
Ba	6010B	S	1	mg/kg	271	M2	N/A			N/A	369	100	A	98.0	4/09/06
Be	6010B	S	1	mg/kg	1.08		98.1		м	1.9	100	100		98.9	4/09/06
Ca	6010B	S	1	mg/kg	9900	МЗ	11800	MЗ	М	1.7	12000 МЗ	2000		105.0	4/09/06
Cđ	6010B	S	1	mg/kg	0.65		92.9		М	1.0	93.8	100		93.2	4/09/06
Со	6010B	S	1	mg/kg	16.9		107		м	4.6	112	100		95.1	4/09/06
Cr	6010B	S	1	mg/kg	18.9		117		М	1.7	119	100		100.1	4/09/06
Cu	6010B	S	1	mg/kg	60.9	в7	172	B7	M	1.2	174 B7	100		113.1	4/09/06
Fe	6010B	S	1	mg/kg	27900	МЗ	30100	M3	М	1.0	30400 M3	1000		R >45	4/09/06
K	6010B	S	1	mg/kg	2560	M1	5080	M1	М	3.1	5240 M1	2000		134.0	4/09/06
К	6010B	S	1	mg/kg	2560	M1	N/A			N/A	4670	2000	А	105.5	4/09/06
Li	6010B	S	1	mg/kg	23.5		129		M	3.8	134	100		110.5	4/09/06
Mn	6010B	S	1	mg/kg	1130	MЗ	796	M3	м	22.1	994 M3	100		R >45	4/09/06
Мо	6010B	S	1	mg7kg	2.72		92.4		м	1.0	93.3	100		90.6	4/09/06
Na	6010B	S	1	mg/kg	80		1960		м	3.5	2030	1900		102.6	4/09/06
Ni	6010B	S	1	mg/kg	20.1		118		М	3.3	122	100		101.9	4/09/06
Pb	6010B	S	1	mg/kg	18.7		111		М	0.9	112	100		93.3	4/09/06
Se	6010B	S	1	mg/kg	<4.0		83.9		М	0.6	84.4	100		84.4	4/09/06
Zn	6010B	S	1	mg/kg	159		241		М	1.2	244	100		85.0	4/09/06
Hg	7471A	S	1	mg/kg	<0.033	3	0.1	78	M	0.6	0.177	0.167		106.0	3/30/06
ABP	EPA600	S	1	TCaCO3/	20.5		20.0			2.5	N/A	N/A		N/A	4/07/06
AGP	EPA600	S	1	TCaCO3/	<0.30		<0.3	0		UDL	N/A	N/A		N/A	4/07/06
ANP	EPA600	S	1	TCaCO3/	20.5		20.0			2.5	N/A	N/A		N/A	4/07/06
EC	ASA M9	S	1	mmhos/c	0.220		0.2	20		0.0	N/A	N/A		N/A	4/04/06
pH Pst	LASA M9	S	1		7.73		7.7	3		0.0	N/A	N/A		N/A	4/04/06
S N-E	(LECO	S	1	6	<0.010		<0.0	10		UDL	N/A	N/A		N/A	4/07/06
S-PYR	LECO	S	1	£	<0.010		<0.0	10		UDL	N/A	N/A		N/À	4/07/06
S-S04	LECO	S	1	e e	<0.010		<0.0	10		UDL	N/A	N/A		N/A	4/07/06
S-TOT	LECO	S	1	6	<0.010		<0.0	10		UDL	N/A	N/A		N/A	4/07/06

LEGEND:

RPD% = (|SAM - DUP|/((SAM + DUP)/2) * 100) UDL = Both SAM & DUP not detected. *Result or *Found: Interference required dilution. RPD% = (|SPK - MSD|/((SPK + MSD)/2) * 100) M in Duplicate/MSD column indicates MSD.

SPIKE ADD column, A = Post Digest Spike; ZR = Percent Recovery N/A = Not Analyzed; R > 4S = Result more than 4X the Spike Added QC limits for MS recoveries apply only if the spike is at least 1/4 the concentration of the analyte in the sample. Control limits for the RPD apply only if the concentration of the analyte in the sample is at least five times the reporting limit. QC Sample 1: SVL SAM No.: 498501 Client Sample ID: TP-55:3-4ft

STANDARD-USE DATA QUALIFIERS

Blanks:

If the target analyte is not detected in the samples, apply the appropriate qualifier to affected analyte in the blank. If analytes are detected, then all associated samples should also be qualified.

- B1 = Target analyte detected in method blank at or above the method reporting limit.
- B2 = Non-target analyte detected in method blank and sample, producing interference.
- B3 = Target analyte detected in calibration blank at or above the method reporting limit.
- B4 = Target analyte detected in blank at/above method acceptance criteria.
- B5 = Target analyte detected in method blank at or above the method reporting limit, but below trigger level or MCL.
- B6 = Target analyte detected in calibration blank at or above the method reporting limit, but below trigger level or MCL.
- B7 = Target analyte detected in method blank at or above method reporting limit, but concentration found in the sample was 10 times above the concentration found in the method blank.

Dilution:

If all analytes are reported from the diluted sample, apply the qualifier to the entire sample. Otherwise apply qualifier to each analyte that required dilution.

- D1 = Sample required dilution due to matrix.
- D2 = Sample required dilution due to high concentration of target analyte.
- D3 = Sample dilution required due to insufficient sample.
- D4 = Reporting limits (minimum reporting level) adjusted to reflect sample amount received and analyzed.

Estimated concentration:

The appropriate qualifier must be used for any analyte result reported outside the calibration range. Affects data reported outside the calibration range or down to the MDL.

- E1 = Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient sample.
- E2 = Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to sample matrix.
- E3 = Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time requirements.
- E4 = Concentration estimated. Analyte was detected below laboratory minimum reporting level.
- E5 = Concentration estimated. Analyte was detected below laboratory minimum reporting level, but not confirmed by alternate analysis.
- E6 = Concentration estimated. Internal standard recoveries did not meet method acceptance criteria.
- E7 = Concentration estimated. Internal standard recoveries did not meet laboratory acceptance criteria.
- E8 = Analyte reported to MDL per project specification. Target analyte was not detected in the sample.

Holding Time:

Qualify samples appropriately when method distillation and/or analysis holding time have been exceeded.

- H1 = Sample analysis performed past holding time.
- H2 = Initial analysis within holding time. Reanalysis for the required dilution was past holding time.
- H3 = Sample was received and analyzed past holding time.
- H4 = Sample was distilled past required distillation holding time, but analyzed within analysis holding time.

Laboratory Control Sample (Laboratory Fortified Blank): The appropriate qualifier must be applied to the officiated and to the

The appropriate qualifier must be applied to the affected analytes in the laboratory fortified blank and to all corresponding analytes in the associated samples.

- L1 = The associated LCS recovery was above laboratory acceptance limits.
- L2 = The associated LCS recovery was below laboratory acceptance limits.
- L3 = The associated LCS recovery was above method acceptance limits.
- L4 = The associated LCS recovery was below method acceptance limits.
- L5 = The associated LCS recovery was outside laboratory acceptance limits, but within method acceptance limits.

Matrix Spike:

The appropriate qualifier must be applied to the affected analytes in the matrix spike and should also be added to all corresponding analytes in the associated spiked sample. If a batch spike recovery is outside of the acceptable range, it is permissible to only flag the sample that was spike and not the other samples in the batch.

- M1 = Matrix spike recovery was high, but the LCS recovery was acceptable.
- M2 = Matrix spike recovery was low, but the LCS recovery was acceptable.
- M3 = The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The LCS recovery was acceptable.
- M4 = The analysis of the spiked sample required a dilution such that the spike concentration was diluted below the reporting limit. The LCS recovery was acceptable.
- M5 = Analyte concentration was determined by the method of standard addition (MSA).

General:

Use for events that cannot be described by the approved data qualifiers.

N1 = See case narrative.

N2 = See corrective action report.
- Sample Quality:

Flag samples with appropriate qualifier when sample quality may be potentially impacted or when method requirements were not met.

- Q1 = Sample integrity was not maintained.
- Q2 = Sample received with headspace.
- Q3 = Sample was received with improper chemical preservation.
- Q4 = Sample was received and analyzed without chemical preservation.
- Q5 = Sample was received with inadequate chemical preservation, but preserved by the laboratory.
- Q6 = Sample was received above recommended temperature.
- Q7 = Sample was inadequately dechlorinated.
- Q9 = Insufficient sample was received to meet method QC requirements.
- Q10 = Sample was received in inappropriate sample container.
- Q11 = Sample is heterogeneous. Sample homogeneity could not be readily achieved using routine laboratory practices.

Duplicates:

For use with sample, matrix spike, LFB/LCS duplicates. Qualify all affected analytes. For MS/MSD or sample duplicates qualify only the original source sample.

R2 = RPD exceeded the laboratory control limit.

R5 = MS/MSD RPD exceeded the laboratory control limit. Recovery met acceptance criteria.

R6 = LCS/LCSD RPD exceeded the laboratory control limit. Recovery met acceptance criteria.

R9 = Sample RPD exceeded the laboratory control limit.

Method/analyte discrepancies:

For use with methods or analytes that are not currently approved under the Environmental Laboratory Licensure Rules (limited to Arizona).

T1 = Method approved by EPA, but not yet licensed by ADHS.

T2 = Cited ADHS licensed method does not contain this analyte as part of method compound list.

T3 = Method not promulgated either by EPA or ADHS.

Calibration Verification:

Appropriate qualifier must be applied to all affected analytes in any samples associated with the calibration verification.

- V1 = CCV recovery was above method acceptance limits. This target analyte was not detected in the sample.
- V2 = CCV recovery was above method acceptance limits. This target analyte was detected in the sample. The sample could not be reanalyzed due to insufficient sample.
- V3 = CCV recovery was above method acceptance limits. This target analyte was detected in the sample, but the sample was not reanalyzed.
- V4 = CCV recovery was below method acceptance limits. The sample could not be reanalyzed due to insufficient sample.

Client: Gallagher + (Kenned + / Gole)\$
Contact:	
Address:	
Phone Number:	

FAX Number:

CHAIN OF CUSTODY RECORD

NOTES:

- 1) Ensure proper container packaging.
- 2) Ship samples promptly following collection.
- * 3) Designate Sample Reject Disposition PO#: Project Name:
- Table 1. -- Matrix Type1 = Surface Water, 2 = Ground Water3 = Soil/Sediment, 4 = Rinsate, 5 = Oil6 = Waste, 7 = Other (Specify)Samplers Signature:

Page_____ of_____ 4

Lab Name: SVL Analyt	ical, Inc.	(208)	784-12	58	FA	X (208	8) 78	3-08	891						An	alyse	es Re	equi	ired			
Address: One Govern	nent Gulch,	Julch, Kellogg, ID 83837-0929																				
	Collec	tion	M	iscella	апеои	IS		Pre	eserv	vativ	ve(s)											
Sample ID	Date	Time	Collected by: (Init.)	Matrix Type From Table 1	No. of Containers	Sample Filtered ? Y/N	Unpreserved (Ice Only)	HNO3	HCL	H2SO4	NAOH	Other (Specify)	of /EC ASA "	ABA	NP	Total Metals	SPLP Metils				Co	mments
1. TP-55: 3-4 ft	3-9-06	-	JC	3	1	NA	X						Х	Х		X						
2. TP-56: 6 ft	3-9-06	/				I	1						X									
3. TP-67: 7-8ft	3-15-06	5											X	\times		Х	_					
4. TP- 68: 9-10 ft	3-15-06	7											X									
5. TP-69: U-2 Ft	3-15-06	(.		\square			Π						X									
6. TP-71: 2-3 ft	3-16-06				1	. /		ł					X									
7. TP-73: 2-4 ft	3-16-06	-0-	V	V	V	V	V						\times									
8.		-																				
9.		-																				
10.																						
Relinquished by:	16-		· · · · · · · · · · · · · · · · · · ·	Date:	-23-	06	Time Time	140	ත	Recoi 7 Recei	ved by	in		Stri	ibl	in	9			 Date:	27.06	Time; Time:

* Sample Reject: [] Return [] Dispose [] Store (30 Days)

White: LAB COPY

Yellow: CUSTOMER COPY S

SVL-COC 12/95

Cooler temp N/H 3.27.06 10:45 RS

CHAIN OF CUSTODY RECORD

Client: Gallagher +	Kennedt / loolder
Contact:	//

Address:

Phone Number:

FAX Number:

NOTES:

1) Ensure proper container packaging.

2) Ship samples promptly following collection.

* 3) Designate Sample Reject Disposition PO#:

Project Name:

Table 1. – Matrix Type	
1 = Surface Water, 2 = Ground W	Vater
3 = Soil/Sediment, 4 = Rinsate, 5	5 = Oil
6 m Wester 7 m Other (Sneetfer)	

Samplers Signature:

Lab Name: SVL Analyt	nalytical, Inc. (208) 784-1258 FAX (208) 783-0891														An	alys							
Address: One Govern	nent Gulch,	Kellogg,	ID 838	837-092	29																1		
	Collec	tion	М	liscella	ineou	IS		Pre	esera	vativ	e(s)										1		
Sample ID	Date	Time	Collected by: (Init.)	Matrix Type From Table 1	No. of Containers	Sample Filtered ? Y/N	Unpreserved (Ice Only)	HNO3	HCL	H2SO4	NAOH	Other (Specify)	of /EC ASA 9	ABA	NP	Total Metals	SPLP Metic				C)mmen	ts
1. TP-55: 3-4 F=	3-9-06	(76	3	1	NA	X						X	X		Х							
2. TP-56: 6 Ft	3-9-06	1					1						X										
3. TA-67: 7-8ft	3-15-06	2											X	X		X				1	1		
4. TP- 68: 9-10 ft	3-15-06											-	X								1		
5. TP-69: U-2 Ft	3-15-06			\square									X								<u> </u>		
6. TP-71: 2-3 ft	3-16-06												X					 					
7. TP-73: 2-4 ft	3-16-06	0	V	\mathbf{V}	V	\mathbf{V}	V						X					 					
8		-																	1				
9		_																					
10																	_						
Relinquished by:	h			Date:	23-0	36	Time:	40	0	Receiv TC Receiv	ed by	ĩu	Ľ	the	îbl	ing	P	 		Data Date	27.06	Time:	:45
														-									

* Sample Reject: [] Return [] Dispose [] Store (30 Days)

Address:	
Contact:	· /
Client: Gallayher t	- Kennedy / Gold
***	ANALYTICAL

cooler temp N/A 3.21.06 10:45 RS_

CHAIN OF CUSTODY RECORD

1) Ensure proper container packaging.

2) Ship samples promptly following collection.

* 3) Designate Sample Reject Disposition PO#:

Project Name:

	Table 1	Matrix Type	e
l	= Surface Water,	2 = Ground	Water
3	= Soil/Sediment,	4 = Rinsate,	5 = Oi

6 = Waste, 7 = Other (Specify)

Samplers Signature:

FOR SVL USE ONLY
SVL JOB # 12/809
/

Lab Name: SVL Analyt	ical, Inc.	(208)	784-12	58	FAX	K (208	8) 78	3-08	391						An	alyse	es R	equ	ired				
Address: One Govern	nent Gulch,	Kellogg,	ID 838	37-09:	29						-											1	
	Collec	tion	M	iscella	neou	s		Pre	serv	/ativ	e(s)												
Sample ID	Date	Time	Collected by: (Init.)	Matrix Type From Table 1	No. of Containers	Sample Filtered ? Y/N	Unpreserved (Ice Only)	HNO3	нсг	H2SO4	NAOH	Other (Specify)	of /EC ASA o	ABA	NP	Total Metals	SPLP Metls					Co	omments
1. TP-55: 3-4 ft	3-9-06	<u>_</u>	JC	3	1	NA	X						X	X		X				-			
2. TP-56: 6 ft	3-9-06	1			1								X										
3. TP-67: 7-8ft	3-15-06	5											X	X		X							
4. TP- 68: 9-10 ft	3-15-00												X										
5. TP-69: U-2 FE	3-15-06								_				X										
6. TP-71: 2-3 ft	3-16-06					. /		r i					X										
7. TP-73: 2-4 ft	3-16-06	0	V	\mathbf{V}	V	V	V						X										
8	5	-																					
9		_																					
10.																							
Relinquished by:	h	·····		Date:	23-0	46	Tîme: Tîme:	140	0	Receiv	ved by	in	ر ر	81	ti	bli	nĝ	>			Date:	27.06	Time: Time:

* Sample Reject: | | Return | | Dispose | | Store (30 Days)

SVL-COC 12/95

NOTE:

 Please Report to Jen Pepe and Jeffrey Clark at Golder Associates Tucson

 jclark@golder.com
 4730 N. Oracle Rd Ste 210, Tucson, AZ 85705

 jpepe@golder.com
 520-888-8818

Total Metals and SPLP metals to Include:

Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mn, Mo, Na, Ni, Se, Pb, Zn

ъ.ŗ

COPY

Methods:

paste pH/EC by ASA 9 ABA by Modified Sobek NP by Modified Sobek Total Metals by 350 Extraction 6010B SPLP by EPA 1312 Saturated paste pH by ASA 10-3.2 Saturated paste EC by ASA 10-3 Texture by ASA 15-5

Please retain samples for further analysis.

SAMPLE	RECEIPT CONFIRM	ATION One Gover	SVL ANALYTICAL, INC. mment Gulch - Kellogg, ID	83837-0929	Page	1 of 1
CLIENT:	DALVA MOELLENBE GALLAGHER & KEN 2575 E. CAMELBA	ERG We w WNEDY ACK ROAD	vill invoice: SAME		SOIL METALS,ABA, SVL JOB No: Received: Expected Due date:	PH,EC 121809 3/27/06 4/10/06
FAX:	PHOENIX (602)530-8500	AZ 85016-9225 PH: (602)530-8223	Fax:			

SVL#	М	ClientID	Sampled	Time	Ву	Received	Sample Comments
498501 498502 498503 498504 498505 498506 498507	ន ន ន ន ន ន	TP-55:3-4ft TP-56:6ft TP-67:7-8ft TP-68:9-10ft TP-69:0-2ft TP-71:2-3ft TP-73:2-4ft	3/09/06 3/09/06 3/15/06 3/15/06 3/15/06 3/16/06 3/16/06		JC JC JC JC JC JC JC JC JC	3/27/06 3/27/06 3/27/06 3/27/06 3/27/06 3/27/06 3/27/06	Tests:ABA + Sulfur Forms pH (PASTE) EC SOIL GALLAGHER SOILS Tests:pH (PASTE) EC SOIL Tests:ABA + Sulfur Forms pH (PASTE) EC SOIL GALLAGHER SOILS Tests:pH (PASTE) EC SOIL Tests:pH (PASTE) EC SOIL Tests:pH (PASTE) EC SOIL Tests:pH (PASTE) EC SOIL Tests:pH (PASTE) EC SOIL

ADDITIONAL COMMENTS FOR JOB: Sample Cooler/Container temp not measured upon receipt.

[] These samples will be DISPOSED 45 days after job completion. [X] These samples will be ARCHIVED 45 days, then you will receive a letter requesting disposal options.

Please contact Crystal Sevy (208-784-1258) if you have questions regarding the receipt of these samples.

3/27/06 14:06

SVL ANALYTICAL, INC.

Certificate: AZ AZ0538 One Government Gulch P.O. Box 929 Kellogg, Idaho 83837-0929 Phone: (208)784-1258 Fax: (208)783-0891 CLIENT : GALLAGHER & KENNEDY SVL JOB: 121810 **PROJECT: 0632562** SAMPLE: 498510 CLIENT SAMPLE ID: TP-2:0-2ft Sample Collected: 3/07/06 Sample Receipt : 3/27/06 Matrix: SOIL Date of Report : 4/10/06 As Received Basis Determination Result Units Dilution Method Analyzed 19.4 ABP TCaCO3/1000T ABP Acid Generating EPA600 4/10/06 1.9 TCaCO3/1000T EPA600 4/10/06 Acid Neut. Pot. 21.2 TCaCO3/1000T EPA600 4/10/06 0.66 ELECTRICAL COND. mmhos/cm ASA M9 4/07/06 7.33 pH Paste ASA M9 4/06/06 0.04 Non-Ext Sulfur, S 욯 LECO 4/10/06 0.06 Pyritic Sulfur,S * LECO 4/10/06 0.05 Sulfate Sulfur,S * LECO 4/10/06 Total Sulfur, S 0,15 융 LECO 4/10/06 Calcium 6810 mg/kg 6010B 4/09/06 Potassium 1410 mg/kg 6010B 4/09/06 . 65 Sodium mg/kg 6010B 4/09/06 Silver <0.50 mg/kg 6010B 4/09/06 Aluminum 6200 mg/kg 6010B 4/09/06 Arsenic 5.5 mg/kg 6010B 4/09/06 Boron <4.0 mg/kg 6010B 4/09/06 Barium 420 mg/kg 6010B 4/09/06 Beryllium 0.47 mg/kg 6010B 4/09/06 Cadmium 0.32 mg/kg 6010B 4/09/06 Cobalt 8.64 mg/kg 6010B 4/09/06 Chromium 10.4 mg/kg 6010B 4/09/06 Copper 389 mg/kg 6010B 4/09/06 17800 Iron mg/kg 6010B 4/09/06 Mercury <0.033 mg/kg 7471A 3/30/06 Lithium 6.1 mg/kg 6010B 4/09/06 Manganese 332 mg/kg 6010B 4/09/06 Molybdenum 25.6 mg/kg 6010B 4/09/06 Nickel 8.3 mg/kg 6010B 4/09/06 Lead 11.1 mg/kg 6010B 4/09/06 Selenium <4.0 mg/kg 6010B 4/09/06 Zinc 123 mg/kg 6010B 4/09/06 M2:SE,CA M3:AL,FE B7:CU Nani

Reviewed By:

Date 4/10/06 4/10/06 13:45

LIENT : GALLAGHE	R & KENNEDY	7			SVL JOB:	12181
ROJECT: 0632562					SAMPLE:	49851
DIENT SAMPLE ID:	TP-2:3-5it					
ample Collected:	3/0//06					
ampie Receipt :	3/2//06				Matrix:	SOIL
ace of Report .	4/10/06	AS	Received Basis			
Determination	Result	Units	Dilution	Method	Analyzed	
ABP	-1.3	TCaCO3	3/1000T	EPA600	4/10/06	
Acid Generating	1.3	TCaCO3	3/1000т	EPA600	4/10/06	
Acid Neut. Pot.	<0.3	TCaCO3	3/1000T	EPA600	4/10/06	
ELECTRICAL COND.	1.70	mmhos/	'cm	ASA M9	4/07/06	
pH Paste	4.46			ASA M9	4/06/06	
Non-Ext Sulfur,S	0.05	8		LECO	4/10/06	
Pyritic Sulfur,S	0.04	ę		LECO	4/10/06	
Sulfate Sulfur,S	0.46	응		LECO	4/10/06	
Coloium	0.55	€		LECO	4/10/06	
Detection	3140	mg/kg		6010B	4/09/06	
Polassium	1170	mg/kg		6010B	4/09/06	
Silwar	68	mg/kg		6010B	4/09/06	
Aluminum	<0.50	mg/kg		6010B	4/09/06	
Argonia	3060	mg/kg		6010B	4/09/06	
Borop	<2.5	mg/kg		6010B	4/09/06	
Barium	170	mg/kg		6010B	4/09/06	
Beryllium	-0.20	mg/kg		6010B	4/09/06	
Cadmium	<0.20	mg/kg		6010B	4/09/06	
Cobalt	2 75	mg/kg		6010B	4/09/06	
Chromium	4 99	mg/kg		6010B	4/09/06	
Copper	254	mg/kg		6010B	4/09/06	
Iron	14000	mg/kg		6010B	4/09/06	
Mercury	<0.033	mg/kg		5010B	4/09/06	
Lithium	2.1	mg/kg		7471A	3/30/06	
Manganese	57.4	ma/ka		6010B	4/09/06	
Molybdenum	32.0	ma/ka		6010B	4/09/06	
Nickel	3.1	ma/ka		6010B	4/09/06	
Lead	5.4	ma/ka		6010B	4/09/06	
Selenium	<4.0	mg/kg		60108	4/09/06	
Zinc	38.8	mg/kg		6010B	4/09/06	
SE,CA M3:AL	, FE	B7 • CI	т			

SVL ANALYTICAL	, INC.
----------------	--------

e Government Gulch P.C	Box 929	Kellogg, Idaho 83837-0929 📱	Phone: (208)78	Certific 4-1258 ∎ Fax:	ate: AZ AZ053 (208)783-08
CLIENT : GALLAGHE PROJECT: 0632562 CLIENT SAMPLE ID: Sample Collected:	R & KENNED TP-2:5ft 3/07/06	Y		SVL JOB: SAMPLE:	121810 498512
Sample Receipt : Date of Report :	3/27/06 4/10/06	As Received Basis		Matrix:	SOIL
Determination	Result	Units Dilution	Method	Analyzed	
ABP	15.9	TCaCO3/1000T	EPA600	4/10/06	
Acid Generating	0.3	TCaCO3/1000T	EPA600	4/10/06	
Acid Neut. Pot.	16.2	TCaCO3/1000T	EPA600	4/10/06	
ELECTRICAL COND.	1.53	mmhos/cm	ASA M9	4/07/06	
pH Paste	6.72		ASA M9	4/06/06	
Non-Ext Sulfur,S	<0.01	8	LECO	4/10/06	
Pyritic Sulfur,S	0.01	육	LECO	4/10/06	
Sulfate Sulfur,S	0.01	8	LECO	4/10/06	
Total Sulfur, S	0.02	8	LECO	4/10/06	
Calcium	6420	mg/kg	6010B	4/09/06	
Potassium	2950	mg/kg	6010B	4/09/06	
Sodium	64	mg/kg	6010B	4/09/06	
Silver	<0.50	mg/kg	6010B	4/09/06	
Aluminum	12900	mg/kg	6010B	4/09/06	
Arsenic	2.8	mg/kg	6010B	4/09/06	
Boron	<4.0	mg/kg	6010B	4/09/06	
Barium	141	mg/kg	6010B	4/09/06	
Beryllium	0.92	mg/kg	6010B	4/09/06	
Cadmium	0.46	mg/kg	6010B	4/09/06	
Cobalt	9.94	mg/kg	6010B	4/09/06	
Chromium	16.6	mg/kg	6010B	4/09/06	
Copper	73.7	mg/kg	6010B	4/09/06	
Iron	24700	mg/kg	6010B	4/09/06	
Mercury	<0.033	mg/kg	7471A	3/30/06	
Lithium	12.1	mg/kg	6010B	4/09/06	
Manganese	571	mg/kg	6010B	4/09/06	
Molybdenum	2.52	mg/kg	6010B	4/09/06	
Nickel	14.8	mg/kg	6010B	4/09/06	
Lead	17.9	mg/kg	6010B	4/09/06	
Selenium	<4.0	mg/kg	6010B	4/09/06	
Zinc	77.6	mg/kg	6010B	4/09/06	

M2:SE,CA

B7:CU

Reviewed By:_____ Wernin Date 4/1-/06 4/10/06 13:45

AZ: AZ0538 CA: NO. 2080 CO: 9/1/05 ID: ID00019 MT: 6/6/05 NV: 8/1/05 WA: C1268

M3:AL,FE

SVL ANALYTICAL,	I	NC.					Cer	tificate:	A7 A70530
One Government Gulch	R	P.O. Box 929	Kellogg, Idaho	83837-0929	Phone:	(208)784-1258		Fax: (20	8)783-0891

CLIENT : GALLAGHER PROJECT: 0632562	& KENNED	Y .			SVL JOB:	121810			
CLIENT SAMPLE ID: TP-2:8-10ft									
Sample Collected:	3/07/06								
Sample Receipt :	3/27/06				Matrix.	SOTT.			
Date of Report :	4/10/06	As R	eceived Basis			DOID			
Determination	Result	Units	Dilution	Method	Analyzed				
Acid Neut Pot	11 5		0.00m		4/10/00				
FLEOTRIGHT CONT	11.5	ICaCU3/I	0001	EPA600	4/10/06				
ELECTRICAL COND.	2.06	mmhos/cm	n	ASA M9	4/07/06				
pH Paste	6.97			ASA M9	4/06/06				

NEllin _____Date___<u>4/10/06</u>_____ 4/10/06 13:45 Reviewed By:____

AZ: AZ0538 CA: NO. 2080 CO: 9/1/05 ID: ID00019 MT: 6/6/05 NV: 8/1/05 WA: C1268

-

CLIENT : GALLAGHEN	R & KENNED	Y .		SVL JOB:	1218
TITENT SAMPLE TD.	ΨD_8•0.2 <i>€</i>	F		SAMPLE:	4985
Sample Collected.	3/07/06				
Sample Receipt :	3/27/06				
Date of Report	4/10/06	As Possiwod Pasi	_	Matrix:	SOIL
		AS RECEIVED BASIS	5 		
Determination	Result	Units Dilution	Method	Analyzed	
ABP	55.0	TCaCO3/1000T	EPA600	4/10/06	
Acid Generating	<0.3	TCaCO3/1000T	EPA600	4/10/06	
Acid Neut. Pot.	55.0	TCaCO3/1000T	EPA600	4/10/06	
ELECTRICAL COND.	0.74	mmhos/cm	ASA M9	4/07/06	
pH Paste	7.62		ASA M9	4/06/06	
Non-Ext Sulfur,S	<0.01	<u>8</u>	LECO	4/10/06	
Pyritic Sulfur,S	<0.01	8	LECO	4/10/06	
Sulfate Sulfur,S	<0.01	8	LECO	4/10/06	
Total Sulfur, S	<0.01	8	LECO	4/10/06	
Calcium	21600	mg/kg	6010B	4/09/06	
Potassium	1740	mg/kg	6010B	4/09/06	
Sodium	74	mg/kg	6010B	4/09/06	
Silver	<0.50	mg/kg	6010B	4/09/06	
Aluminum	8840	mg/kg	6010B	4/09/06	
Arsenic	10.4	mg/kg	6010B	4/09/06	
Boron	<4.0	mg/kg	6010B	4/09/06	
Barium	544	mg/kg	6010B	4/09/06	
Beryllium	0.79	mg/kg	6010B	4/09/06	
Cadmium	0.73	mg/kg	6010B	4/09/06	
Cobalt .	10.8	mg/kg	6010B	4/09/06	
Chromium	12.9	mg/kg	6010B	4/09/06	
Copper	356	mg/kg	6010B	4/09/06	
Iron	19600	mg/kg	6010B	4/09/06	
Mercury	<0.033	mg/kg	7471A	3/30/06	
Lithium	9.6	mg/kg	6010B	4/09/06	
Manganese	481	mg/kg	6010B	4/09/06	
Molybdenum	5.82	mg/kg	6010B	4/09/06	
Nickel	12.5	mg/kg	6010B	4/09/06	
Lead	14.8	mg/kg	6010B	4/09/06	
Selenium	<4.0	mg/kg	6010B	4/09/06	
Zinc	221	mg/kg	6010B	4/09/06	

Reviewed By:_____ NSun _____Date____4/10/66 4/10/06 13:45

AZ: AZ0538 CA: NO. 2080 CO: 9/1/05 ID: ID00019 MT: 6/6/05 NV: 8/1/05 WA: C1268

SVL ANALYTICAL, INC.

SVL ANALYTICAL, INC. One Government Gulch P.O. Box 929 Kellogg, Idaho 83837-0929

IENT : GALLAGHE	R & KENNED	Y .			SVL JOB:	1218
TENT SAMPLE TD.	mp_8.2_4f	+			SAMPLE:	4985
mple Collected:	3/07/06	L				
mple Receipt :	3/27/06				Motoire	COTT
te of Report :	4/10/06	As Re	ceived Basis	5	Matiix:	SOIL
Determination	Result	Units	Dilution	Method	Analyzed	
ABP	6.9	TCaCO3/10)00T	EPA600	4/10/06	
Acid Generating	0.6	TCaCO3/1(00T	EPA600	4/10/06	
Acid Neut. Pot.	7.5	TCaCO3/1(000 T	EPA600	4/10/06	
ELECTRICAL COND.	0.42	mmhos/cm		ASA M9	4/07/06	
pH Paste	6.25			ASA M9	4/06/06	
Non-Ext Sulfur,S	0.05	8		LECO	4/10/06	
Pyritic Sulfur,S	0.02	8		LECO	4/10/06	
Sulfate Sulfur,S	0.20	융		LECO	4/10/06	
Total Sulfur, S	0.27	8		LECO	4/10/06	
Calcium	1340	mg/kg		6010B	4/09/06	
Potassium	926	mg/kg		6010B	4/09/06	
Sodium	60	mg/kg		6010B	4/09/06	
Silver	<0.50	mg/kg		6010B	4/09/06	
Aluminum	2990	mg/kg		6010B	4/09/06	
Arsenic	<2.5	mg/kg		6010B	4/09/06	
Boron	<4.0	mg/kg		6010B	4/09/06	
Barium	217	mg/kg		6010B	4/09/06	
Beryllium	<0.20	mg/kg		6010B	4/09/06	
Cadmium	<0.20	mg/kg		6010B	4/09/06	
Cobalt	3.95	mg/kg		6010B	4/09/06	
Chromium	5.29	mg/kg		6010B	4/09/06	
Copper	150	mg/kg		6010B	4/09/06	
Iron	15600	mg/kg		6010B	4/09/06	
Mercury	<0.033	mg/kg		7471A	3/30/06	
Lithium	2.0	mg/kg		6010B	4/09/06	
Manganese	89.7	mg/kg		6010B	4/09/06	
Molybdenum	31.4	mg/kg		6010B	4/09/06	
Nickel	3.2	mg/kg		6010B	4/09/06	
Lead	6.1	mg/kg		6010B	4/09/06	
Selenium	<4.0	mg/kg		6010B	4/09/06	
Zinc	43.0	mg/kg		6010B	4/09/06	
SE, CA M	3.AT. FF	107			,	

Reviewed By:____

Date 4/10/06 4/10/06 13:45

Certificate: AZ AZ0538

Government Gulch P.C	•). Box 929 🔹	Kellogg, Idaho 83837-0929 😦	Phone: (208)784	Certific I-1258 = Fax:	ate: AZ AZ (208)783
CLIENT : GALLAGHEI PROJECT: 0632562	R & KENNEDY	· · · · · · · · · · · · · · · · · · ·		SVL JOB:	12181
LIENT SAMPLE ID:	TP-8-4-6ft			SAMPLE:	49851
Sample Collected:	3/07/06	-			
Sample Receipt :	3/27/06			Motoire	COTT
ate of Report :	4/10/06	As Received Basis		Matiix:	SOLL
Determination	Result	Units Dilution	Method	Analyzed	
ABP	21.5	TCaCO3/1000T	EPA600	4/10/06	
Acid Generating	<0.3	TCaCO3/1000T	EPA600	4/10/06	
Acid Neut. Pot.	21.5	TCaCO3/1000T	EPA600	4/10/06	
ELECTRICAL COND.	1.96	mmhos/cm	ASA M9	4/07/06	
pH Paste	5.85		ASA M9	4/06/06	
Non-Ext Sulfur,S	<0.01	8	LECO	4/10/06	
Pyritic Sulfur,S	<0.01	8	LECO	4/10/06	
Sulfate Sulfur,S	0.04	8	LECO	4/10/06	
Total Sulfur, S	0.04	8	LECO	4/10/06	
Calcium	9390	mg/kg	6010B	4/09/06	
Potassium	1580	mg/kg	6010B	4/09/06	
Sodium	76	mg/kg	6010B	4/09/06	
Silver	<0.50	mg/kg	6010B	4/09/06	
Aluminum	14900	mg/kg	6010B	4/09/06	
Arsenic	6.7	mg/kg	6010B	4/09/06	
Boron	<4.0	mg/kg	6010B	4/09/06	
Barium	280	mg/kg	6010B	4/09/06	
Beryllium	1.07	mg/kg	6010B	4/09/06	
Cadmium	0.67	mg/kg	6010B	4/09/06	
Cobalt	21.1	mg/kg	6010B	4/09/06	
Chromium	17.3	mg/kg	6010B	4/09/06	
Copper	731	mg/kg	6010B	4/09/06	
lron	23700	mg/kg	6010B	4/09/06	
Mercury	<0.033	mg/kg	7471A	3/30/06	
Managara	21.3	mg/kg	6010B	4/09/06	
Malubdorum	1370	mg/kg	6010B	4/09/06	
Nickol	2.//	mg/kg	6010B	4/09/06	
I obd	18.9	mg/kg	6010B	4/09/06	
Selenium	11.0	mg/kg	6010B	4/09/06	
Zinc	219	mg/kg	6010B 6010B	4/09/06 4/09/06	
:SE,CA M3:2	AL,FE	B7:CU			
eviewed By:		Ableria	Date	4/10/06	

AZ: AZ0538 CA: NO. 2080 CO: 9/1/05 ID: ID00019 MT: 6/6/05 NV: 8/1/05 WA: C1268

 SVL ANALYTICAL, INC.
 Certificate: AZ AZ0538

 One Government Gulch
 P.O. Box 929
 Kellogg, Idaho
 83837-0929
 Phone: (208)784-1258
 Fax: (208)783-0891

CI PI	LIENT : GALLAGHER ROJECT: 0632562	& KENNED	Y .			SVL JOB: SAMPLE:	121810		
CLIENT SAMPLE ID: TP-8:8-10ft Sample Collected: 3/07/06									
Sa	ample Receipt :	3/27/06		occined Desis		Matrix:	SOIL		
	Determination	Result	Units	Dilution	Method	Analyzed			
	Acid Neut. Pot.	24.0	TCaCO3/1	000T	EPA600	4/10/06			
	ELECTRICAL COND.	1.91	mmhos/cm	L	ASA M9	4/07/06			
	pH Paste	7.13			ASA M9	4/06/06			
<u> </u>									

N/Sali

Reviewed By:_____

-

SVL ANALYTICAL	, :	INC.				Cou	Additional and a second	7
One Government Gulch	_	P.O. Pour 020	K-11			Cer	TITICATE: A	Z AZ0538
one dovernment durch	-	F.U. DOX 929	Kellogg, Idaho	83837-0929	Phone: (208)784-1258		Fax: (208)	783-0891
2							(100)	100 0091

CLIENT : GALLAGHER	& KENNEDY				SVL JOB:	121810
CITENT SAMPLE ID.	MD 0.0 254				SAMPLE:	498518
Sample Collected:	2/07/06					
Sample Corrected.	3/07/00					
Date of Peport	3/2//00				Matrix:	SOIL
Bate of Report .	4/10/00	AS RE	eceived Basis			
Determination	Result	Unite	Dilution	Math 1		
				Method	Analyzed	
ELECTRICAL COND.	0.41	mmhos/cm		ASA MO	4/07/06	
pH Paste	7.20			ASA M9	4/06/06	
					1/00/00	

Nellin Reviewed By:_____ ____Date___<u>4//0/06</u> 4/10/06 13:46

SVL ANALYTICAL,	INC.					Contificates A7 A70500
One Government Gulch	P.O.	Box 929	Kellogg, Idaho	83837-0929	Phone: (208)784-1258	Fax: (208)783-0891

CLIENT : GALLAGHER & KENNEDYSVL JOB: 121810PROJECT: 0632562SAMPLE ID: TP-9:4-5ftCLIENT SAMPLE ID: TP-9:4-5ftSAMPLE: 498519
CLIENT SAMPLE ID: TP-9:4-5ft SAMPLE: 498519
CLIENT SAMPLE ID: TP-9:4-5ft
Sample Collected, 2/07/00
pampre corrected: 2/0//00
Sample Receipt : 3/27/06
Date of Report · 4/10/06 An Received Resid
AS Received Basis
Determination Popult Units pille
method Analyzed
ASA M9 4/07/06
ph Paste 7.74 ASA M9 4/06/06

Reviewed By:______ Date <u>4/10/06</u> 4/10/06 13:46

AZ: AZ0538 CA: NO. 2080 CO: 9/1/05 ID: ID00019 MT: 6/6/05 NV: 8/1/05 WA: C1268

-

SVL ANALYTICAL, INC.

-

Certificate: AZ AZ0538 One Government Gulch
P.O. Box 929
Kellogg, Idaho 83837-0929
Phone: (208)784-1258
Fax: (208)783-0891

CLIENT : GALLAGHEF PROJECT: 0632562 CLIENT SAMPLE ID:	KENNEDY				SVL JOB: SAMPLE:	121810 498520
Sample Collected: Sample Receipt : Date of Report :	3/07/06 3/27/06 4/10/06	As Re	ceived Basis		Matrix:	SOIL
Determination	Result	Units	Dilution	Method	Analyzed	
ELECTRICAL COND. pH Paste	0.58 7.58	mmhos/cm		ASA M9 ASA M9	4/07/06 4/06/06	

Reviewed By:_____ Date <u>4/10/06</u> 4/10/06 13:46 NSMLi.

SVL ANALYTICAL, INC.

_

Certificate: AZ AZ0538 One Government Gulch P.O. Box 929 Kellogg, Idaho 83837-0929 Phone: (208)784-1258 Fax: (208)783-0891

CLIENT : GALLAGHER PROJECT: 0632562	& KENNED	У.			SVL JOB: SAMPLE:	121810
CLIENT SAMPLE ID:	TP-14:2-5	ft			0.2220.	100021
Sample Collected:	3/08/06					
Sample Receipt :	3/27/06				Matrix:	SOIL
Date of Report :	4/10/06	As Red	ceived Basis			
			· · · · · · · · · · · · · · · · · · ·			·
Determination	Result	Units	Dilution	Method	Analyzed	
ELECTRICAL COND	2 57	mmbos (am			4/07/06	
Difference comp.	2.07	numos/cin		ASA M9	4/0//06	
ph Paste	0.83			ASA M9	4/06/06	

Reviewed By:_____ Date <u>4/10/06</u> 4/10/06 13:46 Nouni

SVL ANALYTICAL,	INC.				Cer	tificate, A7 A70520
One Government Gulch	P.O. Box 929	Kellogg, Idaho	83837-0929	Phone: (208)784-1258		Fax: (208)783-0891

(CLIENT : GALLAGHER PROJECT: 0632562	& KENNED	Ч			SVL JOB: SAMPLE:	121810
(CLIENT SAMPLE ID: Sample Collected:	TP-14:7-1 3/08/06	Oft				
i I	Sample Receipt : Date of Report :	3/27/06 4/10/06	As Re	ceived Basis		Matrix:	SOIL
-	Determination	Result	Units	Dilution	Method	Analyzed	
	ELECTRICAL COND.	2.71	mmhos/cm		ASA M9	4/07/06	
	ph Paste	4.47			ASA M9	4/06/06	
_							
-				1 Can -			

	S1	VL	ANA	LYT	ICAL	, INC.
--	----	-----------	-----	-----	------	--------

SVL ANALYTICAL,	II	NC.							Certi	ficate	AZ AZOS	38
One Government Gulch		P.O. B	ox 929	Kellogg,	Idaho	83837-0929	Phone:	(208)784-1258	a F	ax: (;	208)783-0	391
······································				 		÷	 					

CI PF	IENT : GALLAGHE	R & KENNED	Y.			SVL JOB:	121810
CI	IENT SAMPLE ID:	TP-36:0-1	ft			DIME DD ;	190929
Sa	imple Collected:	3/08/06					
Sa	mple Receipt :	3/27/06				Matrix:	SOIL
Da	ite of Report :	4/10/06	As Re	ceived Basis			
	Determination	Result	Units	Dilution	Method	Analyzed	
	ABP	1.6	TCaCO3/10	 00ም	EPA600	4/10/06	
	Acid Generating	0.9	TCaCO3/10	001	EPA600	4/10/06	
	Acid Neut. Pot.	2.5	TCaC03/10	007	EPA600	4/10/06	
	ELECTRICAL COND.	0.13	mmhos/cm		ASA MQ	4/07/06	
	pH Paste	4.87			ASA MQ	4/06/06	
	Non-Ext Sulfur,S	0.05	9		LECO	4/10/06	
	Pyritic Sulfur,S	0.03	8		LECO	4/10/06	
	Sulfate Sulfur,S	0.17	ę		LECO	4/10/06	
	Total Sulfur, S	0.25	- &		LECO	4/10/06	
	Calcium	1060	ma/ka		6010B	4/09/06	
	Potassium -	871	ma/ka		6010B	4/09/06	
	Sodium	<50	ma/ka		6010B	4/09/06	
	Silver	<0.50	ma/ka		6010B	4/09/06	
	Aluminum	2870	ma/ka		6010B	4/09/06	
	Arsenic	3.1	ma/ka		6010B	4/09/06	
	Boron	<4.0	ma/ka		6010B	4/09/06	
	Barium	215	ma/ka		6010B	4/09/06	
	Beryllium	0.22	ma/ka		6010B	4/09/06	
	Cadmium	<0.20	ma/ka		6010B	4/09/06	
	Cobalt	4.47	ma/ka		6010B	4/09/06	
	Chromium	5.03	mg/kg		6010B	4/09/06	
	Copper	234	ma/ka		6010B	4/09/06	
	Iron	12200	ma/ka		6010B	4/09/06	
	Mercury	<0.033	ma/ka		74712	3/30/06	
	Lithium	2.1	mg/kg		6010B	4/09/06	
	Manganese	126	mg/kg		· 6010B	4/09/06	
1	Molybdenum	27.3	mg/kg		6010B	4/09/06	
	Nickel	3.8	ma/ka		6010B	4/09/06	
	Lead	6.1	ma/ka		6010B	4/09/06	
	Selenium	<4.0	ma/ka		6010B	4/09/06	
	Zinc	54.3	mg/kg		6010B	4/09/06	
M2:	SE,CA M3:	AL,FE	B7:CU				
Re	viewed Bv.		1	Res.	Data	41, 100	
210			Д	Journ	Date	110/06/12:00	
						4/10/06 13:46	

VL ANALYTICAL, INC. ne Government Gulch P.O.	Box 929 🔳	Kellogg,	Idaho 83837-0929 a	Phone: (208)78	Certific 4-1258 • Fax:	ate: AZ AZ0538 (208)783-089
CLIENT : GALLAGHER PROJECT: 0632562 CLIENT SAMPLE ID:	& KENNEI	DY . Bft			SVL JOB: SAMPLE:	121810 498524
Sample Collected: Sample Receipt : Date of Report :	3/08/06 3/27/06 4/10/06	As	Received Basia	s	Matrix:	SOIL
Determination	Result	Units	Dilution	Method	Analyzed	
Acid Neut. Pot. ELECTRICAL COND. pH Paste	175 0.33 7.74	TCaCO3, mmhos/c	/1000T cm	EPA600 ASA M9 ASA M9	4/10/06 4/07/06 4/06/06	
		<u> </u>	yle.			

Reviewed By:____ _____Date <u>4/10/66</u> 4/10/06 13:46 Nam

AZ: AZ0538 CA: NO. 2080 CO: 9/1/05 ID: ID00019 MT: 6/6/05 NV: 8/1/05 WA: C1268

-

SVL ANALYTICAL, INC.

Quality Control Report Part I Prep Blank and Laboratory Control Sample

[[or pampro
Client :GALLAGHE	CR & KEN	INEDY					SVL JOB	No: 121810
Analyte	Method	Matrix	Units	Prep Blank	True-	-LCS-Found	LCS %R	Analysis Date
Silver	6010B	SOIL	mg/kg	<0.50	5.00	5 22	104 6	4/00/05
Aluminum	6010B	SOIL	mg/kg	<3.0	100	106	104.0	4/09/06
Arsenic	6010B	SOIL	mg/kg	<2.50	100	01 7	01 3	4/09/06
Boron	6010B	SOIL	mg/kg	<4.0	100	01 0	01 0	4/09/06
Barium	6010B	SOIL	mg/kg	<0.20	100	20.3	91.9	4/09/06
Beryllium	6010B	SOIL	mg/kg	<0.20	100	99.5	99.3	4/09/06
Calcium	6010B	SOIL	mg/kg	<4.0	2000	1950	95.0	4/09/06
Cadmium	6010B	SOIL	mg/kg	<0.20	100	62 G		4/09/06
Cobalt	6010B	SOIL	mg/kg	<0.60	100	92.9	92.9	4/09/06
Chromium	6010B	SOIL	mg/kg	<0.60	100	96.4	92.9	4/09/06
Copper	6010B	SOIL	mg/kg	<1.0 B7	100	96.0	96.4	4/09/06
Iron	6010B	SOIL	mg/kg	<6.0	1000	965	96.0	4/09/06
Potassium	6010B	SOIL	mg/kg	<50	2000	1970	90.5	4/09/06
Lithium	6010B	SOIL	mg/kg	<0.50	100	101	90.5	4/09/06
Manganese	6010B	SOIL	mg/kg	<0.40	100	96 2		4/09/06
Molybdenum	6010B	SOIL	mg/kg	<0.80	100	96.3	90.2	4/09/06
Sodium	6010B	SOIL	mg/kg	<50	1900	1840	90.3	4/09/06
Nickel	6010B	SOIL	mg/kg	<1.0	100	P0 7	90.0	4/09/06
Lead	6010B	SOIL	mg/kg	<0.750	100	90.7	90.7	4/09/06
Selenium	6010B	SOIL	ma/ka	<4.0	100	93.0 93.1	93.0	4/09/06
Zinc	6010B	SOIL	mg/kg	<1.0	100	02.4	02.4	4/09/06
Mercury	7471A	SOIL	mg/kg	<0.0333	0 834	0 843	101 1	4/09/06
Acid Generating	EPA600	SOIL	TCaC03/k	N/A	9 36	0.043		3/30/06
Acid Neut. Pot.	EPA600	SOIL	TCaC03/k	N/A	52 0	56.75	93.5	4/10/06
ELECTRICAL COND.	ASA M9	SOIL	mmhos/cm	0.010	0 400	0 420	107.7	4/10/06
pH Paste	ASA M9	SOIL		5.50	8 45	9 40	105.0	4/0//06
Non-Ext Sulfur, S	LECO	SOIL	ę	<0.010	N/A	0.40	99.4	4/06/06
Pyritic Sulfur, S	LECO	SOIL	e l	<0.010	N/A		N/A N/A	4/10/06
Sulfate Sulfur,S	LECO	SOIL	8	<0.010	N/A		N/A N/A	4/10/06
Total Sulfur, S	LECO	SOIL	ę	<0.010	0.298	0.280	N/A 94.0	4/10/06

LEGEND:

LCS = Laboratory Control Sample

LCS %R = LCS Percent Recovery

N/A = Not Applicable

Π

Quality Control Report Part II Duplicate and Spike Analysis

Cl	ient :GAL	LA	GHI	ER & KENN	IEDY						SV	L. TOP N	. 121010
				OC SAME	LE ID	Duplicate	or	MSD-		Matrix S	nike		
Te	st Method	I M	tx	Units	Result	Found		RPD&	Result	SPK	ADD	\$P	Date
u				· · · · ·	T	+							Date
Ag	6010B	S	1	mg/kg	<0.50	5.78	М	1.2	5.85	5.00		117.0	4/09/06
AT	6010B	S	1	mg/kg	6200 M3	10800 M3	М	0.9	10900 M3	100		R >4S	4/09/06
AS	6010B	S	1	mg/kg	5.45	99.6	М	1.2	98.4	100		93 0	4/09/06
B .	6010B	S	1	mg/kg	<4.0	94.0	М	0.8	94.8	100		94.8	4/09/06
ва	6010B	S	1	mg/kg	420	520	М	0.6	517	100		97.0	4/09/06
ве	6010B	S	1	mg/kg	0.47	99.7	М	1.3	101	100		100.5	4/09/06
Ca	6010B	S	1	mg/kg	6810 M2	9000 M2	М	16.2	7650 M2	2000		42 0	4/09/06
Ca	6010B	S	1	mg/kg	6810 M2	N/A		N/A	8370 M2	2000	A	78 0	4/09/06
Ca	6010B	S	1	mg/kg	0.32	96.0	М	0.1	95.9	100		95 6	4/09/06
Co	6010B	S	1	mg/kg	8.64	105	М	0.9	106	100		97 4	4/09/06
Cr	6010B	S	1	mg/kg	10.4	111	М	0.0	111	100		100 6	4/09/06
Cu	6010B	S	1	mg/kg	389 B7	494 B7	M	1.4	487 B7	100		98.0	4/09/06
r.e	6010B	S	1	mg/kg	17800 мз	20400 M3	M	1.0	20600 M3	1000		R >45	4/09/06
K T	6010B	S	1	mg/kg	1410	3890	М	0.5	3910	2000		125 0	4/09/06
L1	6010B	S	1	mg/kg	6.09	112	M	1.8	114	100		107 9	4/09/00
MN	6010B	S	1	mg/kg	332	351	M	5.6	332	100		0 0	4/09/06
MN	6010B	S	1	mg/kg	332	N/A		N/A	409	100	A	77 0	4/09/08
MO	6010B	S	1	mg/kg	25.6	125	М	3.1	129	100		103 4	4/09/06
Na	6010B	S	1	mg/kg	65	2000	М	2.0	2040	1900		103 9	4/09/06
	6010B	S	1	mg/kg	8.3	108	М	0.9	109	100		100 7	4/09/06
PD	6010B	S	1	mg/kg	11.1	109	М	0.9	110	100	1	98 9	4/09/06
se R	6010B	S	1	mg/kg	<4.0 M2	87.2 M2	M	1.3	88.3 M2	100		88.3	4/09/06
Zn	6010B	S	1	mg/kg	123	230	M	3.5	222	100		99.0	4/09/06
Hg	/4/1A	S	1	mg/kg	<0.0333	0.178	M	1.1	0.180	0.167	1	107.8	3/30/06
ABP	EPA600	S	1	TCaCO3/	19.4	18.7		3.7	N/A	N/A		N/A	4/10/06
AGP	EPA600	S	1	TCaCO3/	1.88	1.25		40.3	N/A	N/A		N/A	4/10/06
ANP	EPA600	S	1	TCaCO3/	21.2	20.0		5.8	N/A	N/A		N/A	4/10/06
	ASA M9	S	1	mmhos/c	0.660	0.660		0.0	N/A	N/A		N/A	4/07/06
рн Р	STASA M9	S	1		7.33	7.36		0.4	N/A	N/A		N/A	4/06/06
> N-	EX LECO	S	1	8	0.040	0.040		0.0	N/A	N/A		N/A	4/10/06
2 CO	K LECO	S	1	8	0.060	0.040		40.0	N/A	N/A		N/A	4/10/06
ວ-50 ເຫດ	4 LECO	S	1	8	0.050	0.090		57.1	N/A	N/A		N/A	4/10/06
5-10	T LECO	S	1	*	0.150	0.170	1	12.5	N/A	N/A		N/A	4/10/06

LEGEND:

RPD% = (|SAM - DUP|/((SAM + DUP)/2) * 100) UDL = Both SAM & DUP not detected. *Result or *Found: Interference required dilution. RPD% = (|SPK - MSD //((SPK + MSD)/2) * 100) M in Duplicate/MSD column indicates MSD.

SPIKE ADD column, A = Post Digest Spike; %R = Percent Recovery N/A = Not Analyzed; R > 4S = Result more than 4X the Spike Added QC limits for MS recoveries apply only if the spike is at least 1/4 the concentration of the analyte in the sample. Control limits for the RPD apply only if the concentration of the analyte in the sample is at least five times the reporting limit.

QC Sample 1: SVL SAM No.: 498510 Client Sample ID: TP-2:0-2ft

1 COPY

NOTE:

 Please Report to Jen Pepe and Jeffrey Clark at Golder Associates Tucson

 jclark@golder.com
 4730 N. Oracle Rd Ste 210, Tucson, AZ 85705

 jpepe@golder.com
 520-888-8818

Total Metals and SPLP metals to Include:

Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mn, Mo, Na, Ni, Se, Pb, Zn

Methods:

paste pH/EC by ASA 9 ABA by Modified Sobek NP by Modified Sobek Total Metals by 350 Extraction 6010B SPLP by EPA 1312 Saturated paste pH by ASA 10-3.2 Saturated paste EC by ASA 10-3 Texture by ASA 15-5

Please retain samples for further analysis.

٢.

STANDARD-USE DATA QUALIFIERS

Blanks:

If the target analyte is not detected in the samples, apply the appropriate qualifier to affected analyte in the blank. If analytes are detected, then all associated samples should also be qualified.

- B1 = Target analyte detected in method blank at or above the method reporting limit.
- B2 = Non-target analyte detected in method blank and sample, producing interference.
- B3 = Target analyte detected in calibration blank at or above the method reporting limit.
- B4 = Target analyte detected in blank at/above method acceptance criteria.
- B5 = Target analyte detected in method blank at or above the method reporting limit, but below trigger level or MCL.
- B6 = Target analyte detected in calibration blank at or above the method reporting limit, but below trigger level or MCL.
- B7 = Target analyte detected in method blank at or above method reporting limit, but concentration found in the sample was 10 times above the concentration found in the method blank.

Dilution:

If all analytes are reported from the diluted sample, apply the qualifier to the entire sample. Otherwise apply qualifier to each analyte that required dilution.

- D1 = Sample required dilution due to matrix.
- D2 = Sample required dilution due to high concentration of target analyte.
- D3 = Sample dilution required due to insufficient sample.
- D4 = Reporting limits (minimum reporting level) adjusted to reflect sample amount received and analyzed.

Estimated concentration:

The appropriate qualifier must be used for any analyte result reported outside the calibration range. Affects data reported outside the calibration range or down to the MDL.

- E1 = Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient sample.
- E2 = Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to sample matrix.
- E3 = Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time requirements.
- E4 = Concentration estimated. Analyte was detected below laboratory minimum reporting level.
- E5 = Concentration estimated. Analyte was detected below laboratory minimum reporting level, but not confirmed by alternate analysis.
- E6 = Concentration estimated. Internal standard recoveries did not meet method acceptance criteria.
- E7 = Concentration estimated. Internal standard recoveries did not meet laboratory acceptance criteria.
- E8 = Analyte reported to MDL per project specification. Target analyte was not detected in the sample.

Holding Time:

Qualify samples appropriately when method distillation and/or analysis holding time have been exceeded.

- H1 = Sample analysis performed past holding time.
- H2 = Initial analysis within holding time. Reanalysis for the required dilution was past holding time.
- H3 = Sample was received and analyzed past holding time.
- H4 = Sample was distilled past required distillation holding time, but analyzed within analysis holding time.

Laboratory Control Sample (Laboratory Fortified Blank): The appropriate qualifier must be applied to the affected analytes in the laboratory fortified blank and to all corresponding analytes In the associated samples.

- L1 = The associated LCS recovery was above laboratory acceptance limits.
- L2 = The associated LCS recovery was below laboratory acceptance limits.
- L3 = The associated LCS recovery was above method acceptance limits.
- L4 = The associated LCS recovery was below method acceptance limits.
- L5 = The associated LCS recovery was outside laboratory acceptance limits, but within method acceptance limits.

Matrix Spike:

The appropriate qualifier must be applied to the affected analytes in the matrix spike and should also be added to all corresponding analytes in the associated spiked sample. If a batch spike recovery is outside of the acceptable range, it is permissible to only flag the sample that was spike and not the other samples in the batch.

- M1 = Matrix spike recovery was high, but the LCS recovery was acceptable.
- M2 = Matrix spike recovery was low, but the LCS recovery was acceptable.
- M3 = The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The LCS recovery was acceptable.
- M4 = The analysis of the spiked sample required a dilution such that the spike concentration was diluted below the reporting limit. The LCS recovery was acceptable.

M5 = Analyte concentration was determined by the method of standard addition (MSA).

General:

Use for events that cannot be described by the approved data qualifiers.

N1 = See case narrative.

N2 = See corrective action report.

. Sample Quality:

Flag samples with appropriate qualifier when sample quality may be potentially impacted or when method requirements were not met.

Q1 = Sample integrity was not maintained.

Q2 = Sample received with headspace.

Q3 = Sample was received with improper chemical preservation.

Q4 = Sample was received and analyzed without chemical preservation.

Q5 = Sample was received with inadequate chemical preservation, but preserved by the laboratory.

Q6 = Sample was received above recommended temperature.

Q7 = Sample was inadequately dechlorinated,

Q9 = Insufficient sample was received to meet method QC requirements.

Q10 = Sample was received in inappropriate sample container.

Q11 = Sample is heterogeneous. Sample homogeneity could not be readily achieved using routine laboratory practices.

Duplicates:

For use with sample, matrix spike, LFB/LCS duplicates. Qualify all affected analytes. For MS/MSD or sample duplicates qualify only the original source sample.

R2 = RPD exceeded the laboratory control limit.

R5 = MS/MSD RPD exceeded the laboratory control limit. Recovery met acceptance criteria.

R6 = LCS/LCSD RPD exceeded the laboratory control limit. Recovery met acceptance criteria.

R9 = Sample RPD exceeded the laboratory control limit.

Method/analyte discrepancies:

For use with methods or analytes that are not currently approved under the Environmental Laboratory Licensure Rules (limited to Arizona).

T1 = Method approved by EPA, but not yet licensed by ADHS.

T2 = Cited ADHS licensed method does not contain this analyte as part of method compound list.

T3 = Method not promulgated either by EPA or ADHS.

Calibration Verification:

Appropriate qualifier must be applied to all affected analytes in any samples associated with the calibration verification.

- V1 = CCV recovery was above method acceptance limits. This target analyte was not detected in the sample.
- V2 = CCV recovery was above method acceptance limits. This target analyte was detected in the sample. The sample could not be reanalyzed due to insufficient sample.
- V3 = CCV recovery was above method acceptance limits. This target analyte was detected in the sample, but the sample was not reanalyzed.
- V4 = CCV recovery was below method acceptance limits. The sample could not be reanalyzed due to insufficient sample.

SVL ANALYTICAL CO	oler temp N/A 3.27.06	ID:45 RS_	24
Client Sallagher & Kennedx /bolo	CHAIN OF CUSTODY R	ECORD	Page 2 of
Contact:	1) Ensure proper container packaging.	Table 1. – Matrix Type	500 CVII 1000 CVII V
Address:	2) Ship samples promptly following collection.	1 = Surface Water, 2 = Ground Water	SVL JOB #
	* 3) Designate Sample Reject Disposition	3 = Soil/Sediment, 4 = Rinsate, 5 = Oil	121810
Phone Number:	PO#:	6 = Waste, 7 = Other (Specify)	
FAX Number:	Project Name:	Samplers Signature:	L

Lab Name: SVL Analyt	Name: SVL Analytical, Inc. (208) 784-1258 FAX (208) 783-0891												Analyses Required										
Address: One Govern	nent Gulch,	Kellogg,	ID 83	837-092	29	<u> </u>												T		<u> </u>	T	ł	
	Collec	ction	M	Miscellaneous Preservative(s)					0	-													
Sample ID	Date	Time	Collected by: (Init.)	Matrix Type From Table 1	No. of Containers	Sample Filtered ? Y/N	Unpreserved (Ice Only)	HN03	HCL	H2SO4	NAOH	Other (Specify)	OH/FC ASA	ABA	AN	Total. Metals	SPLP Metally					Co	mments
1. TP-8: 8-10 ft	3-7-06	-	JC	3	1	NA	X						X		X	_			-				
2. TP-9: 0-2 ft	3-7-06			1	/	1	T						X		•					_	<u> </u>		
3. TP-9: 4-58E						7							X										
4. TP-9: 7-8ft	\checkmark			\square	Л	\square				-			X	-	_					_			
5. TP-13: 0-2 ft	3-8-06			Л						_					-+							Vall	
6. TP-14: 2-5 St	3-8.06					7		_				-	X	-								- 4010	
7. TP-141: 7-10 ft	V			7	11	/					-1	-+	X	-+			-						
8. TP-36: 0-1 FE	3-8-06				-71	\square					\neg	-	X	$\overline{\mathbf{x}}^{\dagger}$		\mathbf{x}			-+				
9. TP-36: 2-3 A	V .				_),†	\mathbf{T}	1			\neg			$\frac{1}{\sqrt{1}}$		$\overline{\mathbf{x}}$	4				-			
10. TP-54: 0-2 FE	3-9-06	-V	V	$\forall \mid$	\forall	\checkmark	$\forall \uparrow$	-				-+	<u> </u>	-+	\sim				-+			Nati	
Relinquished by:				Date:	-13-0	06	Time: Time:	140	8	Receiv	ed by:	$\overline{\mathcal{O}}$	Ŝl	ril	li	ng)				Date:	29:06	Time: 10.'45

* Sample Reject: [] Return [] Dispose [] Store (30 Days)

1 million

				ħ																				
S	ANALYTI	CAL		600	Cooler temp N/A 3.21.06 10:45 RS.									p.4										
1		,		СН	HAIN OF CUSTODY RECORD SEE Attacle																			
Client: (-allagher +	Kenned.	160	ler	NOTE	TES: Also Read to Tea Peace (The Associated The Page 7 of									24										
Contact: Mr. Dalva M.	1) Ens	ure nr	oner c	ontair	0(7 1er na	vO ckari	ina		CP			Tabl	e 1. •	- M	atrix	CS Type	106	501	$^{\sim}$					
Address: 2575 East Canelback Rd 2) Ship sam								v folla	wing	colle	ction		1 =	Surf	ace V	Vate	r. 2	= Gr	ound \	Water			FOR SVL USE	ONLY
Phoenix Az \$50/(*3) Designat								leierí	Die	nositi	ion		3=	Soil	Sedir	nent.	4=	Ring	sate.	5=0	a		SVLJU 1218	B# ///
Phone Number: (Talder	: 520 9	88 481	- «	PO#:	()6	マ 1	567	, 1	. 1913	positi	1011		6=	Was	te. 7	= Ot	her (Snec	ifv)		-	1	2100	<u> </u>
FAX Number: (mp/)ec	: 522 8	< <u> </u>	<u>-</u> 17	Proje	t Nan	<u>)</u> 1e: 4	100	cha.	To:	10			San	Dier	s Sig	natur	e:		16-					
UTOIDELT - 20 888 8817 AUGUERTAILE Apache 100 Samplers Signature:																								
Lab Name: SVL Analyt	tical, Inc.	(208)	784-12	58	FA	K (20	8) 78	83-08	891						An	alys	es R	equi	red		Т		_	
Address: One Governm	ment Gulch,	Kellogg,	ID 83	837-092	29								σ		4	12								
	Collec	tion	M	liscella	ineou	IS		Pre	eser	vativ	ve(s)			0	per la	See	Mos							
Sample ID	Date	Time	Collected by: (Init.)	Matrix Type From Table 1	No. of Containers	Sample Filtered ? Y/N	Unpreserved (Ice Only)	HNO3	HCL	H2SO4	НОН	Other (Specify)	Daste PH- ASA	EC - ASA M.	ABA - Muigad S	NP- Matrick S	netals -350 Extract	SPLP mehuls 1312				Co	omment	S
1. TP-2: 0-2 ft	3-7-06		JC	3	1	N	X				<u> </u>		X	X	X		X		+	+	+			
2. TP-2: 3-5 ft					1		X						X	x	X		X	X		+	+			
3. TP-2: 5 FE							X						X	K	X		×	<u>, , , , , , , , , , , , , , , , , , , </u>		-	╋			
4. TP-2: 8-10 5+	V						X						X	X		X	_			-	╈			
5. TP-3: 0-2 ft	3-7-06						X					· ·								+	╋	HALD		
6. TP-3: 2-4 Ft	J.						X													+	+	NAD		[
7. TP-4: 0-2 FL	3-7-06						X													-		NII		
8. TP-8: 0-2 ft	3-7-06						X						X	×	X		X				+	01010		
9. TP-8: 2-4 FE		1				1	4	•					X	$\overline{\mathbf{x}}$	X		X	\mathbf{x}^{\dagger}	-	+	╋			
10. TP-8: 4-6 ft	V		V	V	∇	V	文						X	$\overline{\mathbf{x}}$	X		Ź				╉			
Relinquished by: Anthe Data					3.0	6	Time: Received by:) Stribling Dage:					<u>با</u>	nal	Time:	115					
Relinquished by:				Date:		J	Time:			Recei	ved by	:					J			Da	<u>) ' d'</u> 1e:	106	Time:	47

* Sample Reject: | | Return | | Dispose | | Store (30 Days)

1

1

SVL ANALYTICAL, INC. One Government Gulch - Kellogg, ID 83837-0929

SAMPLE RECEIPT CONFIRMATION

LENBERG We will invoice: SAME

BA
121810
3/27/06
4/10/06

CLIENT: DALVA MOELLENBERG GALLAGHER & KENNEDY 2575 E. CAMELBACK ROAD

	PHOENIX	AZ 85016-9225
FAX:	(602)530-8500	PH: (602)530-8223

Fax:

498510 S TP-2:0-2ft 3/07/06 :: JC 3/27/06 Tests:ABA + Sulfur Forms GALLAGHER SOILS EC SOIL pH (PASTE) 498511 S TP-2:3-5ft 3/07/06 :: JC 3/27/06 Tests:ABA + Sulfur Forms GALLAGHER SOILS EC SOIL pH (PASTE) 498512 S TP-2:5ft 3/07/06 :: JC 3/27/06 Tests:ABA + Sulfur Forms GALLAGHER SOILS EC SOIL pH (PASTE) 498513 S TP-2:8-10ft 3/07/06 :: JC 3/27/06 Tests:ABA + Sulfur Forms GALLAGHER SOILS EC SOIL pH (PASTE) 498514 S TP-8:0-2ft 3/07/06 :: JC 3/27/06 Tests:ABA + Sulfur Forms GALLAGHER SOILS EC SOIL pH (PASTE) 498516 S TP-8:2-4ft 3/07/06 :: JC 3/27/06 Tests:ABA + Sulfur Forms GALLAGHER SOILS EC SOIL pH (PASTE) 498517 S TP-8:2-4ft 3/07/06 :: JC 3/27/06 Tests:ABA + Sulfur Forms GALLAGHER SOILS EC SOIL pH (PASTE) 498518 S TP-9:0-2ft 3/07/06 : JC	SVL# 	МС	ClientID	Sampled	Time	Ву	Received	Sample Comments
COLUMN (PASTE)	198510 198512 198513 198514 198515 198516 198516 198517 198518 198520 198520 198521 198522 198523 198523	5 1 1 1 5 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5	<pre>TP-2:0-2ft TP-2:3-5ft TP-2:5ft TP-2:8-10ft TP-8:0-2ft TP-8:2-4ft TP-8:4-6ft TP-8:8-10ft TP-9:0-2ft TP-9:0-2ft TP-9:4-5ft TP-9:7-8ft TP-14:2-5ft TP-14:7-10ft TP-36:0-1ft TP-36:2-3ft</pre>	3/07/06 3/07/06 3/07/06 3/07/06 3/07/06 3/07/06 3/07/06 3/07/06 3/07/06 3/07/06 3/07/06 3/08/06 3/08/06 3/08/06		1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C	3/27/06 3/27/06 3/27/06 3/27/06 3/27/06 3/27/06 3/27/06 3/27/06 3/27/06 3/27/06 3/27/06 3/27/06 3/27/06	Tests:ABA + Sulfur Forms GALLAGHER SOILS EC SOIL pH (PASTE) Tests:ABA + Sulfur Forms GALLAGHER SOILS EC SOIL pH (PASTE) Tests:ABA + Sulfur Forms GALLAGHER SOILS EC SOIL pH (PASTE) Tests:ABA + Sulfur Forms GALLAGHER SOILS EC SOIL pH (PASTE) Tests:ABA + Sulfur Forms GALLAGHER SOILS EC SOIL pH (PASTE) Tests:ABA + Sulfur Forms GALLAGHER SOILS EC SOIL pH (PASTE) Tests:ABA + Sulfur Forms GALLAGHER SOILS EC SOIL pH (PASTE) Tests:ABA + Sulfur Forms GALLAGHER SOILS EC SOIL pH (PASTE) Tests:ADP EC SOIL pH (PASTE) Tests:EC SOIL pH (PASTE) Tests:ABA + Sulfur Forms GALLAGHER SOILS EC SOIL pH (PASTE)

ADDITIONAL COMMENTS FOR JOB: Sample Cooler/Container temp not measured upon receipt.

[] These samples will be DISPOSED 45 days after job completion. [X] These samples will be ARCHIVED 45 days, then you will receive a letter requesting disposal options.

Please contact Crystal Sevy (208-784-1258) if you have questions regarding the receipt of these samples.

3/27/06 14:58

Page 1 of 1

APPENDIX A-4 SPLP DATA

SVL ANALYTICAL, INC.

<u> </u>							
	CLIENT : GALLAGHER PROJECT: 0632562 CLIENT SAMPLE ID: Sample Collected:	& KENNEDY TP-2:3-5ft 3/07/06		-		SVL JOB: SAMPLE:	121807 498490
	Sample Receipt : Date of Report :	3/27/06 4/11/06			E>	Matrix: traction:	ESOIL SPLP
	Determination	Result	Units	Dilution	Method	Analyzed	
	Calcium	12.1	mg/L Ext		6010B	4/10/06	
	Potassium	1.78	mg/L Ext		6010B	4/10/06	
	Sodium	5.93	mg/L Ext	•	6010B	4/10/06	
	Silver	<0.0050	mg/L Ext		6010B	4/10/06	
	Aluminum	0.88	mg/L Ext		6010B	4/10/06	
	Arsenic	<0.025	mg/L Ext	-	6010B	4/10/06	
	Boron	0.059	mg/L Ext		6010B	4/10/06	
	Barium	0.0234	mg/L Ext		6010B	4/10/06	
	Beryllium	<0.0020	mg/L Ext		6010B	4/10/06	
	Cadmium	<0.0020	mg/L Ext		6010B	4/10/06	
	Cobalt	<0.0060	mg/L Ext		6010B	4/10/06	
	Chromium	<0.0060	mg/L Ext		6010B	4/10/06	
	Copper	0.042	mg/L Ext		6010B	4/10/06	
	Iron	1.22	mg/L Ext		6010B	4/10/06	
	Mercury	<0.00020	mg/L Ext		7470A	4/10/06	
	Lithium	<0.005	mg/L Ext		6010B	4/10/06	
	Manganese	0.008	mg/L Ext		6010B	4/10/06	
	Molybdenum	0.123	mg/L Ext		6010B	4/10/06	
	Nickel	<0.010	mg/L Ext		6010B	4/10/06	
	Lead	<0.008	mg/L Ext		6010B	4/10/06	
	Selenium	<0.040	mg/L Ext		6010B	4/10/06	
	Zinc	0.013	mg/L Ext		6010B	4/10/06	
			-			-,,	

Tests:GALL/KENN SPLP

Reviewed By:____

Helea Date 4/11/06 4/11/06 15:50

AZ: AZ0538 CA: NO. 2080 CO: 9/1/05 ID: ID00019 MT: 6/6/05 NV: 8/1/05 WA: C1268

Certificate: AZ AZ0538 One Government Gulch
P.O. Box 929 Kellogg, Idaho 83837-0929 Phone: (208)784-1258 Fax: (208)783-0891

One Government Gulch P.O	. Box 929 .	Kellogg, Idaho	83837-0929	 Phone: (208)784 	Certific 1-1258 = Fax:	ate: AZ AZ0538 (208)783-089
CLIENT : GALLAGHEN PROJECT: 0632562 CLIENT SAMPLE ID:	R & KENNEDY	· · · ·			SVL JOB: SAMPLE:	121807 498491
Sample Collected: Sample Receipt : Date of Report :	3/07/06 3/27/06 4/11/06			E>	Matrix: traction:	ESOIL SPLP
Determination	Result	Units	Dilution	Method	Analyzed	
Calcium	3.87	mg/L Ext		6010B	4/10/06	
Sodium	<0.50	mg/L Ext		6010B	4/10/06	
Silver	4.40	mg/L Ext		6010B	4/10/06	
	<0.0050	mg/L Ext		6010B	4/10/06	
Arsonic	0.75	mg/L Ext		6010B	4/10/06	
Boron	<0.025	mg/L Ext		6010B	4/10/06	
Barium	0.003	mg/L Ext		6010B	4/10/06	
Beryllium	0.0249	mg/L Ext		6010B	4/10/06	
Cadmium	<0.0020	mg/L Ext		6010B	4/10/06	
Cobalt	<0.0020	MG/L EXT		6010B	4/10/06	
Chromium	<0.0060	mg/L Ext		6010B	4/10/06	
Coppor	<0.0060	mg/L Ext		6010B	4/10/06	
Linen	0.02/	mg/L Ext		6010B	4/10/06	
Monguny	2.86	mg/L Ext		6010B	4/10/06	
Mercury Lithium	<0.00020	mg/L Ext		7470A	4/10/06	
Mananana	<0.005	mg/L Ext		6010B	4/10/06	
Maliyanese	<0.004	mg/L Ext		6010B	4/10/06	
Motypdenum Nicleol	0.0113	mg/L Ext		6010B	4/10/06	
NICKEL	<0.010	mg/L Ext		6010B	4/10/06	
	<0.008	mg/L Ext		6010B	4/10/06	
Selenium	<0.040	mg/L Ext		6010B	4/10/06	
Zinc	0.012	mg/L Ext		6010B	4/10/06	

Tests:GALL/KENN SPLP

SVL ANALYTICAL, INC.

Reviewed By:_____

Alleren _____Date 4/11/06 4/11/06 15:50

Certificate: AZ AZ0538

SVL ANALYTICAL, INC.

Quality Control Report Part I Prep Blank and Laboratory Control Sample

II					· · · · · · · · · · · · · · · · · · ·			
Client :GALLAGHE	R & KEN	NEDY					SVL JOB 1	No: 121807
Analyte	Method	Matrix	Units	Prep Blank	True—I	CS—Found	LCS %R	Analysis Date
Silver Aluminum Arsenic Boron Barium Calcium Calcium Codmium Cobalt Chromium Copper Iron Potassium Lithium Manganese Molvbdenum	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B	ESOIL ESOIL ESOIL ESOIL ESOIL ESOIL ESOIL ESOIL ESOIL ESOIL ESOIL ESOIL	mg/L Ext mg/L Ext	<pre><0.0050 <0.03 <0.025 <0.040 <0.0020 <0.0020 <0.04 <0.0020 <0.0060 <0.0060 <0.010 <0.060 <0.50 <0.005 <0.004 <0.0020</pre>	0.0500 1.00	0.0530 1.00 0.964 0.984 0.980 0.973 19.4 0.958 0.951 0.985 0.976 9.64 19.3 0.947 0.954	106.0 100.0 96.4 98.4 98.0 97.3 97.0 95.8 95.1 98.5 97.6 96.4 96.5 94.7 95.4	4/10/06 4/10/06 4/10/06 4/10/06 4/10/06 4/10/06 4/10/06 4/10/06 4/10/06 4/10/06 4/10/06 4/10/06 4/10/06 4/10/06
Norybuendm Sodium Nickel Lead Selenium Zinc Mercury	6010B 6010B 6010B 6010B 6010B 7470A	ESOIL ESOIL ESOIL ESOIL ESOIL ESOIL	mg/L Ext mg/L Ext mg/L Ext mg/L Ext mg/L Ext mg/L Ext mg/L Ext	<0.0080 <0.50 <0.010 <0.008 <0.040 <0.010 <0.00020	1.00 19.0 1.00 1.00 1.00 1.00 0.00500	0.979 18.1 0.955 0.954 0.919 0.945 0.00526	97.9 95.3 95.5 95.4 91.9 94.5 105.2	4/10/06 4/10/06 4/10/06 4/10/06 4/10/06 4/10/06 4/10/06

LEGEND:

LCS = Laboratory Control Sample

LCS %R = LCS Percent Recovery

N/A = Not Applicable

Γ

Quality Control Report Part II Duplicate and Spike Analysis

Test Method Mtx Units Result Found RPD% Result Result Analysis Ag 6010B E 1 mg/L Ex <0.0050 0.0539 M 4.4 0.0516 0.0500 103.2 4/10/06 Al 6010B E 1 mg/L Ex 0.88 2.14 M 3.3 2.07 1.00 119.0 4/10/06 As 6010B E 1 mg/L Ex 0.059 1.07 M 2.8 1.04 1.00 98.1 4/10/06 Ba 6010B E 1 mg/L Ex 0.0234 1.04 M 5.4 0.985 1.00 96.2 4/10/06 Ca 6010B E mg/L Ex 0.0020 0.975 M 4.9 0.928 1.00 92.0 4/10/06 Ca 6010B E mg/L Ex <0.0020 0.975 M 4.9 0.928 1.00 92.2 4/10/06 Ca 6010B E mg/L Ex <0.042 1.03 M <th>Clie</th> <th>nt :GALLAGH</th> <th>ER & KENN</th> <th>EDY</th> <th>Due 1 days 1</th> <th></th> <th></th> <th></th> <th>SVI</th> <th>JOB NO</th> <th>o: 121807</th>	Clie	nt :GALLAGH	ER & KENN	EDY	Due 1 days 1				SVI	JOB NO	o: 121807
Ag 6010B E 1 mg/L Ex <0.0050 0.0539 M 4.4 0.0516 0.0500 103.2 4/10/06 Al 6010B E 1 mg/L Ex 0.88 2.14 M 3.3 2.07 1.00 119.0 4/10/06 Ba 6010B E 1 mg/L Ex 0.025 0.991 M 5.5 0.938 1.00 93.8 4/10/06 Ba 6010B E 1 mg/L Ex 0.0234 1.04 M 5.4 0.985 1.00 95.4 4/10/06 Ba 6010B E 1 mg/L Ex 0.0234 1.04 M 5.4 0.954 1.00 95.4 4/10/06 Ca 6010B E 1 mg/L Ex 12.1 31.5 M 3.2 30.5 20.0 92.0 4/10/06 Ca 6010B E 1 mg/L Ex <0.0020	Test	Method Mtx	Units	Result	Found	or	MSD RPD%	Result	trix Spike SPK ADD	%R	Analysis Date
Co 6010B E 1 mg/L Ex <0.0060	Ag Al As B Ba Be Ca Cd	6010B E 6010B E 6010B E 6010B E 6010B E 6010B E 6010B E 6010B E	1 mg/L Ex 1 mg/L Ex	<0.0050 0.88 <0.025 0.059 0.0234 <0.0020 12.1 <0.0020	0.0539 2.14 0.991 1.07 1.04 0.986 31.5 0.975	M M M M M M	4.4 3.3 5.5 2.8 5.4 3.3 3.2 4 9	0.0516 2.07 0.938 1.04 0.985 0.954 30.5	0.0500 1.00 1.00 1.00 1.00 1.00 20.0	103.2 119.0 93.8 98.1 96.2 95.4 95.4	4/10/06 4/10/06 4/10/06 4/10/06 4/10/06 4/10/06
Hg /4/UAE mg/LEx 0.00020 0.00105 M 1.9 0.00103 0.0010 0.2 0 4/10/05	Co Cr Cu Fe K Li Mn Mo Na Ni Pb Se Zn Hg	6010B E 6010B E	1 $mg/L Ex$ 1 $mg/L Ex$	<0.0060 <0.0060 0.042 1.22 1.78 <0.005 0.008 0.123 5.93 <0.010 <0.008 <0.040 0.013 0.00020	$\begin{array}{c} 0.967\\ 1.01\\ 1.03\\ 11.1\\ 21.4\\ 0.960\\ 0.990\\ 1.13\\ 24.1\\ 0.945\\ 0.986\\ 0.945\\ 0.945\\ 0.974\\ 0.00105\end{array}$	M M M M M M M M M M M M M	4.8 5.0 3.5 3.7 3.3 3.2 4.2 4.5 2.5 4.4 5.1 5.4 5.2 1 9	0.922 0.961 0.995 10.7 20.7 0.930 0.949 1.08 23.5 0.904 0.937 0.895 0.925	1.00 1.00 1.00 10.0 20.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	92.2 96.1 95.3 94.8 94.6 93.0 94.1 95.7 92.5 90.4 93.7 89.5 91.2	4/10/06 4/10/06 4/10/06 4/10/06 4/10/06 4/10/06 4/10/06 4/10/06 4/10/06 4/10/06 4/10/06 4/10/06

LEGEND:

RPD% = (|SAM - DUP|/((SAM + DUP)/2) * 100) UDL = Both SAM & DUP not detected. *Result or *Found: Interference required dilution. RPD% = (|SPK - MSD|/((SPK + MSD)/2) * 100) M in Duplicate/MSD column indicates MSD.

SPIKE ADD column, A = Post Digest Spike; R = Percent Recovery N/A = Not Analyzed; R > 4S = Result more than 4X the Spike Added QC limits for MS recoveries apply only if the spike is at least 1/4 the concentration of the analyte in the sample.

Control limits for the RPD apply only if the concentration of the analyte in the sample is at least five times the reporting limit. QC Sample 1: SVL SAM No.: 498490 Client Sample ID: TP-2:3-5ft

SPLP Extraction Log

JOB#: 121807 SVL ANALYTICAL, INC.

CASE #:		SAS #:	SI	DG #:			
SVL#	М	ClientID	Fluid Type	mls Fluid	Sample Wt.	Tumble Ext. Time	Final pH
498489	ES	pH 4 Buffer pH 7 Buffer EXTRACTION FLUID					4.00 7.02
498490	ES	TP-2:3-5ft	FLUID	2000 MIS	1600	18HR	8.66
490491				2000 311/	10.04	IBHR	7.62
1							
		· · · · · · · · · · · · · · · · · · ·					
						······	
·							
ſ							

.

Extraction Started By: DR Date/Time: 04/06/06

1400

0800

Extraction Completed By: Client: GALLAGHER & KENNEDY Received: 3/27/06

____ Date/Time: 04/07/06

v3.0
SAMPLE RECEIPT CONFIRMATION .

::VI. ANALYTTICAL, INC. One Government Gulch - Kellogg, ID 83837-0929

Page 1 of 1

121807

3/27/06

4/10/06

SOIL SPLP METALS

Received:

SVL JOB No:

Expected Due date:

CLIENT: DALVA MOELLENBERG GALLAGHER & KENNEDY 2575 E. CAMELBACK ROAD

> PHOENIX AZ 85016-9225 FAX: (602)530-8500 PH: (602)530-8223

Fax:

We will invoice: SAME

SVL#	М	ClientID	Sampled	Time	Ву	Received	Sample Comments
498489 498490 498491	E E E	EXTRACTION FLUID TP-2:3-5ft TP-8:2-4ft	/ / 3/07/06 3/07/06	:	JC	3/27/06 3/27/06 3/27/06	Tests:GALL/KENN SPLP Tests:GALL/KENN SPLP Tests:GALL/KENN SPLP

ADDITIONAL COMMENTS FOR JOB:

[] These shamples will be DISPOSED 45 days after job completion. [X] These samples will be ARCHIVED 45 days, then you will receive a letter requesting disposal options.

Please contact Crystal Sevy (208-784-1258) if you have questions regarding the receipt of these samples.

3/27/06 15:14

NOTE:

 Please Report to Jen Pepe and Jeffrey Clark at Golder Associates Tucson

 jclark@golder.com

 jpepe@golder.com

 4730 N. Oracle Rd Ste 210, Tucson, AZ 85705

 520-888-8818

Total Metals and SPLP metals to Include:

_

Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mn, Mo, Na, Ni, Se, Pb, Zn

Methods:

paste pH/EC by ASA 9 ABA by Modified Sobek NP by Modified Sobek Total Metals by 350 Extraction 6010B SPLP by EPA 1312 Saturated paste pH by ASA 10-3.2 Saturated paste EC by ASA 10-3 Texture by ASA 15-5

Please retain samples for further analysis.

APPENDIX B

Channel Characterization Data

APPENDIX B-1 SAMPLING AND ANALYSIS

Appendix B1 – Channel Solids Sampling and Analysis

This appendix summarizes the field data collection and laboratory analyses performed for the Apache Tejo Wash channel. A one-time sampling event was conducted between October 8, 2006 and October 9, 2006 by Melanie Maguire and Kent Johnejack of the Golder Associates Inc. (Golder) Tucson, Arizona office. A total of 24 samples were collected from 11 locations:

- Surface tailing 4 samples,
- Buried tailing 5 samples,
- Overlying sediment 10 samples
- Underlying sediment 1 sample,
- Overlying stained sediment 2 samples, and
- Underlying stained sediment 2 samples.

A description of the sample types and sampling rationale is presented in Section 3.2 of the main text of this report. Sample locations are shown on Figure 14 of the main text.

Samples were point (grab) samples collected from hand-dug holes. All samples were collected by hand (using disposable nitrile gloves) directly into 1-gallon Ziploc[™] bags and stored in an iced cooler pending shipment to the laboratory. The project number, sample number, date, and sampler's initials were written on the outside of the sample bag. Samples were stored in coolers, on ice, until shipment to the laboratory. All samples were shipped under chain of custody.

Channel samples were selected judgmentally, in the field, based on visual identification of tailing, "clean" sediment, and stained sediment. Sample locations were mapped using an aerial photograph and verified using a handheld GPS unit, photographed. Each sample location was photographed, described and sketched in field notes. Sample descriptions are provided in Appendix B2.

Samples were analyzed by SVL Analytical of Kellogg, Idaho for:

- Paste pH by ASA Monograph 9,
- Paste electrical conductivity by ASA Monograph 9,
- Acid base accounting (ABA) and sulfur forms by the Modified Sobek method,
- Total metals analysis by SW-846 Method 3050/6010B, and
- Sythethic Precipitation Leaching Procedure (SPLP) by United States Environmental Protection Agency Method 1312.

Samples were air dried and crushed to 3/8-inch according to SPLP Method 1312. A sub-sample was then pulverized to -160 mesh (approximately 0.09 millimeters) for ABA testing. Total metals analysis was performed on the bulk sample as received.

Total metals and SPLP analysis included aluminum, arsenic, boron, barium, beryllium, calcium, cadmium, cobalt, chromium, copper, iron, mercury, lead, lithium, manganese, molybdenum, nickel, potassium, selenium, silver, sodium, and zinc. Table B1 lists the laboratory methods and practical quantitation limits. Laboratory data packages are compiled in Appendices B3 and B4.

	Tet	al Matala	C	ם ום
	IOT	ai wetais	3	
Analyte	Method	Practical Quantitation Limit	Method	Practical Quantitation Limit
		(mg/kg)		(mg/L)
Aluminum (Al)	6010B	8	6010B	0.08
Arsenic (As)	6010B	2.5	6010B	0.025
Barium (Ba)	6010B	0.2	6010B	0.002
Beryllium (Be)	6010B	0.2	6010B	0.002
Boron (B)	6010B	4	6010B	0.04
Cadmium (Cd)	6010B	0.2	6010B	0.002
Calcium (Ca)	6010B	4	6010B	0.04
Chromium (Cr)	6010B	0.6	6010B	0.006
Cobalt (Co)	6010B	0.6	6010B	0.006
Copper (Cu)	6020	1	6020	0.01
Cyanide	6010B	0.5	6010B	0.01
Cyanide	6010B	0.5	6010B	0.01
Iron (Fe)	6010B	6	6010B	0.06
Lead (Pb)	6010B	0.75	6010B	0.0075
Lithium (Li)	6010B	2	6010B	0.02
Manganese (Mn)	6010B	0.4	6010B	0.004
Mercury (Hg)	7471A	0.033	7470A	0.0002
Molybdenum (Mo)	6010B	0.8	6010B	0.008
Nickel (Ni)	6010B	1	6010B	0.01
Potassium (K)	6010B	50	6010B	0.5
Selenium (Se)	6020	3.5	6020	0.003
Silver (Ag)	6020	0.5	6020	0.005
Sodium (Na)	6010B	50	6010B	0.5
Zinc (Zn)	6010B	1	6010B	0.01

Table B-1: List of Constituents and Practical Quantitation Limits for Total Metals and SPLP Analysis

Notes:

SPLP = Synthetic Precipitation Leaching Procedure

mg/kg = milligrams per kilogram

mg/L = milligrams per liter

APPENDIX B-2 SAMPLING DESCRIPTIONS

April 2021

Appendix B-2: Channel Sample Descriptions

Test Pit	Top Depth (ft)	Bottom Depth (ft)	% Gravel	% Sand	% Fines	Well Graded Gravel (y/n)	Gravel Size	Gravel Pred Size	Gravel Description	Well Graded Sand (y/n)	Sand Size	Sand Pred Size	Sand Description	Plasticity	Fines Predominately Clay?	Color	Moisture	HCI
AT-1006-01	2	6	5	55	40	n	f	f	sr	У	f-c	f	sr	lp	n	7.5YR 2.5/3	m-vm	n
AT-1006-02	0	2	20	80	<5	n	f	f	sr	У	f-c	f-c	sr-sa	np		7.5YR 4/2	m-vm	w
AT-1006-03	0	2	10	65	25	n	f	f	sr-sa	У	f-c	f	sr-sa	lp	n	7.5YR 3/3	m-vm	n-w
AT-1006-04	0	2	<5	70	30	n	f	f	sr	n	f-m	f	a-sa	np	n	10YR 4/3	m-vm	n-w
AT-1006-05	0	12		65	35					n	f-m	f	a-sa	np	n	2.5Y 5/3	m-vm	n
AT-1006-06	12	18	5	25	70	n	f	f	sr-sa	У	f-c	m	sa-sr	mp	n	10YR 2/2	m-vm	vstr
AT-1006-07	0	18	30	30	40	n	f	f	sr-sa		f-c	f	sa-sr	mp	у	10YR 4/1	m-vm	vstr
AT-1006-08	18	60	15	65	20	n	f	f	sr	n	f-c	f-vf	a-sr	np	n	10YR 5/4	m-vm	w
AT-1006-09	60	120	15	40	45	n	f	f	sa-sr	У	f-c	f	sa-sr	lp	n	10YR 4/6	m-vm	n
AT-1006-10	0	2	5	85	10	n	f	f	sa-sr	n	f	f	a-sa	np	n	10YR 5/6	m-vm	n
AT-1006-11	0	3	5	45	50	n	f	f	sr	n	f	f	a-sr	lp	n	2.5Y 4/4	m-vm	n
AT-1006-12	3	13	35	65	<5	n	f	f	sa-sr	n	m-c	С	sa-sr	np	n	2.5Y 4/3	m-vm	n-w
AT-1006-13	0	2	5	45	50	n	f	f	sr	n	f	f	a-sr	np	n	10YR 5/6	m-vm	n-w
AT-1006-14	24	48	25	40	35	n	f	f	sr-sa	n	f	f	sa-sr	np	n	7.5YR 4/4	m-vm	w-str
AT-1006-15	0	3	10	85	5	n	f	f	sr	У	f-c	m	sr	np	n	10YR 3/2	m-vm	n-w
AT-1006-16	36	60	40	45	15	n	f	f	sr-sa	У	f-c	m	sa-sr			7.5YR 2.5/2	m-vm	w-str
AT-1006-17	24	40	5	50	45	n	f	f		n	f	f	a-sr	lp	n	7.5YR 4/2	m-vm	n
AT-1006-18	0	18	30	30	40	n	f	f	sr	У	m-f	f	sr	lp	n	7.5YR 4/3	m-vm	str
AT-1006-19	0	3	20	75	5	n	f	f	sr	У	f-c	m	sr	np	n	10YR 4/2	m-vm	w
AT-1006-20	0	19	30	65	5	n	f	f	sr-r	У	f-c	m-c	sr	np	n	10YR 4/2	m-vm	n
AT-1006-21	0	36	5	50	45	n	f	f	sr	n	f	f	sr	np-lp	n	10YR 4/4	m-vm	vstr
AT-1006-22	36	72	5	50	45	n	f	f	sr-sa	n	f	f	sr	lp	n	10YR 5/3	m-vm	vstr
AT-1006-23	72	96	20	45	35	n	f	f	sr	n	f-m	f	sr	np-lp	n	7.5YR 3/4	m-vm	n-w
AT-1006-24	0	3	10	90	<5	n	f	f	sr	У	f-c	m	sr-sa	np	n	7.5YR 3/2	m-vm	n

APPENDIX B-3 PASTE PH/EC, TOTAL METALS AND ABA DATA

One Government Gulch P.O.	Box 929 🔹	Kellogg, Ida	aho 83837-0929		Phone: (208)78	Certific 4-1258 ∎ Fax:	ate: AZ AZ0538
CLIENT : GALLAGHER PROJECT:	& KENNED	γ		·		SVL JOB: SAMPLE	125948
Sample Collected: Sample Receipt : Date of Report :	AT-1006-0 10/08/06 10/16/06 11/15/06	10:06				Matrix:	SOIL
Determination	Result	Units	Dilution		Method	Analyzed	
ABP Acid Generating Acid Neut. Pot. ELECTRICAL COND. pH Paste Non-Ext Sulfur,S Pyritic Sulfur,S Sulfate Sulfur,S Total Sulfur, S	-1.3 1.3 <0.3 2.20 4.64 0.02 0.04 0.27 0.33	TCaCO3/1 TCaCO3/1 TCaCO3/1 mmhos/cm % % % %	000T 000T 000T		EPA600 EPA600 ASA M9 ASA M9 LECO LECO LECO LECO	11/08/06 11/08/06 11/02/06 11/02/06 11/08/06 11/08/06 11/08/06 11/08/06 11/08/06	
Reviewed By:			Naui		Date_	11/15/06	

SVL	ANALYTTCAL.	TNC
~		TINC.

One Government Gulch P.(Box 929 🔹	Kellogg, Ida	ho 83837-0929 i	 Phone: (208)78 	Certific 84-1258 ∎ Fax	cate: AZ AZ0538 : (208)783-089
CLIENT : GALLAGHE PROJECT: CLIENT SAMPLE ID: Sample Collected:	R & KENNEI AT-1006-(10/08/06	DY 12 10:15			SVL JOB: SAMPLE:	125948 543000
Sample Receipt : Date of Report :	10/16/06 11/15/06				Matrix:	SOIL
Determination	Result	Units	Dilution	Method	Analyzed	
ABP Acid Generating Acid Neut. Pot. ELECTRICAL COND. pH Paste Non-Ext Sulfur,S Pyritic Sulfur,S Sulfate Sulfur,S Total Sulfur, S Calcium Potassium Sodium Silver Aluminum Arsenic Boron Barium Beryllium Cadmium Cobalt Chromium Copper Iron Mercury Lithium Manganese Molybdenum Nickel Lead	$\begin{array}{c} -0.9\\ 0.9\\ <0.3\\ 2.19\\ 8.44\\ 0.02\\ 0.03\\ 0.27\\ 0.32\\ 19200\\ 1260\\ 161\\ 0.134\\ 8010\\ <2.5\\ <4\\ 113\\ 0.51\\ <0.20\\ 9.42\\ 37.5\\ 464\\ 19600\\ <0.033\\ 8.0\\ 528\\ 8.7\\ 8.1\\ 31.1\end{array}$	TCaCO3/10 TCaCO3/10 TCaCO3/10 mmhos/cm % % % % mg/kg	2000 Т 200 Т 200 Т 10	EPA600 EPA600 EPA600 ASA M9 ASA M9 LECO LECO LECO 6010B	11/08/06 11/08/06 11/08/06 11/08/06 11/08/06 11/08/06 11/08/06 11/08/06 11/08/06 11/02/06	
Zinc	<0.30 84.4	mg/kg mg/kg	10	6020 6010B	10/25/06 11/02/06	

NO DATE ON SAMPLE LABEL

Reviewe	ed By:		Nain	Date_11115166	
AZ: AZ0538	CA: CERT NO. 2080	CO: CERT NO. ID00019	ID: ID00019 MT: CERT. 0027	11/15/06 9:07 NV: CERT. ID19 WA: C1268	,

LIENT : GALLAGHE ROJECT: LIENT SAMPLE ID: ample Collected:	R & KENNEI AT-1006-(10/08/06	DY 03 10:25			SVL JOB: SAMPLE:	12594 54300
ample Receipt : ate of Report :	10/16/06 11/15/06				Matrix:	SOIL
Determination	Result	Units	Dilution	Method	Analyzed	
ABP	0.2	TCaCO3/100) በ ም			
Acid Generating	1.3	TCaC03/100) በ ጥ	EPA600	11/08/06	
Acid Neut. Pot.	1.4	TCaC03/100)OT	EPA600	11/08/06	
ELECTRICAL COND.	0.83	mmhos/cm	/01	EPA600	11/08/06	
pH Paste	6.76			ASA M9	11/02/06	
Non-Ext Sulfur,S	0.03	8		ASA M9	11/08/06	
Pyritic Sulfur, S	0.04	e e		LECO	11/08/06	
Sulfate Sulfur, S	0.12	ę.		LECO	11/08/06	
Total Sulfur, S	0.19	o Q		LECO	11/08/06	
Calcium	8470	ma		LECO	11/08/06	
Potassium	1540	mg/kg		6010B	11/02/06	
Sodium	88	mg/kg		6010B	11/02/06	
Silver	0 176	mg/kg		6010B	11/02/06	
Aluminum	8950	mg/kg		6020	10/25/06	
Arsenic	53	mg/kg		6010B	11/02/06	
Boron	8	mg/kg		6010B	11/02/06	
Barium	129	mg/kg		6010B	11/02/06	
Bervllium	0 65	mg/kg		6010B	11/02/06	
Cadmium	<0.05	mg/kg		6010B	11/02/06	
Cobalt	ヽ∪・∠∪ マーマー	mg/kg		6010B	11/02/06	
Chromium	/.//	ing/kg		6010B	11/02/06	
Copper	40.1 E00	mg/kg		6010B	11/02/06	
Tron	202	mg/kg	10	6020	10/25/06	
Mercury	02000	mg/kg		6010B	11/02/06	
Lithium	<0.033	mg/kg		7471A	10/26/06	
Manganogo	5.4	mg/kg		6010B	11/02/06	
Molyphonym	628	mg/kg		6010B	11/02/06	
Nickol	19.8	mg/kg		6010B	11/02/06	
T 224	<1.0	mg/kg		6010B	11/02/06	
	34.0	mg/kg		6010B	11/02/06	
Selenium	0.47	mg/kg	10	6020	10/25/06	
41nc	106	m ~ / l+ ~			,	

Reviewed By:_____ Date 11/15/06 9:07 AZ: AZ0538 CA: CERT NO. 2080 CO: CERT NO. ID00019 ID: ID00019 MT: CERT. 0027 NV: CERT. ID19 WA: C1268

SVL	ANALYTICAL,	INC.
	WWDIIICYD'	THC.

e Government Gulch	Box 929 🔹	Kellogg, Id	aho 83837-0929	Phone: (208)784-1258	Certific B = Fax:	ate: AZ AZ0538 (208)783-089
CLIENT : GALLAGHER PROJECT: CLIENT SAMPLE ID: Sample Collected:	& KENNED AT-1006-0 10/08/06	ΦΥ 4 11:00			SV	/L JOB: SAMPLE:	125948 543002
Sample Receipt : Date of Report :	10/16/06				Μ	Matrix:	SOIL
Determination	Result	Units	Dilution	Me	thod Ana	lyzed	
ABP Acid Generating Acid Neut. Pot. ELECTRICAL COND. pH Paste Non-Ext Sulfur,S Pyritic Sulfur,S Sulfate Sulfur,S Total Sulfur, S	-5.6 8.1 2.6 2.79 7.17 0.09 0.26 0.64 0.99	TCaCO3/1 TCaCO3/1 TCaCO3/1 mmhos/cm % % % %	000T 000T 000T	EP, EP, AS, AS, LE(LE(LE(LE(A600 11/ A600 11/ A600 11/ A M9 11/ A M9 11/ CO 11/ CO 11/ CO 11/ CO 11/	08/06 08/06 02/06 08/06 08/06 08/06 08/06 08/06	

Reviewed	Ву:					/	Sein		I	Date_	11/15/00	
AZ: AZ0538 C	A: CERT NO.	2080 C	O: CERT NO.	ID00019	ID:	ID00019	MT: CERT.	0027	NV: CERT.	ID19	11/15/06 WA: C1268	9:07

he Government Gulch . P.O.	Box 929 🔹	Kellogg, Ida	ho 83837-0929	 Phone: (208)78 	Certific 34-1258 ∎ Fax:	ate: AZ AZ0538 (208)783-089
1						
CLIENT : GALLAGHER PROJECT: CLIENT SAMPLE ID:	& KENNED	5			SVL JOB: SAMPLE:	125948 543003
Sample Receipt : Date of Report :	10/16/06	11:45			Matrix:	SOIL
Determination	Result	Units	Dilution	Method	Analyzed	
ABP Acid Generating Acid Neut. Pot.	-1.9 1.9 <0.3	TCaCO3/1(TCaCO3/1(TCaCO3/1(00T 00T	EPA600 EPA600	11/08/06 11/08/06	
ELECTRICAL COND. pH Paste	2.79	mmhos/cm	001	ASA M9 ASA M9	11/08/06 11/02/06 11/08/06	
Pyritic Sulfur,S Sulfate Sulfur,S	0.09 0.06 0.48	ନ ୧୦ ୧୦		LECO LECO	11/08/06 11/08/06	
Total Sulfur, S	0.63	9 90		LECO	11/08/06 11/08/06	
ID ON SAMPLE LABEL READ	S AT-1060-	05				
Reviewed By:			NSun	Date	11/15/06	
AZ: AZ0538 CA: CERT NO. 2080	CO: CERT NO. II	000019 ID: ID0	0019 MT: CERT. 00	27 NV: CERT. ID19	11/15/06 9:07 WA: C1268	

SVL	ANALY	TIC	CAL,	INC.
-----	-------	-----	------	------

One Government Gulch P.O. Box 929 Kellogg, Idaho	Certificate: AZ AZO 83837-0929 Phone: (208)784-1258 Fax: (208)783-0	538 891
CLIENT : GALLAGHER & KENNEDY PROJECT: CLIENT SAMPLE ID: AT-1006-06 Sample Collected: 10(00(06, 12)50	SVL JOB: 125948 SAMPLE: 543004	
Sample Receipt : 10/16/06 Date of Report : 11/15/06	Matrix: SOIL	

Determination	Result	Units	Dilution	Method	Analyzed
ABP Acid Generating Acid Neut. Pot. ELECTRICAL COND. pH Paste Non-Ext Sulfur,S Pyritic Sulfur,S Sulfate Sulfur,S Total Sulfur, S	173 <0.3 173 5.15 7.72 <0.01 <0.01 0.15 0.16	TCaCO3/1 TCaCO3/1 TCaCO3/1 mmhos/cm % % % %	000T 000T 000T	EPA600 EPA600 ASA M9 ASA M9 LECO LECO LECO LECO LECO	11/08/06 11/08/06 11/02/06 11/02/06 11/08/06 11/08/06 11/08/06 11/08/06 11/08/06

Reviewed By:_____

Hun

Date <u>11/15/06</u> 11/15/06 9:08

Government Gulch P.(0. Box 929 🔹	Kellogg, Id	aho 83837-0929	 Phone: (208)78 	Certific 34-1258 ∎ Fax	cate: AZ AZ05 : (208)783-08
CLIENT : GALLAGHE	R & KENNEI	OY Y				
PROJECT:					SAMDIE:	125948
CIENT SAMPLE ID:	AT-1006-()7			SAMPLE:	543005
ample Corrected:	10/08/06	14:05				
ate of Report	10/16/06				Matrix.	SOTI
						DOTT
Determination	Result	Units	Dilution	Method	Analyzed	
ABP	84.9	TCaCO3/1	000T	EDAGOO	11/00/05	
Acid Generating	0.3	TCaCO3/1	000T	EPAGUU	11/08/06	
Acid Neut. Pot.	85.2	TCaCO3/1	000T	EPAGUU	11/08/06	
ELECTRICAL COND.	2.78	mmhos/cm		LPACUU ACA MO	11/08/06	
pH Paste	7.83			ASA M9	11/02/06	
Non-Ext Sulfur,S	<0.01	ક		ADA M9	11/08/06	
Pyritic Sulfur,S	0.01	ક		LECO	11/08/06	
Sulfate Sulfur,S	0.21	S		LECO	11/08/06	
Total Sulfur, S	0.23	ક		LECO	11/08/06	
Calcium	39800	mg/kg			11/08/06	
Potassium	2840	mg/kg		6010B	11/02/06	
Sodium	115	mg/kg		6010B	11/02/06	
Silver	0.731	ma/ka		6010B	11/02/06	
Aluminum	13300	ma/ka		60100	10/25/06	
Arsenic	10.6	ma/ka		6010B	11/02/06	
Boron	7	ma/ka		6010B	11/02/06	
Barium	909	ma/ka		6010B	11/02/06	
Beryllium	1.19	ma/ka		6010B	11/02/06	
Cadmium	<0.20	ma/ka		6010B	11/02/06	
Cobalt	7.06	ma/ka		6010B	11/02/06	
Chromium	35.4	ma/ka		6010B	11/02/06	
Copper	62.8	ma/ka	10	6010B	11/02/06	
Iron	21200	ma/ka	10	6020 C010D	10/25/06	
Mercury	0.043	mg/kg		0010B	11/02/06	
Lithium	14.7	ma/ka		/4/IA	10/26/06	
Manganese	402	ma/ka		6010B	11/02/06	
Molybdenum	2.5	ma/ka		6010B	11/02/06	
Nickel	12.8	ma/ka		6010B	11/02/06	
Lead	21.90	ma/ka		OUTUB	11/02/06	
Selenium	<0.30	ma/ka	10	OUIUR	11/02/06	
Zinc	358	ma/ka	10	6010D	10/25/06	

ID ON SAMPLE LABEL READS AT-1060-07

 Reviewed By:
 Date
 III/15/06

 AZ: AZ0538 CA: CERT NO. 2080 CO: CERT NO. ID00019 ID: ID00019 MT: CERT. 0027 NV: CERT. ID19 WA: C1268
 Date
 III/15/06 9:08

CLIENT : GALLAGHER & KENNEDY PROJECT: CLIENT SAMPLE ID: AT-1006-08 Sample Collected: 10/08/06 14:15 Sample Receipt : 10/16/06 Date of Report : 11/15/06SVL JOE SAMPLE MatrixDeterminationResultUnitsDilutionMethod AnalyzedABP Acid Generating Acid Neut. Pot.14.9 16.8 TCaCO3/1000TTCaCO3/1000T EPA600EPA600 11/08/06 EPA60011/08/06 11/08/06 EPA600ABP Acid Neut. Pot.16.8 16.8 16.8 TCaCO3/1000TEPA600 EPA600 EPA60011/08/06 EPA600Determination3.14 mmhos/cmMatrix	: 125948 : 543006 : SOIL
CLIENT SAMPLE ID: AT-1006-08SAMPLE ID: AT-1006-08Sample Collected: 10/08/06 14:15Sample Receipt : 10/16/06MatrixDate of Report : 11/15/06DilutionMethod AnalyzedDeterminationResultUnitsDilutionMethod AnalyzedABP14.9TCaCO3/1000TEPA60011/08/06Acid Generating1.9TCaCO3/1000TEPA60011/08/06Acid Neut. Pot.16.8TCaCO3/1000TEPA60011/08/06ELECTRICAL COND.3.14mmhos/cmASA M911/02/06PH Paste7.51Non-Ext Sulfur, S<0.01	: 543006 : SOIL
Date of Report : 11/15/06MatrixDeterminationResultUnitsDilutionMethodAnalyzedABP14.9TCaCO3/1000TEPA60011/08/06Acid Generating1.9TCaCO3/1000TEPA60011/08/06Acid Neut. Pot.16.8TCaCO3/1000TEPA60011/08/06ELECTRICAL COND.3.14mmhos/cmASA M911/02/06pH Paste7.51ASA M911/08/06Non-Ext Sulfur, S<0.01	: SOIL
DeterminationResultUnitsDilutionMethodAnalyzedABP14.9TCaCO3/1000TEPA60011/08/06Acid Generating1.9TCaCO3/1000TEPA60011/08/06Acid Neut. Pot.16.8TCaCO3/1000TEPA60011/08/06ELECTRICAL COND.3.14mmhos/cmASA M911/02/06pH Paste7.51ASA M911/08/06Non-Ext Sulfur,S<0.01	
ABP 14.9 TCaCO3/1000T EPA600 11/08/06 Acid Generating 1.9 TCaCO3/1000T EPA600 11/08/06 Acid Neut. Pot. 16.8 TCaCO3/1000T EPA600 11/08/06 ELECTRICAL COND. 3.14 mmhos/cm ASA M9 11/02/06 PH Paste 7.51 ASA M9 11/08/06 Non-Ext Sulfur, S <0.01	
Acid Generating 1.9 TCaCO3/1000T EPA600 11/08/06 Acid Neut. Pot. 16.8 TCaCO3/1000T EPA600 11/08/06 ELECTRICAL COND. 3.14 mmhos/cm ASA M9 11/02/06 pH Paste 7.51 Non-Ext Sulfur, S <0.01	
Acid Neut. Pot. 16.8 TCaCO3/1000T EIA000 11/08/06 ELECTRICAL COND. 3.14 mmhos/cm ASA M9 11/02/06 pH Paste 7.51 ASA M9 11/08/06 Non-Ext Sulfur,S <0.01	
ELECTRICAL COND. 3.14 mmhos/cm ASA M9 11/02/06 pH Paste 7.51 ASA M9 11/08/06 Non-Ext Sulfur,S <0.01	
pH Paste 7.51 ASA M9 11/02/06 Non-Ext Sulfur,S <0.01	
Non-Ext Sulfur, S <0.01 %	
Pyritic Sulfur, S 0.06 %	
Sulfate Sulfur, S 0.31 %	
Total Sulfur, S 0.38 %	
Calcium 11200 mg/kg CO107 11/08/06	
Potassium 1090 mg/kg 6010B 11/02/06	
Sodium 235 mg/kg 6010B 11/02/06	
Silver 0.458 mg/kg 6010B 11/02/06	
Aluminum 12300 mg/kg 6020 10/25/06	
Arsenic 25.0 mg/kg 6010B 11/02/06	
Boron 8 mg/kg 6010B 11/02/06	
Barium 2320 mg/kg 6010B 11/02/06	
Beryllium 1.39 mg/kg 6010B 11/02/06	
Cadmium (0.20 mg/kg 6010B 11/02/06	
Cobalt 7.23 mg/kg 6010B 11/02/06	
Chromium (2.5 mg/kg 6010B 11/02/06	
6010B 11/02/06	
Copper 90.7 mg/kg 10 6020 10/25/06	
1101 5/100 mg/kg 6010B 11/02/06	
Mercury <0.033 mg/kg 7471A 10/26/06	
Lithium 12.5 mg/kg 6010B 11/02/06	
Manganese 295 mg/kg 6010B 11/02/06	
Molybdenum 3.1 mg/kg 6010B 11/02/06	
Nickel <1.0 mg/kg 6010B 11/02/06	
Lead 27.20 mg/kg 6010B 11/02/06	
Selenium <0.30 mg/kg 10 6020 10/25/06	
Zinc 530 mg/kg 6010B 11/02/06	

ID ON SAMPLE LABEL READS AT-1060-08

Reviewed By:______ Date 11/15/06 9:08 AZ: AZ0538 CA: CERT NO. 2080 CO: CERT NO. ID00019 ID: ID00019 MT: CERT. 0027 NV: CERT. ID19 WA: C1268

SVL ANALYTICAL, INC. One Government Gulch P.O. Bu

	0. Box 929 🔹	Kellogg, Ida	ho 83837-0929	 Phone: (208 	Certifi)784-1258 • Fax	cate: AZ AZ0538 :: (208)783-0891
CLIENT : GALLAGHE PROJECT: CLIENT SAMPLE ID: Sample Collected: Sample Receipt : Date of Report :	R & KENNE AT-1006-(10/08/06 10/16/06 11/15/06)9 14:25			SVL JOB: SAMPLE: Matrix:	125948 543007 SOIL
Determination	Result	Units	Dilution	Metho	d Apalumad	
ABP Acid Generating Acid Neut. Pot. ELECTRICAL COND. pH Paste Non-Ext Sulfur,S Pyritic Sulfur,S Sulfate Sulfur,S Total Sulfur, S	6.0 2.5 8.5 0.34 7.48 0.01 0.08 <0.01 0.08	TCaCO3/10 TCaCO3/10 TCaCO3/10 mmhos/cm % % % %	00T 00T 00T	EPA60 EPA60 EPA60 ASA MS LECO LECO LECO LECO	0 11/08/06 0 11/08/06 0 11/08/06 0 11/08/06 0 11/08/06 11/08/06 11/08/06 11/08/06 11/08/06	
ID ON SAMPLE LABEL REA Reviewed By:	DS AT-1060-0	9		TECO	11/08/06	
AZ: AZ0538 CA: CERT NO. 2080	CO: CERT NO. IDO	00019 ID: ID000	019 MT: CERT. 00	Date 27 NV: CERT. ID19	11/15/06 9:08 WA: C1268	

CLIENT : GALLAGHER PROJECT: CLIENT SAMPLE ID: Sample Collected:	& KENNED AT-1006-1 10/08/06	0 14:45			SVL JOB: SAMPLE:	125948 543008
Sample Receipt : Date of Report :	10/16/06 11/15/06				Matrix:	SOIL
Determination	Result	Units	Dilution	Method	Analyzed	
ABP	-5.3	TCaCO3/1	000T	 EPA600	11/08/06	
Acid Generating	5.3	TCaCO3/1	000т	EPA600	11/08/06	
Acid Neut. Pot.	<0.3	TCaCO3/1	000T	EPA600	11/08/06	
ELECTRICAL COND.	2.62	mmhos/cm		ASA M9	11/02/06	
Non Ext Cultur C	7.08			ASA M9	11/08/06	
Puritic Sulfur S	0.08	8		LECO	11/08/06	
Sulfato Sulfur S	0.17	8		LECO	11/08/06	
Total Sulfur S	0.25	ъ о.		LECO	11/08/06	
	0.50			LECO	11/08/06	

ne Government Gulch P.O.	Box 929	Kellogg, Ida	ho 83837-0929	•	Phone: (208)78	Certific 4-1258 ∎ Fax:	ate: AZ AZ053 (208)783-089
CLIENT : GALLAGHER PROJECT: CLIENT SAMPLE ID: Sample Collected: Sample Receipt	& KENNED AT-1006-1 10/08/06 10/16/06	PY 1 15:40				SVL JOB: SAMPLE:	125948 543009
Date of Report :	11/15/06					Matrix:	SOIL
Determination	Result	Units	Dilution		Method	Analyzed	
ABP Acid Generating Acid Neut. Pot. ELECTRICAL COND. pH Paste Non-Ext Sulfur,S Pyritic Sulfur,S Sulfate Sulfur,S Total Sulfur, S	8.7 0.9 9.6 0.40 7.92 <0.01 0.03 0.08 0.12	TCaCO3/1(TCaCO3/1(TCaCO3/1(mmhos/cm % % % %	000T 000T 000T		EPA600 EPA600 ASA M9 ASA M9 LECO LECO LECO LECO	11/08/06 11/08/06 11/08/06 11/02/06 11/08/06 11/08/06 11/08/06 11/08/06 11/08/06	
ID ON SAMPLE LABEL REAL Reviewed By:	OS AT-1060-	۱۱ کرو	Jun		Date_	11/15/06 9:08	

e Government Gulch P.(Phone: (208)78 	Certific 34-1258 ∎ Fax:	ate: AZ AZ053 (208)783-089			
CLIENT : GALLAGHE PROJECT: CLIENT SAMPLE ID:	R & KENNEI AT-1006-1	рү 2			SVL JOB: SAMPLE:	125948 543010
Sample Collected: Sample Receipt : Date of Report :	10/08/06 10/16/06 11/15/06	15:50			Matrix:	SOIL
Determination	Result	Units	Dilution	Method	Analyzed	
ABP	33.1	TCaCO3/10	000T	EPAGOO	11/09/06	
Acid Generating	0.9	TCaCO3/10	00T	EDA600	11/00/06	
Acid Neut. Pot.	34.0	TCaCO3/10	00T	EFA000 FDA600	11/08/06	
ELECTRICAL COND.	0.31	mmhos/cm		ACA MO	11/08/06	
pH Paste	8.03			ACA MO	11/02/06	
Non-Ext Sulfur,S	0.04	8		LECO	11/08/06	
Pyritic Sulfur,S	0.03	ક		LECO	11/08/06	
Sulfate Sulfur,S	<0.01	8		LECO	11/08/06	
Total Sulfur, S	0.02	8		LECO	11/08/06	
Calcium	20800	ma/ka			11/08/06	
Potassium	995	ma/ka		6010B	11/02/06	
Sodium	200	ma/ka		6010B	11/02/06	
Silver	0.219	ma/ka		6010B	11/02/06	
Aluminum	8140	ma/ka		6010D	10/25/06	
Arsenic	7.1	ma/ka		6010B	11/02/06	
Boron	5	ma/ka		6010B	11/02/06	
Barium	630	ma/ka		6010B	11/02/06	
Beryllium	0.78	ma/ka		6010B	11/02/06	
Cadmium	<0.20	ma/ka		6010B	11/02/06	
Cobalt	6.54	ma/ka		6010B	11/02/06	
Chromium	34.8	ma/ka		6010B	11/02/06	
Copper	102	ma/ka	10	6070B	10/25/06	
Iron	20700	ma/ka		6010D	10/25/06	
Mercury	<0.033	ma/ka		0010B 7471a	10/02/06	
Lithium	8.8	ma/ka		6010B	10/20/06	
Manganese	529	mg/kg			11/02/06	
Molybdenum	3.1	ma/ka		6010B	11/02/06	
Nickel	8.1	ma/ka			11/02/06	
Lead	12.20	ma/ka			11/02/06	
Selenium	<0.30	ma/ka	10	60108	10/25/06	
a :	1 = 0			6020	10/25/06	

ID ON SAMPLE LABEL READS AT-1060-12

11/15/06 9:08

AZ: AZ0538 CA: CERT NO. 2080 CO: CERT NO. ID00019 ID: ID00019 MT: CERT. 0027 NV: CERT. ID19 WA: C1268

CLIENT : GALLAGHE	R & KENNEI	DY			SVL JOB:	125948
LIENT SAMPLE ID:	AT-1006-1	3			SAMPLE:	543011
ample Collected:	10/08/06	16:05				
ample Receipt : Pate of Report	10/16/06				Matrix:	SOIL
Determination			· · · · · · · · · · · · · · · · · · ·			
	Result	Units	Dilution	Method	Analyzed	
ABP	-2.5	TCaCO3/1(EPA600	11/08/06	
Acid Generating	2.5	TCaCO3/1(D00T	EPA600	11/08/06	
Acid Neut. Pot.	<0.3	TCaCO3/1()00T	EPA600	11/08/06	
ELECTRICAL COND.	3.09	mmhos/cm		ASA M9	11/02/06	
pH Paste	5.04			ASA M9	11/08/06	
Non-Ext Sulfur,S	0.08	ଚ		LECO	11/08/06	
Pyritic Sulfur,S	0.08	8		LECO	11/08/06	
Sulfate Sulfur,S	0.69	8		LECO	11/08/06	
Total Sulfur, S	0.85	8		LECO	11/08/06	
Calcium	6290	mg/kg		6010B	11/02/06	
Potassium	2010	mg/kg		6010B	11/02/06	
Sodium	166	mg/kg		6010B	11/02/06	
Silver	0.313	mg/kg		6020	10/25/06	
Aluminum	6070	mg/kg		6010B	11/02/06	
Arsenic	5.3	mg/kg		6010B	11/02/06	
Boron	<4	mg/kg		6010B	11/02/06	
Barium	560	mg/kg		6010B	11/02/06	
Beryllium	0.39	mg/kg		6010B	11/02/06	
Cadmium	<0.20	mg/kg		6010B	11/02/06	
Cobalt	6.14	mg/kg		6010B	11/02/06	
Chromium	46.1	mg/kg		6010B	11/02/06	
Copper	461	mg/kg	10	6020	10/25/06	
Iron	21400	mg/kg		6010B	11/02/06	
Mercury	<0.033	mg/kg		7471A	10/26/06	
Lithium	4.5	mg/kg		6010B	11/02/06	
Manganese	186	mg/kg		6010B	11/02/06	
Molybdenum	31.1	mg/kg		6010B	11/02/06	
Nickel	2.5	mg/kg		6010B	11/02/06	
Lead	8.76	mg/kg		6010B	11/02/06	
Selenium	1.52	mg/kg	10	6020	10/25/06	
Zinc	01 9	malle		C0105		

ID ON SAMPLE LABEL READS AT-1060-13

Reviewed By:______ Date 1/15/06 11/15/06 9:08

SVL ANALYTICAL, INC. One Government Gulch P.O.

P.(. Box 929 🔹	Kellogg, Ida	ho 83837-0929	Phone: (208)7	Certific 84-1258 ∎ Fax	cate: AZ AZ0538 : (208)783-0891
CLIENT : GALLAGHEN PROJECT: CLIENT SAMPLE ID: Sample Collected: Sample Receipt : Date of Report :	R & KENNEI AT-1006-1 10/08/06 10/16/06 11/15/06	9Y 4 16:20			SVL JOB: SAMPLE: Matrix:	125948 543012 SOIL
Determination	Result	Units	Dilution	Method	Apalward	
ABP Acid Generating Acid Neut. Pot. ELECTRICAL COND. pH Paste Non-Ext Sulfur,S Pyritic Sulfur,S Sulfate Sulfur,S Total Sulfur, S	7.8 2.8 10.6 2.91 7.59 0.01 0.09 0.03 0.13	TCaCO3/10 TCaCO3/10 TCaCO3/10 mmhos/cm % % % %	00T 00T 00T	EPA600 EPA600 ASA M9 ASA M9 LECO LECO LECO LECO LECO	11/08/06 11/08/06 11/08/06 11/02/06 11/08/06 11/08/06 11/08/06 11/08/06	
ID ON SAMPLE LABEL READ Reviewed By: AZ: AZ0538 CA: CERT NO. 2080	OS AT-1060-1	4 00019 ID: ID000	DI9 MT: CERT. 00	Date 27 NV: CERT. ID19 N	11/15/06 11/15/06 9:08 MA: C1268	

ROJECT:		SVL JOB.	1250			
ample Collected ample Receipt		SAMPLE	54301			
ate of Report : 11/15/06					Matrix:	SOIL
Determination	Result	Units	Dilution	Method	Analyzed	
ABP Acid Conomatic	15.1	TCaCO3/1	000T			
Acid Nout Di	<0.3	TCaCO3/1	000T	EPA600	11/08/06	
FIECTRICAL CONT	15.1	TCaCO3/1	000	EPA600	11/08/06	
DH Dagte	0.28	mmhos/cm	· · ·	EPA600	11/08/06	
Non Ent a la	8.10			ASA M9	11/02/06	
Puritie Sulfur,S	0.01	90		ASA M9	11/08/06	
Fyillic Sulfur,S	<0.01	8		LECO	11/08/06	
Sullate Sulfur,S	0.01	Q o		LECO	11/08/06	
Total Sulfur, S	0.02	8		LECO	11/08/06	
Calcium	11600	ma/ka		LECO	11/08/06	
Potassium	1320	ma/ka		6010B	11/02/06	
Sodium	123	ma/ka		6010B	11/02/06	
Silver	0.252	ma/ka		6010B	11/02/06	
Aluminum	9730	ma/ka		6020	10/25/06	
Arsenic	5.9	mg/kg		6010B	11/02/06	
Boron	5	mg/kg		6010B	11/02/06	
Barium	172	mg/kg		6010B	11/02/06	
Beryllium	0 94	mg/kg		6010B	11/02/06	
Cadmium	<0.24	mg/kg		6010B	11/02/06	
Cobalt	9.20	mg/kg		6010B	11/02/06	
Chromium	49 A	mg/kg		6010B	11/02/06	
Copper	82 6	mg/kg		6010B	11/02/06	
Iron	43300	mg/kg	10	6020	10/25/06	
Mercury		mg/kg		6010B	11/02/06	
Lithium	<u.u33< td=""><td>mg/kg</td><td></td><td>7471A</td><td>10/26/06</td><td></td></u.u33<>	mg/kg		7471A	10/26/06	
Manganese	9.U 071	mg/kg		6010B	11/02/06	
Molvhdenum	0/1	mg/kg		6010B	11/02/06	
Nickol	4.7	mg/kg		6010B	11/02/06	
Lead	3.9	mg/kg		6010B	11/02/06	
Selonium	20.50	mg/kg		6010B	11/02/06	
Zina	<0.30	mg/kg	10	6020	10/25/06	

Reviewed By:_____

NStein

Date 11/15/06 9:08

ROJECT: LIENT SAMPLE ID:	ER & KENNI AT-1006-	EDY -16			SVL JOB:	1259
ample Collected: ample Receipt : ate of Report :	10/09/06 10/16/06 11/15/06	10:40			Matrice:	5430
Determination	Result	Units			Matrix:	SOIL
ABP			Dilution	Method	Analyzed	
Acid Conomation	11.2	TCaCO3/1	000T			
Acid Nout Det	2.2	TCaCO3/1	000T	EPA600	11/08/06	
ELECTRICAL COND	13.3	TCaCO3/1	000T	EPA600	11/08/06	
pH Pasto	0.28	mmhos/cm		EPA600	11/08/06	
Non-Ext Sulfum C	8.03			ASA M9	11/02/06	
Pyritic Sulfum a	<0.01	용		ASA M9	11/08/06	
Sulfate Sulfur G	0.07	ક		LECO	11/08/06	
Total Sulfur C	<0.01	8		LECO	11/08/06	
Calcium	<0.01	8		LECO	11/08/06	
Potassium	11100	mg/kg		LECO	11/08/06	
Sodium	1380	mg/kg		6010B	11/02/06	
Silver	1/6	mg/kg		6010B	11/02/06	
Aluminum	0.247	mg/kg		6010B	11/02/06	
Arsenic	10200	mg/kg		6010D	10/25/06	
Boron	30.1	mg/kg		6010B	11/02/06	
Barium	5	mg/kg		6010B	11/02/06	
Bervlljum	546	mg/kg		6010B	11/02/06	
Cadmium	1.06	mg/kg		6010B	11/02/06	
Cobalt	<0.20	mg/kg		6010B	11/02/06	
Chromium	21 1	mg/kg		6010B	11/02/06	
Copper	51.1	mg/kg		6010B	11/02/06	
Iron	48700	mg/kg	10	6020	10/25/06	
Mercury		mg/kg		6010B	11/02/06	
Lithium	10.033	mg/kg		7471A	10/26/06	
Manganese	2630	ng/kg		6010B	11/02/06	
Molybdenum	2030	mg/kg		6010B	11/02/06	
Nickel	6.8	mg/kg		6010B	11/02/06	
Lead	16.00	mg/kg		6010B	11/02/06	
Selenium	<0.30	mg/kg mg/kg	4.0	6010B	11/02/06	
Zinc	158	mg/kg	TO	6020	10/25/06	
				6010B	11/02/06	

LIENT : GALLAGHE	R & KENNE	DY				
TENT CAMPLE ID					SVL JOB:	1259
ample Collected.	AT-1006-	17			SAMPLE:	5430
ample Rogoint	10/09/06	10:55				
ate of Report	10/16/06				Matrix	COTT
	11/15/06				MACLIX:	SOIL
Determination	Result	Units	Dilution	Method	Analyzed	
ABP	9.2	TCaCO3/10)በበም			
Acid Generating	<0.3	TCaC03/10)001)00m	EPA600	11/08/06	
Acid Neut. Pot.	9.2	TCaCO3/10)00T	EPA600	11/08/06	
ELECTRICAL COND.	0.39	mmhos/cm		EPA600	11/08/06	
pH Paste	7.81	-,		ASA M9	11/02/06	
Non-Ext Sulfur,S	<0.01	9		ASA MY	11/08/06	
Pyritic Sulfur,S	<0.01	8		LECO	11/08/06	
Sulfate Sulfur,S	0.01	8		LECO	11/08/06	
Total Sulfur, S	<0.01	용		LECO	11/08/06	
Calcium	7120	mg/kg		6010B	11/08/06	
Potassium	2020	mg/kg		6010B	11/02/06	
Sodium	115	mg/kg		6010B	11/02/06	
Silver	1.06	mg/kg		6020	10/25/06	
Aluminum	11300	mg/kg		6010B	11/02/06	
Arsenic	<2.5	mg/kg		6010B	11/02/06	
Boron	<4	mg/kg		6010B	11/02/06	
Barrulli	218	mg/kg		6010B	11/02/06	
Beryllum	1.51	mg/kg		6010B	11/02/06	
	<0.20	mg/kg		6010B	11/02/06	
Cobalt	6.65	mg/kg		6010B	11/02/06	
Chromium	32.2	mg/kg		6010B	11/02/06	
Copper	34.0	mg/kg	10	6020	10/25/06	
Mongunu	15200	mg/kg		6010B	11/02/06	
Lithium	<0.033	mg/kg		7471A	10/26/06	
	11.2	mg/kg		6010B	11/02/06	
Molybdopum	804	mg/kg		6010B	11/02/06	
Nichol	1.5	mg/kg		6010B	11/02/06	
Load	10.5	mg/kg		6010B	11/02/06	
Selenium	17.70	mg/kg		6010B	11/02/06	
Zinc	<0.30	mg/kg	10	6020	10/25/06	
	203	mg/kg		6010B	11/02/06	

CLIENT : GALLAGHE PROJECT:	ER & KENNE	DY			SVI IOD	1050
CLIENT SAMPLE ID: Sample Collected:	AT-1006- 10/09/06	18 11:10			SAMPLE:	12594 54301
Date of Report :	10/16/06 11/15/06				Matrix:	SOIL
Determination	Result	Units	Dilution	Method		
ABP	 6 3			Method	Analyzed	
Acid Generating	0.3	TCaCO3/1	000T	EPAGOO	11/08/06	
Acid Neut, Pot	2.2 0 F	'I'CaCO3/1(000T	EPAGOO	11/00/06	
ELECTRICAL COND	0.0	TCaC03/1(T000	EPA600	11/08/06	
pH Paste	1.31	mmhos/cm		ASA MO	11/02/06	
Non-Ext Sulfur S	/.40	0		ASA MO	11/00/00	
Pyritic Sulfur e		¥		LECO	11/09/06	
Sulfate Sulfur S	0.07	5			11/08/06	
Total Sulfur S	<0.01	8		LECO	11/08/06	
Calcium	7470	8		LECO	11/08/06	
Potassium	1020	mg/kg		6010B	11/02/06	
Sodium	120	mg/kg		6010B	11/02/06	
Silver	130	mg/kg		6010B	11/02/06	
Aluminum	14200	mg/kg		6020	10/25/06	
Arsenic	5 2	mg/kg		6010B	11/02/06	
Boron	2.5	mg/kg		6010B	11/02/06	
Barium	166	mg/kg		6010B	11/02/06	
Beryllium	1 1 2	mg/kg		6010B	11/02/06	
Cadmium	<0.20	mg/kg		6010B	11/02/06	
Cobalt	11 1	mg/kg		6010B	11/02/06	
Chromium	34 7	mg/kg		6010B	11/02/06	
Copper	42 1	mg/kg		6010B	11/02/06	
Iron	28100	mg/kg	10	6020	10/25/06	
Mercury	<0 033	mg/kg		6010B	11/02/06	
Lithium	16 5	mg/kg		7471A	10/26/06	
Manganese	761	mg/kg		6010B	11/02/06	
Molybdenum	2.3	mg/kg mg/k~		6010B	11/02/06	
Nickel	10 8	mg/kg		6010B	11/02/06	
Lead	17.50	mg/kg		6010B	11/02/06	
Selenium	<0.30	ma/ka	10	6010B	11/02/06	
Zinc	151	ma/ka	10	6020	10/25/06	
	·			6010B	11/02/06	
viewed By:			APOA.	•		

R יצי

Quality Control Report Part I Prep Blank and Laboratory Control Sample

LEGEND:

LCS = Laboratory Control Sample

LCS %R = LCS Percent Recovery

N/A = Not Applicable

Quality Control Report Part II Duplicate and Spike Analysis

C1.	ient :GALLAGH	ER & KENN	JEDY		<u> </u>		II Duplicate	and	Spike	Analysis
Tes	st Method Mtx	QC SAME Units	PLE ID Result	Duplicate Found	or	MSD RPD%	Result SPK	SV Spike ADD	L JOB No	o: 125948 Analysis
Al As B Ba Ca Cd Co Cr Cu Fe K Li Mno Na Ni Pb Sc R ABP AGP ABP AGP ABP AGP ABP AGP S N-EX S-PYR S-TOT	6010B S 1 6010B S 1 6020 S 1 EPA600 S 1 EPA	mg/kg mg/kg	$\begin{array}{c} 0.134\\ 8010\\ <2.5\\ <4\\ 113\\ 0.51\\ 19200\\ <0.20\\ 9.42\\ 37.5\\ 464\\ 19600\\ 1260\\ 8.0\\ 528\\ 8.7\\ 161\\ 8.1\\ 31.1\\ <0.30\\ 84.4\\ <0.033\\ -0.9\\ 0.9\\ <0.3\\ 2.19\\ 4.64\\ 0.02\\ 0.03\\ 0.27\\ 0.32\\ \end{array}$	2.24 11800 99.6 100 220 98.5 22700 96.2 106 140 448 22100 3550 113 614 107 2140 104 120 1.80 183 0.175 40.7 0.9 41.7 0.35 4.67 0.02 0.03 0.02 0.07	M M M M M M M M M M M M M M M M M M M	5.0 1.7 2.4 1.0 0.0 1.5 1.8 1.4 0.9 0.0 2.6 2.8 1.4 1.9 1.9 0.9 0.0 2.6 2.8 1.4 1.9 0.9 0.0 2.6 2.8 1.4 1.9 0.9 0.0 2.6 2.8 1.4 1.9 0.9 0.0 2.6 2.8 1.4 1.9 0.9 0.0 2.6 2.8 1.4 1.9 0.9 0.0 2.6 2.8 1.4 1.9 0.9 0.9 1.9 0.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		79.8 R >4S 97.2 99.0 107.0 96.5 R >4S 94.9 95.6 102.5 R >4S R >4S 7.2 94.9 95.6 102.5 R >4S 102.5 R >4S 112.0 103.0 104.8 10 N/A 10 N/A 11	10/25/06 11/02/06 11/02/06 11/02/06 11/02/06 11/02/06 11/02/06 11/02/06 1/08/06 1/08

LEGEND:

RPD% = (|SAM - DUP|/((SAM + DUP)/2) * 100) UDL = Both SAM & DUP not detected. *Result or *Found: Interference required dilution. RPD% = (|SPK - MSD //((SPK + MSD)/2) * 100) M in Duplicate/MSD column indicates MSD.

SPIKE ADD column, A = Post Digest Spike; %R = Percent Recovery N/A = Not Analyzed; R > 4S = Result more than 4X the Spike Added QC limits for MS recoveries apply only if the spike is at least 1/4 the concentration of the analyte in the sample. Control limits for the RPD apply only if the concentration of the analyte in the sample is at least five times the reporting limit. QC Sample 1: SVL SAM No.: 543000 Client Sample ID: AT-1006-02 SVL SAM No.: 542999 Client Sample ID: AT-1006-01

SVL#	M ClientID		Sampled	Time	Ву	Received	Sample Comments		
FAX:	PHOENIX (602)530-8500	AZ 850 PH: (60	16-9225 02)530-822	23		Fax:		Expected Due date: 10/30	/06
CLIENT:	DALVA MOELLENB GALLAGHER & KE 2575 E. CAMELB	ERG NNEDY ACK ROAD		We wi	ll i	nvoice: S	АМЕ	SOIL GOLDER APACHE TEJO SAM SVL JOB No: 125 Received: 10/16	1PLE 948
SAMPLE	RECEIPT CONFIRM	ATION	One (Govern	ment	Gulch -	CAL, INC. Kellogg, ID 83837-0929	Page 2 of	E 2

ADDITIONAL COMMENTS FOR JOB: Sample Cooler temp: 16.°C.

[] These samples will be DISPOSED 45 days after job completion. [X] These samples will be ARCHIVED 45 days, then you will receive a letter requesting disposal options.

Please contact Crystal Sevy (208-784-1258) if you have questions regarding the receipt of these samples.

10/18/06 19:01

SVL ANALYTICAL, INC. One Government Gulch - Kellogg, ID 83837-0929

Page 1 of 2

CLIENT: DALVA MOELLENBERG GALLAGHER & KENNEDY 2575 E. CAMELBACK ROAD

We will invoice: SAME

SOIL GOLDER APACHE TEJO SAMPLE SVL JOB No: 125948 Received: 10/16/06 Expected Due date: 10/30/06

PHOENIX FAX: (602)530-8500

AZ 85016-9225 00 PH: (602)530-8223

Fax:

SVL#	M	ClientID	Sampled	Time	Ву	Received	Sample Comments
542999 543000) S) S	AT-1006-01 AT-1006-02	10/08/06 10/08/06	10:06 10:15	KJ KJ	10/16/06 10/16/06	Tests:GAL/KEN APACHE SOIL ABA + Sulfur Forms NO DATE ON SAMPLE LABEL
543001 543002 543003	S S S	AT-1006-03 AT-1006-04 AT-1006-05	10/08/06 10/08/06 10/08/06	10:25 11:00 11:45	KJ KJ KJ	10/16/06 10/16/06 10/16/06	Tests:GAL/KEN APACHE SOIL ABA + Sulfur Forms Tests:GAL/KEN APACHE SOIL ABA + Sulfur Forms Tests:GAL/KEN APACHE SOIL ABA + Sulfur Forms ID ON SAMPLE LABLE READS AT-1060-05
543004 543005	S S	AT-1006-06 AT-1006-07	10/08/06 10/08/06	12:50 14:05	KJ KJ	10/16/06 10/16/06	Tests:GAL/KEN APACHE SOIL ABA + Sulfur Forms Tests:GAL/KEN APACHE SOIL ABA + Sulfur Forms ID ON SAMPLE LABEL READS AT-1060-07
543006	S	AT-1006-08	10/08/06	14:15	KJ	10/16/06	Tests:GAL/KEN APACHE SOIL ABA + Sulfur Forms ID ON SAMPLE LABEL READS AT-1060-08
543007	S	AT-1006-09	10/08/06	14:25	КJ	10/16/06	Tests:GAL/KEN APACHE SOIL ABA + Sulfur Forms ID ON SAMPLE LABEL READS AT-1060-09
543008	S	AT-1006-10	10/08/06	14:45	КJ	10/16/06	Tests:GAL/KEN APACHE SOIL ABA + Sulfur Forms ID ON SAMPLE LABEL READS AT-1060-10
543009	S	AT-1006-11	10/08/06	15:40	КJ	10/16/06	Tests:GAL/KEN APACHE SOIL ABA + Sulfur Forms ID ON SAMPLE LABEL READS AT-1060-11
543010	S	AT-1006-12	10/08/06	15:50	КJ	10/16/06	Tests:GAL/KEN APACHE SOIL ABA + Sulfur Forms ID ON SAMPLE LABEL READS AT-1060-12
543011	S	AT-1006-13	10/08/06	16:05	КJ	10/16/06	Tests:GAL/KEN APACHE SOIL ABA + Sulfur Forms ID ON SAMPLE LABEL READS AT-1060-13
543012	S	AT-1006-14	10/08/06	16:20	КJ	10/16/06	Tests:GAL/KEN APACHE SOIL ABA + Sulfur Forms ID ON SAMPLE LABEL READS AT-1060-14
543013	S	AT-1006-15	10/09/06	10:20	КJ	10/16/06	fests:GAL/KEN APACHE SOIL ABA + Sulfur Forms ID ON SAMPLE LABEL READS AT-1060-15
543014 543015 543016 [] The [X] The	S S S se se	AT-1006-16 AT-1006-17 AT-1006-18 samples will be DISPOS samples will be ARCHIN	10/09/06 10/09/06 10/09/06 SED 45 VED 45	10:40 10:55 11:10 days at days. t	KJ KJ KJ Éter	10/16/06 10/16/06 10/16/06 job compl	Tests:GAL/KEN APACHE SOIL ABA + Sulfur Forms Tests:GAL/KEN APACHE SOIL ABA + Sulfur Forms Tests:GAL/KEN APACHE SOIL ABA + Sulfur Forms Tests:GAL/KEN APACHE SOIL ABA + Sulfur Forms Letion.
						YOU WILL	receive a letter requesting disposal options.

Please contact Crystal Sevy (208-784-1258) if you have questions regarding the receipt of these samples.

10/18/06 19:01

COC No	_	Anac	Toio SAD 02		C	hai	n o	of C	us	tod	ly F	Rec	or	d											14011
Project Name	•	_Apac	1e Teju SAP - 03			- <u></u>					<u>.</u>														Page 1 of 1
	Apac	he Tej	o SAP	Gailagher 8	Konnedul	1.	Pas	te p	H ar	nd E	C												<u>A</u>	naly	tical Parameters
Project Locati	on:	Apacl	ne Tejo SAP	Golder A	ssociates	3.	Tota	\ al M	etais	s an	d Sl	PLP	(Ag	. A	Δς	R	Ba	Bo (<u></u>		_ ^	Lin Can	re ala	taken prom
Sampler(s): H	ent Joh	nejack	and Melanie Maguire	1 0010017	losociates_	Cr,	, Cu	, Fe	, Hg	, K,	Li, I	Mn,	Mo,	Na	, Ni	, D, , Pb	, Se,	Zn)	Ja, 1	cu,	0,		Jum	pre	Longer D.
Sample		Туре	Sample Identification	Matrix	No. of													·							
Date	16CS	Grab	(Field ID)		Containers	1	2	3	4	5	6	7	8	9	10	11	12	13 1	4 1	5 1	6 1	7 40	2 10	1 20	
0/0/2006	16:20		AT-1006-13	soil	1	X	X	X							8	TO	m	Qh.		71	71 7	<u>' ''</u>	2 13	20	Chain of Custody Se
0/8/2006	10:20	<u> </u>	AT-1006-14	soil	1	X	X								8	-4	11	Sus	-p	ur_	<u>ur</u>	é	<u>na</u>	¢Q.	HF-1000-1-
0/9/2006	1040	<u>X</u>	AT-1006-15	soil	1	X	X	X							v.		[-				-				AT-1060-14
0/9/2006	10 10	X	AT-1006-16	soil	1	X	X	X					-+		~									<u> </u>	At-1060-15
0/9/2006	10-22	X	AT-1006-17	soil	1	X	X	X				-+							-1-2	2	-	-	.Val		
0/9/2006	"12	Х	AT-1006-18	soil	1	X	X	X			-+								-10	4-	10	10	<u>.pc</u>	1	
																					-				
															-+		€- 								
····			_											-+								₋		L	
					······································						-+			-+-						-	4_		<u> </u>		
								-+-													<u> </u>				
				}														1							
					· · · · · · · · · · · · · · · · · · ·																				
																		_	_		·				
							-+											_							
									_+																
																								-+	
												_													
																								-+	
														_						1				-+	······································
																		1		1				-+-	
									_										1	1				-+-	
																_		1							
																	1-							-+-	
															-								at		
														╈									<u>tit</u>	łĿ	,OPY_
						T							1-					+							
																		┼──┤							
	L												- -				+	┼──┤							
	Sigr	natures		Date &	Time				1			Ship	pinc	Dei	tails	. <u> </u>				·		Spec	cial Ir	istru	ctions
inquished by	uished by: Molanie (Magine 10/12/2000 12:0						od of	Shi		 .+.			E a al	<u> </u>					· · · ·			Any	que	stion	s, please call
ceived by:	/ed by:						Ju U	- 311	piner	n:		I	rea	ΕX							- 1	Mela	nie	Mag	uire or Kent
inquished 1					/	\irbil	l No.		79	100	0	97	35	3	Ģ	579	36				ŀ	Johr	iejac	k at	520-888-8818.
inquished by:					L	.ab A	ddre	SSA	s: 4		· Ch	rie N	 		-		-0][Plea	se s	end	results to Golder
ceived for Lab	oratory I	oy:				VL						113 1	icye	L Pł	ione	: 208	-784	1250				Asso	ociate	es al	4730 N. Oracle
Ro	an.	Bl	ubling 1	0.16.06	11.45)ne G Celloc	ove	rnmo	ent G	ulch				Fa	x: 2	08-78	3-08	91 91			H	Rd, 8	Suite	210	, Tucson, AZ

· -

		ĽĜ	Cla tenf 15.	<u>8 10.1</u>	6.06		11	1:4	5	R	S-															1	25	949) F
COC No		Apacl	he Teio SAP - 02		С	haii	n o	of C	Cus	toc	dy F	Re	cor	d															
Project Name																					<u> </u>		-1				Pag	e 1 of 1	
	Apac	he Tej	o SAP	Gallagher 8	& Kennedy/	1. 1	Pas ABA	te p \	Ha	nd E	EC												0	A Svi	naly	ytical xx 7	Para	meters	
Project Locatio	on:	Apaci	ne Tejo SAP	Golder A	ssociates	3. 7	Fota	al M	etai	s an	d S	PLF	P (Aç	j, Al	, As	, В,	, Ba	, Be	e, C	a, C	;d, (Co,	-13	am	eic	Lahe	6		•
Sampler(s): P	lent Johr	nejack	and Melanie Maguire	T	1	Cr,	<u> </u>	, re	e, Hg	ј, К, 	Li, i	Mn,	, Mo	, Na	, Ni	i, Pł	b, S	e, Z	n)										
Date	time	Grab	Sample Identification (Field ID)	Matrix	No. of Containers	1	2	3	4	5	6	7	8	0	10	11	12	42	1.4.4	1.40						·			
10/8/2006	0 14:05	Χ	AT-1006-07	soil	1	X	x	x	+	Ť	-		-		10	11	12	13	4	15	10/0		18		9 20) Cha	ain of C	ustody Se	al#
10/8/2006	1415	Х	AT-1006-08	soil	1	X	X	1 X								¥.		- 011			pre.		te a	1.1	yai	$\frac{1}{1}$	<u>T-IC</u>	060-0	7
0/8/2006	14.23	Х	AT-1006-09	soil	1	x	x	<u> </u> ^	1							¥		an	pa	hnρ	le.	<u>ac</u>	2 <u>1</u>	per	200	AT-	-106	0-08	
0/8/2006	14:45	Х	AT-1006-10	soil	1	Ŷ	X		+							-	μD	<u>pn</u>	<u>an</u>	400	¢ Ø	46	12	<u>da</u>	12_	AT-	10co	09	
0/8/2006	15 <u>4</u> 0	Х	AT-1006-11	soil	1	Y	X		┼──						-+	<u>×6</u>	ŦŊ	or	<u>4.</u> 4	<u>fin</u>	ple	1 pl	i be	11	lfac	\$ A1	<u>-10</u>	<u>60-10</u>	ļ
0/8/2006	0221	Х	AT-1006-12	soil	1	Ŷ	× Y	-v	<u> </u>							2	IO	m	SI	mp	2fe_	tal	¥1.,	<u>pec</u>	to.	AT	1060	# AT-I	106
								<u> </u>								p _	τO	On	1.32	m	ple	Ka.	fil		reid	41-	1060-	<u>'iz</u>	
						·											- <u>-</u> -			<u></u>		-	-	 		ļ			
												_							\mathbb{K}	Þ	μO	16	py	1		ļ			
																						<u> </u>	<u> </u>		ļ	ļ			
											{										 	L	L						
					·	┽─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼										<u> </u>													
			· · · · · · · · · · · · · · · · · · ·																		L		· ·						
							_																						
						┞──┼																							
														·															
······································						└──┤																							
							·				-+																		
																													-
																													-
							_			1																	······		
																								_	-				
																								60		5	D	\checkmark	
																			-+					벽석	μų		_		
																			-+										_
																				-+			-+						
									-																				_
						-+-			-+			\neg				-													_
	Signatures Date & Time									I		Shi	ippin		tails								spe		nstru	uctions	;		\square
elinquished by	linquished by: Malania (Manie 101012000 17:0						od c	feh	inme	nt.			E e e	J E.								[:	Any	que	stio	ns, ple	ase	call	
eceived by:	reived by:						54.0	- 31	hute	7116.		_	L.6(_						viela	anie	Mag	guire c	or Ker	nt	
						Airbil	l No	<u>. </u>	70	100	5 8	85	:13	4	40	68	3					ŀ	Johr	neja	ck a	t 520-	888-8	818.	
linquished by	:					Lab A	ddr	esse	s:	ATT	N· C	hrie	Mey	ar a								ļ	Plea	se s	send	resul	ts to (Golder	
eceived for La	ooratory	by:				SVL							mey	<u>در</u> Pl	hone	a: 20	08-79	34-14	258				Asso	ocia	tes a	at 4730) N. (Dracle	
Robin	.81	rile	ling	10.16.06	11:45	One (Kello	Gove gg. 1	ernm D 83	ent (1837-	Gulci 0929	h I s		-	Fa	ax: 2	208-3	783-0	0891	200			l E	Rd, 8 8570	Suit	e 21	0, Tuc	son,	AZ	

. .**..**

-

coci	No	Apac	he Tejo SAP - 01		C	Chai	n c	of C	Cus	tod	y R	eco	rd					-						/	100 178
Project Nan	ne			- T		—				·															Page 1 of 1
	Apa	che Tei	o SAP		·····	 1.	Pas	te p	Ha	nd E	С												A	nalv	tical Parameters
Project Loc	etion:			Gallagher	& Kennedy/	2.	AB/	1														e	SUL	. τα	DK Time From
		Apac	he Tejo SAP	Golder	Associates	3.	Tota	al M	etal	s and	d SP	LP (A	g, A	I, As	s, B.	Ba.	Be	. C:	1. C	d C	0	150	2m j	re	lakels
sampler(s):	Kent Joh	nejack	and Melanie Maguire			Cr	, Cu	, Fe	, Hg	I, K, I	Li, N	in, Me	o, Na	a, Ni	i, Pl	b, Se	. Z	n)	., •	u, U	ο,		•		
Sample		Туре	Sample Identification	Matrix	No. of			··		······											<u> </u>				
Date	time	Grab	(Field ID)		Container	s 1	2	3	4	5	6	7 0		40						T			·		-
0/8/2006	10:5	X	AT-1006-01	soil	1	X	X	<u> </u>				<u>' °</u>	19	10	11	12	13	14	15	16	17	18	19	20	Chain of Custody Se
0/8/2006	10:25	X	AT-1006-02	soil	1	X	X	X		┝━╂			+		0		-	17			<u> </u>		<u> </u>	L	
0/8/2006	11.05	X	AT-1006-03	soil	1	X	X	x							<u> </u>	Na	-u	te	0	6.9	an	pl	Ł	al	el la
0/0/2006	11:45		AT-1006-04	soil	1	X	X			-+			+-	├		└──┼					L	Ľ			
0/8/2006	12:50	X	AT-1006-05	soil	1	X	X				-+-		<u> </u>	┝╼╾┼	¥ I	gn.	nd	tic .	τn	- 11	av .	-	6-		t-0
1/0/2006		<u> </u>	AT-1006-06	soil	1	X	X		[╂──┤		F			-			~~~		H1.	<u> </u>	60 = 05
													┢╼┨			-+-				_	1			-	
									-		-†-	-	├──┤		-+	\leftarrow			-ry	<u>></u>	10	16	·O	<u>e</u>	
												-		-+						-+					
·												1					-+-								
	-													-+			+	-+	-+						
														-+				-+	-+-						
······													-+				+		-+-			-+			
																							-+		
	++				· · · · · · · · · · · · · · · · · · ·												+				-+	\rightarrow			
······································															-	-+-	-	-+-	-+-	\rightarrow				-+-	·····
	┼──┼																			-+-	+				
······	╶┼╼╼╾┼																- -				-+-	-+	-+		
· · · · · · · · · · · · · · · · · · ·																+		. -	- -		-+-				
																	╈		- -	-+-	-+-		_+	<u> </u>	
	+																							Н	
	+																+	+							
	┨───┤─						\perp								1		+-	- -	- -		-+-	-+			
	+		·												1		1		+-		+	- -	-+-		
	┼──┼-						_ _								1-	1-	1-		-	+-	+-				
	<u>├───</u> ├-														T		1	+-	+-	-+-	- -	- -	-+-		
	<u>├</u> ──┤-																\uparrow	- -	+	- -	- -		-†-		
	Sign	atures		Date 8 1	Lime											T			4		S	Deci	ai Ine	struc	tions
nquished b	y: Mal	anin /	main		171						S	nippin	g Det	ails								<u>1</u> v u		tione	
eived by:		my	i agine 10	13/2006	15:00	Netho	d of	<u>Ship</u>	men	t:		Feo	l Ex								Тм	elan	ie N	lanu	ire or Kont
	_,		•			<u>Airb</u> ill	No.	-	79	ລະ	2 ~~) כ כ	λ	_1.	~~	2~					Jr	hne	iark	ayu at F	520-888-9940
nquished b	y:				1	ab A	Idree		· •	TTNI.	· (1 7	-10	78) d					PI	eas	3 Se	nd re	esults to Coldon
erved for La	boratory b	y:			s	VL	.uj 63	-365	<u> </u>	<u> </u>	Unrie	Meye	<u>ירם</u> הם	000-	200	707	40-				As	soc	iate	sat	4730 N Oraclo
<u>Jobin</u>	Stu	bli	ng st	.1606	11:45	Dne G Celloa	over a. ID	nmer 8383	וt Gu זד-חמ	ilch 129 s			Fa:	x: 20	208 28-78	-784- 33-08	•125 91	8			Ro	1, St	lite	210,	Tucson, AZ

	······································					
CLIENT : GALLAGHEN	R & KENNED	Ϋ́			SVL JOB:	125949
KUJECT:		0			SAMPLE:	543019
LIENT SAMPLE ID:	AT-1006-1	9				
Sample Corrected:	10/09/06	11:55				
ample Receipt : Date of Report :	11/07/06	As R	acaived Basis		Matrix:	SOIL
Determinati						
Determination	Result	Units	Dilution	Method	Analyzed	
ABP	17.3	TCaCO3/1	000T	EPA600	11/02/06	
Acid Generating	0.3	TCaCO3/1	T000	EPA600	11/02/06	
Acid Neut. Pot.	17.6	TCaCO3/1	000T	EPA600	11/02/06	
ELECTRICAL COND.	0.26	mmhos/cm		ASA M9	11/02/06	
pH Paste	7.97			ASA M9	11/02/06	
Non-Ext Sulfur,S	0.01	9		LECO	11/02/06	
Pyritic Sulfur,S	0.01	8		LECO	11/02/06	
Sulfate Sulfur,S	0.01	90		LECO	11/02/06	
Total Sulfur, S	0.03	olo		LECO	11/02/06	
Calcium	12900	mg/kg		6010B	11/05/06	
Potassium	1400	mg/kg		6010B	11/05/06	
Sodium	279	mg/kg		6010B	11/05/06	
Silver	0.263	mg/kg		6020	10/25/06	
Aluminum	9430	mg/kg		6010B	11/05/06	
Arsenic	9.3	mg/kg		6010B	11/05/06	
Boron	<4	mg/kg		6010B	11/05/06	
Barium	581	mg/kg		6010B	11/05/06	
Beryllium	0.80	mg/kg		6010B	11/05/06	
Cadmium	0.58	mg/kg		6010B	11/05/06	
Cobalt	10.4	mg/kg		6010B	11/05/06	
Chromium	47.1	mg/kg		6010B	11/05/06	
Copper	174	mg/kg	10	6020	10/25/06	
Iron	57000	mg/kg		6010B	11/05/06	
Mercury	<0.033	mg/kg		7471A	10/26/06	
Lithium	9.3	mg/kg		6010B	11/05/06	
Manganese	739	mg/kg		6010B	11/05/06	
Molybdenum	4.8	mg/kg		6010B	11/05/06	
Nickel	22.4	mg/kg		6010B	11/05/06	
Lead	21.80	mg/kg		6010B	11/05/06	
Selenium	<0.30	mg/kg	10	6020	10/25/06	
Zinc	152	mg/kg		6010B	11/05/06	

_____ Date_///1/06 Reviewed By:_____

AZ: AZ0538 CA: CERT NO. 2080 CO: CERT NO. ID00019 ID: ID00019 MT: CERT. 0027 NV: CERT. ID19 WA: C1268

11/07/06 16:01

One Government Gulch P.O	. Box 929 ∎	Kellogg,	Idaho	33837-0929	Phone: (208)78	Certific 34-1258 ∎ Fax	cate: AZ AZ0538 : (208)783-089
CLIENT : GALLAGHEF PROJECT: CLIENT SAMPLE ID: Sample Collected: Sample Perceipt	& KENNED AT-1006-2 10/09/06	Y 0 12:10				SVL JOB: SAMPLE:	125949 543020
Date of Report :	11/07/06	As	Recei	ved Basis		Matrix:	SOIL
Determination	Result	Units	D	ilution	Method	Analyzed	
ABP Acid Generating Acid Neut. Pot. ELECTRICAL COND. pH Paste Non-Ext Sulfur,S Pyritic Sulfur,S Sulfate Sulfur,S Total Sulfur, S	16.3 <0.3 16.3 0.24 7.54 <0.01 <0.01 0.03 0.03	TCaCO3 TCaCO3 TCaCO3 mmhos/ % % % %	3/1000T 3/1000T 2/1000T cm		EPA600 EPA600 ASA M9 ASA M9 LECO LECO LECO LECO	11/02/06 11/02/06 11/02/06 11/02/06 11/02/06 11/02/06 11/02/06 11/02/06 11/02/06	
Reviewed By:				Aller	Date_	11/07/06 16:01	
	ς α κεννει)Y					
------------------	------------	----------	---------------	--------	----------	-------	
RODECT:		<i></i>			SVL JOB:	12594	
LIENT SAMPLE ID:	AT-1006-2	21			SAMPLE:	54302	
imple Collected:	10/09/06	13:55					
imple Receipt :	10/16/06				Motot	0077	
ree of keport :		As R	eceived Basis		Matiix:	SOIL	
Determination	Result	Units	Dilution	Method	Analyzed		
ABP	116	TCaCO3/1	000 חיי				
Acid Generating	<0.3	TCaCO3/1		EPA600	11/02/06		
Acid Neut. Pot.	116	TCaCO3/1	000	EPA600	11/02/06		
ELECTRICAL COND.	0.76	mmhos/cm	n	EPA600	11/02/06		
pH Paste	7.50			ASA M9	11/02/06		
Non-Ext Sulfur,S	<0.01	8		ASA M9	11/02/06		
Pyritic Sulfur,S	<0.01	8		LECO	11/02/06		
Sulfate Sulfur,S	<0.01	8		LECO	11/02/06		
Total Sulfur, S	<0.01	ક		LECO	11/02/06		
Calcium	30700	mg/kg		6010D	11/02/06		
Potassium	2470	mg/kg		6010B	11/05/06		
Sodium	138	mg/kg		6010B	11/05/06		
Silver	0.358	mg/kg		6020	11/05/06		
Aluminum	13200	mg/kg		6010D	10/25/06		
Arsenic	5.4	mg/kg		6010B	11/05/06		
Boron	<4	mg/kg		6010B	11/05/06		
Barium	264	mg/kg		6010B	11/05/06		
Beryllium	0.87	mg/kg		6010B	11/05/06		
Cadmium	0.52	mg/kg		6010B	11/05/06		
Cobalt	8.75	mg/kg		6010B	11/05/06		
Chromium	25.2	mg/kg		6010B	11/05/06		
Copper	29.1	mg/kg	10	6020	10/25/06		
lron	20300	mg/kg		6010B	10/25/06		
Mercury	<0.033	mg/kg		7471a	10/26/06		
Lithium	13.0	mg/kg		6010B	11/05/06		
Manganese	446	mg/kg		6010B	11/05/06		
Molybdenum	2.8	mg/kg		6010B	11/05/06		
Nickel	16.0	mg/kg		6010B	11/05/06		
Lead	16.70	mg/kg		6010B	11/05/06		
Selenium	<0.30	mg/kg	10	6020	10/25/06		
7TUC	168	mg/kg		6010B	11/05/06		
			201				

One Government Gulch P.O.	Box 929 🔹	Kellogg, Id	aho 83837-0929	•	Phone: (208)78	Certific 4-1258 ∎ Fax	cate: AZ AZ0538 : (208)783-0891
CLIENT : GALLAGHER PROJECT: CLIENT SAMPLE ID:	& KENNED	РҮ 2				SVL JOB: SAMPLE:	125949 543022
Sample Collected: Sample Receipt : Date of Report :	10/09/06 10/16/06 11/07/06	14:10 As R	eceived Ba	sis		Matrix:	SOIL
Determination	Result	Units	Dilution		Method	Analyzed	
ABP Acid Generating Acid Neut. Pot. ELECTRICAL COND. pH Paste Non-Ext Sulfur,S Pyritic Sulfur,S Sulfate Sulfur,S Total Sulfur, S	300 <0.3 300 1.63 7.27 <0.01 <0.01 <0.01 <0.01	TCaCO3/1 TCaCO3/1 TCaCO3/1 mmhos/cm % % % %	000T 000T 000T		EPA600 EPA600 ASA M9 ASA M9 LECO LECO LECO LECO	11/02/06 11/02/06 11/02/06 11/02/06 11/02/06 11/02/06 11/02/06 11/02/06 11/02/06	
Reviewed By:			Alle	hear	Date_	1/1/06	

11/07/06 16:01

Government Guich P.C	•). Box 929 🔹	Kellogg, Id	aho 83837-0929 ∎	Phone: (208)78	Certific 4-1258 ∎ Fax:	ate: AZ AZ053 (208)783-08
CLIENT : GALLAGHE PROJECT: CLIENT SAMPLE ID:	R & KENNED AT-1006-2	РҮ З			SVL JOB: SAMPLE:	125949 543023
Sample Collected: Sample Receipt : Date of Report :	10/09/06 10/16/06 11/07/06	14:30 As R	eceived Basis		Matrix:	SOIL
Determination	Result	Units	Dilution	Method	Analyzed	
ABP	12.4	TCaCO3/1	000T	EPA600	11/02/06	
Acid Generating	<0.3	TCaCO3/1	000T	EPA600	11/02/06	
Acid Neut. Pot.	12.4	TCaCO3/1	000T	EPAGOO	11/02/06	
ELECTRICAL COND.	1.91	mmhos/cm	-	DIACOU	11/02/06	
pH Paste	7.95	,		ACA MO	11/02/06	
Non-Ext Sulfur,S	<0.01	ક		I ECO	11/02/06	
Pyritic Sulfur,S	<0.01	8		LECO	11/02/06	
Sulfate Sulfur.S	0.01	8		LECO	11/02/06	
Total Sulfur, S	0.01	9		LECO	11/02/06	
Calcium	12400	ma/ka			11/02/06	
Potassium	1670	mg/kg		6010B	11/05/06	
Sodium	325	mg/kg		6010B	11/05/06	
Silver	0 267	mg/kg mg/kg		6010B	11/05/06	
Aluminum	11700	mg/kg		6020	10/25/06	
Arsenic	42 3	mg/kg		6010B	11/05/06	
Boron	-1	mg/kg		6010B	11/05/06	
Barium	508	mg/kg		6010B	11/05/06	
Beryllium	500	mg/kg		6010B	11/05/06	
Cadmium	0.02	mg/kg		6010B	11/05/06	
	12 0	mg/kg		6010B	11/05/06	
Cobart	12.8	mg/kg		6010B	11/05/06	
Chrometun	33./	mg/kg		6010B	11/05/06	
Copper	41.5	mg/kg	10	6020	10/25/06	
Tron	48300	mg/kg		6010B	11/05/06	
Mercury	<0.033	mg/kg		7471A	10/26/06	
LICHIUM	13.8	mg/kg		6010B	11/05/06	
Malalese	1360	mg/kg		6010B	11/05/06	
Molybdenum	3.7	mg/kg		6010B	11/05/06	
NICKET	28.1	mg/kg		6010B	11/05/06	
Lead	16.10	mg/kg		6010B	11/05/06	
Selenium	<0.30	mg/kg	10	6020	10/25/06	
Zinc	127	mg/kg		6010B	11/05/06	

Reviewed By:_____

Date 11/1/06 11/07/06 16:01

LIENT : GALLAGHEN ROJECT: LIENT SAMPLE ID:	R & KENNED	9Y		1. A.	SVL JOB: SAMPLE:	12594 54302
ample Receipt : ate of Report :	10/16/06	As Re	eceived Basis		Matrix:	SOIL
Determination	Result	Units	Dilution	Method	Analyzed	
ABP	19.8	TCaC03/10)00T	EPA600	11/02/06	
Acid Generating	1.6	TCaCO3/10	00T	EPA600	11/02/06	
Acid Neut. Pot.	21.4	TCaCO3/10	Т00Т	EPA600	11/02/06	
ELECTRICAL COND.	0.36	mmhos/cm		ASA M9	11/02/06	
pH Paste	7.88			ASA M9	11/02/06	
Non-Ext Sulfur,S	0.07	8		LECO	11/02/06	
Pyritic Sulfur,S	0.05	ક		LECO	11/02/06	
Sulfate Sulfur,S	0.05	95		LECO	11/02/06	
Total Sulfur, S	0.17	8		LECO	11/02/06	
Calcium	11100	mg/kg		6010B	11/05/06	
Potassium	1180	mg/kg		6010B	11/05/06	
Sodium	241	mg/kg		6010B	11/05/06	
Silver	0.240	mg/kg		6020	10/25/06	
Aluminum	10500	mg/kg		6010B	11/05/06	
Arsenic	6.5	mg/kg		6010B	11/05/06	
Boron	<4	mg/kg		6010B	11/05/06	
Barium	180	mg/kg		6010B	11/05/06	
Beryllium	0.58	mg/kg		6010B	11/05/06	
Cadmium	<0.20	mg/kg		6010B	11/05/06	
Copalt	7.84	mg/kg		6010B	11/05/06	
Chromium	35.0	mg/kg		6010B	11/05/06	
Copper	41.7	mg/kg	10	6020	10/25/06	
Iron	26100	mg/kg		6010B	11/05/06	
Mercury	<0.033	mg/kg		7471A	10/26/06	
Lithium	10.4	mg/kg		6010B	11/05/06	
Manganese	510	mg/kg		6010B	11/05/06	
Molybdenum	4.2	mg/kg		6010B	11/05/06	
NICKEL	16.8	mg/kg		6010B	11/05/06	
Solonium	16.80	mg/kg		6010B	11/05/06	
	<0.30	mg/kg	10	6020	10/25/06	
21HC	120	mg/kg		6010B	11/05/06	

I

Quality Control Report Part I Prep Blank and Laboratory Control Sample

Client :GALLAGHE	R & KENI	NEDY			-		SVL JOB 1	No: 125949
Analyte	Method	Matrix	Units	Prep Blank	True-	-LCSFound	LCS %R	Analysis Date
Silver	6020	SOIL	mg/kg	<0.010	2.50	2.44	97.6	10/25/06
Aluminum	6010B	SOIL	mg/kg	<3	100	105	105 0	11/05/06
Arsenic	6010B	SOIL	mg/kg	<2.5	100	104	104 0	11/05/06
Boron	6010B	SOIL	mg/kg	<4	100	102	102 0	11/05/06
Barium	6010B	SOIL	mg/kg	<0.20	100	104	104 0	11/05/06
Beryllium	6010B	SOIL	mg/kg	<0.20	100	99.7	99 7	11/05/06
Calcium	6010B	SOIL	mg/kg	<4	2000	2100	105 0	11/05/06
Cadmium	6010B	SOIL	mg/kg	<0.20	100	97.7	97 7	11/05/06
Cobalt	6010B	SOIL	mg/kg	<0.60	100	107	107 0	11/05/06
Chromium	6010B	SOIL	mg/kg	<0.60	100	101	101 0	11/05/06
Copper	6020	SOIL	mg/kg	<0.100	2.50	2.45	98 0	10/25/06
Iron	6010B	SOIL	mg/kg	<6	1000	1050	105.0	11/05/06
Potassium	6010B	SOIL	mg/kg	<50	2000	2030	101 5	11/05/06
Lithium	6010B	SOIL	mg/kg	<2.0	100	105	105.0	11/05/06
Manganese	6010B	SOIL	mg/kg	<0.40	100	99.0	99 0	11/05/06
Molybdenum	6010B	SOIL	mg/kg	<0.8	100	108	108 0	11/05/06
Sodium	6010B	SOIL	mg/kg	<50	1900	1970	103.7	11/05/06
Nickel	6010B	SOIL	mg/kg	<1.0	100	96 8	96.8	11/05/06
Lead	6010B	SOIL	mg/kg	<0.75	100	102	102.0	11/05/06
Selenium	6020	SOIL	mg/kg	<0.300	2.50	2 59	102.0	10/25/06
Zinc	6010B	SOIL	mg/kg	<1.0	100	109	103.0	10/25/06
Mercury	7471A	SOIL	mg/kg	<0.033	0 834	0 880	109.0	10/05/06
Acid Generating	EPA600	SOIL	TCaCO3/k	N/A	9 4	0.000 Q /	105.5	10/26/06
Acid Neut. Pot.	EPA600	SOIL	TCaCO3/k	N/A	52 0	51 A	100.0	11/02/06
ELECTRICAL COND.	ASA M9	SOIL	mmhos/cm	<0.01	0 30	0 30	90.1	11/02/06
pH Paste	ASA M9	SOIL		5.25	8 45	8 42	100.0	11/02/06
Non-Ext Sulfur,S	LECO	SOIL	8	<0.01	N/A	0.42	99.0	11/02/06
Pyritic Sulfur,S	LECO	SOIL	ક	<0.01	N/A		N/A N/A	11/02/06
Sulfate Sulfur,S	LECO	SOIL	ક	<0.01	N/A		N/A N/A	11/02/06
Total Sulfur, S	LECO	SOIL	ક	<0.01	0.30	0.30	100.0	11/02/06

LEGEND:

LCS = Laboratory Control Sample LCS %R = LCS Percent Recovery

N/A = Not Applicable

Quality Control Report Part II Duplicate and Spike Analysis

<u></u>			_								and	obtre	Analysis
Clie	ent :GAL	LAG	HE	R & KENN	EDY								
			[-QC SAMP	LE ID	Duplicate	or	MSD-	<u>н</u> м	atrix	SV	L JOB N	o: 125949
Test	: Method	Mt	x	Units	Result	Found		RPD%	Result	CDV	. ортке	<u>۵</u> ۳	Analysis
Ц	······································		-		T							*K	Date
Ag	6020	S	1	mg/kg	0.263	2.09	М	0.5	2.10	2 5	0	72 5	10/25/06
Al	6010B	S	1	mg/kg	9430	13300	М	2.3	13000	100	0	D 10	11/05/06
As	6010B	S	1	mg/kg	9.3	118	М	0.9	117	100			11/05/06
В	6010B	S	1	mg/kg	<4	104	М	1.9	102	100		107.7	11/05/06
Ba	6010B	S	1	mg/kg	581	707	М	4.0	679	100		98 0	11/05/06
Be	6010B	S	1	mg/kg	0.80	100	М	3.1	96.9	100		96.0	11/05/06
Ca	6010B	S	1	mg/kg	12900	17200	М	6.0	16200	2000		D 10	11/05/06
Cd	6010B	S	1	mg/kg	0.58	95.9	М	5.7	90.6	100		L 245	11/05/06
Со	6010B	S	1	mg/kg	10.4	120	М	1.7	118	100		107 6	11/05/06
Cr	6010B	S	1	mg/kg	47.1	150	М	6.2	141	100		93.0	11/05/06
Cu	6020	S	1	mg/kg	174	176	М	0.0	176	2 5	Ω	80.0	10/25/06
Fe	6010B	S	1	mg/kg	57000	64100	М	6.6	60000	1000	0		11/05/06
K	6010B	S	1	mg/kg	1400	3770	М	3.5	3640	2000		112 0	11/05/06
Li	6010B	S	1	mg/kg	9.3	121	М	1.7	119	100		100 7	11/05/06
Mn	6010B	S	1	mg/kg	739	867	М	1.0	858	100		110 0	11/05/06
Мо	6010B	S	1	mg/kg	4.8	115	М	1.8	113	100		108 2	11/05/06
Na	6010B	S	1	mg/kg	279	2490	М	2.4	2430	1900		113 2	11/05/06
Ni	6010B	S	1	mg/kg	22.4	125	М	3.3	121	100		98 6	11/05/06
Pb	6010B	S	1	mg/kg	21.80	130	М	3.8	135	100		113 2	11/05/06
Se	6020	S	1	mg/kg	<0.30	1.30	м	0.8	1.29	2 51	า	51 6	10/25/06
Zn	6010B	S	1	mg/kg	152	276	М	1.1	273	100	0	121 0	11/05/06
Hg	7471A	S	1	mg/kg	<0.033	0.180	М	2.7	0.185	0 10	57	110 8	10/26/06
ABP	EPA600	S	1	TCaCO3/	17.3	15.1		13.6	N/A	N/;	A .	N/A	11/02/06
AGP	EPA600	S	1	TCaCO3/	0.3	0.3		0.0	N/A	N/7	4	N/A	11/02/06
ANP	EPA600	S	1	TCaCO3/	17.6	15.4		13.3	N/A	N/7	7	N/A	11/02/06
EC	ASA M9	S	1	mmhos/c	0.26	0.26		0.0	N/A	N/2	7	N/A N/A	11/02/06
pH Ps	tasa m9	S	1		7.97	7.97		0.0	N/A	N/2	- -		11/02/06
S N-E	X LECO	S	1	8	0.01	<0.01		200.0	N/A	N/2	7	N/Δ	11/02/06
S-PYR	LECO	S	1	웅	0.01	0.01		0.0	N/A	N/7	\	N/A	11/02/06
S-SO4	LECO	S	1	શ્ર	0.01	0.02		66.7	N/A	N/7	<u>,</u>	N/A	11/02/06
S-TOT	LECO	S	1	8	0.03	0.04		28.6	N/A	N/7	- -	N/A	11/02/06
								- 1		1.7/1	•	11/11	1702700

LEGEND:

RPD% = (|SAM - DUP|/((SAM + DUP)/2) * 100) UDL = Both SAM & DUP not detected. *Result or *Found: Interference required dilution. RPD% = (|SPK - MSD|/((SPK + MSD)/2) * 100) M in Duplicate/MSD column indicates MSD.

SPIKE ADD column, A = Post Digest Spike; R = Percent Recovery N/A = Not Analyzed; R > 4S = Result more than 4X the Spike Added QC limits for MS recoveries apply only if the spike is at least 1/4 the concentration of the analyte in the sample.

Control limits for the RPD apply only if the concentration of the analyte in the sample is at least five times the reporting limit. QC Sample 1: SVL SAM No.: 543019 Client Sample ID: AT-1006-19

I	1006	b	ing 16.5	10016-	06 11	:45	5	R	<u>-2</u>																	125949
	lo.	Apac	he Teio SAP - 04		CI	hai	n o	f C	us	tod	y F	Rec	or	d												
Project Nam	e			Client:	· · · · · ·	1	Daa																I			Page 1 of 1
	Apad	che Tej	o SAP	Gallagher 8	Kennedy/	2		ι ο μ	(1 a)														0	Ū.m	07	Abou. haona
Project Loca	tion:	Apac	he Teio SAP	Golder A	esociatos	3.	Tota	al M	etals	s and	I S	PLP	(Ác	1. A	I. As	. B.	Ba	Be	. Ca	ı. Ca	1. C	0.	Sangle tabels.			
Sampler(s):	Kent Joh	nejack	and Melanie Maguire		1330010105	Cr,	, Cu	, Fe	, Hg	, K, I	Li,	Mn,	Mo,	, Na	i, N	i, Pł), S(, ∋, Ζι	, n)	.,	., .	•,		ĥ	28	1D.16.06
Sample		Туре	Sample Identification	Matrix	No. of	-									··									'		
Date	time	Grab	(Field ID)		Containers	1	2	3	4	5	6	7	8	9	10	11	12	12	14	15	16	17	10	10	20	Chain of Custodu Cost#
10/9/2006	<u> </u>	X	AT-1006-19	soil	1	x	x	x	† ·		•				10		12		14	15	10		10	19	20	Chain of Custody Seal#
10/9/2006	12.10	X	AT-1006-20	soil	1	x	x													<u>├</u> ─-						
10/9/2006	13:25	X	AT-1006-21	soil	1	X	X	x																		
10/9/2006	14_10	Х	AT-1006-22	soil	1	X	X		-	<u> </u> -																
10/9/2006	14 30	Х	AT-1006-23	soil	1	X	X	x					-										-			
10/9/2006	MSO	Х	AT-1006-24	soil	1	X	X	X																		
																										······································
							Ĺ																			
						<u> </u>	<u> </u>																			
						<u> </u>																				
	-					<u> </u>																				
	-		· · · · · · · · · · · · · · · · · · ·															-								
					·	<u> </u>							-+										_			
						-					_												_			
												-+						-								- de Ven
-																					_					the for the
				···· <u>-</u> .																	-			_		HER ON
																-									_	AND IN
																					_					18104
														_										-		<i>f</i> OIL
······································	++																									
	┼╾──┤																									
	╉───┤										_+	-+														
	Sig	nature	S	Date 8	Time								inni	na D)etai	 Is							Spe	cial	Instr	uctions
lelinquished	by: Mal	mint	Marine	In Irainan	(17:00	Mot	hod	of Cl						<u>9 c</u>		3		·					Any	que	estic	ns, please call
eceived by:	V.A.	mel	- · · aquine		6 2.00	met		0 3	uhun 		~~	~	ге ,,				_						Intel	anie	ivia	yuire or Kent
elinquiched	by:					Airb	ill No	o	\mathcal{T}	40	5	Ч	5	13	Ľ	111	5						Ples	neja ase	sen	t ozu-ooo-öö iö. Tresults to Golder
eceived for I	aboratory	by				Lab	Add	ress	es:	ATTI	N: (<u>Chris</u>	Me	<u>yer</u>									Ass	ocia	ites	at 4730 N. Oracle
~	a.ury	Jy.	1.5			SVL	Gov	orne	nont	Gula	ь				Pho	ne: 200	208-1	784-1	1258 14				Rd.	Sui	te 2	10, Tucson, AZ
Rob	in E	tub	ling	10-16-06	11:45	Kell	oaa.	ID 8	3837	-0929	••				r dX.	200	-103	-009					857	05.		. ,

PHOENIX

CLIENT: DALVA MOELLENBERG GALLAGHER & KENNEDY 2575 E. CAMELBACK ROAD

AZ 85016-9225 FAX: (602)530-8500 PH: (602)530-8223

Fax:

We will invoice: SAME

SVL#	M	ClientID	Sampled	Time	Ву	Received	Sample Comments
543019 543020 543021 543022 543023 543024	ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ เ เ เ เ เ เ เ เ เ	AT-1006-19 AT-1006-20 AT-1006-21 AT-1006-22 AT-1006-23 AT-1006-24	10/09/06 10/09/06 10/09/06 10/09/06 10/09/06 10/09/06	11:55 12:10 13:55 14:10 14:30 14:50		10/16/06 10/16/06 10/16/06 10/16/06 10/16/06 10/16/06	Tests:GAL/KEN APACHE SOIL ABA + Sulfur Forms Tests:GAL/KEN APACHE SOIL ABA + Sulfur Forms

ADDITIONAL COMMENTS FOR JOB: Sample Cooler temp: 16.°C.

[] These samples will be DISPOSED 45 days after job completion. [X] These samples will be ARCHIVED 45 days, then you will receive a letter requesting disposal options.

Please contact Crystal Sevy (208-784-1258) if you have questions regarding the receipt of these samples.

10/18/06 17:57

SOIL GOLDER ABA/PASTE/METALS SVL JOB No: 125949 Received: 10/16/06 Expected Due date: 10/30/06

APPENDIX B-4 SPLP DATA

SVL ANALYTICAL, INC. One Government Gulch P.O	Box 929 ■ H	Kellogg, Idaho	83837-0929	Phone: (208)78	Certific 4-1258 • Fax:	ate: AZ AZ0538 (208)783-0891
CLIENT : GALLAGHEN PROJECT:	& KENNEDY				SVL JOB: SAMPLE:	125947 542979
Sample Collected: Sample Receipt : Date of Report :	10/08/06 10 10/16/06 11/07/06	0:15		E	Matrix: xtraction:	ESOIL SPLP
Determination	Result	Units		Method	Analyzed	
Calcium Potassium Sodium Silver Aluminum Arsenic Boron Barium Beryllium Cadmium Cobalt Chromium Copper Iron Mercury Lithium Manganese Molybdenum Nickel	10.8 1.62 2.78 <0.00010 0.44 <0.025 <0.04 0.0062 <0.0020 <0.0020 <0.0060 0.0249 0.34 <0.00020 <0.0020 <0.0020 <0.0067 <0.008 <0.010	mg/L Ext mg/L Ext		6010B 6010B 6020 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6020 6010B 7470A 6010B 6010B 6010B 6010B	11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06	
Lead Selenium Zinc	<0.0075 <0.0030 <0.010	mg/L Ext mg/L Ext mg/L Ext		6010B 6020 6010B	11/05/06 11/02/06 11/05/06	

NO DATE ON SAMPLE LABEL

Reviewed By:_____

<u>Heren an</u> Date 11/07/06 16:06

SVL ANALYTICAL, INC. One Government Gulch P.O	. Box 929 ∎	Kellogg, Idaho	83837-0929	•	Phone: (208)784	Certific -1258 ∎ Fax:	ate: AZ AZ0538 (208)783-089
CLIENT : GALLAGHER PROJECT: CLIENT SAMPLE ID:	R & KENNEDY					SVL JOB: SAMPLE:	125947 542980
Sample Collected: Sample Receipt : Date of Report :	10/08/06 1 10/16/06 11/07/06	0:25			Ex	Matrix: traction:	ESOIL SPLP
Determination	Result	Units			Method	Analyzed	
Calcium Potassium Sodium Silver Aluminum Arsenic Boron Barium Cadmium Cobalt Chromium Copper Iron Mercury Lithium Manganese Molybdenum Nickel	13.2 1.31 1.62 <0.00010 0.24 <0.025 <0.04 0.0193 <0.0020 <0.0020 <0.0060 0.0154 0.35 <0.00020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0083 <0.0083 <0.010	mg/L Ext mg/L Ext			6010B 6010B 6010B 6020 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 7470A 6010B 6010B 6010B 6010B 6010B 6010B	11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06	
Lead Selenium Zinc	<0.0075 <0.0030 <0.010	mg/L Ext mg/L Ext mg/L Ext			6010B 6020 6010B	11/05/06 11/02/06 11/05/06	
				~			

Reviewed By:_____

Date 11/07/06 16:06

SVL	ANALY	TICA	L,	INC.			
One Go	vernment	Gulch		P.O.	Box	929	

Certificate: AZ AZ0538

ANAL	JTT	CAL	, INC.
------	-----	-----	--------

Kellogg, Idaho 83837-0929
 Phone: (208)784-1258
 Fax: (208)783-0891

SVL JOB: 125947 SAMPLE: 542981

CLIENT : GALLAGHER & KENNEDY	
PROJECT:	
CLIENT SAMPLE ID: AT-1006-07	
Sample Collected: 10/08/06 14:05	
Sample Receipt : 10/16/06	
Date of Report : 11/07/06	

Matrix:	ESOIL
Extraction:	SPLP

Determination	Result	Units	Method	Analyzed
Calcium	121	mg/L Ext	6010B	11/05/06
Potassium	2.96	mg/L Ext	6010B	11/05/06
Sodium	1.86	mg/L Ext	6010B	11/05/06
Silver	<0.00010	mg/L Ext	6020	11/02/06
Aluminum	<0.03	mg/L Ext	6010B	11/05/06
Arsenic	<0.025	mg/L Ext	6010B	11/05/06
Boron	<0.04	mg/L Ext	6010B	11/05/06
Barium	0.0424	mg/L Ext	6010B	11/05/06
Beryllium	<0.0020	mg/L Ext	6010B	11/05/06
Cadmium	<0.0020	mg/L Ext	6010B	11/05/06
Cobalt	<0.0060	mg/L Ext	6010B	11/05/06
Chromium	<0.0060	mg/L Ext	6010B	11/05/06
Copper	0.0048	mg/L Ext	6020	11/02/06
Iron	<0.06	mg/L Ext	6010B	11/05/06
Mercury	<0.00020	mg/L Ext	7470A	11/07/06
Lithium	<0.020	mg/L Ext	6010B	11/05/06
Manganese	<0.0040	mg/L Ext	6010B	11/05/06
Molybdenum	0.023	mg/L Ext	6010B	11/05/06
Nickel	<0.010	mg/L Ext	6010B	11/05/06
Lead	<0.0075	mg/L Ext	6010B	11/05/06
Selenium	<0.0030	mg/L Ext	6020	11/02/06
Zinc	<0.010	mg/L Ext	6010B	11/05/06

SAMPLE ID READS AT-1060-07

Reviewed By:_____

_Date 11/1/06

11/07/06 16:06

S\ 0n	/L ANALYTICAL, INC. e Government Gulch = P.O	. Box 929 🔹	Kellogg, Idaho	83837-0929	•	Phone: (208)784	Certific -1258 ∎ Fax:	ate: AZ AZ0538 (208)783-0891
	CLIENT : GALLAGHER	& KENNEDY	ζ				SVL JOB:	125947
	PROJECT: CLIENT SAMPLE ID:	AT - 1006 - 08	3				SAMPLE:	542982
	Sample Collected: Sample Receipt : Date of Report :	10/16/06 11/07/06	14.15			Ex	Matrix: traction:	ESOIL SPLP
L	Determination	Result	Units	· · · · · · · · · · · · · · · · · · ·		Method	Analyzed	
	Calcium	81.1	mg/L Ext			6010B	11/05/06	
	Potassium	1.09	mg/L Ext			6010B	11/05/06	
	Sodium	4.92	mg/L Ext			6010B	11/05/06	
	Silver	<0.00010) mg/L Ext			6020	11/02/06	
	Aluminum	0.07	mg/L Ext			6010B	11/05/06	
	Arsenic	<0.025	mg/L Ext			6010B	11/05/06	

Beryllium

Cadmium

Boron

Cobalt Chromium

Iron

Lead

Zinc

Copper

Mercury

Lithium

Manganese

Nickel

Selenium

SAMPLE ID READS AT-1060-08

Reviewed By:

Molybdenum

Barium

Alexen	Date	11/2/06
		11/07/06 16:06

11/05/06

11/05/06

11/05/06

11/05/06

11/05/06

11/05/06

11/02/06

11/05/06

11/07/06

11/05/06

11/05/06

11/05/06

11/05/06

11/05/06

11/02/06

11/05/06

6010B

6010B

6010B

6010B

6010B

6010B

6010B

6020

7470A

6010B

6010B

6010B

6010B

6020

6010B

6010B

AZ: AZ0538 CA: CERT NO. 2080 CO: CERT NO. ID00019 ID: ID00019 MT: CERT. 0027 NV: CERT. ID19 WA: C1268

<0.04 mg/L Ext

0.0357 mg/L Ext <0.0020 mg/L Ext <0.0020 mg/L Ext <0.0060 mg/L Ext <0.0060 mg/L Ext

0.0014 mg/L Ext

<0.06 mg/L Ext
<0.00020 mg/L Ext
<0.020 mg/L Ext
<0.0040 mg/L Ext
<0.008 mg/L Ext
<0.008 mg/L Ext
</pre>

<0.010 mg/L Ext

<0.0075 mg/L Ext

<0.0030 mg/L Ext

<0.010 mg/L Ext

0.0357 mg/L Ext

	1	r NC							Cer	LITICALE. AL ALOUDO
SAP ANALILICAL	, ,				00007 0000		Dhanas	(200)704 1258	-	Fax: (208)783-0891
One Covernment Gulch		P.O.	Box 929	Kellogg, Idaho	83837-0929	•	Phone:	(208)/64-1230	-	142. (200)/00 0001
one dovernment duron	-									

Certificate: AZ AZ0538

CLIENT : GALLAGHER PROJECT: CLIENT SAMPLE ID: Sample Collected:	R & KENNEDY AT-1006-12 10/08/06 19	5:50		SVL JOB: SAMPLE: Matrix:	125947 542983 ESOIL
Sample Receipt :	11/07/06		Ex	traction:	SPLP
Determination	Result	Units	 Method	Analyzed	
Calcium	8.69	mg/L Ext	6010B	11/05/06	
Potassium	2.11	mg/L Ext	6010B	11/05/06	
Sodium	3.30	mg/L Ext	6010B	11/05/06	
Silver	<0.00010	mg/L Ext	6020	11/02/06	
Aluminum	0.36	mg/L Ext	6010B	11/05/06	
Arsenic	<0.025	mg/L Ext	6010B	11/05/06	
Boron	<0.04	mg/L Ext	6010B	11/05/06	
Barium	0.0529	mg/L Ext	6010B	11/05/06	
Beryllium	<0.0020	mg/L Ext	6010B	11/05/06	
Cadmium	<0.0020	mg/L Ext	6010B	11/05/06	
Cobalt	<0.0060	mg/L Ext	6010B	11/05/06	
Chromium	<0.0060	mg/L Ext	6010B	11/05/06	
Copper	0.0055	mg/L Ext	6020	11/02/06	
Iron	0.35	mg/L Ext	6010B	11/05/06	
Mercury	<0.00020	mg/L Ext	7470A	11/07/06	
Lithium	<0.020	mg/L Ext	6010B	11/05/06	
Manganese	0.0073	mg/L Ext	6010B	11/05/06	
Molybdenum	<0.008	mg/L Ext	6010B	11/05/06	
Nickel	<0.010	mg/L Ext	6010B	11/05/06	
Lead	<0.0075	mg/L Ext	6010B	11/05/06	
Selenium	<0.0030	mg/L Ext	6020	11/02/06	
Zinc	<0.010	mg/L Ext	6010B	11/05/06	
		-			

SAMPLE ID READS AT-1060-12

Reviewed By:_____

11/07/06 16:06

SVL ANALYTICAL, INC One Government Gulch P.O	. Box 929 🔹	Kellogg, Idaho	83837-0929	Phone: (208)784	Certific -1258 • Fax:	ate: AZ AZ0538 (208)783-0891
CLIENT : GALLAGHEN PROJECT: CLIENT SAMPLE ID: Sample Collected:	R & KENNEDY AT-1006-13	6:05			SVL JOB: SAMPLE:	125947 542984
Sample Receipt : Date of Report :	10/16/06 11/07/06			Ex	Matrix: traction:	ESOIL SPLP
Determination	Result	Units		Method	Analyzed	
Calcium Potassium Sodium Silver Aluminum Arsenic Boron Barium Beryllium Cadmium Cobalt Chromium Copper Iron Mercury Lithium Manganese	151 8.89 1.65 <0.00010 0.10 <0.025 <0.04 0.0360 <0.0020 <0.0020 0.0208 <0.0060 1.27 <0.06 <0.00020 <0.0020 <0.0020 0.487 <0.08	mg/L Ext mg/L Ext		6010B 6010B 6020 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6020 6010B 7470A 6010B 6010B 6010B	11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06	
Molybdenum Nickel Lead Selenium Zinc	<0.008 0.014 <0.0075 <0.0030 0.159	mg/L Ext mg/L Ext mg/L Ext mg/L Ext mg/L Ext		6010B 6010B 6010B 6020 6010B	11/05/06 11/05/06 11/05/06 11/02/06 11/05/06	

SAMPLE ID READS AT-1060-13

Reviewed By:_____

1/7 Date 11/07/06 16:06

SVL	ANAL	YTICAL,	INC.
-----	------	---------	------

One Government Gulch
P.O. Box 929
Kellogg, Idaho 83837-0929
Phone: (208)784-1258
Fax: (208)783-0891

Certificate: AZ AZ0538

CLIENT : GALLAGHER & KENNEDY SVL JOE: 1 PROJECT: SAMPLE ID: AT-1006-15 CLIENT SAMPLE ID: AT-1006-15 Matrix: E Sample Collected: 10/09/06 10:20 Matrix: E Sample Receipt : 10/16/06 Matrix: E Date of Report : 11/07/06 Extraction: S Determination Result Units Method Analyzed Calcium 8.33 mg/L Ext 6010B 11/05/06 Sodium 5.37 mg/L Ext 6010B 11/05/06 Sodium 5.37 mg/L Ext 6010B 11/05/06 Sodium 0.00033 mg/L Ext 6010B 11/05/06 Aluminum 1.76 mg/L Ext 6010B 11/05/06 Arsenic <0.025 mg/L Ext 6010B 11/05/06 Barium 0.0190 mg/L Ext 6010B 11/05/06 Cadmium <0.0020 mg/L Ext 6010B 11/05/06 Cadmium <0.0020 mg/L Ext 6010B 11/05/06 Cobalt <0.0020 mg/L Ext 6010B 11/05/06 Cobalt <0.0020 mg/L Ext								
CLIENT SAMPLE ID: AT-1006-15 Sample Collected: 10/09/06 10:20 Matrix: E Sample Receipt : 10/16/06 Matrix: E Date of Report : 11/07/06 Extraction: S Determination Result Units Method Analyzed Calcium 8.33 mg/L Ext 6010B 11/05/06 Potassium 2.19 mg/L Ext 6010B 11/05/06 Sodium 5.37 mg/L Ext 6010B 11/05/06 Sodium 5.37 mg/L Ext 6010B 11/05/06 Silver 0.00033 mg/L Ext 6010B 11/05/06 Aluminum 1.76 mg/L Ext 6010B 11/05/06 Boron 0.05 mg/L Ext 6010B 11/05/06 Barium 0.0190 mg/L Ext 6010B 11/05/06 Barium 0.0190 mg/L Ext 6010B 11/05/06 Cadmium <0.0020 mg/L Ext	CLIE PROJ	NT : GALLAGHE	R & KENNEDY				SVL JOB: SAMPLE:	125947 542985
Determination Result Units Method Analyzed Calcium 8.33 mg/L Ext 6010B 11/05/06 Potassium 2.19 mg/L Ext 6010B 11/05/06 Sodium 5.37 mg/L Ext 6010B 11/05/06 Sodium 5.37 mg/L Ext 6010B 11/05/06 Silver 0.00033 mg/L Ext 6010B 11/05/06 Arsenic <0.025	CLIE Samp Samp Date	NT SAMPLE ID: ole Collected: ole Receipt : e of Report :	AT-1006-15 10/09/06 1 10/16/06 11/07/06	0:20		Ex	Matrix: traction:	ESOIL SPLP
Calcium 8.33 mg/L Ext 6010B 11/05/06 Potassium 2.19 mg/L Ext 6010B 11/05/06 Sodium 5.37 mg/L Ext 6010B 11/05/06 Silver 0.00033 mg/L Ext 6010B 11/05/06 Aluminum 1.76 mg/L Ext 6010B 11/05/06 Arsenic <0.025	Ι	Determination	Result	Units		Method	Analyzed	
Potassium 2.19 mg/L Ext 6010B 11/05/06 Sodium 5.37 mg/L Ext 6010B 11/05/06 Silver 0.00033 mg/L Ext 6020 11/02/06 Aluminum 1.76 mg/L Ext 6010B 11/05/06 Arsenic <0.025	(Calcium	8.33	mg/L Ext		6010B	11/05/06	
Sodium 5.37 mg/L Ext 6010B 11/05/06 Silver 0.00033 mg/L Ext 6020 11/02/06 Aluminum 1.76 mg/L Ext 6010B 11/05/06 Arsenic <0.025	I	Potassium	2.19	mg/L Ext	:	6010B	11/05/06	
Silver 0.00033 mg/L Ext 6020 11/02/06 Aluminum 1.76 mg/L Ext 6010B 11/05/06 Arsenic <0.025	5	Sodium	5.37	mg/L Ext	:	6010B	11/05/06	
Aluminum 1.76 mg/L Ext 6010B 11/05/06 Arsenic <0.025	5	Silver	0.00033	mg/L Ext	:	6020	11/02/06	
Arsenic <0.025	1	Aluminum	1.76	mg/L Ext	:	6010B	11/05/06	
Boron 0.05 mg/L Ext 6010B 11/05/06 Barium 0.0190 mg/L Ext 6010B 11/05/06 Beryllium <0.0020	I	Arsenic	<0.025	mg/L Ext		6010B	11/05/06	
Barium 0.0190 mg/L Ext 6010B 11/05/06 Beryllium <0.0020	I	Boron	0.05	mg/L Ext	:	6010B	11/05/06	
Beryllium <0.0020	E	Barium	0.0190	mg/L Ext	:	6010B	11/05/06	
Cadmium <0.0020	I	Beryllium	<0.0020	mg/L Ext	5 [°]	6010B	11/05/06	
Cobalt <0.0060		Cadmium	<0.0020	mg/L Ext	:	6010B	11/05/06	
Chromium <0.0060		Cobalt	<0.0060	mg/L Ext	:	6010B	11/05/06	
Copper 0.0221 mg/L Ext 6020 11/02/06 Iron 1.45 mg/L Ext 6010B 11/05/06 Mercury <0.00020 mg/L Ext		Chromium	<0.0060	mg/L Ext	:	6010B	11/05/06	
Iron 1.45 mg/L Ext 6010B 11/05/06 Mercury <0.00020		Copper	0.0221	mg/L Ext	:	6020	11/02/06	
Mercury <0.00020 mg/L Ext 7470A 11/07/06 Lithium <0.020 mg/L Ext	-	Iron	1.45	mg/L Ext	:	6010B	11/05/06	
Lithium <0.020	1	Mercury	<0.00020	mg/L Ext	:	7470A	11/07/06	
Manganese 0.0412 mg/L Ext 6010B 11/05/06 Molybdenum <0.008	1	Lithium	<0.020	mg/L Ext	:	6010B	11/05/06	
Molybdenum <0.008 mg/L Ext 6010B 11/05/06 Nickel <0.010	1	Manganese	0.0412	mg/L Ext	-	6010B	11/05/06	
Nickel <0.010 mg/L Ext 6010B 11/05/06 Lead <0.0075	1	Molybdenum	<0.008	mg/L Ext	-	6010B	11/05/06	
Lead <0.0075 mg/L Ext 6010B 11/05/06	1	Nickel	<0.010	mg/L Ext		6010B	11/05/06	
	1	Lead	<0.0075	mg/L Ext		6010B	11/05/06	
Selenium <0.0030 mg/L Ext 6020 11/02/06		Selenium	<0.0030	mg/L Ext	-	6020	11/02/06	
Zinc 0.017 mg/L Ext 6010B 11/05/06		Zinc	0.017	mg/L Ext	-	6010B	11/05/06	

SAMPLE ID READS AT-1060-15

Reviewed By:_____

Hele Date 11/1 11/07/06 16:06

SVL ANALYTICAL	, 1	INC.						Cer	tificate: A	Z AZ0538
One Government Gulch		P.O. Box 929	•	Kellogg, Idaho	83837-0929	-	Phone: (208)784-1258		Fax: (208)	783–0891

Certificate: AZ AZ0538

CLIENT : GALLAGHER & KENNEDY PROJECT:	SVL JOB: 125947 SAMPLE: 542986
CLIENT SAMPLE ID: AT-1006-16 Sample Collected: 10/09/06 10:40 Sample Receipt : 10/16/06 Date of Report : 11/07/06	Matrix: ESOIL Extraction: SPLP
Determination Result Units	Method Analyzed
Calcium 8.25 mg/L Ext	6010B 11/05/06

	Potassium	1.27 mg/L Ext	6010B 11/	05/06
	Sodium	3.97 mg/L Ext	6010B 11/	05/06
	Silver	<0.00010 mg/L Ext	6020 11/	02/06
	Aluminum	0.32 mg/L Ext	6010B 11/	05/06
	Arsenic	<0.025 mg/L Ext	6010B 11/	05/06
	Boron	<0.04 mg/L Ext	6010B 11/	05/06
	Barium	0.0165 mg/L Ext	6010B 11/	05/06
	Beryllium	<0.0020 mg/L Ext	6010B 11/	05/06
	Cadmium	<0.0020 mg/L Ext	6010B 11/	05/06
	Cobalt	<0.0060 mg/L Ext	6010B 11/	05/06
	Chromium	<0.0060 mg/L Ext	6010B 11/	05/06
	Copper	0.0015 mg/L Ext	6020 11/	02/06
	Iron	0.44 mg/L Ext	6010B 11/	05/06
	Mercury	<0.00020 mg/L Ext	7470A 11/	07/06
	Lithium	<0.020 mg/L Ext	6010B 11/	05/06
	Manganese	0.0067 mg/L Ext	6010B 11/	05/06
	Molybdenum	<0.008 mg/L Ext	6010B 11/	05/06
	Nickel	<0.010 mg/L Ext	6010B 11/	05/06
	Lead	<0.0075 mg/L Ext	6010B 11/	05/06
	Selenium	<0.0030 mg/L Ext	6020 11/	02/06
	Zinc	<0.010 mg/L Ext	6010B 11/	05/06
- 4				1

SAMPLE ID READS AT-1060-16

Reviewed By:_____

HOld 11/07/06 16:06

SVL ANALYTICAL, INC. One Government Gulch P.O. Box 929		Kellogg, Idaho	83837-0929	₽	Phone: (208)784-1258	Certific Fax:	ate: AZ AZ0538 (208)783-0891
CLIENT : GALLAGHER & KEN PROJECT:	NED	Y			SV	L JOB: AMPLE:	125947 543972

CLIENT SAMPLE ID: AT-1006-17 Sample Collected: 10/09/06 10:55 Sample Receipt : 10/16/06 Date of Report : 11/07/06

Determination Result Units

.

Method	Analyzed
6010B	11/05/06
	11/05/06

Matrix: ESOIL Extraction: SPLP

	Calcium	8.32	mg/L Ext	6010B	11/05/06
	Potassium	1.19	mg/L Ext	6010B	11/05/06
	Sodium	10.9	mg/L Ext	6010B	11/05/06
	Silver	<0.00010	mg/L Ext	6020	11/02/06
	Aluminum	3.39	mg/L Ext	6010B	11/05/06
	Arsenic	<0.025	mg/L Ext	6010B	11/05/06
	Boron	0.09	mg/L Ext	6010B	11/05/06
	Barium	0.0154	mg/L Ext	6010B	11/05/06
	Beryllium	<0.0020	mg/L Ext	6010B	11/05/06
	Cadmium	<0.0020	mg/L Ext	6010B	11/05/06
	Cobalt	<0.0060	mg/L Ext	6010B	11/05/06
	Chromium	<0.0060	mg/L Ext	6010B	11/05/06
	Copper	0.0062	mg/L Ext	6020	11/02/06
	Iron	2.53	mg/L Ext	6010B	11/05/06
	Mercury	<0.00020	mg/L Ext	7470A	11/07/06
	Lithium	<0.020	mg/L Ext	6010B	11/05/06
	Manganese	0.0186	mg/L Ext	6010B	11/05/06
	Molybdenum	<0.008	mg/L Ext	6010B	11/05/06
	Nickel	<0.010	mg/L Ext	6010B	11/05/06
	Lead	<0.0075	mg/L Ext	6010B	11/05/06
	Selenium	<0.0030	mg/L Ext	6020	11/02/06
	Zinc	0.051	mg/L Ext	6010B	11/05/06
1					

SAMPLE ID READS AT-1060-17

Reviewed By:

Date 11/1/06 11/07/06 16:06

S On	VL ANALYTICAL, INC. e Government Gulch • P.O.	Box 929 🔳	Kellogg,	Idaho	83837-0929	• F	hone: (208)784	-1258	Cert •	ifica Fax:	te: AZ AZ0538 (208)783-0891
	CLIENT : GALLAGHER PROJECT: CLIENT SAMPLE ID:	& KENNEDY	1 1 0					SVL SA	JO MPL	B: E:	125947 543973
	Sample Collected: Sample Receipt : Date of Report :	10/16/06 11/07/06	1:10				Ex	Ma trac	tri tio	x: n:	ESOIL SPLP
	Determination	Result	Units				Method	Anal	yzeć	1	
	Calcium	19.6	mg/L	Ext			6010B	11/0	5/06	;	
	Potassium Sodium	1.51	mg/L mg/L	Ext Ext			6010B 6010B	$\frac{11}{0}$	5/06		
	Silver	<0.00010	mg/L	Ext			6020	11/0	2/06	5	
	Aluminum Arsenic	0.31 <0.025	mg/L mg/L	Ext Ext			6010B 6010B	11/0 11/0	5/06 5/06		
	Boron	<0.04	mg/L	Ext			6010B	11/0	5/06		
	Barium Beryllium	0.0307 <0.0020	mg/L mg/L	Ext Ext			6010B 6010B	11/0 11/0	5/06 5/06		
	Cadmium Cobalt	<0.0020 <0.0060	mg/L mg/L	Ext Ext			6010B 6010B	11/0 11/0	5/06 5/06		
	Chromium	<0.0060	mg/L	Ext			6010B	11/0	5/06		

Reviewed By:

Copper

Mercury

Lithium

Nickel

Selenium

Lead

Zinc

Manganese

Molybdenum

Iron

1/1/06 Date 11/07/06 16:06

6020

6010B

7470A

6010B

6010B

6010B

6010B

6010B

6020

6010B

11/02/06

11/05/06

11/07/06

11/05/06

11/05/06

11/05/06

11/05/06

11/05/06

11/02/06

11/05/06

AZ: AZ0538 CA: CERT NO. 2080 CO: CERT NO. ID00019 ID: ID00019 MT: CERT. 0027 NV: CERT. ID19 WA: C1268

0.0016 mg/L Ext

<0.00020 mg/L Ext

<0.0040 mg/L Ext

<0.0075 mg/L Ext

<0.0030 mg/L Ext

mg/L Ext

mg/L Ext

mg/L Ext

mg/L Ext

mg/L Ext

0.18

<0.020

<0.008

<0.010

<0.010

8

SVL	ANAL	YTICAL	, INC.
-----	------	--------	--------

LIENT : GALLAGHEF ROJECT: LIENT SAMPLE ID: ample Collected: ample Receipt : ate of Report :	& KENNEDY AT-1006-19 10/09/06 1 10/16/06 11/07/06	1 : 35	E>	SVL JOB: SAMPLE: Matrix: straction:	12594 54397 ESOIL SPLP
Determination	Result	Units	Method	Analyzed	
Calcium	8 10	ma/L Ext	6010B	11/05/06	
Detaggium	2 12	mg/l Ext	6010B	11/05/06	
Sodium	5 59	mg/L Ext	6010B	11/05/06	
Silver		mg/L Ext	6020	11/02/06	
	2 52	mg/L Ext	6010B	11/05/06	
Arsenic	<0.025	mg/L Ext	6010B	11/05/06	
Borop	<0.04	mg/L Ext	6010B	11/05/06	
Barium	0.0306	mg/L Ext	6010B	11/05/06	
Beryllium	<0.0020	mg/L Ext	6010B	11/05/06	
Cadmium		mg/L Ext	6010B	11/05/06	
	<0.0060	mq/L Ext	6010B	11/05/06	
Chromium		mg/L Ext	6010B	11/05/06	
Copper	0.0359	mg/L Ext	6020	11/02/06	
Iron	2 22	mg/L Ext	6010B	11/05/06	
Mercury	<0.00020	mg/L Ext	7470A	11/07/06	
Lithium	<0.020	mg/L Ext	6010B	11/05/06	
Manganese	0 0424	mg/L Ext	6010B	11/05/06	
Molyhdenum		mg/L Ext	6010B	11/05/06	
Nickel	< 0 010	mg/L Ext	6010B	11/05/06	
Lead		mg/L Ext	6010B	11/05/06	
Selenjum		mg/L Ext	6020	11/02/06	
Zinc	0.023	ma/L Ext	6010B	11/05/06	
Zinc eviewed By:	0.023	mg/L Ext	6010B	11/05/06	

Date 4/7/06 11/07/06 16:06

S\ 0ne	/L ANALYTICAL, INC. e Government Gulch ■ P.O. Box 929 ■ Kellogg, Idaho 8:	Certificate: AZ AZ053 33837-0929 • Phone: (208)784-1258 • Fax: (208)783-089
	CLIENT : GALLAGHER & KENNEDY PROJECT: CLIENT SAMPLE ID: AT-1006-21	SVL JOB: 125947 SAMPLE: 543975
	Sample Collected: 10/09/06 13:55 Sample Receipt : 10/16/06 Date of Report : 11/07/06	Matrix: ESOIL Extraction: SPLP

Determination	Result	Units	Method	Analyzed
Calcium	16.5	mg/L Ext	6010B	11/05/06
Potassium	1.88	mg/L Ext	6010B	11/05/06
Sodium	3.12	mg/L Ext	6010B	11/05/06
Silver	<0.00010	mg/L Ext	6020	11/02/06
Aluminum	0.67	mg/L Ext	6010B	11/05/06
Arsenic	<0.025	mg/L Ext	6010B	11/05/06
Boron	<0.04	mg/L Ext	6010B	11/05/06
Barium	0.0458	mg/L Ext	6010B	11/05/06
Beryllium	<0.0020	mg/L Ext	6010B	11/05/06
Cadmium	<0.0020	mg/L Ext	6010B	11/05/06
Cobalt	<0.0060	mg/L Ext	6010B	11/05/06
Chromium	<0.0060	mg/L Ext	6010B	11/05/06
Copper	0.0028	mg/L Ext	6020	11/02/06
Iron	0.45	mg/L Ext	6010B	11/05/06
Mercury	<0.00020	mg/L Ext	7470A	11/07/06
Lithium	<0.020	mg/L Ext	6010B	11/05/06
Manganese	0.0055	mg/L Ext	6010B	11/05/06
Molybdenum	<0.008	mg/L Ext	6010B	11/05/06
Nickel	<0.010	mg/L Ext	6010B	11/05/06
Lead	<0.0075	mg/L Ext	6010B	11/05/06
Selenium	<0.0030	mg/L Ext	6020	11/02/06
Zinc	<0.010	mg/L Ext	6010B	11/05/06

Reviewed By:_____

Date 11/7/06 11/07/06 16:06 Herew

CLIENT : GALLAGHEN PROJECT:	R & KENNEDY AT-1006-23			SVL JOB: SAMPLE:	12594 54397
Sample Collected:	10/09/06 14	4 : 30		Matrix.	FROTT
Sample Receipt : Date of Report :	10/16/06 11/07/06		 E	xtraction:	SPLP
Determination	Result	Units	Method	Analyzed	
Calcium	20.4	mg/L Ext	6010B	11/05/06	
	1.20	mg/L Ext	6010B	11/05/06	
Sodium	5.86	mg/L Ext	6010B	11/05/06	
Silver	<0.00010	mg/L Ext	6020	11/02/06	
Aluminum	0.06	mg/L Ext	6010B	11/05/06	
Arsenic	<0.025	mg/L Ext	6010B	11/05/06	
Boron	<0.04	mg/L Ext	6010B	11/05/06	
Barium	0.0591	mg/L Ext	6010B	11/05/06	
Bervllium	<0.0020	mg/L Ext	6010B	11/05/06	
Cadmium	<0.0020	mg/L Ext	6010B	11/05/06	
Cobalt	<0.0060	mg/L Ext	6010B	11/05/06	
Chromium	<0.0060	mg/L Ext	6010B	11/05/06	
Copper	<0.0010	mg/L Ext	6020	11/02/06	
Tron	0.08	mg/L Ext	6010B	11/05/06	
Mercury	<0.00020	mg/L Ext	7470A	11/07/06	
Lithium	<0.020	mg/L Ext	6010B	11/05/06	
Manganese	<0.0040	mg/L Ext	6010B	11/05/06	
Molybdenum	<0.008	mg/L Ext	6010B	11/05/06	
Nickel	<0.010	mg/L Ext	6010B	11/05/06	
Lead	<0.0075	mg/L Ext	6010B	11/05/06	
Selenium	<0.0030	mg/L Ext	6020	11/02/06	
Zinc	< 0.010	mg/L Ext	6010B	11/05/06	

Highers Date 11/1/06 11/07/06 16:06

VL ANALYTICAL, INC ne Government Gulch • P.C	• • Box 929 •	Kellogg, Idaho	83837-0929	 Phone: (208)784 	Certifica -1258 ∎ Fax: 	ate: AZ AZ053 (208)783-089
CLIENT : GALLAGHE PROJECT: CLIENT SAMPLE ID:	R & KENNEDY AT-1006-24				SVL JOB: SAMPLE:	125947 543977
Sample Collected: Sample Receipt : Date of Report :	10/09/06 14 10/16/06 11/07/06	4:50		Ex	Matrix: traction:	ESOIL SPLP
Determination	Result	Units		Method	Analyzed	
Calcium Potassium	7.67	mg/L Ext mg/L Ext		6010B 6010B	11/05/06 11/05/06	
Sodium	3.80	mg/L Ext		6010B 6020	11/05/06	
Aluminum	1.36	mg/L Ext		6010B 6010B	11/05/06	
Boron	<0.025	mg/L Ext		6010B	11/05/06	
Barıum Beryllium	<0.0020	mg/L Ext		6010B 6010B	11/05/06	
Cadmium Cobalt	<0.0020	mg/L Ext		6010B 6010B	11/05/06	
Chromium Copper	<0.0060	mg/L Ext mg/L Ext		6010B 6020	11/02/06	
Iron Mercury	1.13 <0.00020	mg/L Ext mg/L Ext		7470A	11/05/06	
Lithium Manganese	<0.020 0.0199	mg/L Ext mg/L Ext		6010B 6010B	11/05/06	
Molybdenum Nickel	<0.008 <0.010	mg/L Ext mg/L Ext		6010B 6010B	11/05/06 11/05/06	
Lead Selenium	<0.0075 <0.0030	mg/L Ext mg/L Ext		6010B 6020	11/05/06 11/02/06	
Zinc	0.012	mg/L Ext		6010B	11/05/06	

Reviewed By:_____

Stelan

Date 11/1/06

Quality Control Report Part I Prep Blank and Laboratory Control Sample

Client :GALLAGHE	R & KENN	NEDY					SVL JOB N	io: 125947
Analyte	Method	Matrix	Units	Prep Blank	True—LCS	Found	LCS %R	Date
Silver Aluminum Arsenic Boron Barium	6020 6010B 6010B 6010B 6010B	ESOIL ESOIL ESOIL ESOIL ESOIL	mg/L Ext mg/L Ext mg/L Ext mg/L Ext mg/L Ext	<0.00010 <0.03 <0.025 <0.04 <0.0020	0.0250 1.00 1.00 1.00 1.00 1.00	0.0285 1.06 0.996 1.04 1.05	114.0 106.0 99.6 104.0 105.0	11/02/06 11/05/06 11/05/06 11/05/06 11/05/06
Barlum Beryllium Calcium Cadmium Cobalt Chromium Copper Iron Potassium Lithium Manganese Molybdenum	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B	ESOIL ESOIL ESOIL ESOIL ESOIL ESOIL ESOIL ESOIL ESOIL ESOIL ESOIL	mg/L Ext mg/L Ext	<0.0020 <0.04 <0.0020 <0.0060 <0.0060 <0.0010 <0.06 <0.50 <0.020 <0.0040 <0.008	1.00 20.0 1.00 1.00 0.0250 10.0 20.0 1.00 1.00 1.00	1.02 21.2 1.01 1.02 1.03 0.0278 10.8 20.0 1.04 0.995 1.05	102.0 106.0 101.0 102.0 103.0 111.2 108.0 100.0 104.0 99.5 105.0	11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06 11/05/06
Sodium Nickel Lead Selenium Zinc Mercury	6010B 6010B 6020 6010B 7470A	ESOIL ESOIL ESOIL ESOIL ESOIL	mg/L Ext mg/L Ext mg/L Ext mg/L Ext mg/L Ext mg/L Ext	<0.50 <0.010 <0.0075 <0.0030 <0.010 <0.00020	19.0 1.00 1.00 0.0250 1.00 0.00500	19.9 0.966 1.03 0.0264 1.01 0.00501	104.7 96.6 103.0 105.6 101.0 100.2	11/05/06 11/05/06 11/05/06 11/02/06 11/05/06 11/07/06

LEGEND:

LCS = Laboratory Control Sample

LCS %R = LCS Percent Recovery

N/A = Not Applicable

π

Quality Control Report Part II Duplicate and Spike Analysis

Clie	ent :GALLAGHE	ER & KENNEI	YC					SV	L JOB Nc	: 125947
		QC SAMPLI	E ID	Duplicate	or	MSD-T	Mat	rix Spike	<u>و ت</u>	Analysis
Test	Method Mtx	Units	Result	Found		RPD*	Result	SPK ADD	5K	Date
۳ ۲ م	6020 F	ma/L Ex	<0.00010	0.0283	м	0.4	0.0284	0.0250	113.6	11/02/06
Ag	6020 E	$m_{\rm m}/L$ Ex	<0.00010	N/A		N/A	0.0278	0.0250	111.2	11/02/06
AY Al	6010B E	mg/L Ex	0.44	1.58	М	1.9	1.55	1.00	111.0	11/05/06
21 21	6010B E	$2 m \alpha / L E X$	1.36	N/A		N/A	2.49	1.00	113.0	11/05/06
Ac	6010B E 1	$1 m \alpha / L E x$	<0.025	1.01	М	1.2	0.998	1.00	99.8	11/05/06
Ac	6010B E	2 mg/L Ex	<0.025	N/A		N/A	1.01	1.00	101.0	11/05/06
B	6010B E	1 mg/L Ex	<0.04	1.09	М	1.9	1.07	1.00	107.0	11/05/06
B	6010B E	2 mg/L Ex	<0.04	N/A		N/A	1.08	1.00	108.0	11/05/06
Ba	6010B E	1 mg/L Ex	0.0062	1.08	М	1.9	1.06	1.00	105.4	11/05/06
Ba	6010B E	2 mg/L Ex	0.0268	N/A		N/A	1.09	1.00	106.3	11/05/06
Be	6010B E	1 mg/L Ex	<0.0020	1.04	M	2.9	1.01	1.00	101.0	11/05/06
Be	6010B E	2 mg/L Ex	<0.0020	N/A		N/A	1.03	1.00	103.0	11/05/06
Ca	6010B E	1 mg/L Ex	10.8	32.3	М	2.8	31.4	20.0	103.0	11/05/06
Ca	6010B E	2 mg/L Ex	7.67	N/A		N/A	29.2	20.0	107.7	11/05/06
Cđ	6010B E	1 mg/L Ex	<0.0020	1.03	М	2.0	1.01	1.00	101.0	11/05/06
Cd	6010B E	2 mg/L Ex	<0.0020	N/A		N/A	1.03	1.00	103.0	11/05/06
Co	6010B E	1 mg/L Ex	<0.0060	1.01	М	1.0	1.02	1.00	102.0	11/05/06
Со	6010B E	2 mg/L Ex	<0.0060	N/A		N/A	1.02	1.00	102.0	11/05/06
Cr	6010B E	1 mg/L Ex	<0.0060	1.05	М	1.9	1.03	1.00	103.0	11/05/06
Cr	6010B E	2 mg/L Ex	<0.0060	N/A	1	N/A	1.04	1.00	104.0	11/05/06
Cu	6020 E	1 mg/L Ex	0.0249	0.0525	М	0.8	0.0529	0.0250	112.0	11/02/06
Cu	6020 E	2 mg/L Ex	0.0053	N/A		N/A	0.0309	0.0250	102.4	11/02/06
Fe	6010B E	1 mg/L Ex	0.34	11.3	М	1.8	11.1	10.0	107.6	11/05/06
Fe	6010B E	2 mg/L Ex	1.13	N/A		N/A	12.1	10.0	109.7	11/05/06
K	6010B E	1 mg/L Ex	1.62	22.0	М	1.8	21.6	20.0	99.9	11/05/06
K	6010B E	2 mg/L Ex	2.48	N/A		N/A	22.5	20.0	100.1	11/05/06
Li	6010B E	1 mg/L Ex	<0.020	1.05	М	1.9	1.03	1.00	103.0	11/05/06
Li	6010B E	2 mg/L Ex	<0.020	N/A		N/A	1.02	1.00	102.0	11/05/06
Mn	6010B E	1 mg/L Ex	0.0067	1.03	М	3.0	1.00	1.00	99.3	11/05/06
Mn	6010B E	2 mg/L Ex	0.0199	N/A		N/A	1.03	1.00	101.0	11/05/06
Мо	6010B E	1 mg/L Ex	<0.008	1.07	М	0.9	1.06	1.00	106.0	11/05/06
Мо	6010B E	2 mg/L Ex	<0.008	N/A		N/A	1.05	1.00	105.0	11/05/06
Na	6010B E	1 mg/L Ex	2.78	23.0	М	2.2	22.5	19.0	103.8	11/05/06
Na	6010B E	2 mg/L Ex	3.80	N/A			23.6	19.0	104.2	11/05/06
Ni	6010B E	1 mg/L Ex	<0.010	0.978	М		0.963	1.00	96.3	11/05/06
Ni	6010B E	2 mg/L Ex	<0.010	N/A		N/A	0.962	1.00	96.2	11/05/06
Pb	6010B E	1 mg/L Ex	<0.0075	1.05	Μ		1.04	1.00	104.0	11/05/06
Pb	6010B E	Z mg/L Ex	<0.00/5		7.6				104.0	11/05/06
Se	6020 E	I MOTIL EX	<0.0030	U.U200	M			0.0250	100.0	11/02/06
se	6020 E	Z MG/L EX		1 02	٦đ			1 00	100.4	11/05/06
Zn	GUIUB E	I MOJLEX		1.US	Ivi		1 05	1 00	102.0	11/05/06
Zn	OUIUB E	Z MG/L EX	V.VIZ		м			0 0010	1 03.0	11/07/06
нg	/4/UA E	I MG/L EX	<0.00020	0.00096	141	5.2	0.00095	0.0010	1 20.0	11/0//08

LEGEND:

RPD% = (|SAM - DUP|/((SAM + DUP)/2) * 100) UDL = Both SAM & DUP not detected. *Result or *Found: Interference required dilution. RPD% = (|SPK - MSD|/((SPK + MSD)/2) * 100) M in Duplicate/MSD column indicates MSD.

SPIKE ADD column, A = Post Digest Spike; %R = Percent Recovery N/A = Not Analyzed; R > 4S = Result more than 4X the Spike Added QC limits for MS recoveries apply only if the spike is at least 1/4 the concentration of the analyte in the sample. Control limits for the RPD apply only if the concentration of the analyte in the sample is at least five times the reporting limit. QC Sample 1: SVL SAM No.: 542979 Client Sample ID: AT-1006-02 QC Sample 2: SVL SAM No.: 543977 Client Sample ID: AT-1006-24

CASE #:		SAS #:	SI	DG #:			
SVL#	M	ClientID	Fluid Type	mls Fluid	Sample Wt.	Tumble Ext. Time	Final pH
		pH 4 Buffer					4.00
+		pH 7 Buffer					6.99
542978	ES	EXTRACTION FLUID 1	WESTERN				5,00
542979	ES	AT-1006-02	FILID	2000 mis	1004	18 HR	8.81
542980	20	AT-1006-03	1	2000 MIS	1009	18 HR	7.44
542981	23	AT-1006-07		2000 MIS	1004	18 HR	8,33
542901	27	<u>AT-1006-08</u>		2000 MIS	1004	18 HR	8.07
542983	80	AT-1006-12		2000 MIS	1000	18 HR	9,07
542984	ES ES	AT-1006-13		2000 ms	1000	18 HR	5,78
542985	21	<u>AT-1006-15</u>		2000 MIS	1000	18 HR	8,52
542986	2 2	AT-1006-16		2000 mis	1000	18 HR	8,60
543972	27	AT-1006-17		2000MV	1000	IBHR	9.24
543973	FC	AT-1006-18		2000 MIS	1000	18 HR	7.99
543974	57	AT-1006-19		2000 MIS	1000	18HR	9,33
1543975	ED ED	AT-1006-21		ZODOMIS	1016	18 HR	8,73
543975	27	AT-1006-23	+ +	2000 mis	100 E	18HC	8.36
15/3977	27	AT-1006-24		2000015	ince	18HR	8.52
1543977		11 1000 21	- <u> </u>				
		··· ···					
					1		
				· · · · · · · · · · · · · · · · · · ·			
+							
		· · · · · · · · · · · · · · · · · · ·					
+							
		······································					
+		······································			<u> </u>		
					<u> </u>		
	_	······································	.				

Extraction Started By: Date/Time: 10/30/06 1545

Date/Time: 10/31/06 0945

Extraction Completed By: 🚄 Client: GALLAGHER & KENNEDY Received: 10/16/06

SO'IL JOBS ALSO ABA Also on Soil Jobs

v3.0

		CC	ooler	-ten 16.5	10.16.00	o 11:4	15		RS	-																		12594	<u>n</u>
C	COC No	-	Apach	ne Teio SAP - 01		Cł	air	1 0	f C	ust	ody	y R	lec	ord	ł													Page 1 of	F1
Projec	ct Name				- 																					An	alvt	ical Paramete	ers
			· · · ·	0.4D			1. F	Past	e pł	i an	d E(C 		_										F	05	υ	TOO	KTIME Fro	m
		Apaci	ne rejo	5AP	Gallagher &	Kennedy/	2.7		L Ma	tale	an	é er			ΔΙ	٨c	R	Ra	Re	Ca	C	d C	<u>.</u>		Sa	mp	le l	akels	
Projec	ct Locatio	n:	Apact	ne Tejo SAP	Golder A	ssociates	3. I	Cu	Fo	Hn	K			Mo	, ,, Na.	Ni	, D, . Pb	.S€	a. Z	, 00 n)	., 0	a , c	,						
Samp	oler(s): K	ent Johr	nejack	and Melanie Maguire			<u>,</u>	Gu,																					
Sa	ample		Туре	Sample Identification	Matrix	No. of								-					40					47	40	10	20	Chain of Custor	ty Soalf
	Date	time	Grab	(Field ID)	ļ	Containers	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		2		10	19	20	Chain of Custor	ly Seair
10/8/2	2006	010.0V	<u>X</u>	AT-1006-01	soil	1		X	~								0	NA	0	to		<u></u>	d.	2 41	0 Å		nh	0	
10/8/2	2006	10.12	X	AT-1006-02	soil	1	X	X	X								<u> </u>	100		<u>ne</u>		4	4C	<u>Lin</u>	μ			~~	
10/8/2	2006	11.00		AT 4000 04	SOII		÷		^											-		-	╞	- 1					
10/8/2	2006	11:45		AT 1006 05	soil		Ŷ	Ŷ									¥	9A	m	tie	Þ	オフ	Up.	ac	6	AT	F 1	60 - 05	
10/8/2	2000	12:50	\downarrow	AT-1000-05	soil	1	x	x									. r		[1									
10/8/2	2000		\uparrow		3011	<u> </u>	<u> </u>	<u>^</u>													F	ζ\$	Í	1D	16	· O	6		
																													-
			<u> </u>																								 		
																		<u> </u>				1-				ļ		·······	
																					1		_						
																			ļ		-	_	_						
																		ļ	<u> </u>	<u> </u>			_			<u> </u>	┨──		
							<u> </u> .										<u> </u>	<u> </u>					+						
			<u> </u>					<u> </u>		ļ	 			ļ				<u> </u>			+	+-	-						
			ļ	· · · · · · · · · · · · · · · · · · ·		<u></u>				 	<u> </u>			<u> </u>							+								
			<u> </u>											<u> </u>							+		+			-			
L											 			· -				<u> </u>			+		-		<u> </u>		1		
				· · · · · · · · · · · · · · · · · · ·										\vdash					-	+	-	- -					1		
										┼─	┼──						\vdash		+	1									
					<u> </u>							-			<u> </u>	1	-		+										
			+				-	1	\mathbf{T}	┣─		<u> </u>	1	1	1														
<u> </u>		<u> </u>						1	1	1	1	[1													_	· · · · · · · · · · · · · · · · · · ·	
		1	1 -																						ļ				
		1																 			_			_		+-			
											<u> </u>	 			_	 	_		_						<u>ل</u>	Ļ			
							<u> </u>	1		<u> </u>	<u> </u>									.]					Sp	ecia	u ins		
		S	ignatu	ires	Date	& Time				<u> </u>			S	nip	oing	Deta	IIIS				-					iy q	uest	ions, piease c taquire or Kon	dii it
Relin	nquished	by: M	San	ie (. Magine	10/13/201	6 13:00) Me	thod	l of S	hipr	nent	:		F	ed	EX										sidi hne	ie IV	at 520-888-8	818
Rece	eived by:						Air	bill I	lo.		79.	a	ר ב	22	29	Ч.	-10	58	36	2						eae	gaur e se	nd results to (Golder
Relin	nguished	bv:					1.2	b Ad	dres	ses:	At	TN:	Chr	ris M	ever					•					A	sor	;iate	s at 4730 N. C	Dracle
Rece	eived for L	.aborato	ry by:				sv	L								Ph	one:	208	3-78	4-12	58				R	1, S	uite	210, Tucson,	AZ
5	Joh.	-	brik	lind	10.16m	, 11:45	- On Ke	e Go lload	overr 1. ID	nmer 8383	nt Gu 37-09	lch 29				Fax	c: 20	08-7	83-0	891					85	705	5.	. ,	
	un		nu,	uny	107000				,,																				

COC No		Apach	' le Tejo SAP - 02		Ch	air	1 01	CI	lst	ody	ĸe	cor	a												Page 1	of 1
Project Name						1 F	Paste	e pł	l and	d EC											-	<u>A</u>	naly	tica	I Parame	eters
	Apach	ne Tejo	SAP	Gailagher 8	Kennedv/	2. A	BA												<u> </u>			SUC nm l	10 11/	cæ Lah	ob	
	<u></u>			Goldor A	esociatos	3. 1	ota	Me	tals	and	SPL	P (A	g, Al	, As	, В,	Ba,	Be,	Ca,	Cd,	Co,		a f	A	Cure.		
	Cont John	Apacr	ne Tejo SAP	Goldel A	SSUCIALES	Cr,	Cu,	Fe,	Hg,	K, Li	, Mr	n, Mo	, Na	, Ni	i, Pb), Se	e, Zn)								
Sampler(s).		Type	Sample Identification	Matrix	No. of																		- r			
Sample	time	Grah	(Field ID)	matrix	Containers	1	2	3	4	5 6	; 7	8	9	10	11	12	13	14	15 1	16 1	7 1	8 1	$\frac{1}{2}$		Chain of Cus	tody Seal#
10/8/2006	0 14:05	X	AT-1006-07	soil	1	X	X	X							¥	5 0	ON	San	npe	e pa	ape	<u>e</u>	gau	μ -	141-106	~ ~ ~ ~ ~ ~
10/8/2006	1415	X	AT-1006-08	soil	1	X	X	X							¥	πD	ant	Sam	ple	da	lel	pe	afel	24	<u>r-1060-</u>	<u> </u>
10/8/2006	14:25	X	AT-1006-09	soil	1	X	X						_	L	*	ΦD	<u>ns</u>	ame	ile_	<u>ngl</u>	247	<u>rga</u>	ap_	_#I	-10601	07
10/8/2006	14:45	Х	AT-1006-10	soil	1	X	Х						ļ	ļ	16	IΩ	on		mþ	le J	106		<u>uja</u>	ap j	<u>HT-106</u>	0-10 11 n+ 11
10/8/2006	1540	Х	AT-1006-11	soil	1	X	X						<u> </u>		p.	20	m	Bar	r As	<u>f</u>	ψ	<u>, pe</u>	rac	<u>'</u> #	TETDOUT IS	<u>ч-нг-ге</u>
10/8/2006	0224	Х	AT-1006-12	soil	1	X	X	X							A	τO	on	-\$4	mp	le de	262	44	erio	9#	7-100-	1 2
					<u> </u>]	_+										Δu	1.h	t				
						· ·								_──				R.	<u>≻</u> ∦/	\mathcal{D}	σ₽	4		+		
											_					┼──	$\left - \right $				-+-		+			
												_				╂───										
												_			1				-+			-†-	+-	+		
											_												-			
									I				_	╉──╴							+	-		+		
																					-†		+			
								┣	<u> </u>							+		-1	-+				-			
		ļ								┝╼╌┼╸						+	+				-		1			
	·	<u> </u>									+					1	+									
										┝━─┼╸							1									
						+	+	+-						+												
		<u> </u>					+	+-		┝─┢			-				1									
							-{		+	┟──┼╴			-		1-											
							-									1										
						+	+	+	\uparrow			-†-	\top	1									_			
				+		+	+	+	1	$\uparrow \uparrow$												_				
				-	+	-			1															_ _		
						1-																				
							\top		Τ								_				r	Spec	ial Ir	nstru	ictions	11
<u> </u>	s	ignatu	ures	Date & Time								Shi	oping	Det	ails							Any	que	stior	is, please	e call
Relinquished	by: MA	0	- (QAD A	IDIRI	12121200412:00		thoc	lofs	Shipr	nent:			Fed	Ex								Mela	inie	Maç	Juire or K	
Deselvedt		(lan	wirragene		<u> </u>					an		a c	12	Ц	46	2						Johr	iejao	ck a	1 520-888	5-8818.
Received by								10.	_ 7	70	כ	05	- 7		ιĸ	0						Plea	se s	send		
Relinquished	d by:					La	<u>b Ad</u>	dres	ses:	ATT	<u>N: (</u>	Chris	Meye	<u>r</u>	10000		R_79/	-125	R			Ass	ocia	tes a	at 4/30 N	
Received for	Laborato	ry by:				SV				t Gul	h			Fa	10110	08-7	83-08	391	-			Kd,	Suit	e 21	u, Tucso	ш, Аट

\frown	, ``	A	11	*
th	h. r	-d/m	hli	
N CH	an i	XXII	au	VUT

		and	-	105	10-16-0C	e 11	1:4	5	ŕ	25	L								_								12594	17
ſ	COC No.	<u>uris</u>	Apach	ne Tejo SAP - 03		Ch	air	1 0	f C	ust	tod	y F	Rec	or	ł												Page 1 of	f 1
Ī	Project Name							7004	<u> </u>	u ar		C												_	Ana	lytic	cal Paramete	ers
ł	•	Anaci	ιο Τοία	SAP	Oallashaa 8	Kannadul	2	ARA	e h	n ai	IU L													oti	me	ŧ	cken prom	۱
ŀ					Gallagner &	Kennedy	3 -	<u>Tota</u>	IM	etals	s an	d S	PLP	(Ac	. Al	, As	, В,	Ba,	Be,	Ca,	Cd	, Cc),	Sa	mρ	le	labels.	
ľ	Project Location	on:	Apact	ne Tejo SAP	Golder A	ssociates	Cr	Cu	Fe	. Ha	. K .	Li.	Mn.	Mo,	Na	, Ni	, Pb	, Se	, Zn)								
ŀ	Sampler(s): K	ent Johr	ejack	and Melanie Maguire	······································	·····																						
ſ	Sample		Туре	Sample Identification	Matrix	No. of	<u> </u>	T		T				-		40	44	42	12	14	15	16	17	18	19	20	Chain of Custo	dv Seal#
	Date	time	Grab	(Field ID)		Containers		2	3	4	5	6		8	Э	10		12	13	14	0/	-7/	h			1	A+-1060	-13
ľ	10/8/2006	1803	X	AT-1006-13	soil	1										80 . Nr	<u>+ U</u>			im	py		-02		m	~	AT-1060-	14
Ľ	10/8/2006	10:00	X	AT-1006-14	soil	1	X									NG NG			-1							['	At-1060-	15
ľ	10/9/2006	10.00	<u>X</u>	AT-1006-15	soil				L ×										1						- †			
ŀ	10/9/2006	1025	X	AT-1006-16	soil				+		╂										ন্দ্রা	~	5-	10.1	ज्रत			
ŀ	10/9/2006	22	X	AT-1006-17	soil		÷	₩÷	÷	+			╂───					_					<u> </u>			-		
ł	10/9/2006	<u>"''2</u>	X	AT-1006-18	SOIL	1	 ^	+^	 ^	+													_					
ł									-		1																	
ŀ						<u> </u>		1-	-	-	+						1											
ł	1074.000 NT 1/2								\vdash	1			1		1	1												
			├				-	1	-		-				1					_								
ł								1-				1												·				
ŀ							-			+		1	1															
ł		-					+	1	1-			<u> </u>																
ł		┼━──				-		1	-	-	1	1											Ľ					
ł							-	-	1	1-																		
ł	<u></u>						ϯ		1													L						
							1	-						Γ							ļ	Ì						
			1						\top		-		1									L		ļ				
					+		1								1									<u> </u>				
										T									<u> </u>			 	<u> </u>					
		-								I								 					<u> </u>			<u> </u>		
		-1	†												1	ļ	1_	<u> </u>		_	 	<u> </u>	₋	 				
			1					_									1	ļ	ļ						ļ			
			1													<u> </u>		<u> </u>		_								
			1																	<u> </u>			+					
											1_	ļ				-			<u> </u>	_	I		1			1	L	
												<u> </u>				Ţ,	<u> </u>							Sp	ecial	Inst		
	Relinguished	S by:Mac	ignatu	ires		& Time	7 M e	etho	d of	Ship	men	t:		Ship I	ping Fed	Ex								An Me	y qu Iani	e M	aguire or Ker	nt
	Pacaivad bu	- 100	XUNYU	e program		13/2006 15:00 Met		rhill	No		a	n		a 7	26	2	6	74	81-					Jol	nnej	ack	at 520-888-8	3818. Calda
	Relinquished	by:			+	<u></u>		b Ac	Idre:	 sses	: A	TTN	- Ch	۱ ris N	Leye	r r	v		-0					As	ease soci	e ser iates	a results to at 4730 N.	Oracle
	Received for I	Laborato	ry by:	at the	115 11 1	11.110	S\ Or	/L ne G	over	nme	nt G	ulch				Ph Fa	one: x: 2	208 08-7	3-784 83-08	-125 391	58			Rd 85	, Su 705	iite 2	210, Tucson,	ΑZ
	l 🛉	MUM	$) \square$	HINDUNG	10.1000	2 11.42	K6	зпод	y, IL	030	31-0	723																

COC No.		Apach	ne Tejo SAP - 04	_	Ch	air	ı of	f Cı	ust	od	y R 	lec	oro	k								с —-т		~		Page 1 of 1
Project Name	FF			Client:		1 5	Jact	o nł	l an	d F	С											ļ		An	<u>alyti</u>	cal Parameters
	Apacl	ne Tejo	o SAP	Gallagher 8	Kennedy/	2. <i>F</i>	BA		<u>.</u>				()		٨e	R	Ra	Be	Ca	Cd	. Co		• 1 9a	Um np	e ti ic l	cken from
Project Locatio	on:	Apach	ne Tejo SAP	Golder A	ssociates	3. 1 Cr	ota	Fo Fo	Hais	s an K	a Sr I I. N	'∟r VIn.	(Ay Mo.	Na.	Ni.	, D, . Pb	, Se	, Zn) 1)	, 04	,	,		R	SI	10.16.06
Sampler(s): K	ent John	ejack	and Melanie Maguire			СГ, 	<u> </u>	1.6,	ng	, i.,										<u> </u>				•		
Sample		Туре	Sample Identification	Matrix	No. of	4	5	2	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Chain of Custody Sc
Date	time	Grab	(Field ID)		Containers		×	2 2	4		-		Ť													
10/9/2006		<u> X </u>	AT-1006-19	soil	1	÷	÷	^																		
10/9/2006	10110	<u> </u>	AT-1006-20	soil	1	<u>↓</u>	÷	~																		
10/9/2006	< <u><</u> : </td <td>Х</td> <td>AT-1006-21</td> <td>soil</td> <td><u> </u></td> <td></td> <td></td> <td><u>^</u></td> <td></td>	Х	AT-1006-21	soil	<u> </u>			<u>^</u>																		
10/9/2006	UL PI	<u>X</u>	AT-1006-22	soil	1	X	X	<u> </u>																Γ_		
10/9/2006	1430	Х	AT-1006-23	soil		X	X	X													i			<u> </u>		
10/9/2006	MSO	Х	AT-1006-24	soil	1	<u> X</u>	X	<u> </u>		 	<u> </u>											-			11	
							ļ															[1	1		
								ļ																	1	
						I	<u> </u>		<u> </u>	 																
······································							 	ļ	 	 			<u> </u>												1	
								L	<u> </u>	ļ				ļ											++	
													<u> </u>			 		 		<u> </u>					+	
													ļ					 					╂		+	<u></u>
	+														 	<u> </u>	ļ	 	ļ					+	+	<u></u>
																L	 	<u> </u>	ļ	<u> </u>		<u> </u>	_	+	+'	<u> </u>
								•								<u> </u>		L	L	<u> </u>		_			+	<u> </u>
					· [1														ļ						
					-		1	1			1								ļ	_						
· · · · · · · · · · · · · · · · · · ·		· · · · · ·		2.25	-			1	1	1												<u> </u>				
	<u> </u>			+	-		+					<u> </u>								İ						
			· · · · · · · · · · · · · · · · · · ·	<u> </u>		+	- <u> </u>	1	<u> </u>	1	1	1	1	1										1		<u> </u>
								+	<u> </u>	1	1		1	\square	1							<u> </u>	<u> </u>			<u> </u>
							+	<u> </u>	+		1	1	1	1	1								_	4		
				<u> </u>		+	1	1	1	1	†	1	1	1							L	1_	\downarrow	¶C	C	OPY-
			<u> </u>			1	1-	1	1	1	1	<u> </u>		1								<u> </u>			F	
		 				1	1		1	-	1	1-	1			1										<u> </u>
			·			+	1-	1	+	+	1-	1		1	1	T										<u> </u>
	_				+		+		1-	+	+	┼──	1	1-	1	1							Sp	ecia	<u>I Inst</u>	tructions
		I		Date & Time						1	1	<u> </u>	Shipp	bing	Deta	ils							Ar	ıy qı	uesti	ons, please call
	Si	gnatu	res		Intrance 13:00								 E	od I	Fy								M	elan	ie M	aguire or Kent
Relinquished	by: Mos	anio	(.Maaune	10/13/20	10/13/2006 5:00 M				hip	ment	:		r ~	eu	_ ^								Jo	hne	jack	at 520-888-8818
Received by:					Ai			lo.	7	790	25	· •	85	513	,	41	115						PI	ease	e ser	nd results to Gol
									- /	<u>۸</u>	TTN.	Ch	ris M	lever		-	-						A	soc	iate	s at 4730 N. Ora
Relinquished	by:							ures	385.	A					Ph	one:	208	3-784	1-125	58			R	1 5	uite (210, Tucson, AZ
Received for L	Laborato	ry by:		1		121									Fay	v. 26	08-78	83-08	391				1	., 0		

.

SAMPLE RECEIPT CONFIRMATION

One Government Gulch - Kellogg, ID 83837-0929

Page 1 of 1

'LIENT: DALVA MOELLENBERG GALLAGHER & KENNEDY 2575 E. CAMELBACK ROAD

AZ 85016-9225 PHOENIX FAX: (602) 530-8500 PH: (602) 530-8223

Fax:

We will invoice: SAME

SOIL	GOLDE	R SF	PLP	APAC	CHE	SAMPI	ЪE
	SV	L JC	DB I	lo:		12594	7
		Rece	∋ive	ed:	10	/16/0)6
Expe	ected	Due	dat	te:	10	/30/0)6

3VL#	М	ClientID	Sampled	Time	Ву	Received	Sample Comments
542978	Е	EXTRACTION FLUID 1	/ /	:		10/16/06	Tests:GALL/KENN SPLP GAL/KEN APACHE SPLP
542979	Ε	AT-1006-02	10/08/06	10:15	KJ	10/16/06	NO DATE ON SAMPLE LABEL
							Tests:GALL/KENN SPLP GAL/KEN APACHE SPLP
542980	Ε	AT-1006-03	10/08/06	10:25	КJ	10/16/06	Tests:GALL/KENN SPLP GAL/KEN APACHE SPLP
542981	Ε	AT-1006-07	10/08/06	14:05	KJ	10/16/06	SAMPLE ID READS AT-1060-07
							Tests:GALL/KENN SPLP GAL/KEN APACHE SPLP
542982	Ε	AT-1006-08	10/08/06	14:15	KJ	10/16/06	SAMPLE ID READS AT-1060-08
							Tests:GALL/KENN SPLP GAL/KEN APACHE SPLP
542983	Ε	AT-1006-12	10/08/06	15:50	KJ	10/16/06	SAMPLE ID READS AT-1060-12
			100/00/06	1.6.05		10/10/06	Tests:GALL/KENN SPLP GAL/KEN APACHE SPLP
542984	Е	AT-1006-13	10/08/06	16:05	KJ	10/16/06	SAMPLE ID READS AT-1060-13
	_		10100100	10.00		10/10/06	Tests:GALL/KENN SPLP GAL/KEN APACHE SPLP
542985	Ę	AT-1006-15	10/09/06	10:20	KJ	10/16/06	SAMPLE ID READS AT-1060-15
- 40006	-	NT 1006 16	10/00/00	10 10		10/10/00	Tests:GALL/KENN SPLP/GAL/KEN APACHE SPLP
542986	E	AT-1006-16	10/09/06	10:40	KJ	10/16/06	SAMPLE ID READS AT-1060-16
- 4 3 6 8 6		NT 1006 17	10/00/06	10 55	77.7	10/10/00	TESTS:GALL/KENN SPLP GAL/KEN APACHE SPLP
543972	E	AT-1006-17	10/09/06	10:55	KJ	10/16/06	SAMPLE ID READS AT-1060-17
- 4 - 0	-	1006 10	10/00/00	11 10		10/10/00	Tests:GALL/KENN SPLP GAL/KEN APACHE SPLP
543973	E	AT-1006-18	10/09/06	11:10	KJ	10/16/06	SAMPLE ID READS AT-1060-18
- 4 2 0 7 4	-	1006 10	10/00/06	11 25		10/10/00	TESTS: GALL/KENN SPLP/GAL/KEN APACHE SPLP
543974	E	AT-1006-19	10/09/06	11:35	KJ	10/16/06	TESTS: GALL/KENN SPLP GAL/KEN APACHE SPLP
543975	E	AT-1006-21	10/09/06	13:55	KJ	10/16/06	TESTS: GALL/KENN SPLP GAL/KEN APACHE SPLP
543976	E	AT-1006-23	10/09/06	14:30	KJ	10/16/06	TESUSIGALL/KENN SPLP GAL/KEN AFACHE SPLP
543977	Ľ	AT-1006-24	10/09/06	14:50	KJ	10/16/06	TESUS:GALL/KENN SPLP GAL/KEN APACHE SPLP

ADDITIONAL COMMENTS FOR JOB: Sample Cooler temp: 16.°C.

[] These samples will be DISPOSED 45 days after job completion. 45 days, then you will receive a letter requesting disposal options. [X] These samples will be ARCHIVED

Please contact Crystal Sevy (208-784-1258) if you have questions regarding the receipt of these samples.

10/18/06 19:23

APPENDIX C

Photograph Comparisons

Apache Tejo Wash

PHOTOGRAPH AND AERIAL IMAGE COMPARISON OVER TIME

April 2021

Apache-Tejo Wash Photo and Image Comparison

CHANNEL CHANGES OVER TIME

- Purpose: qualitatively compare photographs and aerial images over time with respect to channel changes.
- Timeframe: 2004 to 2020.
- Photosets available:
 - December 2004. Initial reconnaissance.
 - October 2006. Channel sampling event.
 - October 2008. Additional reconnaissance.
 - August 2019. Recent reconnaissance.
 - January 2020. Recent reconnaissance.
- Aerial images available: 1935, 1974, 1996, and 2016.

Apache – Tejo Wash Photo Comparison GENERAL CHANNEL CONDITIONS STA. 56.0

October 2006. General channel conditions. Looking upstream.

January 2020. General channel conditions. Looking upstream.

No major changes.

32; 39; 19.52777814630835 108; 7; 39.2141423653811216 1653.3374550958597

Apache – Tejo Wash Photo Comparison

October 2006. General conditions at Willow Thicket. Willows in good condition.

August 2019. General conditions at Willow Thicket. Willows drying out/dying. Overflows from the upstream water supply tank that sustained vegetation in the past have now decreased or ceased.

Photograph not exactly at same spot as 2006 photograph.

GPS Coordinates Unavailable

Apache-Tejo Wash Aerial Comparison

WILLOW THICKET STA. 51.0 TO 49.0

1935. Image from EDAC at UNM.

1974. Image from EDAC at UNM.

Presumed tailing accumulation sometime between 1935 and 1974.

Apache-Tejo Wash Aerial Comparison (cont'd) WILLOW THICKET STA. 51.0 TO 49.0

1974. Image from EDAC at UNM.

Presumed tailing accumulation sometime between 1935 and 1974.

1996. Image from EDAC at UNM.

Sediment accumulation over presumed tailings and/or volunteer revegetation between 1974 and 1996.

Direction of flow is north to south.

1996. Image from EDAC at UNM.

Sediment accumulation over presumed tailings and/or volunteer revegetation between 1974 and 1996.

2016. Image from Google Earth.

Groundwater supply well / tank installed between 1996 and 2016. Tank overflows allow dense willow thicket to grow. Field recon in 2020 indicated the overflows have stopped and the willows are dying.

Direction of flow is north to south.

1935

1974 -1996 -

2016

Apache-Tejo Wash Photo Comparison EDWARDS RANCH EAST HEADCUTS STA. 47.0 TO 46.0

October 2008. East headcut at Edwards Ranch. Looking upstream.

January 2020. East headcut at Edwards Ranch. Looking upstream.

More vegetation present and headcut appears stable.

GPS

Latitude32; 37; 46.8189899748978178Longitude108; 7; 29.9492176919011577Altitude1616.24981052666431

Apache-Tejo Wash Photo Comparison EDWARDS RANCH WEST HEADCUTS STA. 47.0 TO 46.0

October 2008. West headcut at Edwards Ranch. Looking downstream.

January 2020. West headcut at Edwards Ranch. Looking downstream.

Note new chunk of headwall fallen into the channel in the foreground – old piece is now hidden in the grass in the background. Headcut has eroded laterally – unclear if it is migrating upstream.

-	
	DC
L I	
-	_

Latitude Longitude Altitude 32; 37; 47.2028581520716273 108; 7; 30.3046644179849167 1616.21575120549164

EDWARDS RANCH AREA STA. 47.0 TO 46.0

1935. Image from EDAC at UNM.

Green arrow indicates location of future headcut.

GOLDER

Direction of flow is north to south.

1974. Image from EDAC at UNM.

Presumed tailing accumulation sometime between 1935 and 1974. No clear headcutting.

EDWARDS RANCH AREA STA. 47.0 TO 46.0

1974. Image from EDAC at UNM.

1996. Image from EDAC at UNM.

Sediment accumulation and/or volunteer revegetation has occurred. Headcutting has initiated.

EDWARDS RANCH AREA STA. 47.0 TO 46.0

1996. Image from EDAC at UNM.

Sediment accumulation and/or volunteer revegetation has occurred. Headcutting has initiated at the west headcut only.

2016. Image from Google Earth.

Sediment accumulation and/or volunteer revegetation has continued. West headcut has not migrated much and east headcut is unclear.

1996

Direction of flow is north to south.

Apache-Tejo Wash Photo Comparison GENERAL CHANNEL CONDITIONS STA. 43.7

December 2004. General channel conditions. Looking upstream.

January 2020. General channel conditions. Looking upstream.

More vegetation on channel banks. No major changes in channel bed.

GPS

Latitude32;Longitude108Altitude160

32; 37; 28.2968383079132479 108; 7; 23.284791234415021 1606.29541474900839

Apache-Tejo Wash Photo Comparison GENERAL CHANNEL CONDITIONS STA. 38.5

December 2004. General channel conditions. Looking upstream.

January 2020. General channel conditions. Looking upstream.

No major changes.

Apache-Tejo Wash Photo Comparison

October 2008. Tailings accumulation at Stock Tank. Looking upstream from top of berm.

January 2020. Tailings accumulation at Stock Tank. Looking upstream from top of berm.

More vegetation, but otherwise no significant changes.

GPS

Latitude Longitude Altitude 32; 36; 25.429275453978164 108; 7; 22.8944896610919635 1587.7154962212453

Apache-Tejo Wash Photo Comparison

FORMER STOCK TANK STA. 36.8

October 2008. Channel at Stock Tank. Looking downstream.

January 2020. Channel at Stock Tank. Looking downstream.

No major changes.

Apache-Tejo Wash Aerial Comparison

1935. Image from EDAC at UNM.

Green arrows indicate channel location.

1974. Image from EDAC at UNM.

Presumed tailing accumulation sometime between 1935 and 1974. Maybe a berm present. Image is not definitive due to pixilation.

Direction of flow is north to south.

Apache-Tejo Wash Aerial Comparison (cont'd) FORMER STOCK TANK STA. 36.8

1974. Image from EDAC at UNM.

Presumed tailing accumulation sometime between 1935 and 1974. Maybe a berm present. Image is not definitive due to pixilation.

1996. Image from EDAC at UNM.

Berm clearly in place with tailings accumulation upstream. Inflow from north maybe be escaping around the east corner of the berm.

Direction of flow is north to south.

Apache-Tejo Wash Aerial Comparison (cont'd) FORMER STOCK TANK STA. 36.8

1996. Image from EDAC at UNM.

Berm clearly in place with tailings accumulation upstream. Inflow from north maybe be escaping around the east corner of the berm.

2016. Image from Google Earth.

Inflow from north clearly bypassing the east end of the berm. Volunteer revegetation is increasing on the tailings accumulation.

Direction of flow is north to south.

1974 1996 2016

Apache-Tejo Wash Photo Comparison GENERAL CHANNEL CONDITIONS STA. 35.7

December 2004. General channel conditions. Looking upstream.

January 2020. General channel conditions looking upstream.

No major changes.

Apache – Tejo Wash Photo Comparison

BIG BERM STA. 32.8 TO 32.5

October 2008. From top of berm looking across revegetated tailings. Looking to the northwest.

January 2020. From top of berm looking across revegetated tailings. Looking to the northwest.

No major changes.

GPS

 Latitude
 32; 35; 48.100726869670325

 Longitude
 108; 7; 16.200419545406497

 Altitude
 1579.62910026289342

Apache – Tejo Wash Photo Comparison

BIG BERM STA. 32.8 TO 32.5

October 2008. Tailings accumulation on the east side of the Big Berm. Looking north-northeast.

January 2020. Tailings accumulation on the east side of the Big Berm. Looking north-northeast.

No major changes.

Photograph not taken in exactly the same location as 2008.

GPS

Latitude Longitude Altitude 32; 35; 50.6161343780840411 108; 7; 8.9767507866490881 1579.46877004230578

Apache – Tejo Wash Photo Comparison

BIG BERM STA. 32.8 TO 32.5

October 2006. General channel conditions immediately downstream of Big Berm. Looking upstream.

January 2020. Channel conditions immediately downstream of the Big Berm. Looking upstream.

No major changes.

GPS

 Latitude
 32; 35; 44.204202347973478

 Longitude
 108; 7; 16.2938594163861339

 Altitude
 1571.07735904823085

Apache-Tejo Wash Aerial Comparison BIG BERM STA.32.8 TO 32.5

1935. Image from EDAC at UNM.

Green arrow shows future berm location.

1974. Image from EDAC at UNM.

Presumed tailing accumulation sometime between 1935 and 1974; cannot distinguish between water deposited tailings and subsequent wind redistribution. Berm is in place; no headcuts downstream of the berm.

Apache-Tejo Wash Aerial Comparison (cont'd) BIG BERM STA.32.8 TO 32.5

1974. Image from EDAC at UNM.

Presumed tailing accumulation sometime between 1935 and 1974. Berm is in place; no headcuts downstream of berm.

Direction of flow is north to south.

1996. Image from EDAC at UNM.

Sediment accumulation and/or volunteer revegetation has occurred. Two headcuts have formed downstream of and to the west of the berm. Tailings to the east have shape of a barcan dune, suggesting windblow origin from the original deposit behind the berm.

1935 1974

1996

Apache-Tejo Wash Aerial Comparison (cont'd) BIG BERM STA. 32.8 TO 32.5

1996. Image from EDAC at UNM.

Two headcuts have formed downstream and west of berm. Presumed windblown tailings to the east of original deposit.

2016. Image from Google Earth.

Headcutting has advanced slightly between 1996 and 2016; rock armor was installed in 2015. A third small headcut formed at the outlet of a drainage pipe. Volunteer revegetation has continued to increase.

Apache – Tejo Wash Photo Comparison GENERAL CHANNEL CONDITIONS STA. 26.0

October 2006. General channel conditions. Looking upstream.

January 2020. General channel conditions. Looking upstream.

Channel appears to have widened, become finer, and possibly aggraded.

GPS

 Latitude
 32; 34; 56.4305335105456152

 Longitude
 108; 7; 6.70038193592335

 Altitude
 1563.81479558472915

Apache-Tejo Wash Photo Comparison

SOUTHERN HEADCUTS STA. 23.0 TO 21.0

October 2008. Headcut west of A-T Wash. Looking upstream.

August 2019. Headcut west of A-T Wash. Looking upstream.

Headcut appears stable, but hard to tell with all the tumbleweeds.

GPS Coordinates Unavailable

Apache-Tejo Wash Aerial Comparison SOUTHERN HEADCUTS STA. 23.0 TO 21.0

1935. Image from EDAC at UNM.

Channel at northeast corner is poorly defined; perhaps aggrading. Side channels downstream do not yet appear to be headcuts.

1974. Image from EDAC at UNM.

Upstream channel still poorly defined. Side channels now headcutting upstream.

1996

1935 -

Direction of flow is from northwest to southeast.

Apache-Tejo Wash Aerial Comparison (cont'd) SOUTHERN HEADCUTS STA. 23.0 TO 21.0

1974. Image from EDAC at UNM.

Upstream channel still poorly defined. Side channels now headcutting upstream.

Direction of flow is from northwest to southeast.

1996. Image from EDAC at UNM.

Channel aggradation and sheetflow to south occurring in northeast corner. Upper headcut has captured sheetflow and migrated upstream. Lower headcut not receiving sheetflow, resulting in little upstream migration.

1935

1974

1996

Apache-Tejo Wash Aerial Comparison (cont'd) SOUTHERN HEADCUTS STA. 23.0 TO 21.0

1996. Image from EDAC at UNM.

Lower headcut stopped migrating in 1974.

Upper headcut migrated upstream between 1974 and 1996.

2016. Image from Google Earth.

Lower headcut stopped migrating in 1974.

Upper headcut did not migrate much between 1996 and 2016. However, 2020 field recon indicated the upper headcut is actively migrating upstream.

1935

Apache – Tejo Wash Photo Comparison GENERAL CHANNEL CONDITIONS STA. 23.0

October 2006. General channel conditions. Looking downstream.

January 2020. General channel conditions. Looking downstream.

Cut banks on both sides. Channel bed appears to be degrading, maybe coarsening. Approximately 1/3 mile upstream, a headcut is migrating upstream (not shown).

GPS

golder.com