APPENDIX E EVALUATION OF HYDRAULIC TESTS AT MO-2007-SERIES WELLS TASK 2.4 OF AQUIFER CHARACTERIZATION PLAN

APPENDIX E

EVALUATION OF HYDRAULIC TESTS AT MO-2007-SERIES WELLS

TASK 2.4 OF AQUIFER CHARACTERIZATION PLAN MITIGATION ORDER ON CONSENT DOCKET NO. P-50-06

Prepared for:

PHELPS DODGE SIERRITA, INC.

6200 West Duval Mine Road Green Valley, Arizona

Prepared by:

HYDRO GEO CHEM, INC.

51 West Wetmore Road Tucson, Arizona 85705 (520) 293-1500

December 28, 2007

TABLE OF CONTENTS

1.	INTRODUCTION										
2.	HYDRAULIC TEST PROCEEDURES										
	2.1 Pumping Procedures										
	2.2 Water Level Monitoring										
	2.3 Data Analysis										
3.	RESULTS9										
	3.1 MO-1 Series										
	3.2 MO-2										
	3.3 MO-3 Series										
	3.4 MO-4 Series										
	3.5 MO-5 Series										
	3.6 MO-6 Series										
4.	DISCUSSION										
5.	REFERENCES										
6.	LIMITATIONS STATEMENT										
	TABLES										
E.1	Well Construction Details										
E.2	Pumping Rates and Durations										
E.3	Summary of Hydraulic Parameters from MO-Series Wells										
	FIGURES										
	riderals										
E.1	Approximate Locations of Well Nests										
E.2	Measured and Simulated Drawdowns at MO-2 During Pumping at 16.4, 30.5, and 37.5 GPM Showing Effect of Well Efficiency Correction										
E.3	Measured and Simulated Drawdowns at MO-1A During Pumping at 15, 25, and 50 GPM										
E.4	Measured and Simulated Drawdowns at MO-1B During Pumping at 16, 30, and 47.5 GPM										
E.5	Measured and Simulated Drawdowns at MO-1B During Pumping at 16, 30, and 47.5 GPM										
E.6	Measured and Simulated Drawdowns at MO-1C During Pumping at 16, 30, and 47.5 GPM										
E.7	Measured and Simulated Drawdowns at MO-2 During Pumping at 16.4, 30.5, and 37.5 GPM										
E.8	Measured and Simulated Drawdowns at MO-3B During Pumping at 14, 33.5, and 51 GPM										
E.9	Measured and Simulated Drawdowns at MO-3B During Pumping at 14, 33.5, and 51 GPM										
E.10	Measured and Simulated Drawdowns at MO-3C During Pumping at 13.8, 27.6, and 38.3 GPM										
E.11	Measured and Simulated Drawdowns at MO-3C During Pumping at 13.8, 27.6, and										
12,11	38.3 GPM										

TABLE OF CONTENTS (continued)

FIGURES (continued)

- E.12 Measured and Simulated Drawdowns at MO-3C During Pumping at 13.8, 27.6, and 38.3 GPM
- E.13 Measured and Simulated Drawdowns at MO-4A During Pumping at 13.5, 26, and 43 GPM
- E.14 Measured and Simulated Drawdowns at MO-4B During Pumping at 13, 31.5, and 52 GPM
- E.15 Measured and Simulated Drawdowns at MO-4B During Pumping at 13, 31.5, and 52 GPM
- E.16 Measured and Simulated Drawdowns at MO-4B During Pumping at 13, 31.5, and 52 GPM
- E.17 Measured and Simulated Drawdowns at MO-4B During Pumping at 13, 31.5, and 52 GPM
- E.18 Measured and Simulated Drawdowns at MO-4C During Pumping at 15-16.5, 28, and 60 GPM
- E.19 Measured and Simulated Drawdowns at MO-4C During Pumping at 15-16.5, 28, and 60 GPM
- E.20 Comparison of Depths to Water at MO-4C Measured by Hand (Using a Sounder) and Computed from Automatically Logged Data
- E.21 Measured and Simulated Drawdowns at MO-4C During Pumping at 15-16.5, 28, and 60 GPM (Hand Collected Data)
- E.22 Measured and Simulated Drawdowns at MO-5B During Pumping at 16, 30, and 55 GPM
- E.23 Measured and Simulated Drawdowns at MO-5B During Pumping at 16, 30, and 55 GPM
- E.24 Measured and Simulated Drawdowns at MO-5C During Pumping at 10.5 and 21 GPM
- E.25 Comparison of Depths to Water at MO-5C Measured by Hand (Using a Sounder) and Computed from Automatically Logged Data
- E.26 Measured and Simulated Drawdowns at MO-5C During Pumping at 10.5 and 21 GPM (Hand Collected Data)
- E.27 Measured and Simulated Drawdowns at MO-6A During Pumping at 13, 28, and 55 GPM
- E.28 Measured and Simulated Drawdowns at MO-6A During Pumping at 13, 28, and 55 GPM (Fit to Recovery Data)
- E.29 Measured and Simulated Drawdowns at MO-6A During Pumping at 13, 28, and 55 GPM (Assumes Aquifer Base at 630 FT BLS)
- E.30 Measured and Simulated Drawdowns at MO-6A During Pumping at 13, 28, and 55 GPM (Assumes Aquifer Base at 630 FT BLS)
- E.31 Measured and Simulated Drawdowns at MO-6B During Pumping at 14, 28, 40, and 33 GPM
- E.32 Measured and Simulated Drawdowns at MO-6B During Pumping at 14, 28, 40, and 33 GPM (Assumes Aquitard from 630-770 FT BLS)
- E.33 Comparison of Water Level Changes at MO-5 Well Nest Prior to, During, and After Pumping of MO-5B
- E.34 Comparison of Water Level Changes at CW-3 and MO-5C with Change in Atmospheric Pressure Prior to, During, and After Pumping of MO-5B

1. INTRODUCTION

This document describes the performance, analysis, and results of hydraulic tests conducted at MO-2007-Series (MO-Series) groundwater monitoring well nests installed under Task 2.4 of the Sierrita work plan (Hydro Geo Chem, Inc. [HGC], 2006). Locations and screened intervals of the wells in the nests are shown in Figure E.1 and construction details are summarized in Table E.1. Geologic logs for the MO-2007-Series wells and a detailed description of each well nest are provided in the well installation report (Appendix D to main text).

The purpose of the tests was to evaluate basin fill aquifer hydraulic properties, including transmissivity, vertical hydraulic conductivity, and storage coefficient, in the vicinity of each well nest. In addition, tests were conducted at multiple pumping rates (thereby constituting step rate tests), to enable evaluation of pumping well efficiency parameters. Pumping well efficiency parameters quantify the proportion of drawdown in the pumped well that is due to resistance to flow into the well bore and include non-linear head losses related to flow through well screen slots. In some cases, especially where the permeability of the aquifer is relatively high, the drawdown in the well is dominated by these head losses. This effect is illustrated in Figure E.2.

HYDRAULIC TEST PROCEEDURES

Hydraulic tests at the MO-2007-Series well nests consisted of step-rate pumping of one of the wells in the nest, measuring the pumping rates, and measuring the water levels in the pumping well and nearby observation wells before, during, and after pumping. Observation wells were typically other wells in the nest that were screened at intervals deeper or shallower than the pumped well. Barometric pressure was also measured during each test to allow correction for any barometrically induced water level changes. Collected data were analyzed to estimate pumped well efficiency parameters and basin fill aquifer hydraulic properties in the vicinities of the well nests. Hereafter, for convenience, wells will be referred to using a shorthand designation, for example MO-6B, rather than MO-2007-6B.

2.1 **Pumping Procedures**

Hydraulic tests were conducted subsequent to development of each new well. A sufficient time was allowed between well development and testing to allow recovery after development. Submersible pumps were supplied, deployed, and operated by the drilling company (WDC Exploration and Wells [WDC]) that installed and developed the wells. Each well was pumped at multiple, increasing, rates to allow analysis of pumping well efficiency parameters. Target rates were approximately 15, 30, and 50 gallons per minute (gpm); actual rates varied depending on pump capacities and well productivities. In some cases (for example MO-5C), the well was pumped at only two rates due to low productivity. In general, the duration of pumping at the first two rates was approximately 1 hour for each, and at the maximum rate, approximately 8 hours. Table E.2 lists actual pumping rates and durations for each test.

Pumping rates were measured using in-line flowmeters supplied by WDC and by

measuring the time to fill a vessel of known volume (the "bucket and stopwatch" method). In

most cases, the vessel consisted of a calibrated, 55-gallon drum that allowed very accurate

calculation of actual pumping rates because of its large capacity.

2.2 Water Level Monitoring

Water level monitoring consisted of continuous monitoring of water levels in pumping

and observation wells prior to, during, and after pumping. Observation wells included available

wells near the location (within a hundred feet) of the pumped well. These were typically other

wells in the newly installed well nest, screened at intervals either deeper or shallower than the

pumped well. For example, MO-1A and MO-1C were used as observation wells during pumping

of MO-1B. Relative to MO-1B, MO-1A is screened over a shallower interval, and MO-1C is

screened over a deeper interval (Table E.1).

Water levels were typically monitored at 30 second intervals using In-Situ Level Trolls

(Trolls). The Trolls, which are submersible instruments containing pressure transducers and data

loggers, were initially placed at sufficient depths below the static water levels in the wells to

remain submerged throughout each test. Most of the Trolls used in the tests were vented to the

atmosphere, and therefore measured gauge pressures. The Troll used at MO- 2 was an absolute

pressure transducer. In all cases, a second absolute pressure Troll at the surface continuously

recorded atmospheric pressure during each test.

E-4

Evaluation of Hydraulic Tests at MO-Series Wells
H:\78300\78306.4\Pumping Tests\Evaluation of Hydraulic Tests MO-Series Wells 122807.doc

December 28, 2007

The pressure ranges of the Trolls selected for each test were based on the anticipated

maximum response in the well in which the Troll was to be deployed. For observation wells,

Trolls with a range of 5 pounds per square inch (psi), or approximately 12 feet of water, were

typically used. For many of the pumped wells, Trolls with ranges of as much as 30 psi

(approximately 70 feet of water) were used.

As an independent verification of the Troll data, water level measurements in pumping

and observation wells were collected by hand using an electric water level sounder as frequently

as practical. In many cases, hand collection of water levels was not possible over the entire

duration of a test due to binding-up of the water level probe. Binding resulted from crowding

within the narrow diameter (2 - inch) sounding tubes which accommodated the vent lines and

cables for the Trolls, and provided the only access for the water level sounder.

2.3 Data Analysis

Water level data from the Trolls were downloaded and converted to depths to water and

to water level drawdowns for purposes of analysis. In cases where automatically logged data

were shown to be inaccurate through comparison to the hand collected data, and sufficient

measurements were available (for example, at MO-4C and MO-5C), the hand collected depths to

water were converted to water level drawdowns and analyzed independently. In all cases, hand-

measured depths to water were compared with depths to water calculated from Troll readings as

a check on Troll accuracy.

 E_{-}

Evaluation of Hydraulic Tests at MO-Series Wells
H:\78300\78306.4\Pumping Tests\Evaluation of Hydraulic Tests MO-Series Wells 122807.doc

December 28, 2007

For purposes of analysis, the total number of automatically logged drawdown records

was reduced. Typically, the first 5 to 10 records at the beginning of each pumping step were

retained for analysis. Then, every second, then third, then fourth, etc, record was retained, until

the beginning of the next pumping step. This was necessary in most cases to meet input

requirements for the software used to analyze the data, and to improve the rate at which

automatic parameter estimation could proceed.

Drawdown and pumping rate data were analyzed using WHIP, a well hydraulics

interpretation package developed and marketed by HGC (HGC, 1988). WHIP has solutions that

account for variable pumping rates, vertical flow and leakage, wellbore storage, and partial

penetration of pumping and observation wells within a vertically anisotropic aquifer. WHIP also

accounts for head losses in the pumped well resulting from well efficiency effects. Direct

estimation of vertical hydraulic conductivities is available as part of the vertically anisotropic

aquifer solution provided in WHIP.

In all cases, except at MO-2, the vertically anisotropic, partially penetrating well solution

available in WHIP was used to estimate hydraulic properties and pumping well efficiency

parameters. Because MO-2 was the only well installed at this location, and was fully

penetrating, the 'homogeneous aquifer' solution was used because it assumes full well

penetration and allows faster parameter estimation than the partial penetration solution.

Hydraulic parameters estimated from each test included transmissivity, vertical hydraulic

conductivity, storage coefficient, and pumped well efficiency parameters. In each case, pumping

and recovery data were analyzed together to obtain the best fit to all collected data. The

E-6

automatic parameter estimation routines were utilized when needed to improve the fits between

measured and simulated drawdowns. In cases where a nearby observation well completed at a

different depth interval than the pumping well showed no response to pumping, the lack of

response was used to provide a limit on the vertical conductivity estimated from analysis of the

pumped well data. Furthermore, in many cases, water level trends measured in the observation

wells that were related to changes in atmospheric pressure or changes in pumping rates at remote

production wells were used to correct drawdowns measured at the pumped well to improve the

fits between measured and simulated drawdowns.

Because drawdowns were not detectable at observation wells, and accurate estimation of

storage coefficient is usually not possible using only data from the pumping well, a value of

0.001 was assumed, which is generally representative of aquifer behavior that is between

confined and unconfined. In some cases the storage coefficient was adjusted to improve the fit

between measured and simulated drawdowns at the pumped well even though analyzable

observation well data were not obtained. The assumption of a storage coefficient of 0.001 and

the constraint that measurable drawdowns were not detected at the observation wells resulted in

generally low estimates of vertical hydraulic conductivity. To test the sensitivity of the analyses

to storage coefficient and vertical hydraulic conductivity, alternate analyses were performed for

the middle depth ('B') wells at locations MO-1, MO-3, MO-4, and MO-5. In these analyses, the

storage coefficient was assumed to be as high as 0.1, and vertical conductivity was adjusted to

provide an acceptable fit to the pumping well data with the constraint that detectable drawdowns

did not occur at monitored observation wells.

E-7

Evaluation of Hydraulic Tests at MO-Series Wells
H:\78300\78306.4\Pumping Tests\Evaluation of Hydraulic Tests MO-Series Wells 122807.doc

December 28, 2007

When analyzing the tests, the partial penetration of pumping and observation wells was

represented. The aguifer thickness was based on the interval between the top of the bedrock

defined by drilling and the static (pre-pumping) water level in the well. Except at MO-6, where a

140 foot thick silty/clayey layer separated MO-6A from MO-6B, none of the pumping wells

were considered to be screened in aquifer horizons separated from the other wells in the nest by

confining or semi-confining (leaky) layers. The effective (horizontal) hydraulic conductivities of

the aguifer intervals penetrated by the pumped wells can be approximated by dividing the

estimated transmissivity by the aquifer thicknesses assumed in the respective analyses.

An alternate method of analyzing the tests at partially penetrating wells would be to

consider the pumped well to be fully penetrating, the aquifer to be only as thick as the pumped

well screened interval, and to represent any vertical flow as leakage from intervals above (or

below). When analyzing a test this way, a lower transmissivity would be calculated because the

assumed aquifer thickness is correspondingly smaller. The effective hydraulic conductivity

computed would be similar using this method of analysis, however, because the reduced

transmissivity estimate would be nearly compensated by the reduced aquifer thickness assumed.

E-8

Evaluation of Hydraulic Tests at MO-Series Wells

H:\78300\78306.4\Pumping Tests\Evaluation of Hydraulic Tests MO-Series Wells 122807.doc

December 28, 2007

3. RESULTS

The results of analyzing pumping rate and drawdown data at the MO-Series well nests

are discussed in the following Sections.

MO-1 Series 3.1

Results of testing the MO-1 well nest are provided in Table E.3 and Figures E.3

through E.6. No measurable responses were obtained 1) at MO-1B or MO-1A during pumping

of MO-1C, 2) at MO-1C or MO-1A during pumping of MO-1B, or at 3) MO-1C or MO-1B

during pumping of MO-1A. MO-1A is completed in the shallow portion of the aquifer, MO-1B

in the middle portion, and MO-1C in the deepest portion of the aguifer (Table E.1).

Transmissivity estimates ranged from 7,000 feet squared per day (ft²/day) at MO-1C to 25,000

ft²/day at MO-1B. The estimate of 20,000 ft²/day at MO-1B was lower than the 25,000 ft²/day

estimated at MO-1A, but was more than twice the value of 7,000 ft²/day estimated for MO-1C.

Sensitivity analyses at MO-1B indicated that vertical hydraulic conductivity could range from

<0.1 to 1 feet per day (ft/day) as assumed storage coefficient ranges from 0.001 to 0.01.

Drawdown data obtained from pumping MO-1B were corrected for a change in

atmospheric pressure and a change in regional water levels based on data collected from

observation well MO-1A. Water levels in MO-1A responded to both changes in atmospheric

pressure, which produced increases and decreases in water level of less than about 0.1 foot (ft),

and to a regional decline in water levels of approximately 0.008 feet per hour (ft/hr) over the

course of the test. The rate of regional water level decline was calculated as the total water level

change over the test divided by the test duration. Applying the correction allowed a better fit to

the latter portions of the drawdown data (within pumping step #3), and to the recovery data.

3.2 **MO-2**

Only one well was completed and tested at the location of MO-2 because the aquifer is

only about 110 ft thick at this location. The results of the analysis are provided in Table E.3 and

Figure E.7. The transmissivity was estimated to be $13,000 \text{ ft}^2/\text{day}$.

3.3 **MO-3 Series**

Results of testing the MO-3 well nest are provided in Table E.3 and Figures E.8

through E.12. MO-3C was the first well installed and tested at this location. Automatically

logged data were noisy and strongly influenced by changes in water levels unrelated to pumping

of MO-3C. The most likely cause of these water level changes, which affected mainly the last

step of the test, is pumping of water supply wells in the basin. An additional difficulty in

analyzing data from the first and second steps was that drawdowns were nearly constant to

declining during portions of these steps, indicating that near-bore permeability or well efficiency

may have been increasing as a result of the pumping. Recovery data were not analyzed due to a

faulty check valve on the pump that released water from the discharge line back into the well

casing when pumping ceased.

Transmissivity estimates for MO-3C ranged from 10,100 to 11,600 ft²/day, and vertical

hydraulic conductivity estimates from 0.0001 to 2.63 ft/day. Results of the analyses are provided

Evaluation of Hydraulic Tests at MO-Series Wells

E-10

H:\78300\78306.4\Pumping Tests\Evaluation of Hydraulic Tests MO-Series Wells 122807.doc

in Table E.3 and Figures E.10 through E.12, which show the fits obtained when assuming

different transmissivity and vertical hydraulic conductivity values.

MO-3B was the second well tested at this location. No measurable response to pumping

at MO-3B was detected at MO-3C or nearby well NP-2. MO-3C is completed in a deeper potion

of the aguifer, and NP-2 in a shallower portion of the aguifer, than MO-3B (Table E.1). This

suggests that the average vertical hydraulic conductivity is at the lower end of estimates obtained

when analyzing the data from the test at MO-3C. A vertical hydraulic conductivity of

0.02 ft/day, and a transmissivity of 17,700 ft²/day, were estimated from the test at MO-3B when

a storage coefficient of 0.001 was assumed (Table E.3 and Figure E.8). Sensitivity analyses at

MO-3B indicated that vertical hydraulic conductivity could be as high as 0.1 ft/day if the storage

coefficient is assumed to be 0.1 (Table E.3 and Figure E.9).

As shown in Figures 8 and 9, improved fits between measured and simulated drawdowns.

especially during recovery, were obtained when a correction was applied to drawdowns in the

third step after approximately 3.3 hours of pumping. The correction increased linearly from zero

to approximately 0.7 feet between about 3.3 and 6 hours into the test, and remained constant

thereafter. The magnitude of the correction indicates it cannot be due to barometric effects, and

is likely the result of recovery of water levels from cessation of pumping of a remote production

well or wells in the basin. Application of the correction does not change the interpretation,

however, which was based primarily on the first 3 hours of pumping, and the recovery portion of

the test.

E-11

Evaluation of Hydraulic Tests at MO-Series Wells H:\78300\78306.4\Pumping Tests\Evaluation of Hydraulic Tests MO-Series Wells 122807.doc

December 28, 2007

MO-4 Series

Results of testing the MO-4 series wells are provided in Table E.3 and Figures E.13

through E.21. Based on testing at MO-4C prior to installation of other wells in the nest,

transmissivity was estimated to range from 8,680 to 9,000 ft²/day, and vertical hydraulic

conductivity from 0.0114 to 0.02 ft/day (Table E.3 and Figures E.18 and E.19). Comparison of

drawdowns computed from the Troll in the pumped well to hand measured drawdowns indicated

that the response of the Troll was inaccurate (low) by about 8 feet during the third step

(Figure E.20). Enough data was collected by hand during the test to independently estimate

aquifer properties and well efficiency parameters (Table E.3 and Figure E.21). Independent

analysis of aguifer properties using the hand collected data did not change the estimates,

however, because the shape of the drawdown curves during each step were nearly identical.

Only the estimates of pumped well efficiency parameters changed, because the large, sharp,

increases in drawdown that occur when pumping rates are increased are mainly a function of

well efficiency.

MO-4A was the next well tested in the nest. A transmissivity of 7,500 ft²/day and a

vertical hydraulic conductivity of 0.01 ft/day were estimated (Figure E.13 and Table E.3).

Measurable responses to pumping MO-4A were not detected at MO-4B or MO-4C which are

completed at intervals deeper than MO-4A (Table E.1).

MO-4B was the final well tested in the nest. Drawdowns related to pumping MO-4B

were not detected at MO-4A or MO-4C, completed at intervals shallower and deeper,

respectively, than MO-4B (Table E.1). Drawdown data were corrected for a water level change

E-12

of approximately 0.0022 ft/min (calculated by dividing the total change in water over the test by the test duration) that resulted in water levels after recovery that were higher than the initial (prepumping) water levels. This water level change is likely due to changes in pumping at remote production wells in the basin. The early portion of the recovery data was not useful because a faulty check valve released water from the pump discharge line into the well casing at the cessation of pumping. Analysis of the corrected drawdown data vielded a transmissivity estimate of 10,000 ft²/day, a vertical hydraulic conductivity estimate of 0.01 ft/day, and a storage coefficient estimate of 0.005 (Figure E.14 and Table E.3). Analysis of uncorrected drawdown data vielded a transmissivity estimate of 20,000 ft²/day, a vertical hydraulic conductivity estimate of 0.1 ft/day, and a storage coefficient estimate of 0.005 (Figure E.15 and Table E.3). Sensitivity analyses indicated that vertical hydraulic conductivity could be as high as about 1 ft/day if a storage coefficient of 0.1 is assumed (Table E.3 and Figures E.16 and E.17)

3.5 **MO-5 Series**

Results of testing the MO-5 series wells are provided in Table E.3 and Figures E.22 through E.26. MO-5C was the first well installed and tested at this location. Only two pumping steps were used due to low productivity. Drawdowns related to pumping MO-5C were not detected at nearby well CW-3, which is completed in a shallower portion of the aquifer. Estimated transmissivity was 785 ft²/day and vertical hydraulic conductivity 0.0014 ft/day (Figure E.24 and Table E.3). As during testing MO-4, hand collected data indicated that the Troll used in the pumped well underestimated drawdowns, especially during the second step (Figure E.25). Independent analysis of the hand-measured drawdowns changed estimated well efficiency parameters but did not change the estimates of aquifer properties (Figure E.26).

Again, the apparent inaccuracy of the Troll readings were not sufficient to significantly change

the shape of the drawdown curves during each step.

MO-5B was the last well tested at this location. Drawdown data were corrected for a

water level change of approximately 0.00094 ft/min that resulted in water levels after recovery

that were higher than the initial (pre-pumping) water levels. The corrected drawdown data

yielded an estimated transmissivity of 31,200 ft²/day and a vertical hydraulic conductivity

estimate of 0.01 ft/day when a storage coefficient of 0.001 was assumed (Table E.3 and

Figure E.22). Sensitivity analyses at MO-5B indicated that vertical conductivity could be as high

as 0.1 ft/day if a storage coefficient of 0.1 is assumed (Table E.3 and Figure E.23). No

measurable response to pumping at MO-5B was detected at MO-3C or CW-3. MO-5C is

completed in a deeper portion of the aguifer, and CW-3 in a shallower portion of the aguifer,

than MO-5B (Table E.1).

3.6 **MO-6 Series**

Results of testing the MO-6 series wells are provided in Table E.3 and Figures E.27

through E.32. MO-6A was the first well tested at this nest. During pumping of MO-6A, no

measurable response was detected at MO-6B, which is completed in the deepest portion of the

aquifer at this location (Table E.1). An approximately 140 foot thick silty and clayey layer was

logged between the screened intervals of MO-6A and MO-6B, between approximately 630 and

770 feet below land surface (ft bls) (Appendix C to main text). The test was analyzed assuming

two conditions: 1) that the aguifer extended to a total depth of 960 ft bls, and 2) that the portion

E-14

Evaluation of Hydraulic Tests at MO-Series Wells H:\78300\78306.4\Pumping Tests\Evaluation of Hydraulic Tests MO-Series Wells 122807.doc of the aquifer in which MO-6A was screened extended only from the water table (approximately

305 ft bls) to the top of the silty/clayey layer at 630 ft bls.

Using the first assumption (a total aguifer thickness of 655 ft), transmissivity estimates

varied between 8,000 and 17,000 ft²/day, and vertical hydraulic conductivity was estimated to be

0.1 ft/day or less (Table E.3 and Figures E.27 and E.28). The best fits to the drawdown data

during pumping were obtained using the lower transmissivity estimate, although reasonable fits

to both drawdown and recovery data were obtained using the higher estimate.

Using the second assumption (a total aguifer thickness of 325 ft), a reasonable fit to both

drawdown and recovery data was obtained with a transmissivity estimate of 10,000 ft²/day, and a

vertical hydraulic conductivity estimate of 0.1 ft/day or less (Figure E.29 and Table E.3). The

best fit to drawdown data only was obtained using a transmissivity of 4,150 ft²/day (Figure E.30

and Table E.3).

MO-6B was tested last. During pumping of MO-6B, no measurable response was

detected at MO-6A. The test was analyzed assuming two conditions: 1) that the aquifer extended

from the water table (approximately 320 ft bls) to a total depth of 960 ft bls, and 2) that the

portion of the aguifer in which MO-6B was screened extended only from the base of the

silty/clayey layer at 770 ft bls to a total depth of 960 ft bls. This layer was assumed to be a leaky

aquitard.

Using the first assumption (a total aquifer thickness of 640 ft), a transmissivity estimate

of 750 ft²/day and a vertical hydraulic conductivity estimate of 0.01 ft/day were obtained

(Figure E.31 and Table E.3). Using the second assumption (a total aquifer thickness of 190 ft), a transmissivity estimate of 210 ft²/day, a vertical hydraulic conductivity estimate of 0.1 ft/day or less, and an aquitard hydraulic conductivity of 0.001 ft/day were obtained (Figure E.32 and Table E.3).

4. DISCUSSION

Some of the important results of the hydraulic testing include:

1) Many of the tested wells display relatively large, non-linear, head losses at the applied pumping rates (For example, see Figure E.2). This is expected because the wells were designed for water level and water quality monitoring purposes and not for production of water supply.

2) Estimated transmissivity imply hydraulic conductivities ranging from less than 1 ft/day to nearly 120 ft/day. The highest hydraulic conductivity was at MO-2 near the basin margin and the lowest conductivity at MO-5C in the deepest portion of the basin fill.

3) In general, estimated hydraulic conductivities in the deepest portion of the basin fill are less than the estimated conductivities for shallower portions. The highest conductivities often occur at middle depths in the basin fill, as shown by tests at MO-1B, MO-3B, MO-4B, and MO-5B (Table E.3). Lithologic logging of the MO-series wells has shown that the middle depth wells are typically completed in coarser-grained materials than the shallow or deep wells (Appendix D to main text).

As discussed in Section 2.3, the generally low estimates of vertical hydraulic conductivity are partly the result of the assumption of a storage coefficient of 0.001, although the average vertical conductivity is likely to be low due to the layered nature of the basin fill. Sandy and gravely materials containing fines that are frequently described in the lithologic logs are likely composed of alternating, relatively thin, layers of coarser and finer grained materials rather than uniform mixtures of coarser and finer grained materials. Although a vertically extensive low permeability horizon was detected only at MO-6, where predominantly silt and clay materials were logged between MO-6A and MO-6B from approximately 630-770 ft bls (Appendix D to main text), the effect of interbedded thin horizons of fine grained materials will act to lower the average vertical conductivity. Relatively low average vertical conductivity is also consistent with the head differences measured at wells within the same nest, such as at the MO-5 and MO-6 Series wells (Table E.1). At the MO-5 and MO-6 series wells the water level in the well screened deepest in the aquifer was approximately 19 feet and 16 feet deeper, respectively, then

the water level in the next shallower well.

As indicated by the sensitivity analyses, however, assuming a higher storage coefficient

may result in estimation of a higher vertical hydraulic conductivity while maintaining a good fit

to the measured data. Based on these sensitivity analyses, vertical hydraulic conductivity

estimates as high as 1 ft/day are obtained if a storage coefficient of 0.1 is assumed. A storage

coefficient as high as 0.1, which is characteristic of a specific yield related to a lowering of the

water table, may be inappropriate because a lowering of the water table was not measured during

tests at middle and shallow depth wells.

The measurements of generally higher conductivities within the middle depths of the

basin fill are consistent with the generally coarser grained nature of the materials logged at these

depths as described above. The measurements are also consistent with the relatively large water

level fluctuations measured at the MO-5 well nest during the MO-5B test. As shown in

Figure E.33, water level fluctuations of more than 1 foot that were unrelated to pumping of

MO-5B occurred at MO-5B over the course of the measurement period which extended from

about 13 hours prior to pumping to about 18 hours after pumping. Fluctuations that occur in

CW-3 (completed at a shallower depth than MO-5B) and MO-5C (completed at a deeper depth

than MO-5B) during this time are smaller in magnitude (a few tenths of a foot) and display an

apparent lag with respect to the larger magnitude fluctuations at MO-5B. If the conductivities of

all depths penetrated by these wells were about the same then water level fluctuations of similar

magnitude and without the apparent lags would be expected. As shown in Figure E.34, water

E-18

Evaluation of Hydraulic Tests at MO-Series Wells H:\78300\78306.4\Pumping Tests\Evaluation of Hydraulic Tests MO-Series Wells 122807.doc level changes at CW-3 and MO-5C also strongly correlate with changes in atmospheric pressure

over the latter portion of the measurement period.

Overall, the hydraulic tests indicate that within the tested area the basin fill can be

considered an unconfined aguifer with a relatively low average vertical hydraulic conductivity.

Vertical flow and sulfate transport at most locations will be slowed but not prevented by the low

average vertical conductivity. In general, because horizontal hydraulic conductivities appear to

be highest within the middle depths of the basin fill, the rate of transport is also expected to be

higher within this zone than in deeper or shallower zones. For this reason wells completed at

middle depths along the downgradient edge of the sulfate plume are likely to detect the arrival of

the plume sooner than deeper or shallower wells. Furthermore, along the margins of the sulfate

plume, changes in sulfate concentrations related to pumping of nearby water supply wells are

likely to be greater at middle depths in the basin fill than in deeper or shallower horizons,

because of the more rapid response expected from this horizon.

E-19

5. REFERENCES

- Hydro Geo Chem (HGC). 2006. Work Plan to Characterize and Mitigate Sulfate with Respect to Drinking Water Supplies in the Vicinity of the Phelps Dodge Sierrita Tailing Impoundment, Pima County, Arizona. August 11, 2006, revised October 31, 2006.
- HGC. 1988. WHIP. Well Hydraulics Interpretation Program. Version 3.22, User's Manual. July 1988.

LIMITATIONS STATEMENT

The opinions and recommendations presented in this report are based upon the scope of services and information obtained through the performance of the services, as agreed upon by HGC and the party for whom this report was originally prepared. Results of any investigations, tests, or findings presented in this report apply solely to conditions existing at the time HGC's investigative work was performed and are inherently based on and limited to the available data and the extent of the investigation activities. No representation, warranty, or guarantee, express or implied, is intended or given. HGC makes no representation as to the accuracy or completeness of any information provided by other parties not under contract to HGC to the extent that HGC relied upon that information. This report is expressly for the sole and exclusive use of the party for whom this report was originally prepared and for the particular purpose that it was intended. Reuse of this report, or any portion thereof, for other than its intended purpose, or if modified, or if used by third parties, shall be at the sole risk of the user.

TABLES

TABLE E.1
Well Construction Details

WELL NAME	ADWR WELL REGISTRY NUMBER	UTM NORTHING (NAD 83, meters)	UTM EASTING (NAD 83, meters)	DRILLED DEPTH (ft bls)	CASING DEPTH (feet)	CASING DIAMETER (inch)	DEPTH TO TOP OF SCREEN (ft bis)	DEPTH TO BOTTOM OF SCREEN (ft bis)	SCREEN LENGTH (feet)	MEASURING POINT ELEVATION (NAVD 88, ft amsl)	DATE MEASURED	DEPTH TO WATER BELOW MEASURING POINT (feet)	STATIC WATER LEVEL ELEVATION (ft amsl)
MO-2007-1A	907342	3529331.380	500016.947	620	610	5	460	600	140	2967.15	07/30/07	425.87	2541.28
MO-2007-1B	907210	3529325.119	500021.574	920	910	5	740	900	160	2966.35	07/30/07	425.67	2540.68
MO-2007-1C	907209	3529328.959	500013.405	1260	1190	5	1020	1180	160	2964.34	07/30/07	423.87	2540.47
MO-2007-2	906765	3527621.102	497912.410	740	685	5	520	680	160	3153.61	08/09/07	575.30	2578.31
MO-2007-3B	906816	3528508.801	500522.491	960	950	5	740	940	200	2910.75	09/10/07	359.38	2551.37
MO-2007-3C	906817	3528508.743	500529.713	1430	1330	5	1160	1320	160	2910.09	07/05/07	356.30	2553.79
MO-2007-4A	907213	3525634.956	500383.682	580	570	5	360	560	200	2923.47	10/09/07	307.67	2615.80
MO-2007-4B	907212	3525613.952	500380.947	960	950	5	700	940	240	2923.22	10/11/07	308.72	2614.50
MO-2007-4C	907211	3525624.484	500382.217	1153	1140	5	1090	1130	40	2923.49	08/12/07	307.13	2616.36
MO-2007-5B	907456	3523743.376	500013.850	980	970	5	660	960	300	2943.42	10/12/07	268.27	2675.15
MO-2007-5C	907457	3523736.459	500014.152	1370	1360	5	1150	1350	200	2944.33	08/23/07	294.04	2650.29
MO 2007 64	907607	3521842.050	0 498367.161	630	620	5	310	390	80	3042.49	10/02/07	303.60	2738.89
MO-2007-6A				630			430	610	180				
MO-2007-6B	907606	3521849.495	498367.887	1060	950	5	780	940	160	3041.95	10/04/07	319.17	2722.78
Existing Wells at MO-2007 Sites													
CW-3	627483	3523809.985	500047.663	501	500	16	182	500	318	2941.44	06/06/07	265.35	2676.09
NP-2	605898	3528517.116	500582.904	515	515	12	331	515 ¹	184 ¹	2907.05	06/04/07	351.50	2555.55

Notes:

ADWR = Arizona Department of Water Resources UTM = Universal Transverse Mercator (Zone 12) NAD 83, meters = North American Datum of 1983 NAVD 88 = North American Vertical Datum of 1988 ft ams! = feet above mean sea level ft bis = feet below land surface

¹ depth to bottom of screen and screen length are not provided in the ADWR well registry and therefore estimated

TABLE E.2
Pumping Rates and Durations

Well	Rate 1	Duration	Rate 2	Duration	Rate 3	Duration
MO-2007-1A	15.0*	67.0	25.0	65.5	50.0	485.5
MO-2007-1B	16.0*	62.5	30.0	63.0	47.5	485.0
MO-2007-1C	16.0*	78.5	30.0	71.5	47.5	490.0
MO-2007-2	16.4	61.0	30.5	62.5	37.5	506.0
MO-2007-3B	14.0	60.5	33.5	60.0	51.0	240.0
MO-2007-3C	13.8*	68.9	27.6	61.0	38*	479.5
MO-2007-4A	13.5*	61.0	26.0	65.0	43.0	242.5
MO-2007-4B	13.0	60.0	31.5	60.5	52.0	241.0
MO-2007-4C	16.0	61.0	28.0	61.5	60.0	481.5
MO-2007-5B	16.0*	61.0	30.0	61.5	55.0	300.5
MO-2007-5C	10.5	160.0	21.0	119.5	none	none
MO-2007-6A	13.0	65.5	28.0	63.0	55.0	481.0
MO-2007-6B	14.0	61.5	28.0	61.5	33.0	440.5

Notes:

*An initially high pumping rate was reduced to the indicated rate within the first minute or two of the test.

Rates are in gpm and durations in minutes.

TABLE E.3
Summary of Hydraulic Parameters from MO-Series Wells

Well	T (ft²/day)	S	Kv (ft/day)	b (ft)	Kc (ft/day)	С	n	Kh (ft/day)	drawdown correction
MO-2007-1A	20,000	0.001	<0.1	815	-	0.27	0.96	25	no
MO-2007-1B	25,000	0.001	<0.1	815	-	0.036	1.25	31	yes
MO-2007-1B	25,000	0.01	1	815	-	0.036	1.27	31	yes
MO-2007-1C	7,000	0.001	<0.1	815	-	0.042	1.46	8.6	no
MO-2007-2	13,000	0.001	-	110	-	0.03	1.2	118	no
MO-2007-3B	17,700	0.001	0.02	1060	-	0.001	1.88	17	yes
MO-2007-3B	17,700	0.1	0.1	1060	-	0.006	1.51	17	yes
MO-2007-3C	11,600	0.001	1 X 10 ⁻⁴	1060	-	0.001	2.16	11	no
MO-2007-3C	11,500	1.6 X 10 ⁻⁴	0.25	1060	-	0.001	2.17	11	no
MO-2007-3C	10,100	0.001	2.63	1060	-	0.001	2.18	9.5	no
MO-2007-4A	7,500	0.005	0.01	835	-	0.9	0.998	9	no
MO-2007-4B	20,000	0.005	0.1	835	-	0.0318	1.42	24	no
MO-2007-4B	20,000	0.1	1	835	-	0.0318	1.43	24	no
MO-2007-4B	10,000	0.005	0.01	835	-	0.0169	1.52	12	yes
MO-2007-4B	10,000	0.1	1	835	-	0.017	1.55	12	yes
MO-2007-4C	8,680	0.001	0.0114	835	-	8 X 10 ⁻⁵	3.02	10	no
MO-2007-4C ¹	8,680	0.001	0.0114	835	-	8.4 X 10 ⁻⁵	3.09	10	no
MO-2007-4C	9,000	0.001	0.02	835	-	1.8 X 10 ⁻⁴	2.82	11	no
MO-2007-5B	31,200	0.001	0.01	1085	-	0.0091	1.27	29	yes
MO-2007-5B	31,200	0.1	0.1	1085	-	0.016	1.19	29	yes
MO-2007-5C	785	0.001	0.011	1085	-	0.003	2.05	0.72	no
MO-2007-5C ¹	785	0.001	0.011	1085	-	0.045	1.65	0.72	no
MO-2007-6A	17,000	0.0057	0.1	655	-	0.0258	1.41	26	no
MO-2007-6A	8,000	0.0057	0.1	655	-	0.014	1.49	12	no
MO-2007-6A	10,000	0.0057	0.1	325	-	0.0277	1.4	31	no
MO-2007-6A	4,150	0.0057	0.1	325	-	0.014	1.5	13	no
MO-2007-6B	750	0.001	0.01	655	-	0.2	1.12	1.1	no
MO-2007-6B	210	0.001	0.1	190	0.001	0.4	0.95	1.1	no

Notes:

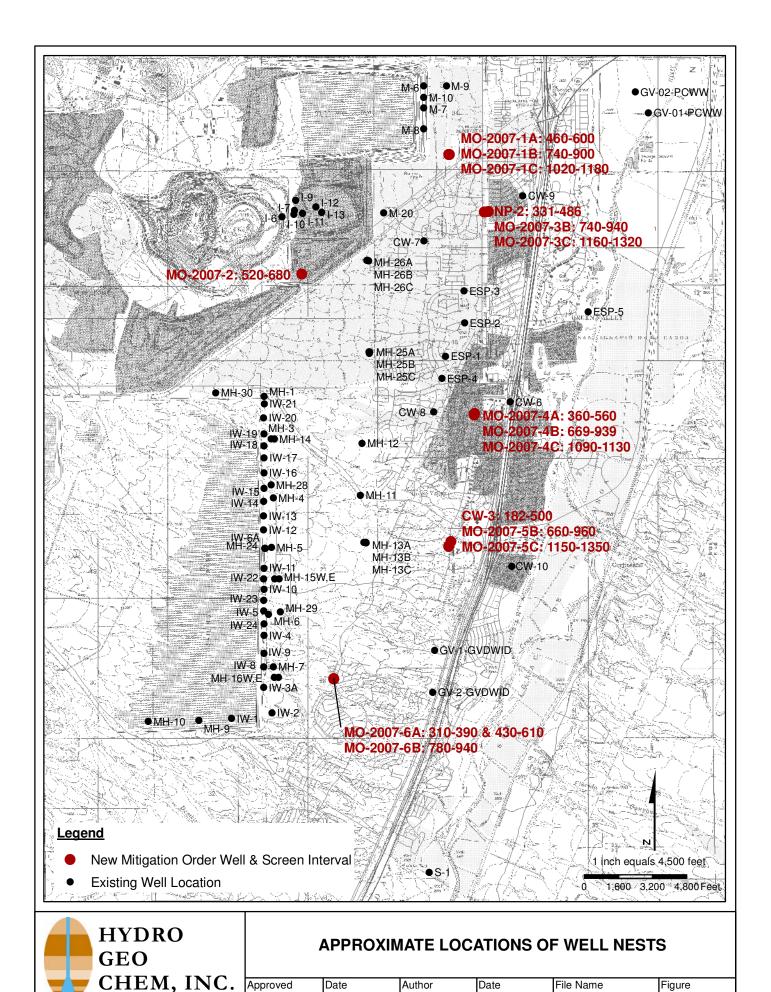
 K_V = Vertical hydraulic conductivity

Kc = Vertical hydraulic conductivity of confining layer

b = Assumed aquifer thickness

c = Well loss constant

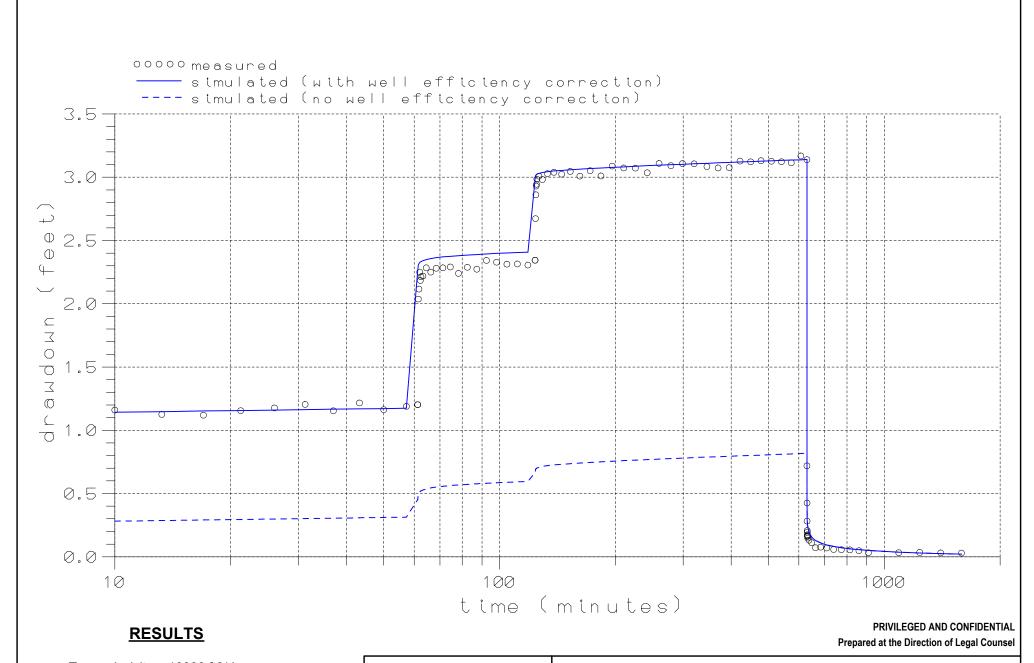
n = Well loss exponent


 $Kh = horizontal\ hydraulic\ conductivity\ calculated\ as\ T/b$

¹ = hand collected data

T = Transmissivity

S = Storage coefficient

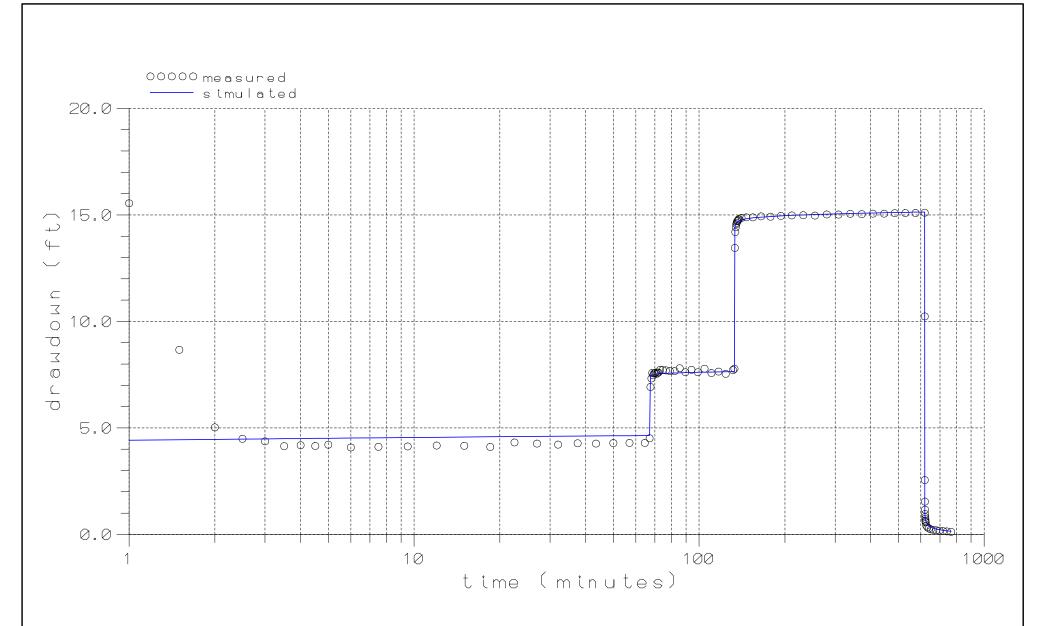

FIGURES


SS

10/18/07

RAM

Transmissivity = 13000 ft2/day Storage coefficient = 0.001 skin factor= 15 well loss constant = 0.004 well loss exponent = 1.52 aquifer thickness = 110 ft



MEASURED AND SIMULATED DRAWDOWNS AT MO-2 DURING PUMPING AT 16.4, 30.5, AND 37.5 GPM SHOWING EFFECT OF WELL EFFICIENCY CORRECTION

(analysis using WHIP)

APPROVED SJS DATE REFERENCE H:/78300/78306.4/Pumping Tests MO-2 Pump Test/whip/mo2eff.srf

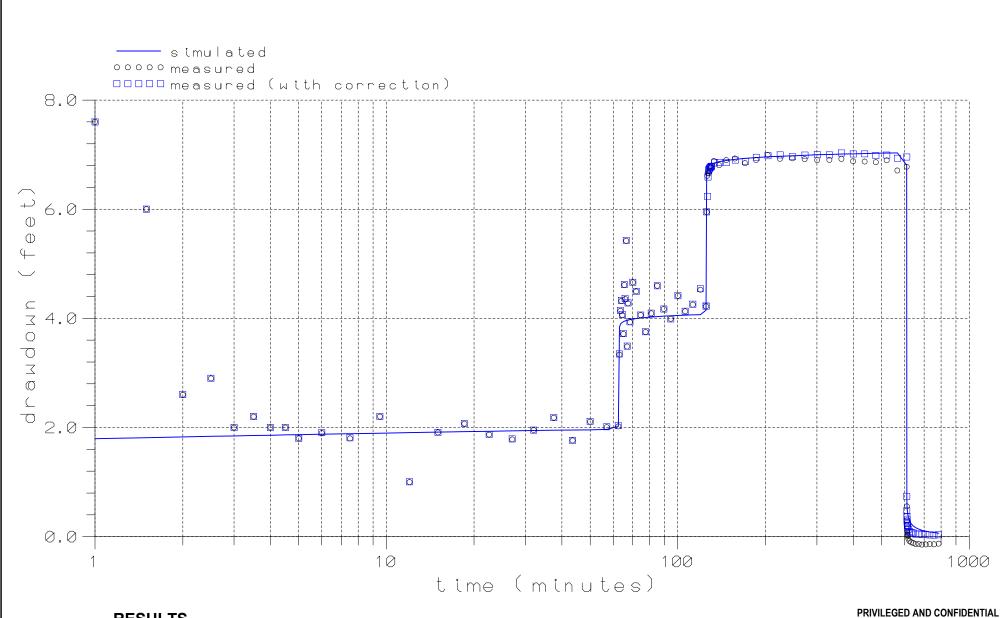
FIGURE **E.2**

RESULTS

PRIVILEGED AND CONFIDENTIAL

Prepared at the Direction of Legal Counsel

Transmissivity = 20000 ft2/day
Storage coefficient = 0.001
Vertical Hydraulic Conductivity = 0.1 ft/day
well loss constant = 0.27
well loss exponent = 0.96
assumed aquifer thickness = 755 ft


MEASURED AND SIMULATED DRAWDOWNS AT MO-1A DURING PUMPING AT 15, 25, AND 50 GPM

(analysis using WHIP)

APPROVED DATE SJS 10/30/07

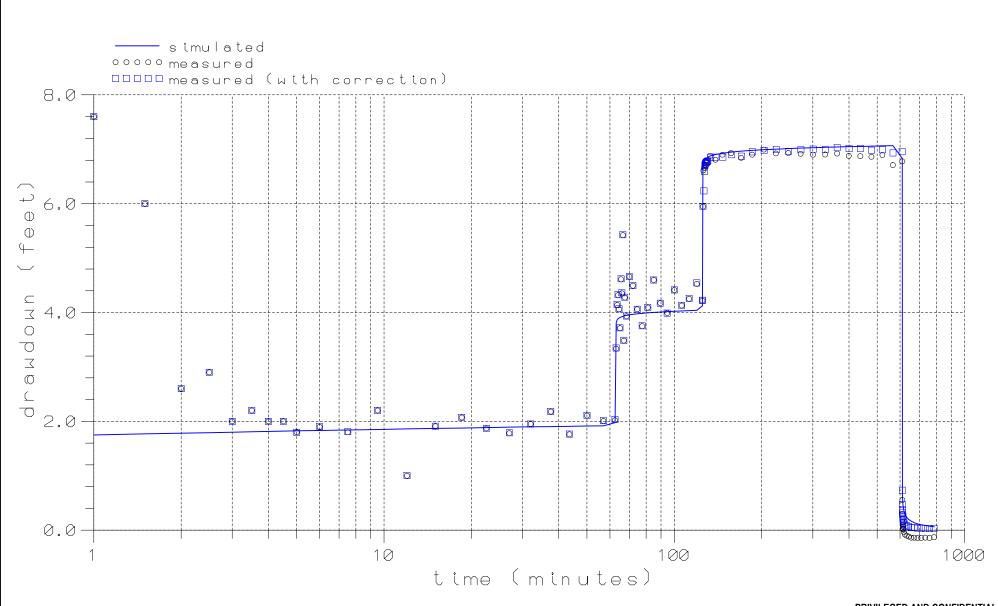
REFERENCE H:/78300/78306.4/Pump tests MO-1/MO-1A/whip/mo1a.srf


E.3

PRIVILEGED AND CONFIDENTIAL
Prepared at the Direction of Legal Counsel

Transmissivity = 25,000 ft2/day
Storage coefficient = 0.001

Vertical Hydraulic Conductivity = 0.1 ft/day
well loss constant = 0.036
well loss exponent = 1.25
assumed aquifer thickness = 815 ft



MEASURED AND SIMULATED DRAWDOWNS AT MO-1B DURING PUMPING AT 16, 30, AND 47.5 GPM (data corrected for regional water level increase and barometric pressure change)

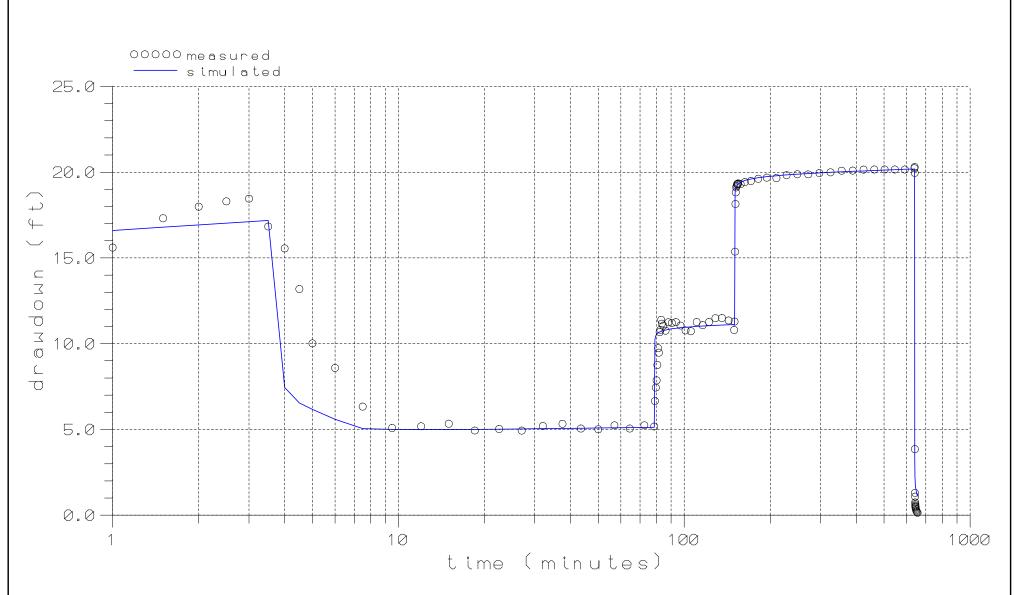
APPROVED DATE
SJS

10/30/07

REFERENCE H:/78300/78306.4/ MO-1/MO-1B/whip/mo1bcor.srf

PRIVILEGED AND CONFIDENTIAL
Prepared at the Direction of Legal Counsel

Transmissivity = 25,000 ft2/day
Storage coefficient = 0.01
Vertical Hydraulic Conductivity = 1.0 ft/day
well loss constant = 0.036
well loss exponent = 1.27
assumed aquifer thickness = 815 ft


MEASURED AND SIMULATED DRAWDOWNS AT MO-1B DURING PUMPING AT 16, 30, AND 47.5 GPM (data corrected for regional water level increase and barometric pressure change)

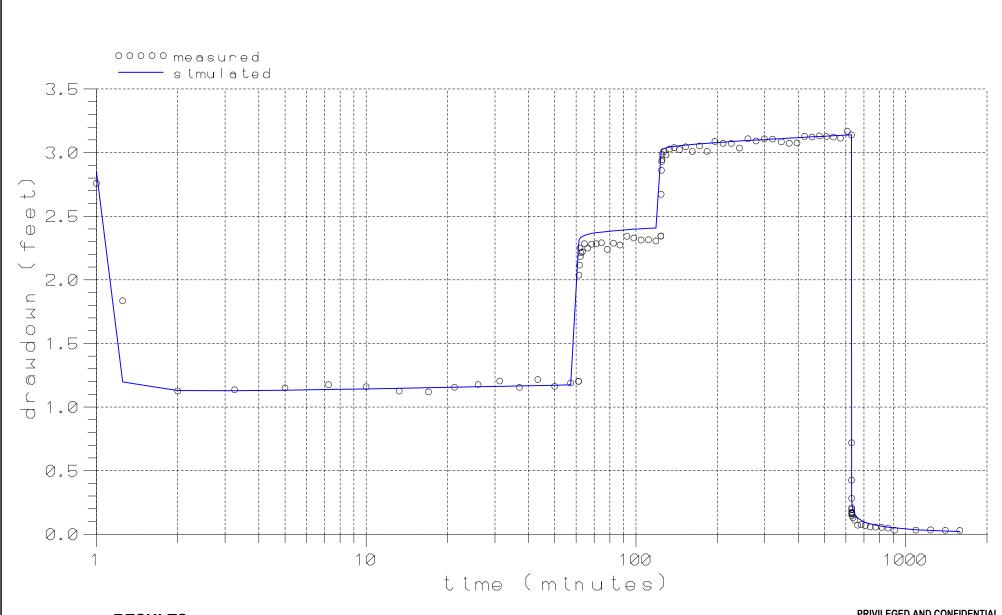
APPROVED SJS

10/30/07

DATE

H:/78300/78306.4/ MO-1/MO-1B/whip/mo1bc2.srf

PRIVILEGED AND CONFIDENTIAL
Prepared at the Direction of Legal Counsel

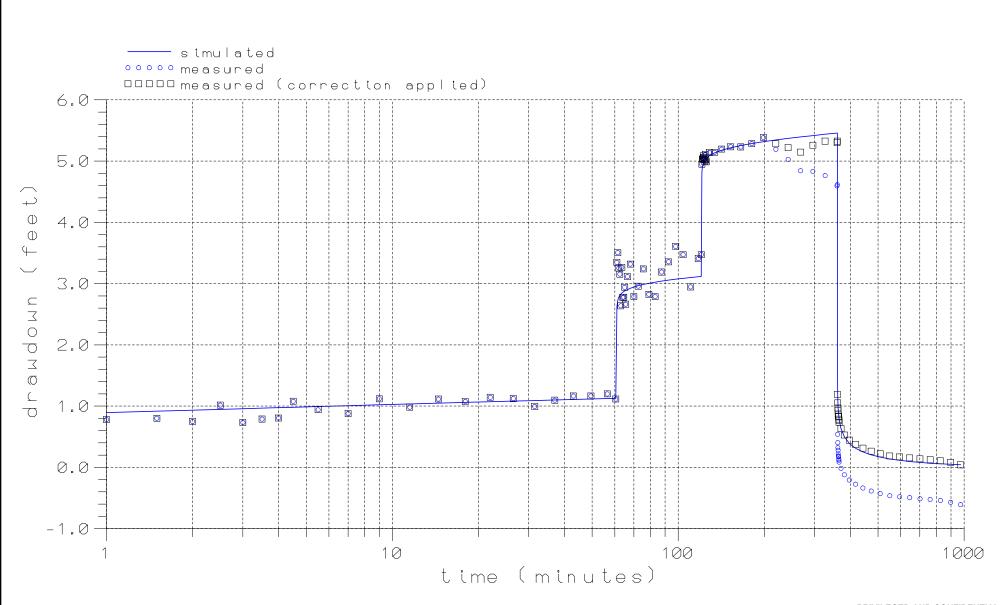

Transmissivity = 7000 ft2/day
Storage coefficient = 0.001
Vertical Hydraulic Conductivity = 0.1 ft/day
well loss constant = 0.042
well loss exponent = 1.46
assumed aquifer thickness = 756 ft

MEASURED AND SIMULATED DRAWDOWNS AT MO-1C DURING PUMPING AT 16, 30, AND 47.5 GPM (analysis using WHIP)

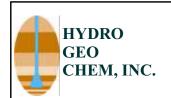
APPROVED SJS DATE 10/30/07

H:/78300/78306.4/ MO-1/MO-1C/whip/mo1c.srf

PRIVILEGED AND CONFIDENTIAL Prepared at the Direction of Legal Counsel

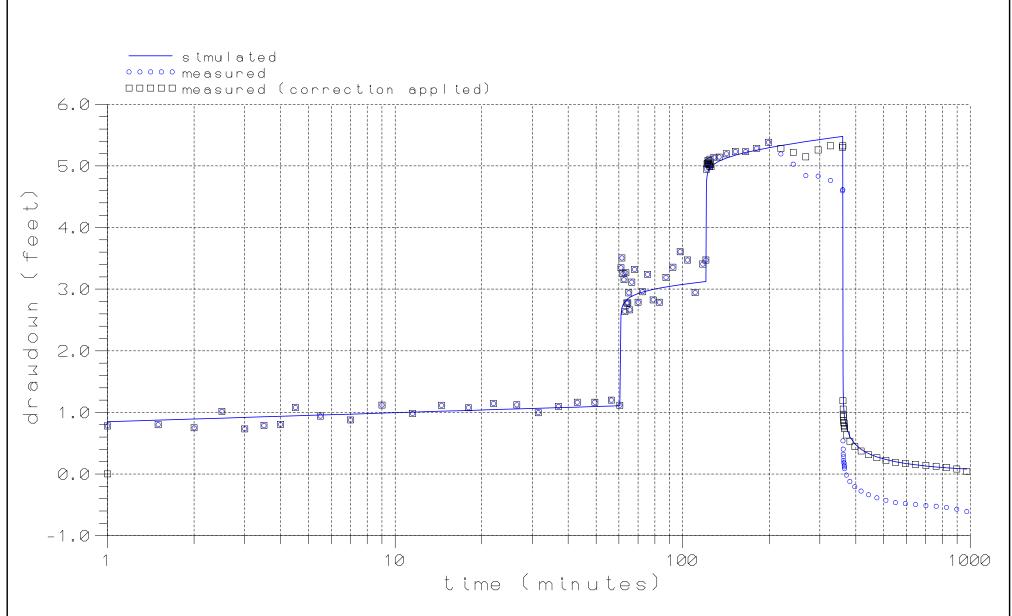

Transmissivity = 13000 ft2/day Storage coefficient = 0.001 well loss constant = 0.03 well loss exponent = 1.2 aquifer thickness = 110 ft

MEASURED AND SIMULATED DRAWDOWNS AT MO-2 DURING PUMPING AT 16.4, 30.5, AND 37.5 GPM (analysis using WHIP)


SJS DATE 10/30/07

H:/78300/78306.4/MO-2 Pump Test/whip/mo2nsk.srf

PRIVILEGED AND CONFIDENTIAL
Prepared at the Direction of Legal Counsel

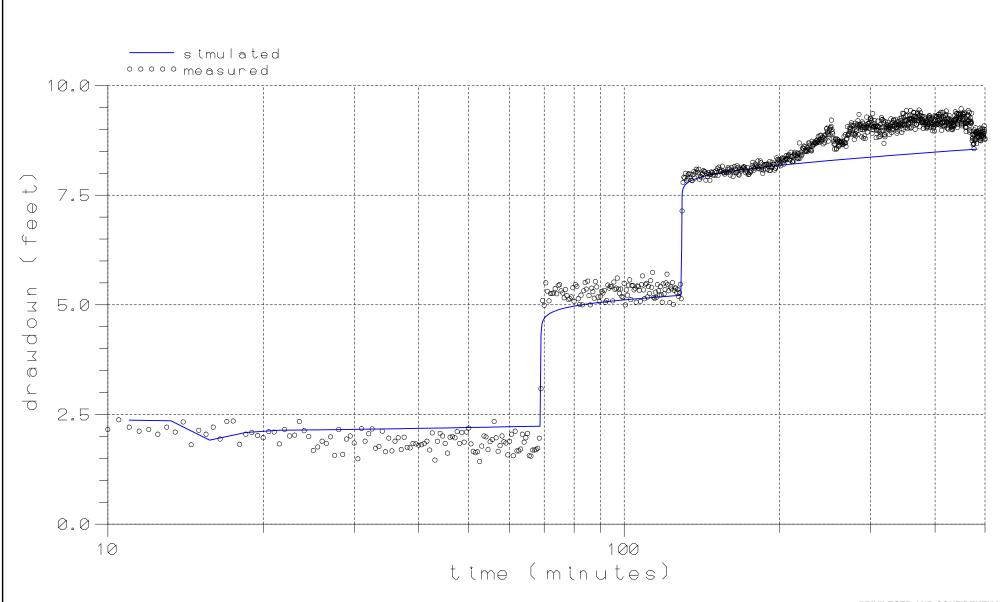

Transmissivity = 17,700 ft2/day
Storage coefficient = 0.001
Vertical Hydraulic Conductivity = 0.02 ft/day
well loss constant = 0.001
well loss exponent = 1.88
assumed aquifer thickness = 1060 ft

MEASURED AND SIMULATED DRAWDOWNS AT MO-3B DURING PUMPING AT 14, 33.5, AND 51 GPM (analysis using WHIP)

APPROVED DATE SJS 10/30/07

H:/78300/78306.4/MO-3 Pump Test/ MO-2007-3B Pump Test/whip/mo3bcor.srf

PRIVILEGED AND CONFIDENTIAL
Prepared at the Direction of Legal Counsel

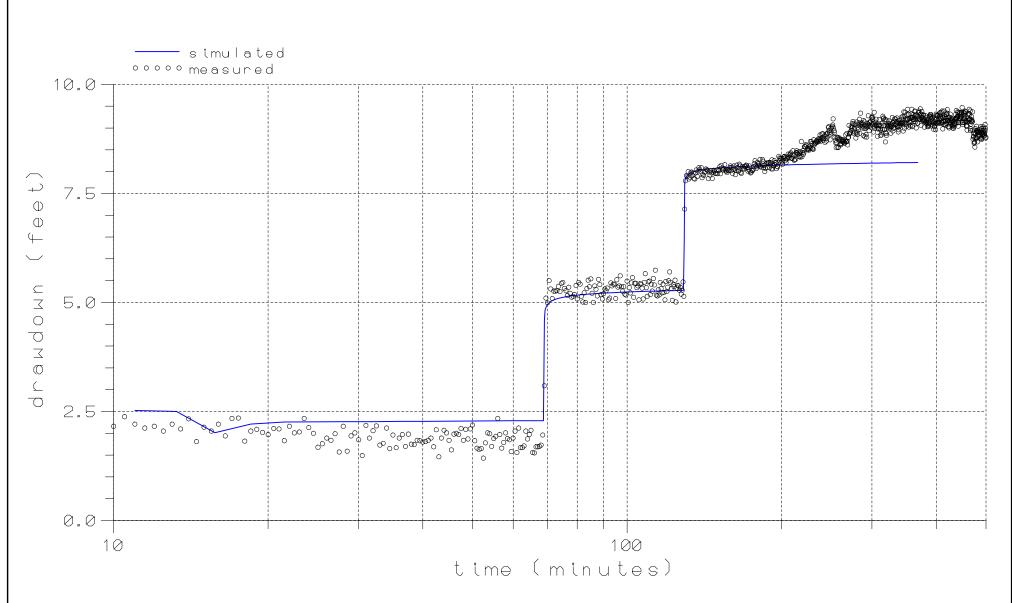

Transmissivity = 17,700 ft2/day
Storage coefficient = 0.1
Vertical Hydraulic Conductivity = 0.1 ft/day
well loss constant = 0.006
well loss exponent = 1.51
assumed aquifer thickness = 1060 ft

MEASURED AND SIMULATED DRAWDOWNS AT MO-3B DURING PUMPING AT 14, 33.5, AND 51 GPM (analysis using WHIP)

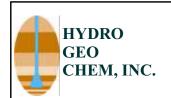
SJS DATE 10/30/07

REFERENCE H:/78300/78306.4/MO-3 Pump Test/ MO-2007-3B Pump Test/whip/mo3bc2.srf

PRIVILEGED AND CONFIDENTIAL
Prepared at the Direction of Legal Counsel

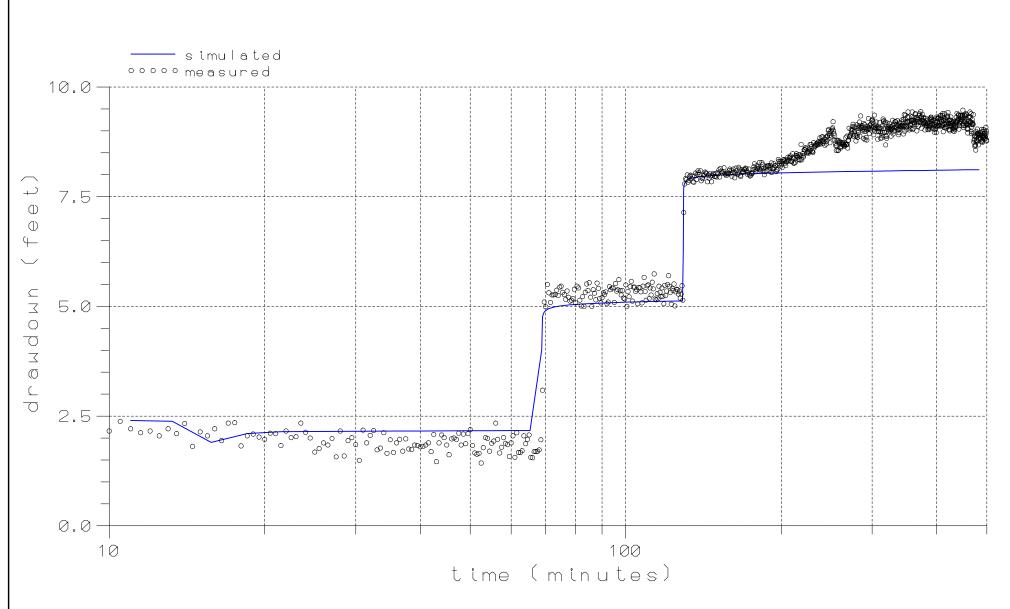

Transmissivity = 11600 ft2/day
Storage coefficient = 0.001
Vertical Hydraulic Conductivity = 1e-4 ft/day
well loss constant = 0.001
well loss exponent = 2.16
assumed aquifer thickness = 1060 ft

MEASURED AND SIMULATED DRAWDOWNS AT MO-3C DURING PUMPING AT 13.8, 27.6, AND 38.3 GPM (analysis using WHIP)


SJS DATE 10/30/07

REFERENCE H:/78300/78306.4/ MO-3 PumpTest/mo-3c/whip/mo3c.srf

PRIVILEGED AND CONFIDENTIAL
Prepared at the Direction of Legal Counsel


Transmissivity = 11,500 ft2/day
Storage coefficient = 1.6e-4
Vertical Hydraulic Conductivity = 0.25 ft/day
well loss constant = 0.001
well loss exponent = 2.17
assumed aquifer thickness = 1060 ft

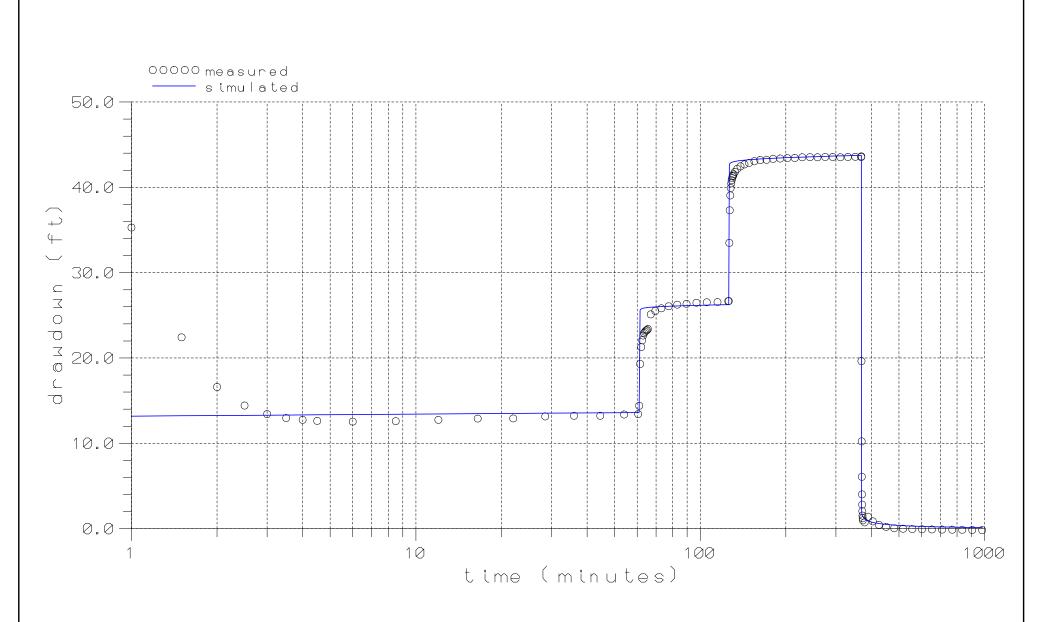
MEASURED AND SIMULATED DRAWDOWNS AT MO-3C DURING PUMPING AT 13.8, 27.6, AND 38.3 GPM (based on analysis of first portion of step3) (analysis using WHIP)

SJS DATE 10/30/07

H:/78300/78306.4/ MO-3 PumpTest/mo-3c/whip/st123.srf

PRIVILEGED AND CONFIDENTIAL
Prepared at the Direction of Legal Counsel

Transmissivity = 10,100 ft2/day
Storage coefficient = 0.001

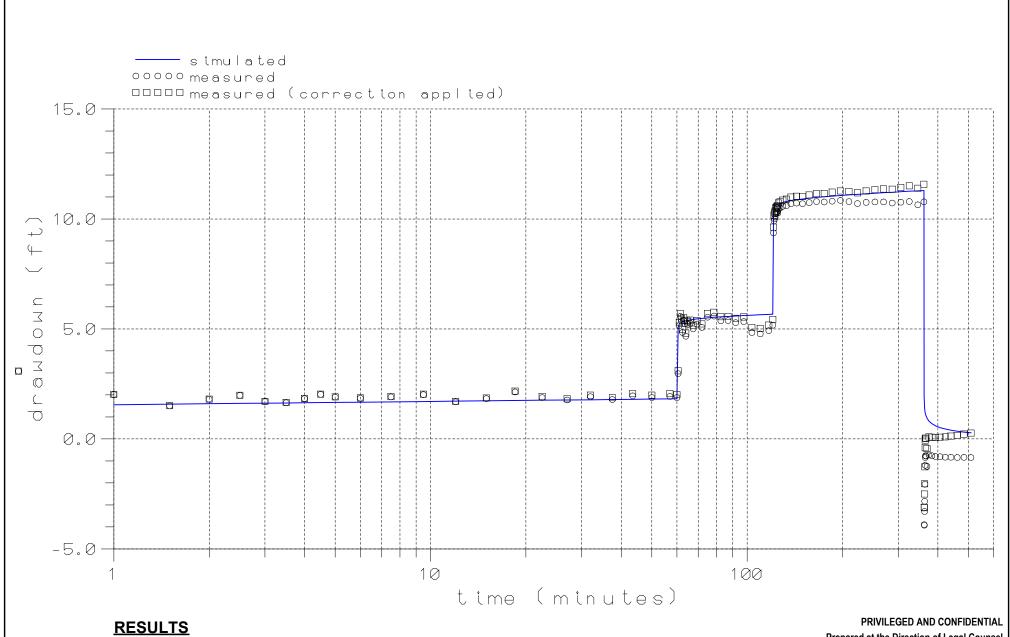

Vertical Hydraulic Conductivity = 2.63 ft/day
well loss constant = 0.001
well loss exponent = 2.18
assumed aquifer thickness = 1060 ft

MEASURED AND SIMULATED DRAWDOWNS AT MO-3C DURING PUMPING AT 13.8, 27.6, AND 38.3 GPM (analysis using WHIP)

APPROVED DATE SJS 10/30/07

REFERENCE H:/78300/78306.4/ MO-3 PumpTest/mo-3c/whip/mo3cl.srf

PRIVILEGED AND CONFIDENTIAL
Prepared at the Direction of Legal Counsel

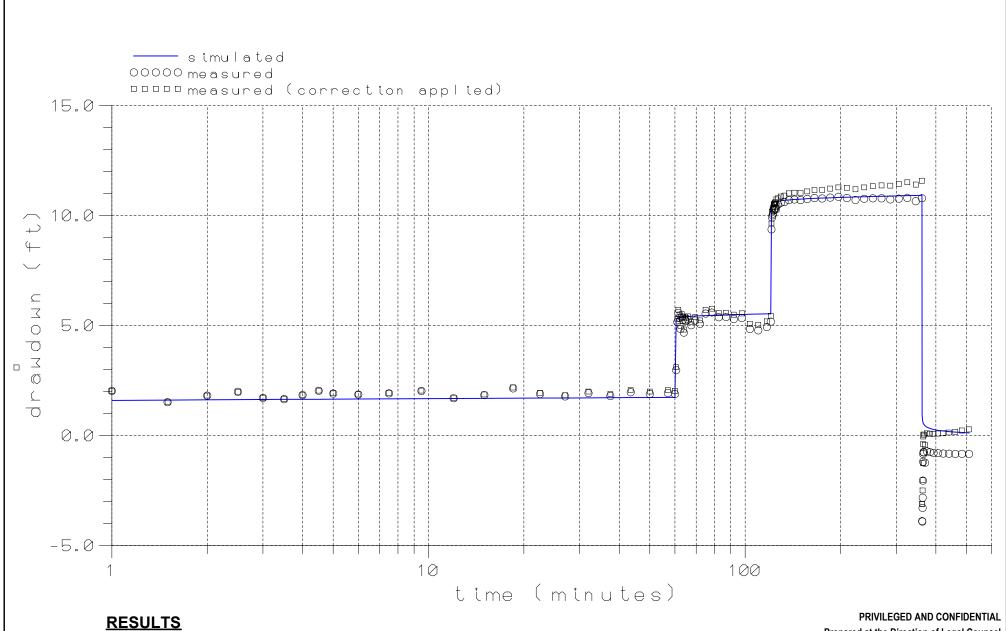

Transmissivity = 7500 ft2/day
Storage coefficient = 0.005
Vertical Hydraulic Conductivity = 0.01 ft/day
well loss constant = 0.90
well loss exponent = 0.998
assumed aquifer thickness = 835 ft

MEASURED AND SIMULATED DRAWDOWNS AT MO-4A DURING PUMPING AT 13.5, 26, AND 43 GPM (analysis using WHIP)

SJS DATE 10/30/07 REF

H:/78300/78306.4/ MO-4/MO-4A/whip/mo4a.srf

Prepared at the Direction of Legal Counsel

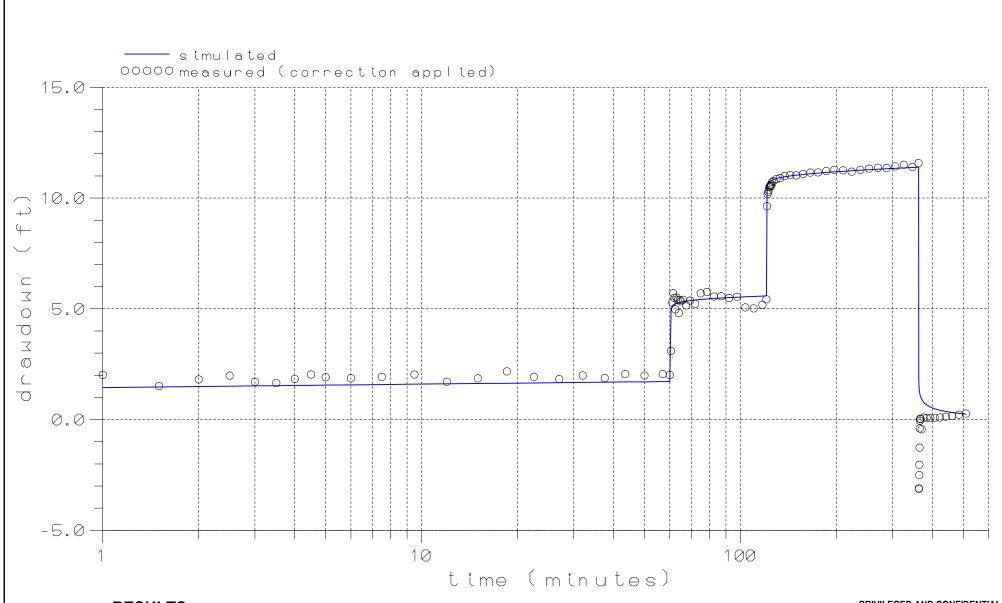

Transmissivity = 10,000 ft2/day Storage coefficient = 0.005 Vertical Hydraulic Conductivity = 0.01 ft/day well loss constant = 0.0169 well loss exponent = 1.52 assumed aquifer thickness = 830 ft

MEASURED AND SIMULATED DRAWDOWNS AT MO-4B DURING PUMPING AT 13, 31.5, AND 52 GPM (corrected for regional water level change) (analysis using WHIP)

APPROVED SJS 10/30/07

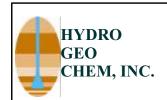
H:/78300/78306.4/ MO-4/MO-4B/whip/mo4bcor.srf

Prepared at the Direction of Legal Counsel


Transmissivity = 20,000 ft2/day Storage coefficient = 0.005 Vertical Hydraulic Conductivity = 0.1 ft/day well loss constant = 0.0318 well loss exponent = 1.42 assumed aquifer thickness = 830 ft

MEASURED AND SIMULATED DRAWDOWNS AT MO-4B DURING PUMPING AT 13, 31.5, AND 52 GPM (analysis using WHIP)

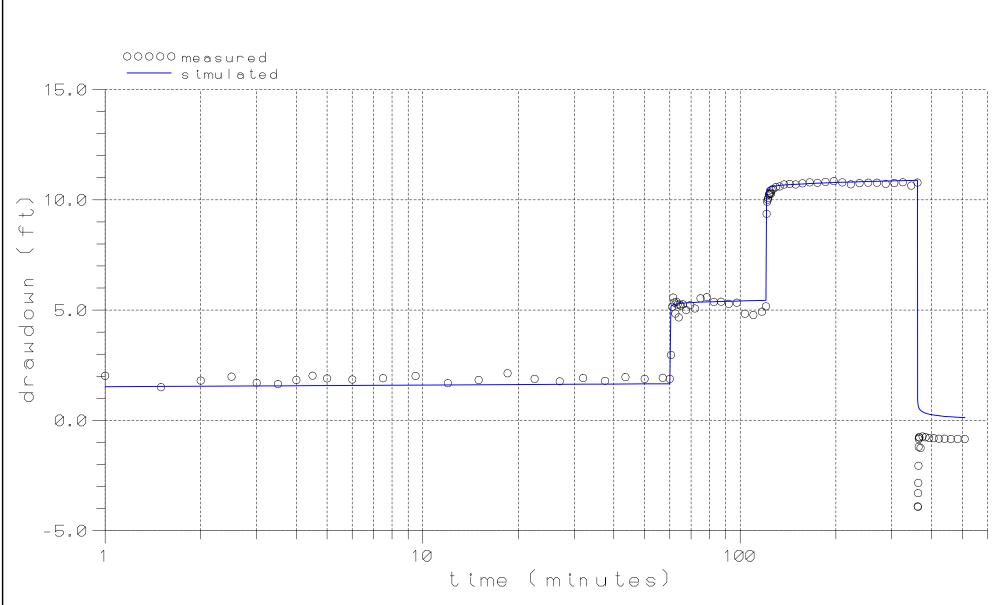
APPROVED DATE SJS


H:/78300/78306.4/ 10/30/07 MO-4/MO-4B/whip/mo4b.srf

PRIVILEGED AND CONFIDENTIAL

Prepared at the Direction of Legal Counsel

Transmissivity = 10,000 ft2/day
Storage coefficient = 0.1
Vertical Hydraulic Conductivity = 1.0 ft/day
well loss constant = 0.017
well loss exponent = 1.55
assumed aquifer thickness = 835 ft


MEASURED AND SIMULATED DRAWDOWNS AT MO-4B DURING PUMPING AT 13, 31.5, AND 52 GPM (corrected for regional water level change) (analysis using WHIP)

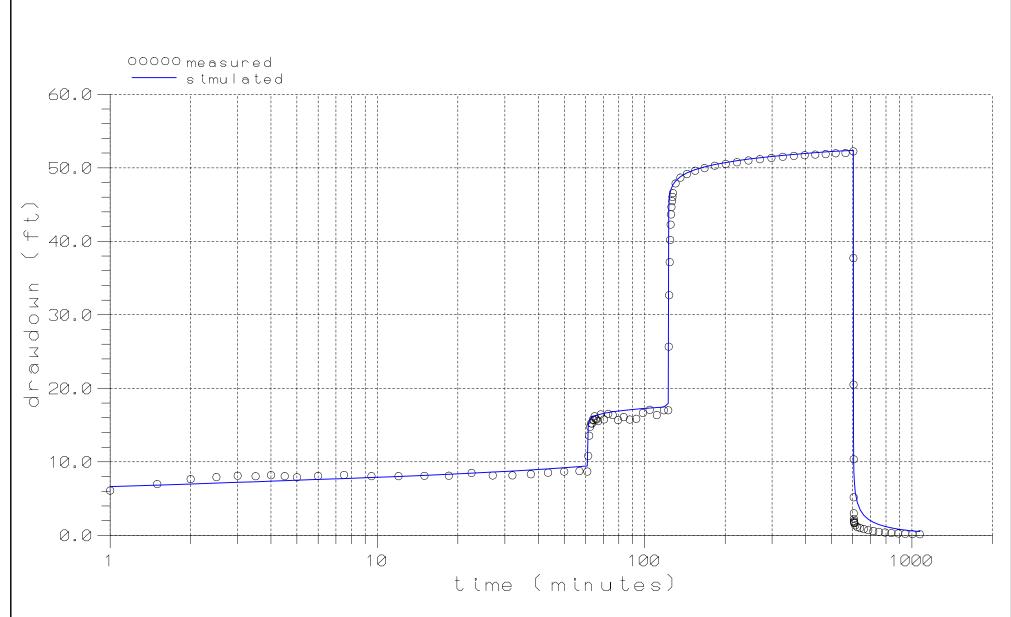
APPROVED SJS

10/30/07

DATE

H:/78300/78306.4/ MO-4/MO-4B/whip/mo4bc2.srf

PRIVILEGED AND CONFIDENTIAL
Prepared at the Direction of Legal Counsel

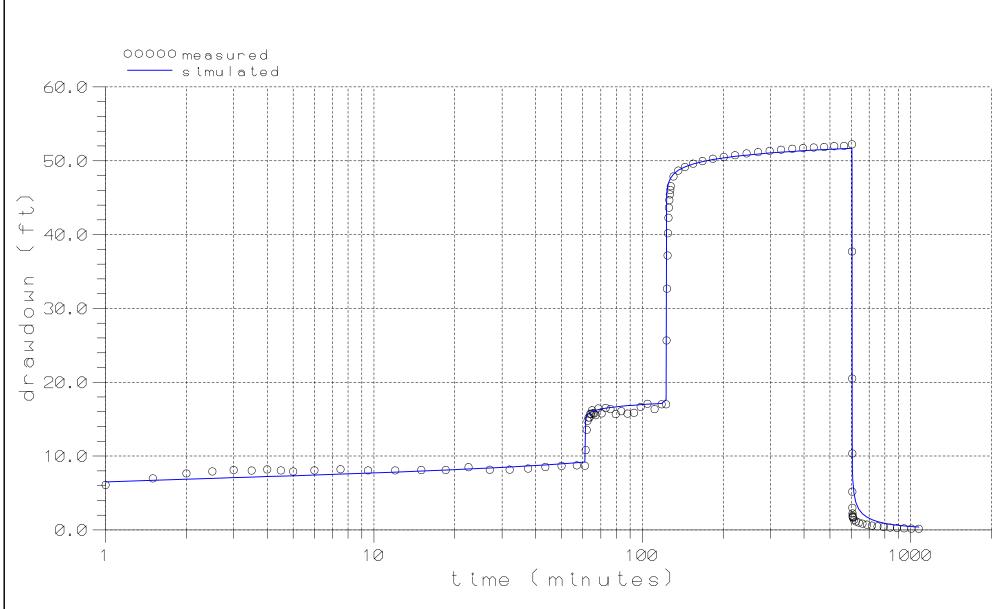

Transmissivity = 20,000 ft2/day
Storage coefficient = 0.1
Vertical Hydraulic Conductivity = 1.0 ft/day
well loss constant = 0.0318
well loss exponent = 1.43
assumed aquifer thickness = 830 ft

MEASURED AND SIMULATED DRAWDOWNS AT MO-4B DURING PUMPING AT 13, 31.5, AND 52 GPM (analysis using WHIP)

APPROVED SJS 10/30/07

H:/78300/78306.4/ MO-4/MO-4B/whip/mo4b2.srf

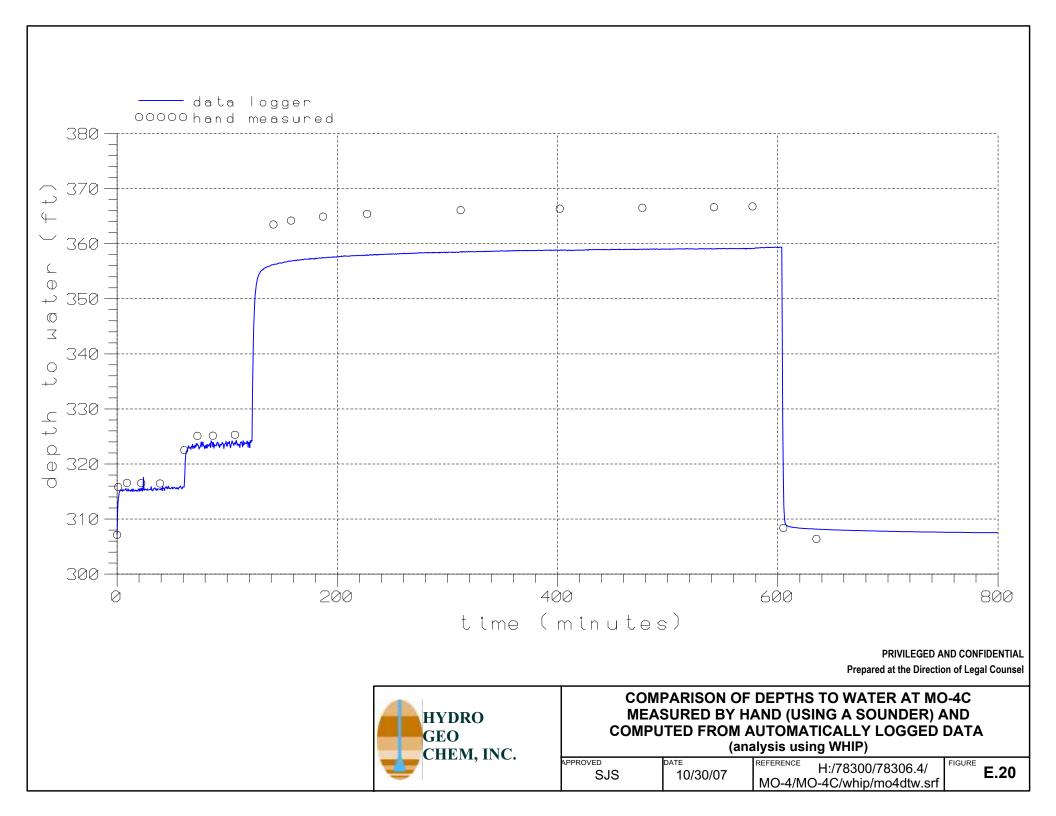
PRIVILEGED AND CONFIDENTIAL
Prepared at the Direction of Legal Counsel

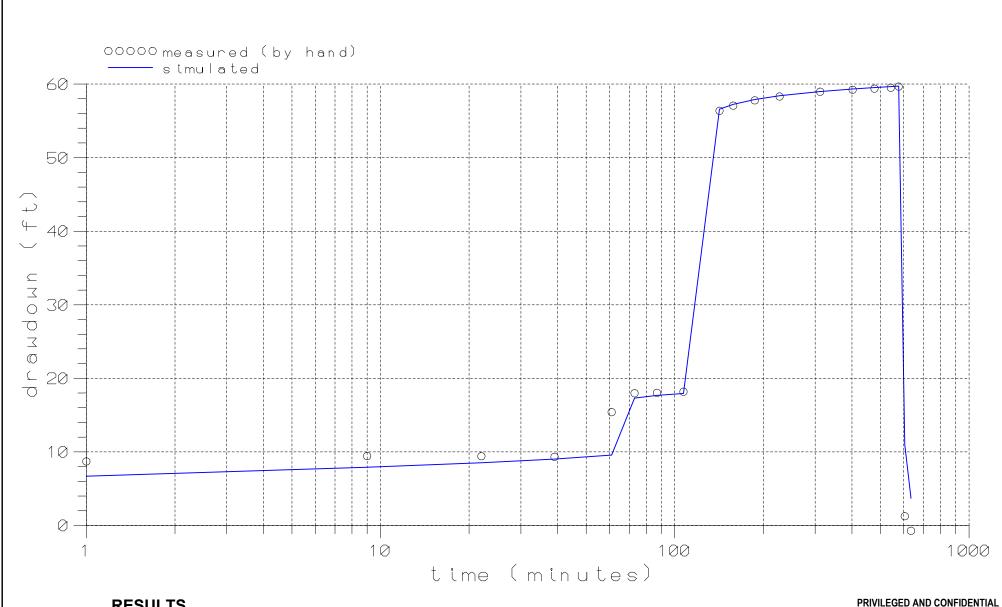

Transmissivity = 8680 ft2/day
Storage coefficient = 0.001
Vertical Hydraulic Conductivity = 0.0114 ft/day
well loss constant = 8.e-5
well loss exponent = 3.02
assumed aquifer thickness = 835 ft

MEASURED AND SIMULATED DRAWDOWNS AT MO-4C DURING PUMPING AT 15-16.5, 28, AND 60 GPM (analysis using WHIP)

APPROVED DATE SJS 10/30/07

H:/78300/78306.4/ MO-4/MO-4C/whip/mo4c.srf


PRIVILEGED AND CONFIDENTIAL
Prepared at the Direction of Legal Counsel

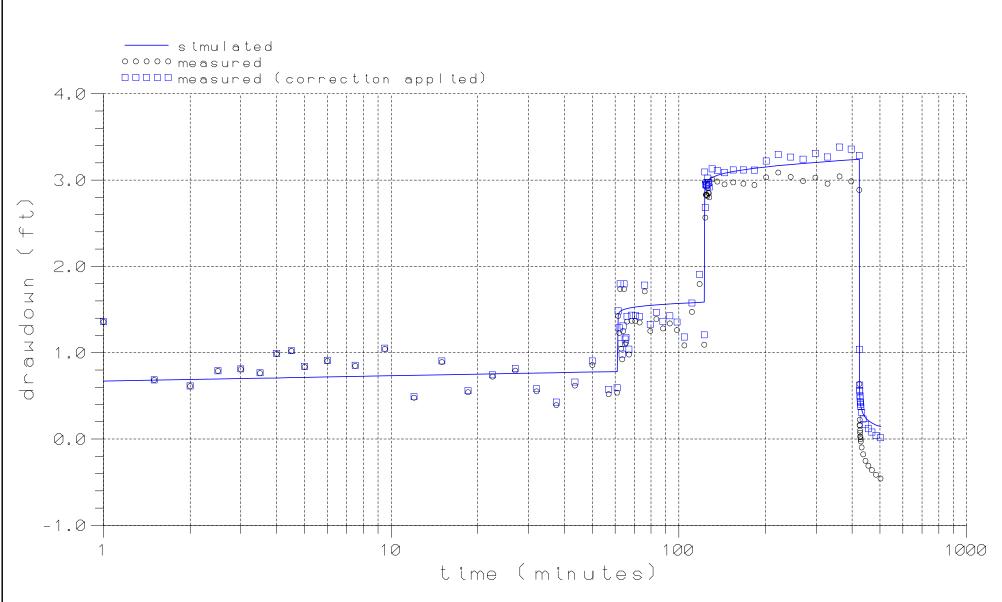

Transmissivity = 9000 ft2/day
Storage coefficient = 0.001
Vertical Hydraulic Conductivity = 0.02 ft/day
well loss constant = 1.8e-4
well loss exponent = 2.82
assumed aquifer thickness = 835 ft

MEASURED AND SIMULATED DRAWDOWNS AT MO-4C DURING PUMPING AT 15-16.5, 28, AND 60 GPM (analysis using WHIP)

APPROVED SJS DATE 10/30/07 H:/78300/78306.4/MO-4/MO-4C/whip/mo4c2.srf

Prepared at the Direction of Legal Counsel

Transmissivity = 8680 ft2/day Storage coefficient = 0.001 Vertical Hydraulic Conductivity = 0.0114 ft/day well loss constant = 8.4e-5 well loss exponent = 3.09 assumed aquifer thickness = 835 ft



MEASURED AND SIMULATED DRAWDOWNS AT MO-4C DURING PUMPING AT 15-16.5, 28, AND 60 GPM (HAND COLLECTED DATA)

(analysis using WHIP)

APPROVED DATE SJS 10/30/07

H:/78300/78306.4/ MO-4/MO-4C/whip/mo4ch.srf

PRIVILEGED AND CONFIDENTIAL

Prepared at the Direction of Legal Counsel

Transmissivity = 31,200 ft2/day
Storage coefficient = 0.001
Vertical Hydraulic Conductivity = 0.01 ft/day
well loss constant = 0.0091
well loss exponent = 1.27
assumed aquifer thickness = 1085 ft

MEASURED AND SIMULATED DRAWDOWNS AT MO-5B DURING PUMPING AT 16, 30, AND 55 GPM (with linear correction for regional water level change) (analysis using WHIP)

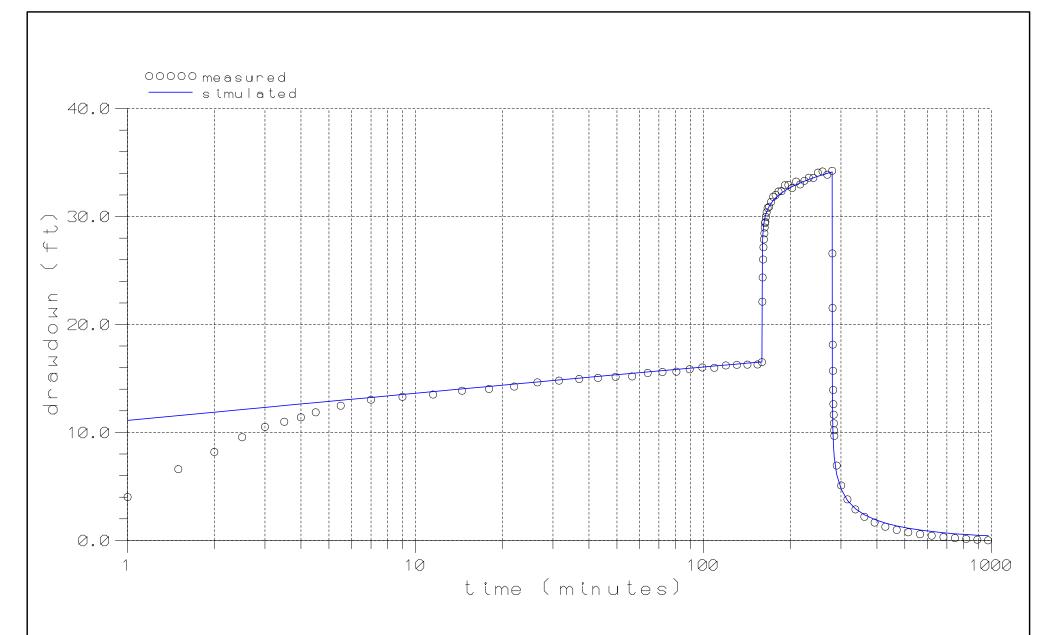
APPROVED DATE
SJS 10/30/07

REFERENCE H:/78300/78306.4/ MO-5/MO-5B/whip/mo5bcor.srf

PRIVILEGED AND CONFIDENTIAL

Prepared at the Direction of Legal Counsel

Transmissivity = 31,200 ft2/day
Storage coefficient = 0.1
Vertical Hydraulic Conductivity = 0.1 ft/day
well loss constant = 0.016
well loss exponent = 1.19
assumed aquifer thickness = 1085 ft



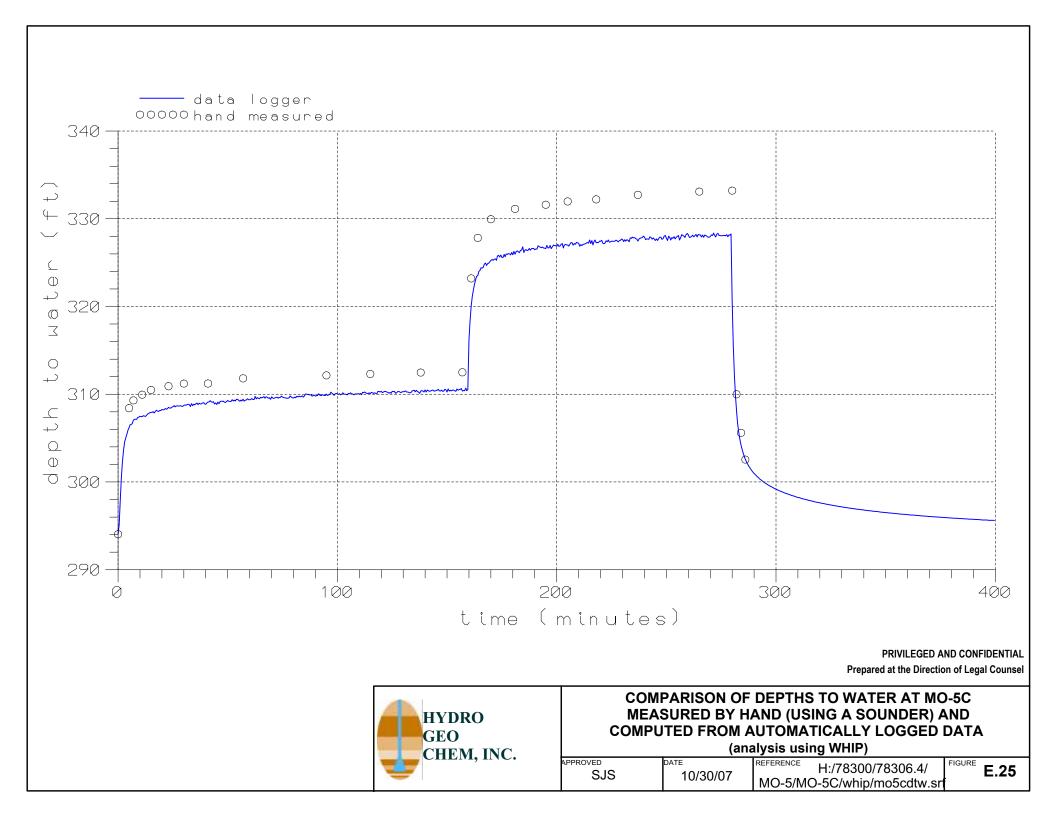
MEASURED AND SIMULATED DRAWDOWNS AT MO-5B DURING PUMPING AT 16, 30, AND 55 GPM (with linear correction for regional water level change) (analysis using WHIP)

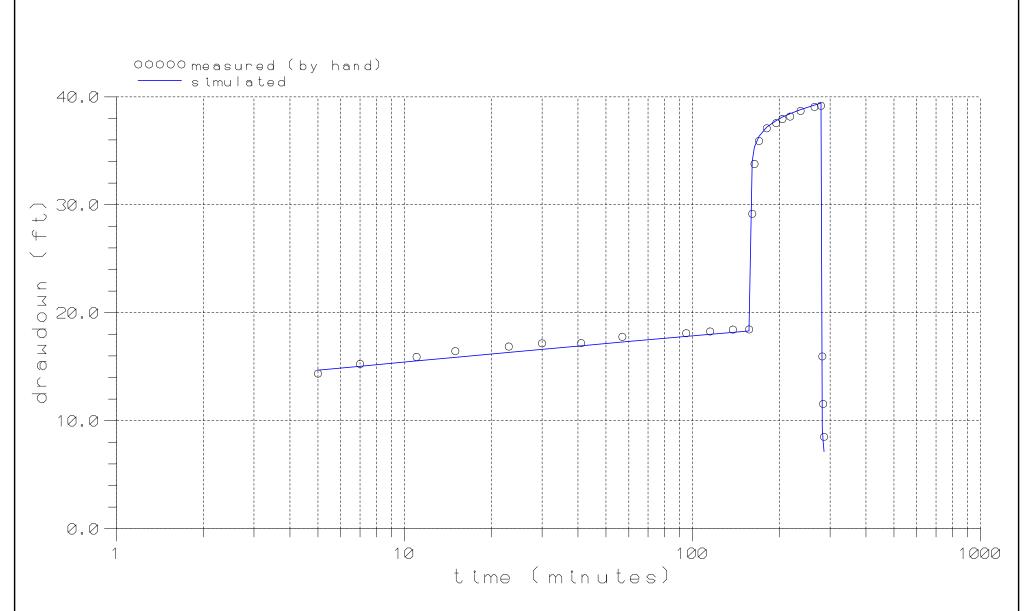
APPROVED DATE SJS 10/30/07

H:/78300/78306.4/ MO-5/MO-5B/whip/mo5bc2.srf

[™] E.23

PRIVILEGED AND CONFIDENTIAL
Prepared at the Direction of Legal Counsel


Transmissivity = 785 ft2/day
Storage coefficient = 0.001
Vertical Hydraulic Conductivity = 0.0114 ft/day
well loss constant = 0.003
well loss exponent = 2.05
assumed aquifer thickness = 1085 ft



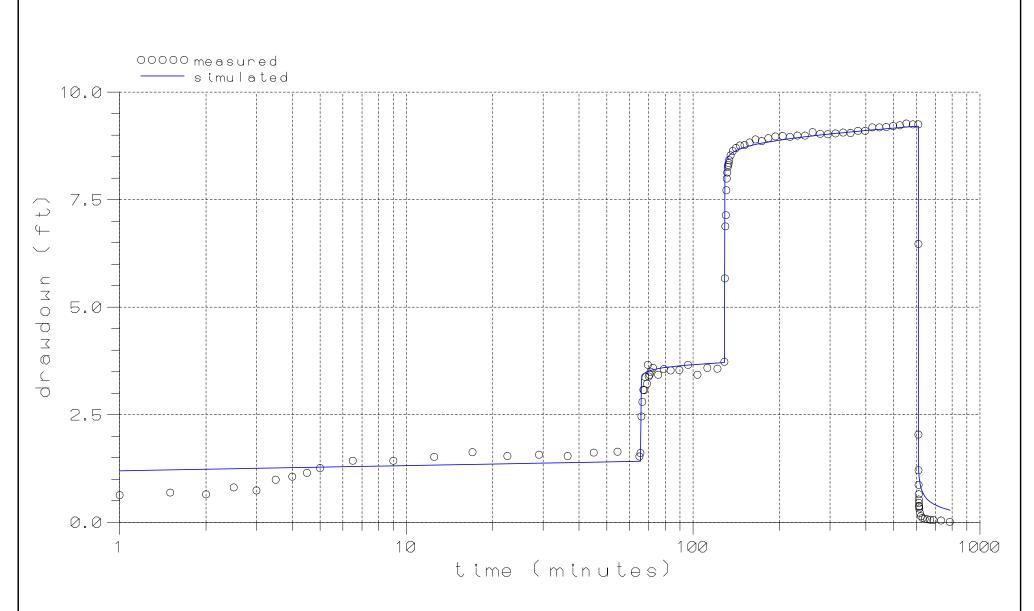
MEASURED AND SIMULATED DRAWDOWNS AT MO-5C DURING PUMPING AT 10.5 AND 21 GPM (analysis using WHIP)

APPROVED DATE SJS 10/30/07

H:/78300/78306.4/ MO-5/MO-5C/whip/mo5c.srf

PRIVILEGED AND CONFIDENTIAL
Prepared at the Direction of Legal Counsel

Transmissivity = 785 ft2/day
Storage coefficient = 0.001
Vertical Hydraulic Conductivity = 0.0114 ft/day
well loss constant = 0.045
well loss exponent = 1.65
assumed aguifer thickness = 1085 ft


MEASURED AND SIMULATED DRAWDOWNS AT MO-5C DURING PUMPING AT 10.5 AND 21 GPM (HAND COLLECTED DATA) (analysis using WHIP)

APPROVED SJS

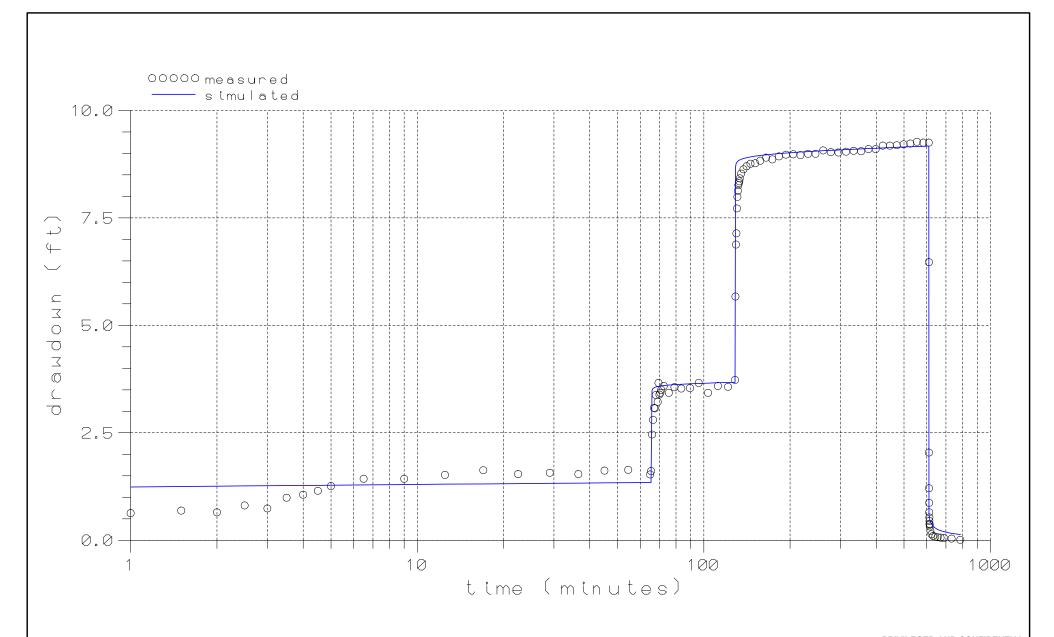
10/30/07

DATE

H:/78300/78306.4/ MO-5/MO-5C/whip/mo5ch.srf

PRIVILEGED AND CONFIDENTIAL
Prepared at the Direction of Legal Counsel

Transmissivity = 8,000 ft2/day
Storage coefficient = 0.0057


Vertical Hydraulic Conductivity = 0.1 ft/day
well loss constant = 0.014
well loss exponent = 1.49
assumed aquifer thickness = 655 ft

MEASURED AND SIMULATED DRAWDOWNS AT MO-6A DURING PUMPING AT 13, 28, AND 55 GPM

(analysis using WHIP)

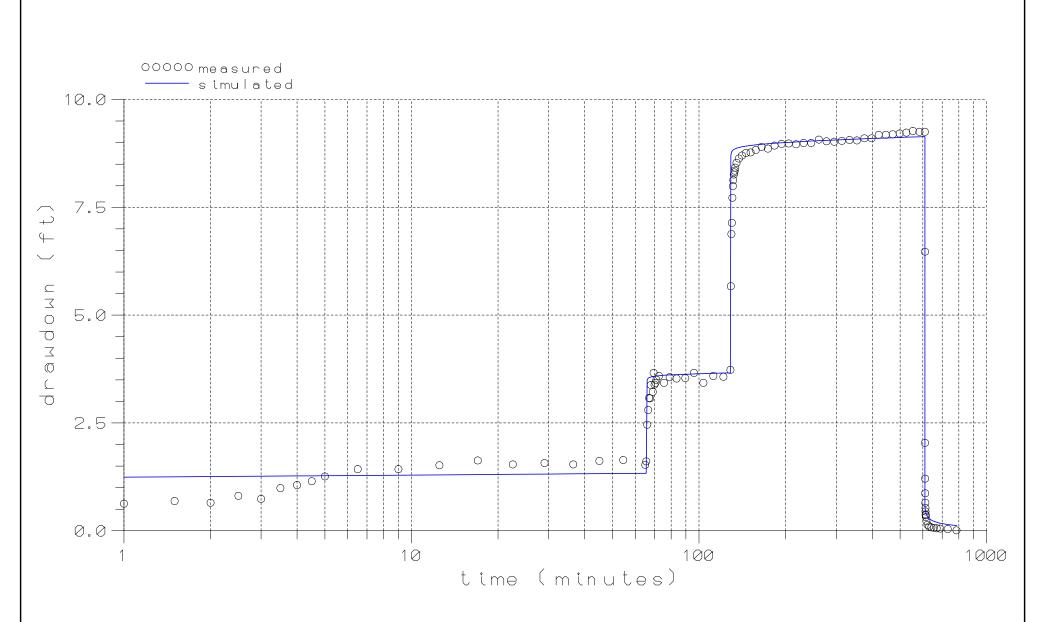
SJS DATE 10/30/07 REFERENCE H:/78300/78306.4/ MO-6/MO-6A/whip/mo6a.srf

PRIVILEGED AND CONFIDENTIAL

Prepared at the Direction of Legal Counsel

Transmissivity = 17,000 ft2/day
Storage coefficient = 0.0057

Vertical Hydraulic Conductivity = 0.1 ft/day
well loss constant = 0.0258
well loss exponent = 1.41
assumed aquifer thickness = 655 ft



MEASURED AND SIMULATED DRAWDOWNS AT MO-6A DURING PUMPING AT 13, 28, AND 55 GPM (FIT TO RECOVERY DATA)

(analysis using WHIP)

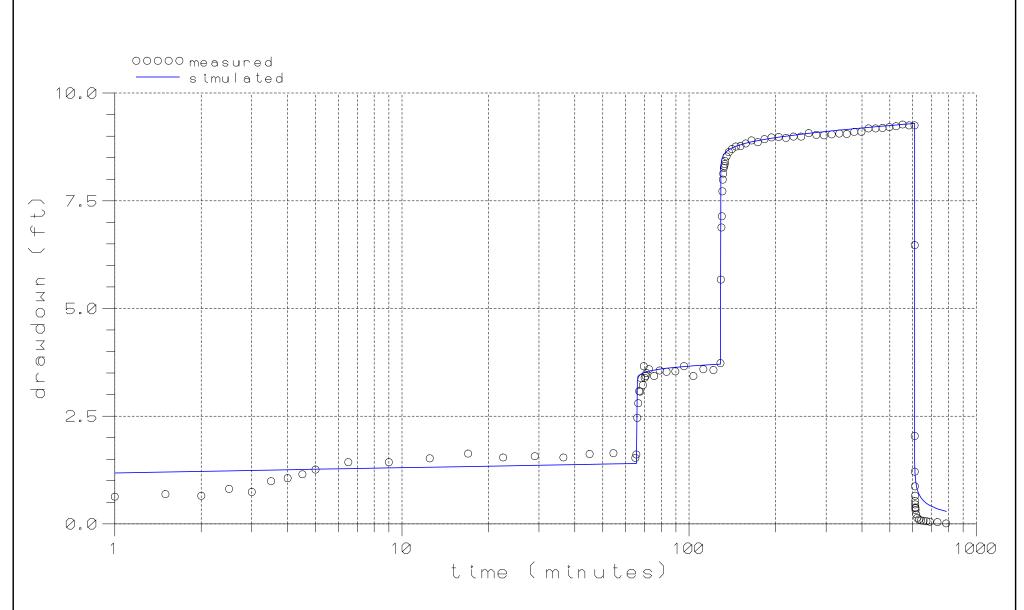
APPROVED DATE SJS 10/30/07

EFERENCE H:/78300/78306.4/ MO-6/MO-6A/whip/mo6alt.srf

PRIVILEGED AND CONFIDENTIAL
Prepared at the Direction of Legal Counsel

Transmissivity = 10,000 ft2/day
Storage coefficient = 0.0057

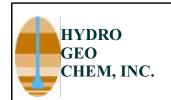
Vertical Hydraulic Conductivity = 0.1 ft/day
well loss constant = 0.0277
well loss exponent = 1.40
assumed aquifer thickness = 325 ft


MEASURED AND SIMULATED DRAWDOWNS AT MO-6A DURING PUMPING AT 13, 28, AND 55 GPM (ASSUMES AQUIFER BASE AT 630 FT BLS) (analysis using WHIP)

APPROVED SJS

10/30/07

DATE

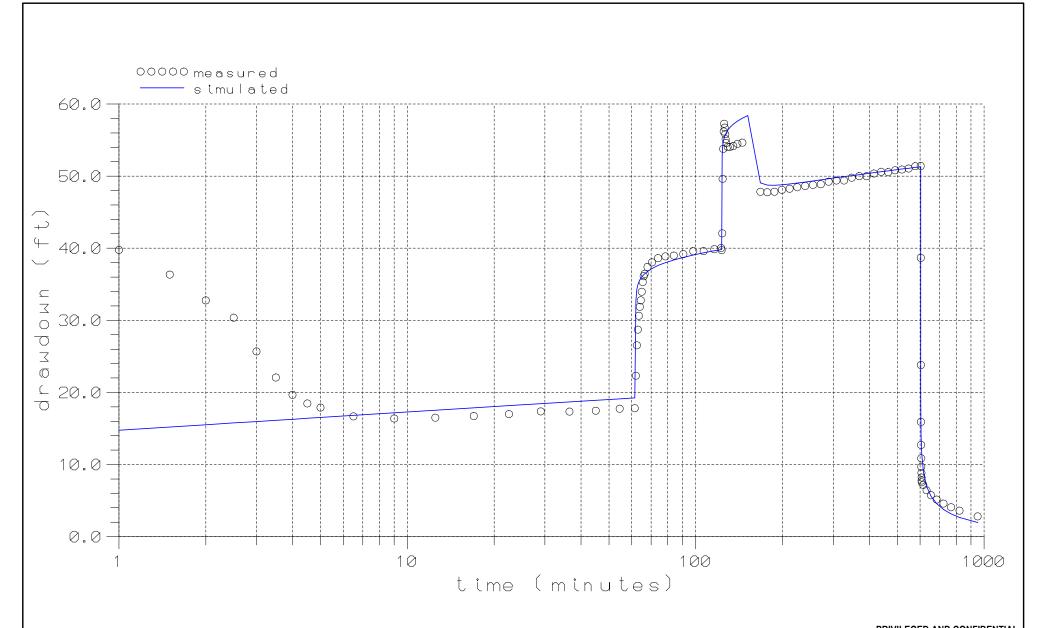

REFERENCE H:/78300/78306.4/ MO-6/MO-6A/whip/mo6afp.srf

PRIVILEGED AND CONFIDENTIAL
Prepared at the Direction of Legal Counsel

Transmissivity = 4,150 ft2/day
Storage coefficient = 0.0057

Vertical Hydraulic Conductivity = 0.1 ft/day
well loss constant = 0.014
well loss exponent = 1.50
assumed aquifer thickness = 325 ft

MEASURED AND SIMULATED DRAWDOWNS AT MO-6A DURING PUMPING AT 13, 28, AND 55 GPM (ASSUMES AQUIFER BASE AT 630 FT BLS)


(analysis using WHIP)

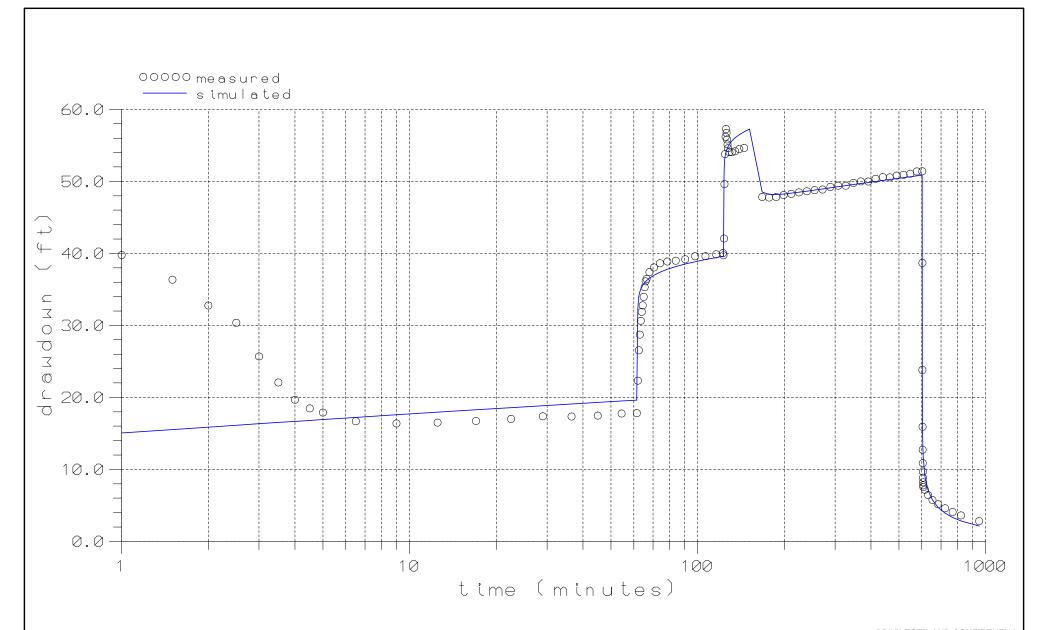
APPROVED DATE REFERENCE 11./7920

10/30/07

SJS

REFERENCE H:/78300/78306.4/ MO-6/MO-6A/whip/mo6af2.srf

PRIVILEGED AND CONFIDENTIAL
Prepared at the Direction of Legal Counsel


Transmissivity = 750 ft2/day
Storage coefficient = 0.001
Vertical Hydraulic Conductivity = 0.01 ft/day
well loss constant = 0.2
well loss exponent = 1.12
assumed aquifer thickness = 655 ft

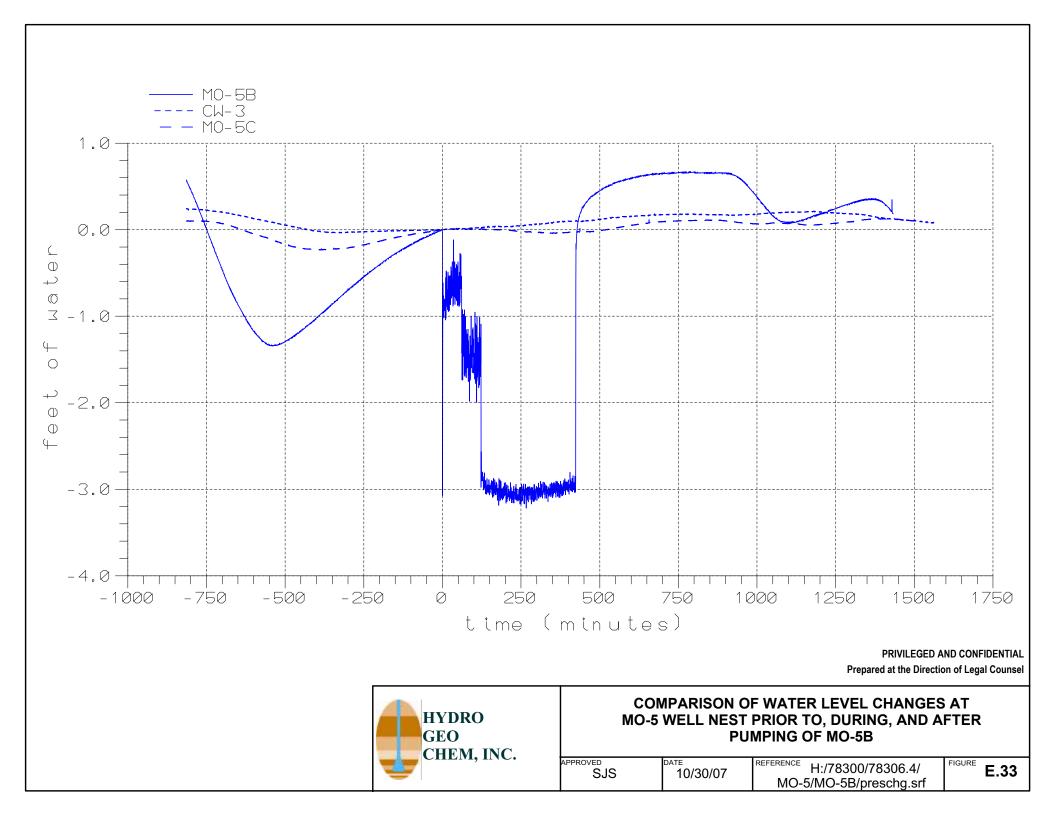
MEASURED AND SIMULATED DRAWDOWNS AT MO-6B DURING PUMPING AT 14, 28, 40, AND 33 GPM (analysis using WHIP)

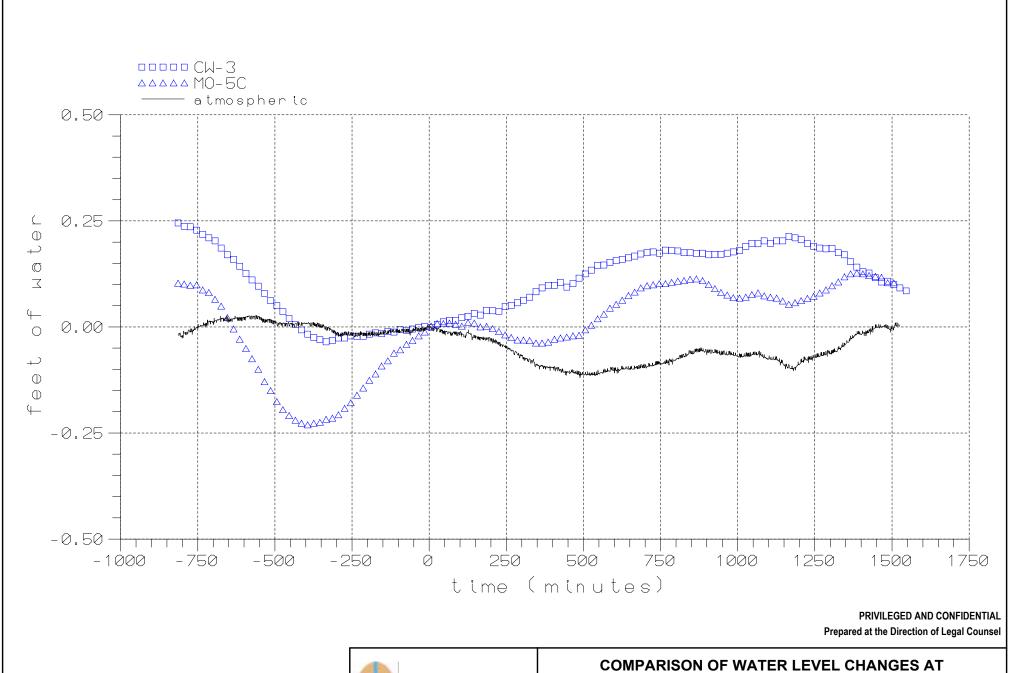
APPROVED DATE SJS 10/30/07

H:/78300/78306.4/ MO-6/MO-6B/whip/mo6b.srf

Transmissivity = 210 ft2/day
Storage coefficient = 0.001
Aquitard Specific Storage = 1.e-4/ft
Vertical Hydraulic Conductivity = 0.1 ft/day
Aquitard Hydraulic Conductivity = 0.001 ft/day
well loss constant = 0.4
well loss exponent = 0.95
assumed aquifer thickness = 190 ft

PRIVILEGED AND CONFIDENTIAL


Prepared at the Direction of Legal Counsel


MEASURED AND SIMULATED DRAWDOWNS AT MO-6B DURING PUMPING AT 14, 28, 40, AND 33 GPM (ASSUMES AQUITARD FROM 630-770 FT BLS) (analysis using WHIP)

APPROVED SJS 10/30/07

H:/78300/78306.4/ MO-6/MO-6B/whip/mo6bl.srf

E.32

COMPARISON OF WATER LEVEL CHANGES AT CW-3 AND MO-5C WITH CHANGE IN ATMOSPHERIC PRESSURE PRIOR TO, DURING, AND AFTER PUMPING OF MO-5B

APPROVED SJS 10/30/07 REFERENCE H:/78300/78306.4/ MO-5/MO-5B/preschg2.srf

E.34

APPENDIX F

RESULTS OF INITIAL WATER QUALITY SAMPLING AT OFFSITE MONITORING WELLS

TASK 2.4 OF AQUIFER CHARACTERIZATION PLAN

APPENDIX F

RESULTS OF INITIAL WATER QUALITY SAMPLING AT OFFSITE MONITORING WELLS

TASK 2.4 OF AQUIFER CHARACTERIZATION PLAN MITIGATION ORDER ON CONSENT DOCKET NO. P-50-06

Prepared for:

PHELPS DODGE SIERRITA, INC.

6200 West Duval Mine Road Green Valley, Arizona 85614

Prepared by:

HYDRO GEO CHEM, INC.

51 West Wetmore Road, Suite 101 Tucson, Arizona 85705 (520) 293-1500

December 28, 2007

TABLE OF CONTENTS

1.	INTRODUCTION
2.	GROUNDWATER SAMPLING
3.	ANALYTICAL METHODS
4.	RESULTS7
	TABLE
F.1	Results for Initial Water Quality Sampling of MO-2007-Series Wells
	FIGURE
F.1	Sulfate Concentrations in Initial Groundwater Samples collected from MO-2007-Series Monitoring Wells (June through October 2007)
	APPENDICES
F.1 F.2	Groundwater Sampling Forms Analytical Data Reports from ACZ Laboratories, Inc.

1. INTRODUCTION

This data report provides the results of the initial water quality samples collected at monitor wells installed in 2007 pursuant to Task 2.4 of the Work Plan (Hydro Geo Chem, Inc. [HGC], 2006)¹ to characterize sulfate in the vicinity of the Phelps Dodge Sierrita Tailings Impoundment. The Work Plan was submitted to and approved by Arizona Department of Environmental Quality pursuant to the Mitigation Order on Consent Docket No. P-50-06. HGC conducted the sampling and prepared this report on behalf of Phelps Dodge Sierrita, Inc.

_

¹ Hydro Geo Chem, Inc. 2006. Work Plan to Characterize and Mitigate Sulfate with Respect to Drinking Water Supplies in the Vicinity of the Phelps Dodge Sierrita Tailing Impoundment, Pima County, Arizona. August 11, 2006; revised October 31, 2006.

2. GROUNDWATER SAMPLING

The scope of the groundwater monitoring program is described in Section 3.3.4 and

Appendix G of the Work Plan (HGC, 2006). Pursuant to Task 2.4 of the Work Plan, thirteen

new monitoring wells were installed at six offsite locations to further define the extent of the

sulfate plume, to provide installations for ongoing monitoring, to characterize aquifer materials

and hydraulic properties, and to determine bedrock depth.

The new offsite wells are identified as the MO-2007-series wells. The number and letter

following MO-2007 (e.g., MO-2007-1B) denote the location and well depth, respectively

(Figure F.1). In addition, two existing wells, NP-2 and CW-3, were developed as monitoring

wells to sample the shallow basin fill aquifer. Appendix D of the main text details the geology

and construction of the MO-2007-series wells, NP-2, and CW-3.

HGC conducted the initial sampling of the MO-2007-series wells, NP-2, and CW-3 from

June through October 2007 in accordance with Sections 4.2 and 4.3 of the Quality Assurance

Project Plan (QAPP). Pursuant to the Work Plan, samples of groundwater from the

MO-2007-series wells were collected during aquifer testing conducted after the completion of

well development. Pumping for the aquifer test had been purged many wetted casing volumes

from the wells prior to sampling. Copies of groundwater sampling forms documenting the

sampling events are presented as Appendix F.1. Samples from NP-2 and CW-3 were collected

after purging a minimum of three wetted casing volumes from the wells. Samples of

groundwater were collected from a sampling port connected to the well discharge line.

F-3

Groundwater samples for analysis of dissolved constituents were filtered using a 0.45 micron in-

line filter. Samples for analysis of total concentration were collected unfiltered. Samples were

collected in containers provided by the analytical laboratory and placed immediately on ice.

Samples were shipped via overnight express under chain of custody to ACZ Laboratories, Inc.

for the analyses presented in Section 3.

The wells installed and developed pursuant to Task 2.4 of the Work Plan are added to the

quarterly plume monitoring program for ongoing sampling. Results of the initial groundwater

sampling for Task 2.4 are included in Section 4.

F-4

3. ANALYTICAL METHODS

All analyses performed used the following U.S. Environmental Protection Agency (EPA) approved analytical methods that meet the requirements stated in Section 5.3 of the QAPP regarding target methods and target method detection limits.

- SM4500 SO4-D (Gravimetric): sulfate
- EPA 300.0 (Ion-Chromatography): sulfate, chloride, fluoride
- EPA 200.7 (Inductively Coupled Plasma): calcium, magnesium, potassium, sodium
- EPA 353.2 (Automated Cadmium Reduction): nitrate/nitrite
- EPA SM2320B (Titration): alkalinity
- EPA 160.1 (Gravimetric): total dissolved solids

4. RESULTS

Analytical results for the initial water quality sampling are presented in Table F.1.

Figure F.1 shows the concentrations of dissolved sulfate in the MO-2007-series wells, NP-2, and

CW-3. Dissolved sulfate concentrations ranged from 18.9 milligrams per liter (mg/L) in

MO-2007-1B to 591 mg/L in MO-2007-2. Comparison of dissolved and total sulfate

concentrations in Table F.1 indicates negligible difference between the two measurements.

Copies of groundwater sampling forms including field data such as pH, electrical

conductivity, and temperature are presented as Appendix F.1. Analytical laboratory reports

complete with the results of quality assurance and quality control data are provided as

Appendix F.2.

The results of surrogate spike recoveries, matrix spike/recovery and matrix spike

duplicate tests, indicated there are no quality control issues effecting the usability and data

validation status of the laboratory results. The data for samples included in this report are of

acceptable quality for use in the aquifer characterization being conducted pursuant to the Work

Plan.

F-7

TABLE

TABLE F.1
Results for Initial Water Quality Sampling of MO-2007-Series Wells

Well Name	ADWR 55 Well Registry Number	Sample Date	Field pH (SU)	Field EC (μS/cm)	Field Temp (deg C)	Sulfate, total	Sulfate, dissolved	Chloride, dissolved	Fluoride, dissolved	Nitrate as N, dissolved	Nitrite as N, dissolved	Nitrate/Nitrite as N, dissolved	Calcium, dissolved	Magnesium, dissolved
MO-2007-1A	907342	08/08/07	7.17	370	29.0	19.2	19.2	8.4	0.4	0.54	< 0.01	0.54	40.4	6.4
MO-2007-1B	907210	08/02/07	7.41	321	30.7	18.9	18.9	12.4	0.6	0.71	< 0.01	0.71	32.4	4.3
MO-2007-1C	907209	07/31/07	7.35	523	27.9	114	112	22.4	0.5	0.82	< 0.01	0.82	57.5	9.3
MO-2007-2	906765	06/14/07	7.05	1372	32.2	596	591	28.3	0.3	0.94	< 0.01	0.94	196.0	35.5
NP-2 ¹	605898	06/04/07	7.20	411	25.9	41.3	41.2	9.1	0.2	0.34	< 0.01	0.34	50.3	10.9
MO-2007-3B	906816	09/10/07	7.53	373	28.7	38	38	7.0	0.5	0.33	< 0.01	0.33	31.5	2.8
MO-2007-3C	906817	06/28/07	7.93	570	32.2	136	136	11.4	3.1	0.30	< 0.01	0.30	28.2	1.4
MO-2007-4A	907213	10/09/07	7.46	412	27.5	37.2	37	10.2	0.3	0.93	< 0.01	0.93	42.8	6.2
MO-2007-4B	907212	10/11/07	7.93	376	26.4	37.5	37.6	9.1	0.6	0.77	< 0.01	0.77	41.6	4.3
MO-2007-4C	907211	08/16/07	7.62	472	35.2	78.6	78.7	11.8	5.0	0.48	< 0.01	0.48	13.0	0.3
CW-3 ¹	627483	06/06/07	7.74	449	25.3	58.7	57.9	17.7	0.3	2.92	< 0.01	2.92	56.1	10.9
MO-2007-5B	907456	10/12/07	7.63	1150	29.9	392	402	44.5	1.2	1.97	0.01	1.98	84.8	3.7
MO-2007-5C	907457	08/23/07	7.46	780	31.4	252	248	12.0	2.1	0.13	0.02	0.15	30.0	1.4
MO-2007-6A	907607	10/02/07	7.52	405	28.5	27	26.5	10.5	0.3	0.99	< 0.01	0.99	36.3	5.4
MO-2007-6A [DUP]	907607	10/02/07	7.52	405	28.5	26.5	26.5	10.5	0.3	0.98	< 0.01	0.98	36.4	5.4
MO-2007-6B	907606	10/04/07	7.70	483	33.1	93.5	93.6	10.9	0.5	0.67	0.02	0.69	28.1	2.9

TABLE F.1
Results for Initial Water Quality Sampling of MO-2007-Series Wells

Well Name	ADWR 55 Well Registry Number	Sample Date	Potassium, dissolved	Sodium, dissolved	Total Alkalinity	Bicarbonate as CaCO3	Carbonate as CaCO3	Hydroxide as CaCO3	Residue, Filterable (TDS) @ 180°C	TDS (calculated)	TDS Ratio (measured/ calculated)	Sum of Anions (meq/L)	Sum of Cations (meq/L)	Cation-Anion Balance (%)
MO-2007-1A	907342	08/08/07	3.0	30.4	164	164	< 2	< 2	250	209	1.20	3.9	3.9	0.0
MO-2007-1B	907210	08/02/07	3.2	40.5	140	140	< 2	< 2	220	199	1.11	3.6	3.8	2.7
MO-2007-1C	907209	07/31/07	4.8	49.3	124	124	< 2	< 2	380	334	1.14	5.5	5.9	3.5
MO-2007-2	906765	06/14/07	7.7	73.5	108	108	< 2	< 2	1060	1000	1.06	15.4	16.1	2.2
NP-2 ¹	605898	06/04/07	3.9	31.7	169	169	< 2	< 2	280	250	1.12	4.5	4.9	4.3
MO-2007-3B	906816	09/10/07	3.1	44.1	134	134	< 2	< 2	250	209	1.20	3.7	3.8	1.3
MO-2007-3C	906817	06/28/07	3.3	93.4	103	103	< 2	< 2	380	340	1.12	5.4	5.7	2.7
MO-2007-4A	907213	10/09/07	3.3	37.1	160	155	5	< 2	270	239	1.13	4.3	4.3	0.0
MO-2007-4B	907212	10/11/07	2.9	35.7	143	143	< 2	< 2	230	221	1.04	3.9	4.0	1.3
MO-2007-4C	907211	08/16/07	1.9	80.8	103	101	2	< 2	310	256	1.21	4.3	4.2	-1.2
CW-3 ¹	627483	06/06/07	3.0	30.5	140	140	< 2	< 2	300	273	1.10	4.7	5.1	4.1
MO-2007-5B	907456	10/12/07	5.5	164.0	95	95	< 2	< 2	780	771	1.01	11.8	11.9	0.4
MO-2007-5C	907457	08/23/07	7.1	129.0	71	71	< 2	< 2	540	473	1.14	7.0	7.4	2.8
MO-2007-6A	907607	10/02/07	3.8	39.8	164	164	< 2	< 2	920	225	4.09	4.2	4.1	-1.2
MO-2007-6A [DUP]	907607	10/02/07	3.8	40.0	163	163	< 2	< 2	260	225	1.16	4.2	4.1	-1.2
MO-2007-6B	907606	10/04/07	11.3	60.6	125	119	5	< 2	400	287	1.39	4.8	4.6	-2.1

Notes

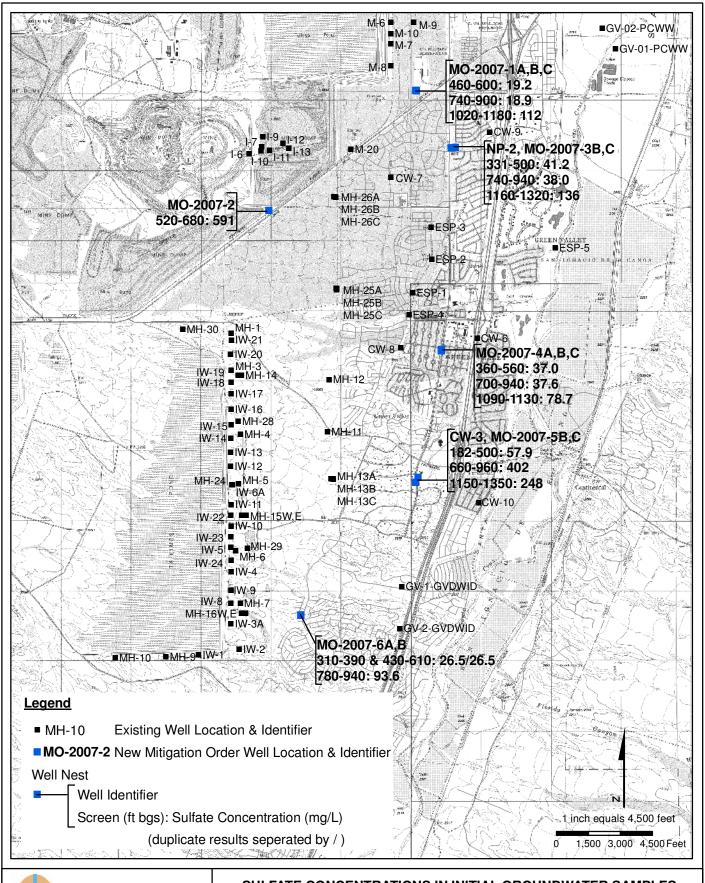
All units are in milligrams per liter (mg/L) unless otherwise noted,

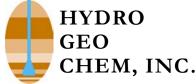
1 = Existing well designated as monitoring well for sampling the shallow zone of the basin fill aquifer

ADWR = Arizona Department of Water Resources

SU = Standard Units

μS/cm = microsiemens per centimeter


deg C = degrees Celsius


TDS = Total Dissolved Solids

meq/L = milliequivalent per liter

DUP = Duplicate Sample

FIGURE

SULFATE CONCENTRATIONS IN INITIAL GROUNDWATER SAMPLES COLLECTED FROM MO-2007-SERIES MONITORING WELLS (JUNE THROUGH OCTOBER 2007)

Approved	Date	Author	Date	File Name	Figure
DRS	11/06/07	RAM	11/06/07	7830031G	F.1

APPENDIX F.1 GROUNDWATER SAMPLING FORMS

INITIAL SAMPUNG

Groun	dwai	ter San	npling .	For	m								
·			1 0						Well	No:	mo-20	07-1	A
											American		
Project Name	/Num	nhar S	HERRIT	Δ G	W MONI	ITOR	INIC					- U	
Project Name	rivari	iberc	<u> </u>	<u> </u>	VV IVIOIN	i i Oi i	IIVC				/	A. W	<u> </u>
					\^/== i	ini <i>r (</i>	~ #~ R			ruer/	Sampler: <u>//</u>	//.//	
T-4-114/-11 D -		(#			WELL	. INFC	<u>JKII</u>	<u>MATION</u>					
Total Well De		•				_							
Casing Diame											om: <u>NA</u>		
Well/Packer [
One Wetted C	Casin	g Volur	ne: (a-	b) •	d2 • 0.04	408 =		(Gallor	ıs, (3	Casing Volu	mes	gal)
					RMATIO						<u>IENTS</u>		
Time Started:	1	300)	Tim	ne Comp	leted	:		***************************************	Tot	tal Purge Tim	e:	min
Purge Method	t:			Pur	mp Settir	ng (de	epth	ı):		Tot	tal Purge Volu	ıme:	g
Actual or Extrac Elapsed Rate/ Time (Min) (gpn	Vol	Temp (°C)	Conducti (uhos/cr	vity	рН	Oth		D.O. (mg/L)	Odd	-		lotes	
1300		29.0	370		7.17						· · · · · · · · · · · · · · · · · · ·		
				••••									
	***************************************	***************************************										· · · · · · · · · · · · · · · · · · ·	
		1 _		G II	NFORM	ATIO	NA	ND SAN	IPLE	REC	ORD		الحقيد
Time Started:		<u> 130</u>	<u> </u>	Tim	ne Comp	leted:		1307	2				
Sampling Met	hod,	Туре о	f Sampl	ing	Pump or	Baile	er: _						
Sample No.		Time	Contair Type		Volun	ne		No. of ontainers	Anal Met		Preservative	Note	es es
FGW-M0-2007	-1A	1300	PLASTI		125 mL/25	50 mL	- 00	2	300.1/		NONE/HNO3	FILTER	RED
UGW-M0-2007	-//		PLASTI	С	250 m	ıL		1	300	0.0	NONE	RAV	V
			·····										
												 	
		4	QU.	ALI	LA CON.	TROL	_ S/	AMPLE	RECC	RD			
	C	rig. Sam	nple No.	II 1. 1. 1. 1 	Туре		Q	C Sample	No.		Time		
	ļ												

IUITURL CAMPUNG

C	C 7.	771
Groundwater	Sampling	rorm

Ground	water Sai	mpling .	For	m								
								Well	No: i	MO-200 American	7-11	3
							We	ell Nar	ne:	American	1 Pain	Well
Project Name/N	Number: S	SIERRIT	A G	W MON	ITOR	ING					9/2/2	
•	to make the								rder/	Sampler: \overline{N}	A 1/ 7	rneson
				WELL	INE		TATION		uci)	oampier. P	[a.] [racson
Total Well Dep	th /"a" ft):			A E prime posse pri	. IIV	OTTIV	IATION	<u>.</u> //	/	Pall	1-72	
•	,	-			0 -			1.70	0 /	urge Read	1-1-15-	Ln Progres
Casing Diamet	,			***************************************						om: <u>NA</u>		
Well/Packer De												
One Wetted Ca	asing Volu	me: (a-	•b) •	d2 • 0.0	408 =		(Gallon	s, (3	Casing Volu	mes	gal)
	1		FOF	RMATIO	N AN	ID F	IELD M	EASU	REN	<u>MENTS</u>		
Time Started:	144	5	Tim	ne Comp	leted	:			Tot	al Purge Tim	ie:	min
Purge Method:	Grundfo		Pui	mp Settii	ng (d	epth):		Tot	al Purge Vol	ume:	gal
Actual or Extraction Elapsed Rate/Volume (Min) (gpm)		Conducti (uhos/c	-	рН	Oth	er	D.O. (mg/L)	Odo	r	ľ	Notes	
1445	30.7	321		7.41								
				-								
					<u> </u>							
										mm-turat.	***	
										The state of the s	······································	
L. Company	<u>.</u> <u>S</u>	AMPLIN	IG I	NFORM.	ATIO	N AI	VD SAM	MPLE	REC	ORD		
Time Started:	144	5		ne Comp			-	>		And the Committee of th		
Sampling Meth	od. Type c	of Samp					,	tti di simonome.				
Sample No.	Time	Contair		Volun	######################################	,	Vo. of	Anal	voio	Drogonyotius	6(-1	
•		Туре	}			ž.	ntainers	Anal Met	nod	Preservative	Not	
-GW-M0-2007-	1B 1445			125 mL/25 250 m			2	300.1/3		NONE/HNO3	FILTE	
JGW-MO-2007-	13 1445	LAGI		230 11	· · · · · · · · · · · · · · · · · · ·		!	300		NONE	RA	VV
					····							
		<u>QU</u>	ALI	TY CON	TRO	_ <u>SA</u>	MPLE	RECC	RD			
	Orig. Sar	nple No.		Type		QC	Sample	No.		Time		
						<u> </u>	***************************************		· · · · · · · · · · · · · · · · · · ·			

INMAN SAMPLAND

Groundwater Sampling Form

Orouna	maici sai	upung 1 0	71 114				
					Well No	: <u>MO-2007-10</u>	0
				V	Vell Name	: <u>American Le</u>	egion Well
Project Name/I	Number:_S	SIERRITA	GW MONITO	ORING (7830	06.2)	Date:	7 / 31 /2007
					Recorde	er/Sampler: <u>K</u>	
			WELL IN	IFORMATIO		3	
Total Well Dep	th ("a", ft):	119	$\widehat{\mathbb{Q}}$				
Casing Diamet	er ("d". in.)	:		Screened Inte	erval (ft):	From: NA 1180	TO: No WIO
Well/Packer De	epth ("a", f	t): NA	Γ	enth to Wat	er ("h" ft):	Cotabic OSA	To: MX W20 1943.58
One Wetted Ca	asina Volu	me: (a-h)	• d2 • 0 0408	? =	Gallons	(3 Casing Volu	umes gal)
Time Started:	0921	T	ima Camplat	od Phil	NEASUNI	-otal Duma Til	ital meter: lotor
Purge Method:		1 1					A and a color
_						otal Purge Vo	į.
Actual or Extraction Elapsed Rate/Vo Time (Min) (gpm)	ol (°C/°F)	Conductivity (mhos/cm) MS/CM	9 7.52 N	Other D.O. (mg/L)	Odor		Notes
Time (Min) (gpm)	5 31.2	H20		t.03		well mm	na Wananval
1115 73	0 31.7	484	7.41 6	.09		Ronduma	
1245 Het48		508		92			- 01
1410 L	30.2 NA	518 Mil	6 4 2 5	47		PHECTEMO-C	Alila Manch
1520 248	77.9	57.3		151		THICC PENTO	<u>who have</u>
•							
							TT
	S	AMPLING	INFORMAT	ION AND SA	AMPLE RI	ECORD	And the second s
Time Started:	1520		ime Complet			·	
Sampling Meth					6	mul Asiat	a well head.
Sample No.	Time	Container	Volume	No. of	Analysis	7	Notes
·		Type		Containers	Method	e	
MO-2007-1C-F MO-2007-1C-U	1510	PLASTIC PLASTIC	125 mL/250 mL 250 mL	2	300.1/200.7	7 NONE/HNO3 NONE	FILTERED RAW
2007 70 C	1520	TEAGTIO	230 1112		300.0	NONE	HAVV
		٠ ٠ ٠ ٠ ٠ ٠ ٠ ٠ ٠ ٠				-	
			ITY CONTR	OL SAMPLI	RECOR	D	_
	Orig. Sar	mple No.	Type	QC Sam	ole No.	Time	
							-
			WITH LAFT WAR AND THE STREET OF THE STREET O			······································	-
H·\78300\DATA\FIFLD	DATA\GWSar	nnlingForm doc]

1

turnar	89/1	PUPG
--------	------	------

			CHEM,						
G G	roundw	ater Sai	npling For	m				mm 2	
							Well No:	1110-2	
						We	ell Name:		
Project N	Name/Nu	ımber: <u>S</u>	SIERRITA G	W MONITO	<u>ORING</u>	(78306	•		1/4/2007
							Recorder/S	Sampler: 🖊	H
				WELL II	VFORI	MATION			
Total We	ell Depth	("a", ·ft):	Note the second design through the second						
Casing D	Diameter	("d", in.)	h destrict the state of the sta	The second secon	Screer	ned Inter	val (ft): Fr	om: <u>NA</u>	To: NA
Well/Pac	ker Dept	th ("a", ft	:): <u>NA</u>						
									nesgal
			RGE INFOR						**************************************
Time Sta	arted:		_						: mir
Purge M	ethod:								me:
Actual or Elapsed Fime (Min)	Extraction Rate/Vol (gpm)	Temp (°C)	Conductivity (uhos/cm)	рН	Other	D.O. (mg/L)	Odor	No	nt e s
1550	37.5	32.2	1372	7.05					
								No. of the second secon	
		S	AMPLING II	VFORMAT	ION A	the second second	VIPLE REC	ORD	
Γime Sta	ırted: .	100) O Tim	ne Complet	:ed:	158			
Sampling	g Methoc	l, Type c	of Sampling	Pump or B	ailer: _	**************************************	·		
Samp	le No.	Time	Container Type	Volume	ļ	No. of	Analysis	Preservative	Notes
·GW- M	0-ZPI		PLASTIC	125 mL/250 r		ontainers 2	Method 300.1/200.7	NONE/HNO3	FILTERED
IGW- M	0-217		PLASTIC	250 mL		1	300.0	NONE	RAW

			QUALI	TY CONTE	OL SA	AMPLE	RECORD		The state of the s

Orig. Sample No.	Type	QC Sample No.	Time

HYDRO GEO CHEM, INC. Groundwater Sampling Form Well No: GW-605898-051407 Well Name: CW-2/NP-2 Project Name/Number: SIERRITA GW MONITORING (78306.2) Recorder/Sampler: WELL INFORMATION Total Well Depth ("a", ft): 515 Casing Diameter ("d", in.): 12 Screened Interval (ft): From: NA To: NA Well/Packer Depth ("a", ft): NA Depth to Water ("b", ft): [ADWR = 314] One Wetted Casing Volume: (a-b) • d2 • 0.0408 = 964 Gallons, (3 Casing Volumes 28 PURGE INFORMATION AND FIELD MEASUREMENTS Time Completed: 1452 Total Purge Time: Time Started: Purge Method: Grandfos Pump Pump Setting (depth): 446 Total Purge Volume:

Actual or Elapsed	Extraction Rate/Vol	Temp (°C/°F)	Conductivity . (mhos/cm)	рH	Other	D.O. (mg/L)	Odor	Notes
Time (Min)	(gpm)	25.6	390	7,80	779		Slight	Musty
1417 1426	100	25.9	405	7.75	755		None	Some what User
1438	100	20.9	410	7.70	27/		None	milky
1455	100	25.9	4/1	7.20	27,48		None	fairly clear

SAMPLING INFORMATION AND SAMPLE RECORD

Time Started: 1955 Time Completed: 1958
Sampling Method, Type of Sampling Pump or Bailer: Crank 605

	Sample No.	Time	Container	Volume	No. of	Analysis	Preservativ	Notes
			Туре		Containers	Method	e	
UF	-605898-06040	7 1455	137	250ml)	504	None	,
/ 6 h	-605898-060407	1455	paly	750 m)	1	Anions	None	Filtered
FLW	-605896-060407	1455	poly	250 ml)	merals	HNO	F. Hered
1F-	605898-060407	1440	6-1255	22	1	Oil brease	HC1	untibered
	,							

QUALITY CONTROL SAMPLE RECORD

	Orig. Sample No.	Туре	QC Sample No.	Time
1				
1				
L				

INTTAL SAMPUNG

HYDRO GEO CHEM, INC.

Groundwater Sampling Form

						ADWF	R Well No:	<u>55-906816</u>		
						We	ell Name:	MO-2007-3E	3	
Project Nan	ne/Numb	er: <u>PDS</u>	SI Sierrita	GW Monitor	ing (783	306.4)		Date: 9	120 / 2007	
								Sampler: M.		
				WELL	INFOR	MATION		I		
Total Well [Depth ("a'	". f t):	9	50	TOTAL STATE OF THE		•			
Casing Diar		•		S *	Scree	ned Interv	al (ft): From	: NA	To: NA	
Well/Packe	,	,				to Water		35928	ro. <u>IVA</u>	
			- American Control of the Control of				, ,	<u> </u>		
	z Odomig	VOIGITIC	. (a b) · a	2 0.0400 =	_ Galloi	iis, (o Cas	ing volumes	sgai)		
		PUI	RGE INF	ORMATIO	N AND	FIELD M	EASUREM	ENTS		
Time Starte	ıd:	-		Fime Comple				al Purge Time:	min	
Purge Meth	od:			oump Setting	_):		al Purge Volume		
Time	Extracti	on .							941	
(min)	Rate/V	01	femp ((°C)	Conductivity (µhos/cm)	pH (SU)	D.O. (mg/l)	Odor	Note	s	
1415	51	7	4.7	375	7,53		None Pu	cumping began at 1100		
1423	51	7	8.7	373	7.53					
		- A Plante Malan Carabacana		OTHER CHARLES SOUTH AN						
									4.500.00	
			AMPLING	INFORMA	ATION A	AND SAM	MPLE REC	<u>ORD</u>		
Time Starte	d: <u>/</u>	426		Time Comple	eted:	1428) 			
Sampling M	lethod, Ty	ype of S	ampling F	Pump or Bail	er: <u>Su</u>	bresa	ble			
Sample	No.	Time	Containe Type	Volum	e c	No. of ontainers	Analysis Method	Preservative	Notes	
-GW-MO-20		1426	PLASTIC	125 ml/25	0 ml	2	300.1/200.7	NONE/HNO3	FILTERED	
JGW-MO-20	07-3B	1456	PLASTIC	250 m	1	1	300.0	NONE	UNFILTERED	
			1		i		1		l i	

QUALITY CONTROL SAMPLE RECORD

Sample No.	Туре	QC Sample No.	Time

INM W SAMDIME

	rounav	vater Sar	npung 1	orn	n							
									Well	No:	MO-3-	
								We	ell Nar	ne:	MO-2007	1-36
Project	Name/N	umber:_S	SIERRIT	4 GV	N MONI	TOR	ING	3 (78306	.2)		Date:	0 12012007
									Reco	rder/	Sampler: <i>(</i>	25/MA
					WELL	. INFO	<u>DRI</u>	MATION				- complification
Total W	ell Depth	n ("a", ft):	**********								KOMALK	1651
Casing I	Diamete	r ("d", in.)				Scr	eer	ned Inter	val (ft): Fr	rom: <u>NA</u>	_ To: <u>NA</u>
Well/Pa	cker Dep	oth ("a", ft): <u>NA</u>	******************************		Dep	oth	to Water	("b",	ft): _		
												mes gal)
		<u>PU</u>	RGE IN	FOR	OITAM	N AN	D F	FIELD M	EASU	REN	<u>MENTS</u>	
Time St	arted:			Tim	e Comp	leted				To	tal Purge Tim	ne: min
Purge N	lethod:	***************************************	··········	Pun	np Settir	ng (de	epth	ר):		To	tal Purge Voli	ume:
Actual or Elapsed Time (Min)	Extraction Rate/Vol (gpm)	Temp (°C)	Conductiv (uhos/cr	rity	рН	Oth		D.O. (mg/L)	Odo			Notes
16:00		32.2	570	>	7.93							

000 M 200 (400 M 201) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						}						
												
		S	AMPLIN	G IN	JEORM/	ATIO	ΝΔ	ND SAN	IPI F	REC	:ORD	
Time Sta	arted:	describation			e Comp			1110 0/111		S K Breet Vo		
		d, Type c	f Sampl		·		-	***************************************	~~~~			
	ole No.	Time	Contain	-	Volun			No. of	Anai		Preservative	Notes
FGW- _{VW}	0-3-176	W 16:00	Type PLASTI		125 mL/25	50 mL	Co	ontainers 2	Met 300.1/		NONE/HNO3	FILTERED
11011	0-316V	7	PLASTI		250 m	L		1	300	0.0	NONE	RAW
								·				
						·				•		
			QU,	ALIT	Y CON	TROL	_S/	AMPLE	RECC	RD		dia
		Orig. San	nple No.		Туре		Q	C Sample	No.		Time	
				····				···				
	1											

HYDRO GEO CHEM, INC. Groundwater Sampling Form

Project Name/Number Hand PDSI-783000

Well No: 10-7-4A
Date: 10-9-07
Recorder/Sampler: NJ. Babb

WELL	INF	ORMA	TION

	JAKIVAL K K DIV		
Total Well Depth: 570 ft	Screened Interval (ft)	From: 360 To	o: 560
Casing Diameter ("d", in.):	Depth to Water & Time	e ("b", ft btic): 36	7.67
Well/Packer Depth ("a", ft): 570			
One Wetted Casing Volume: $(a - b) * d^2 * 0.0408 = \frac{1}{2}$	267.6 gallons, (3 Cas	sing Volumes	₹803 gal

PURGE INFORMATION AND FIELD MEASUREMENTS

Time Started Purge Metho		undfe5	Tir Pump De	me Complete epth & Sett	ted:	1:45 1374 bte	Tot	al Purge Time al Purge Volu	e: 2	
Actual or Elapsed Time (Min)	Extraction Rate/Vol	рН	Conductivity (mS/cm)	Turbidity (NTU)	D.O. (mg/l)	Temp (°C)	Odor		Notes 32,0 of	N
14:15	45gpm	7.49	415	11.7	NA	27,3	No	Discharge	char	
14:3c	11	7.39	409	9,46	11	28,0	11	11	11	
14:40	11 .	7.46	412		n	27,5	11	11	11	-
	19.4									
										_
						- Company				
-					1	1				_

INFORMATION AND SAMPLE RECORD Time Started: Time Completed: /4/45 Sampling Method: Pump or Bailer:

Sample No	Time	Container Type	Volume	No of Containers	Analysis Method	Preservative	Notes
Mo-2007-4A	14:45			2	ANTONS &		
11 11 11	61		-		1	None	

OUALITY CONTROL SAMPLE RECORD N/A

Orig. Sample No	Туре	QC Sample No	Time

TRANSDUCER RECORD	
Transducer #: 109089 Battery Remaining: 95% Memory Remaining: Replace Time: Notes: massurement is Depth of transducer below the	WL/Time ft btic

INMAN SAMPLE

Groundwater Sampling Form

Project Name/Number PDST - 783000

Well No: 10-2007 - 4B

Date: 10-11-07

Recorder/Sampler: NJ. Babb

WELL INFORMATION

Total Well Depth: 950	ft	Screened Int	erval (ft)	From: 700	To: 940	5
Casing Diameter ("d", in.): 5	Marianton II. myryw	Depth to Wa	ıter & Time	("b", ft btic):	308.72 C 7	
Well/Packer Depth ("a", ft): 950	**************************************					
One Wetted Casing Volume: (a - b) * d	$1^2 * 0.0408 =$	653,3 gall	ions, (3 Cas	ing Volumes	1960	_gal)
NUMBER NUM	O.D.3.#./PEYO					

PURGE INFORMATION AND FIELD MEASUREMENTS

Time Started: Purge Method		مرب کا حجم ک	_ Tir	ne Complet epth & Setti	ed:		Tota	al Purge Ti	ime: <u>40 M</u> olume: <u>200</u>	<u>CW1</u>
Actual or Elapsed Time (Min)	Extraction Rate/Vol	рН	Conductivity (mS/cm)	Turbidity (NTU)	D.O. (mg/l)	Temp (°C)	Odor	ai Purge V	Notes	
MASS	Stare	225	V 5	oc de la constantina del constantina de la constantina del constantina de la constan						
14:35	50	7,88	381	8.43	NA	26,9	No	Dishor	e class	
7:54	50	8.25	376	10.93	11	77.1	11	((4)	
8:01	iy	8,03	382	22.4	11	25,0	11	11	1/	
8:16	řι	7.93	376	\$ 5.12	11	26.4	11	ч	• (
			· · · · · · · · · · · · · · · · · · ·	and the second s			<u> </u>			
				Table and the same						
	TO THE POST OF THE								e.	

Time Started: 8,20 SAMPLING INFORMATION AND SAMPLE RECORD
Time Completed: 8,20
Sampling Method: Pump or Bailer:

Sample No	Time	Container Type	Volume	No of Containers	Analysis Method	Preservative	Notes
Mo-2007-4B-F Mo-2007-4B	81,20			2			Filtered white
Mo-2007-4B	11		4444	1			Raw
					-		

QUALITY CONTROL SAMPLE RECORD N/H

Туре	QC Sample No	Time
		7110
	Туре	Type QC Sample No

TRANSDUCER RECORD

Transducer #:	Battery Remaining:	Memory Remaining:	Replace Time:	WL/Time:	_ft btic

INMAN SAMINIS

	iround	vater Sai	npling .	For	m								
									Well No	o: <u>GW-</u>	907211		
								We	ell Name		MO-2007	7-4C	**************************************
Project l	Name/N	umber:_S	SIERRIT	A G	W MON	ITOR	ING	3 (78306	.2)			08 / 16 /2	007
·					000000000000000000000000000000000000000							J. Babb	
					\A/E-11	E P I have	~ ~ F			ei/Sairi	Jiei. <u></u>	JIBAOU	
T		/// D 6-1	ر		,	- IIVIT	<u>UKI</u>	<u> MATION</u>					
		("a", ft):		1.									
Dasing I	Diamete	r ("ď", in.)	: <u>5</u>	"ir	<i>).</i>	Sci	reer	ned Inter	val (ft):	From: I	VA	To: NA	
Well/Pa	cker Dep	oth ("a", ft): <u>N</u> A	11	40 Stoce	De	pth	to Water	r ("b", ft)	: <u>307</u>	.13'CH	- btocc	
One We	tted Cas	sing Volum	me: (a-	b) •	d2 • 0.04	408 =	بادي :	19.5	Gallons.	(3 Cas	ina Volui	mes <u>1550</u>	gal)
								IELD M				1700	- gai/
Time Sta	artod:											100	
	arteu.	7:48 4"IN, 10-1	f.					11:50			irge Tim	914	min 7
Purge M	iethod:	grand fe	<u>. S</u>	Pur	mp Settir	ng (de	epth	1): <u>429</u>	ft stace	Total Pu	ırge Volu	ume:	 ga
Actual or Elapsed Time (Min)	Extraction Rate/Vol (gpm)	Temp (°C)	Conducti (uhos/cr		рН	Oth		D.O. (mg/L)	Odor		N	lotes	
7:98	155pm		467		7.58	12.21	wrul	NIA	No	clear	- Disch	حريح	900
K:27	11	28.7	471		7.83	€.5		11	11	į		min @ 159pm;	888
1.49	27900		477		7.75	7.9		10	>1	deal	D. Schar 2		
7:15	lı.	31,5	473		7.70	5.0		11	le.	11	* * * * * * * * * * * * * * * * * * * *	The second secon	
1:50 10:20	553PM		474		7,7(4,7		11	11	11		as @ 8734M	=164P
11:36	tt	33,7			7.63	9.6		(*(11	Clear	Dischar	<u> </u>	
1150	67	53.00	472		7.62	4,8				n 121 . "	La Can	1,50/50 =	
1100	2650	555pm =	400							met		ates: (504-	
tal Time hr Zmin				G II	NFORM	ATIO	N A	ND SAN	/IPLE RI			120 mins @ 50	1997m = (de)
Fime Sta	artad:	11:5						11:50			<u>-</u>		
					CONTINUES DE LA CONTINUE DE LA CONTI					400		4	
sampiin	g Metho	d, Type c	of Sampl	ing(Pump)or	Baile	er: _	9 IN. 10	the gov	ndfe> c	V/Surplin	is port	······································
	ole No.	Time	Contair Type		Volun	ne	i	No. of ontainers	Analysi Method		servative	Notes	
	907211	11:50	PLASTI	С	125 mL/25	50 mL		2	300.1/200).7 NO	NE/HNO3	FILTERE	D
UGW-	907211	l (PLASTI	С	250 m	ıL		1	300.0		NONE	RAW	
			<u> </u>	A 1 E-	TV AAL!	700		A B A TO 1 PM					
	17		M	<u>4LI</u>	I Y CUN	HUL	_ 5/	AMPLE	KECOR	ח			
	Orig. Sample No.				Type		Q	C Sample	No.	Tim	Time		
	ou dincer can suppose	1110		······································						 			
	ŀ	NA								***************************************			

SAMPLING INFORMATION AND SAMPLE RECORD

Time Started: 0750 Time Completed: 0753

449

75.3

Sampling Method, Type of Sampling Pump or Bailer: Dump

Sample No.	Time	Container Type	Volume	No. of Containers	Analysis Method	Preservative	Notes /
UCW-627443-060LE	0740	6 less	11	1	1664	idc 1	611/crease
464-627483-06060	0750	Poly	250	1	300.0	Rem	1564
F6W-627483-06060	0752	Dob	230	1	2007	1411/23	Metals /Filere
F6W-627 483 060607	0750	Poly	750		3000	None	Anions / Fiftered
		/					1

QUALITY CONTROL SAMPLE RECORD

Orig. Sample No.	Туре	QC Sample No.	Time
			THE TAX TO

H:\78300\DATA\FIELD DATA\GWSamplingForm.doc

0745

150

IUMAN SAMPIR

HYDRO GEO CHEM, INC.

Groundwater Sampling Form

Project Name/Number: Hencel Vol. 64890 PDSI-783000

Well No: 140-2007 - 5B

Date: 10-12-67, Recorder/Sampler: NJ Babb

WELL INFORMATION

Total Well Depth: 970 ft	Screened Interval (ft) From: 660 To: 960
Casing Diameter ("d", in.):	Depth to Water & Time ("b", ft btic): 268,270 810
Well/Dealess Death (II II C) 970	1

Well/Packer Depth ("a", ft): _______

One Wetted Casing Volume: $(a - b) * d^2 * 0.0408 = \frac{7/6}{2}$ gallons, (3 Casing Volumes 2148

PURGE INFORMATION AND FIELD MEASUREMENTS Dogu

<i>8</i> :4	Time Started Purge Metho				ne Complet opth & Setti		:30	Tot	al Purge Time: 24-5 26 min S
C 169PM C 169PM -97Kogals	Actual or Elapsed Time (Min)	Extraction Rate/Vol	pH	Conductivity (mS/cm)	Turbidity (NTU)	D.O. (mg/l)	Temp (°C)	Odor	Notes Notes
	8:05	16	8.41	1072	14.5	NIA	24,4	No	slishtly woody
	8:35	11	8.35	928	25.2	11	27.7	1 (10
9:05	8155	P	8.22	1030	5.31	77	28,7	11	Clear 9:05 Engraphed flow
61 minse		30	8.18	1058	2.45	į (29.3	11	Clare Da Sam La Sent C.
=18309als	9:40	30	t \	1130	3,04	/(29.4	11	II re-calibrated Hann -
\cC	9:47	11	7,5%	1114	NA	T1	29,5	11	clear Turpe sent flow
Jumuse	10:15	567tm	7,65	1133	16.7	11	29,8	¥	Clear
56 9PM	10:25	/1	7.63	1150	3.48	řξ	29.9	11	char
71344	10:30	OBtain	ep]	Samples					

61 ninsx30 = 1830 =>

SAMPLING INFORMATION AND SAMPLE RECORD

Time Started: 10:30 Time Completed: _/o:30 Sampling Method: Pump or Bailer: ___

Sample No	Time	Container Type	Volume	No of Containers	Analysis Method	Preservative	Notes
Mo-2007-58-f	10130	Some 11 plustiz	3	1	ANTENS	4003	secu bet
m-2007-513-F	15	Small plasfit	2	1	ations		white Det
Mo-2007-5B	I(plaster	2	i		12aw	
entra de la companya							

QUALITY CONTROL SAMPLE RECORD

Orig. Sample No	Туре	QC Sample No	Time

TRANSDUCER RECORD

	Battery Remaining:	Memory Remaining:	Replace Time:	WL/Time:	_ft buc
Notes:				***	

Groundwater Sampling Form

**************************************			1 0							
	٠							Well N	o: <u>GW-</u>	
							We	ell Name	e: <u>MO-2007-5</u> C	
Project Na	ame/Ni	umber:_S	SIERRITA	4 G	W MONI	TORII	NG (78306	.2)	Date: 8	/23/2007
									er/Sampler: M,	
					WELL	. INFO	RMATION		1 +	nadaniminahakakatatiti titati pikannyhannan
Total Well	Depth	ı ("a", ft):	1	37		400.000	and the second s			
Casing Dia	•	,				Scre	eened Inter	val (ft):	From: NA	To: NA
): NA	······································	Married Commission (S. 15 - 15 - 15 - 15 - 15 - 15 - 15 - 15	Den	th to Wate	r ("h" -ft	: 294.04	10. 14/1
									(3 Casing Volum	
	ou ouc						FIELD M			es gai
Time Star	ted.						E I have been the FM I			
Purge Met									Total Purge Time:	
	Extraction	Ny	Conductiv		Th Settii	Othe		Odor	Total Purge Volun	
	Rate/Vol (gpm)	(°C)	(uhos/cn	,	ρι	Turb/A	(100 - 1)	Odor	Not	es
	21	32.5	930		7,47	4.10	UP		Sample was a	ollewed
702		33.0	952		2,43	8.5			during out	Gertesting
730		33.2	956		7,47	2,9	3			
***************************************	······································									
		<u> </u>								
							AND SAM		ECORD	
Time Star	ted:	143	0	Tim	ne Comp	leted:	1432			
Sampling	Metho	d, Type c	of Sampl	ing	Pump or	Baile		······································		
Sample	No.	Time	Contain	er	Volun	ne	No. of	Analys		Notes
=GW-MO-Z	707-5	(1430	Type PLASTI		125 mL/25	50 mL	Containers 2	Metho 300.1/20		FILTERED
UGW-MO-2	.007 - 5	C 1430	PLASTI	С ,	250 m	ıL	1	300.0		RAW

***************************************			QU	ALI	TY CON	TROL	SAMPLE	L RECOF	RD	
	ſ	Orig. San			Туре		QC Sample		Time	
		-			· · · · · · · · · · · · · · · · · · ·					
		······································								

Anitial Sample

Groundwater Sampling Form

						ADWF	{ Well No	: <u>55-</u>	907607	
						We	ell Name:	#-W-40*	MO-2007-6A	·
Project Nan	ne/Numbe	er: <u>PDS</u>	l Sierrita G\	W Monitorin	g (783	06.2)			Date: 10	2 /2007
									mpler: M.	
			()	WELL II	VFOR	MATION			,	
Total Well [Denth ("a"	ft)·	67	On A District Control of the Control	·		•			
			.5	20	Screer	ned Interv	al (ft): En	om: N	Α Τ	C: NA
Wall/Packs	r Donth /"	o" ft):	NA	and Milanian analysis	Donth	to Mator	("h" ft).	30.	3 40	O. IVA
One Metter	Cooine 1	a, II). Internati	/5 b) 5 d0 4	0.0400	Dehin	to Water	(D, II).		J, 6 U	//
one welled	a Casing v	volume:	(a-b) * d2 *	° 0.0408 = _	Gallor	ns, (3 Cas	sing volun	nes	gai)	No Purg R
		prig	RGE INFO	RMATION	AND:	FIEI D M	EVCIIDE		A T 3,60 gal) Gaicife,	Yest in Ara
Time Starte		<u>: Ut</u>								
	-			ne Complete		* the two terms of the control of th			urge Time:	min
Purge Meth			Pu	mp Setting (depth)		<u> </u>	otal P	urge Volume:	gal
Time (min)	Extraction Rate/Vo			nductivity hos/cm)	pH (SU)	D.O. (mg/l)	Odor		Notes	
	(gpm)					(mg/i)				
1426	55				7,54 7,53					
1495	55				7,57					
Manuak and Manuak and										
					***			····		
					· · · · · · · · · · · · · · · · · · ·		77 77 77 77 77 77 77 77 77 77 77 77 77			
	I	1				<u> </u>	1			
		SA	MPLING I	NFORMAT	TION A	AND SAI	WPLE RE	COF	<u> </u>	
Time Starte	ed:		Tin	ne Complete	ed: _		-			
Sampling N	1ethod, Ty	pe of S	ampling Pu	mp or Bailer						
Sample	· Na.	Time	Container Type	Volume	Ce	No. of ontainers	Analysi Method		Preservative	Notes
MO-2007-6A	\F	1455	PLASTIC	125ml / 250	ml	2	300.0 / 20	0.7	VONE / HNO3	FILTERED

QUALITY CONTROL SAMPLE RECORD

300.0

300.0

300,0/200.7 None/HNO.

NONE

NONE

UNFILTERED

250 ml

Sample No.	Туре	QC Sample No.	Time

MO-2007-6A

mo-2009-DUPF

mo-2007-DUP

1455

1500

1500

PLASTIC

11

11

Initial Sample

Groundwater Sampling Form

ADWR Well No: 55-907606

Well Name:

MO-2007-6B

Project Name/Number: PDSI Sierrita GW Monitoring (78306.2)

Date:

Sampler: M

WELL INFORMATION

Total Well Depth ("a", ft):

Casing Diameter ("d", in.):

Screened Interval (ft): From: NA

Well/Packer Depth ("a", ft):

Depth to Water ("b", ft):

One Wetted Casing Volume: (a-b) • d2 • 0.0408 = _ Gallons, (3 Casing Volumes____

PURGE INFORMATION AND FIELD MEASUREMENTS

Time Started:

Time Completed:

Total Purge Time:

Purge Method:

Pump Setting (depth):

Total Purge Volume:

Time (min)	Extraction Rate/Vol (gpm)	Temp (°C)	Conductivity (µhos/cm)	pH (SU)	D.O. (mg/l)	Odor	Notes
1372	34	33.5	479	7.63		None	Tan Turbidity is 190 NTU
1330	1 1	33.2	486	7.64			
1337	*/	33.2	484	7.71			Wester color i's still grey from
1350	11	33.2	483	7.69			6
1356		33.1	783	7.70			

SAMPLING INFORMATION AND SAMPLE RECORD

Time Started:

1400

Time Completed:

Sampling Method, Type of Sampling Pump or Bailer: Pump

Sample No.	O-2007-6BF 1400 PLASTIC 1		Volume	No. of Containers	Analysis Method	Preservative	Notes
MO-2007-6BF	1400	PLASTIC	125ml / 250 ml	2	300.0 / 200.7	NONE / HNO3	FILTERED
MO-2007-6B	1400	PLASTIC	250 ml	1	300.0	NONE	UNFILTERED

QUALITY CONTROL SAMPLE RECORD

Sample No.	Туре	QC Sample No.	Time
		/	
		/	

APPENDIX F.2 ANALYTICAL DATA REPORTS FROM ACZ LABORATORIES, INC.

June 19, 2007

Report to:

Ned Hall
Phelps Dodge Sierrita
P.O. Box 527 6200 W. Duval Mine Rd.

Green Valley, AZ 85622-0527

cc: Bill Dorris, Jim Norris, Kim Garcia

Project ID: OJ03Z5 ACZ Project ID: L63026

Ned Hall:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on June 05, 2007. This project has been assigned to ACZ's project number, L63026. Please reference this number in all future inquiries.

Bill to:

Accounts Payable

P.O. Box 2671

Phelps Dodge Sierrita

Phoenix, AZ 85002-2671

All analyses were performed according to ACZ's Quality Assurance Plan, version 11.0. The enclosed results relate only to the samples received under L63026. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after July 19, 2007. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years.

If you have any questions or other needs, please contact your Project Manager.

Inorganic Analytical Results

Phelps Dodge Sierrita

ACZ Sample ID: L63026-01 OJ03Z5

Project ID: 06/04/07 14:55 Date Sampled: Sample ID: UF-605898-060407 Date Received: 06/05/07

> Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	41.3	*	mg/L	0.5	3	06/12/07 3:09	jlf

Arizona license number: AZ0102

Phelps Dodge Sierrita

Project ID: OJ03Z5

Sample ID: FGW-605898-060407 ACZ Sample ID: L63026-02

06/04/07 14:55 Date Sampled:

Date Received: 06/05/07

Sample Matrix: Ground Water

Matala Analusia									
Metals Analysis Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Calcium, dissolved	M200.7 ICP	50.3	- Caai	7.4	mg/L	0.2	1	06/15/07 20:11	djt
Magnesium, dissolved	M200.7 ICP	10.9			mg/L	0.2	1	06/15/07 20:11	djt
Potassium, dissolved	M200.7 ICP	3.9			mg/L	0.2	2	06/15/07 20:11	djt
Sodium, dissolved	M200.7 ICP	31.7			mg/L	0.3	2	06/15/07 20:11	djt
•	101	01.7			1119/12	0.0	_	00/10/07 20:11	ajt
Wet Chemistry									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration								
Bicarbonate as CaCO3		169			mg/L	2	20	06/14/07 0:00	cas
Carbonate as CaCO3	3		U		mg/L	2	20	06/14/07 0:00	cas
Hydroxide as CaCO3	1		U		mg/L	2	20	06/14/07 0:00	cas
Total Alkalinity		169			mg/L	2	20	06/14/07 0:00	cas
Cation-Anion Balance	Calculation								
Cation-Anion Balance		4.3			%			06/19/07 0:00	calc
Sum of Anions		4.5			meq/L	0.1	0.5	06/19/07 0:00	calc
Sum of Cations		4.9			meq/L	0.1	0.5	06/19/07 0:00	calc
Chloride	M300.0 - Ion Chromatography	9.1		*	mg/L	0.5	3	06/12/07 3:27	jlf
Fluoride	M300.0 - Ion Chromatography	0.2	В	*	mg/L	0.1	0.5	06/12/07 3:27	jlf
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2	0.34			mg/L	0.02	0.1	06/19/07 0:00	calc
Nitrate/Nitrite as N,	M353.2 - Automated Cadmium	0.34		*	mg/L	0.02	0.1	06/05/07 18:59	pjb
dissolved	Reduction			*	"	0.04	0.05	00/05/07 40 50	.,
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction		U	•	mg/L	0.01	0.05	06/05/07 18:59	pjb
Residue, Filterable (TDS) @180C	160.1 / SM2540C	280			mg/L	10	20	06/11/07 13:44	aeh
Sulfate	300.0 - Ion Chromatography	41.2		*	mg/L	0.5	3	06/12/07 3:27	jlf
TDS (calculated)	Calculation	250			mg/L	10	50	06/19/07 0:00	calc
TDS (ratio - measured/calculated)	Calculation	1.12						06/19/07 0:00	calc

Arizona license number: AZ0102

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report Header Explanations

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest

Limit Upper limit for RPD, in %.

Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit, typically 5 times the MDL.

QC True Value of the Control Sample or the amount added to the Spike

Rec Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

QC Sample Types

AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calivation Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution

QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method or calibration procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method.

Spikes/Fortified Matrix Determines sample matrix interferences, if any.

Standard Verifies the validity of the calibration.

ACZ Qualifiers (Qual)

B Analyte concentration detected at a value between MDL and PQL.

H Analysis exceeded method hold time. pH is a field test with an immediate hold time.

U Analyte was analyzed for but not detected at the indicated MDL

Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (5) EPA SW-846. Test Methods for Evaluating Solid Waste, Third Edition with Update III, December 1996.
- (6) Standard Methods for the Examination of Water and Wastewater, 19th edition, 1995.

Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.

ACZ Project ID: L63026

Phelps Dodge Sierrita

Project ID: OJ03Z5

Alkalinity as CaC	:03		SM2320E	3 - Titration									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226491													
WG226491PBW1	PBW	06/14/07 13:05				U	mg/L		-20	20			
WG226491LCSW2	LCSW	06/14/07 13:16	WC070601-1	820		795.7	mg/L	97	90	110			
L63038-02DUP	DUP	06/14/07 16:25			378	375.9	mg/L				0.6	20	
WG226491PBW2	PBW	06/14/07 16:31				U	mg/L		-20	20			
WG226491LCSW5	LCSW	06/14/07 16:44	WC070601-1	820		816.8	mg/L	99.6	90	110			
WG226491PBW3	PBW	06/14/07 21:05				U	mg/L		-20	20			
WG226491LCSW8	LCSW	06/14/07 21:16	WC070601-1	820		821.3	mg/L	100.2	90	110			
WG226491PBW4	PBW	06/15/07 0:31				U	mg/L		-20	20			
WG226491LCSW11	LCSW	06/15/07 0:44	WC070601-1	820		820.5	mg/L	100.1	90	110			
WG226491LCSW14	LCSW	06/15/07 3:13	WC070601-1	820		821.3	mg/L	100.2	90	110			
Calcium, dissolve	ed		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226498													
WG226498ICV	ICV	06/15/07 18:28	11070612-3	100		102.28	mg/L	102.3	95	105			
WG226498ICB	ICB	06/15/07 18:31				U	mg/L		-0.6	0.6			
WG226498LFB	LFB	06/15/07 18:44	11070601-2	67.99189		74.02	mg/L	108.9	85	115			
L63006-05AS	AS	06/15/07 19:34	11070601-2	67.99189	125	186.34	mg/L	90.2	85	115			
L63006-05ASD	ASD	06/15/07 19:37	11070601-2	67.99189	125	190.11	mg/L	95.8	85	115	2	20	
Chloride			M300.0 -	Ion Chrom	atograph	У							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226250													
WG226250ICV	ICV	06/11/07 13:52	IC070606-1	20		20.34	mg/L	101.7	90	110			
WG226250ICB	ICB	06/11/07 14:10				U	mg/L		-1.5	1.5			
WG226250LFB1	LFB	06/11/07 14:28	IC070205-3	30		30.76	mg/L	102.5	90	110			
WG226250LFB2	LFB	06/11/07 23:13	IC070205-3	30		30.82	mg/L	102.7	90	110			
L62993-03DUP	DUP	06/11/07 23:50			8	8.05	mg/L				0.6	20	
L62993-04AS	AS	06/12/07 0:26	IC070205-3	30	10.8	33.52	mg/L	75.7	90	110			M2
WG226250ICV1	ICV	06/12/07 14:59	IC070606-1	20		20.31	mg/L	101.6	90	110			
WG226250ICB1	ICB	06/12/07 15:17				U	mg/L		-1.5	1.5			
Fluoride			M300.0 -	Ion Chrom	atograph	У							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226250													
WG226250ICV	ICV	06/11/07 13:52	IC070606-1	3.984		4.13	mg/L	103.7	90	110			
WG226250ICB	ICB	06/11/07 14:10				U	mg/L		-0.3	0.3			
WG226250LFB1	LFB	06/11/07 14:28	IC070205-3	1.5		1.58	mg/L	105.3	90	110			
WG226250LFB2	LFB	06/11/07 23:13	IC070205-3	1.5		1.57	mg/L	104.7	90	110			
L62993-03DUP	DUP	06/11/07 23:50			.2	.11	mg/L				58.1	20	RA
L62993-04AS	AS	06/12/07 0:26	IC070205-3	1.5	.2	1.36	mg/L	77.3	90	110			M2
WG226250ICV1	ICV	06/12/07 14:59	IC070606-1	3.984		4.11	mg/L	103.2	90	110			
WG226250ICB1	ICB	06/12/07 15:17				U	mg/L		-0.3	0.3			

ACZ Project ID: L63026

Phelps Dodge Sierrita

Project ID: OJ03Z5

Magnesium, dis	solved		M200.7 I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226498													
WG226498ICV	ICV	06/15/07 18:28	11070612-3	100		104.21	mg/L	104.2	95	105			
NG226498ICB	ICB	06/15/07 18:31				U	mg/L		-0.6	0.6			
WG226498LFB	LFB	06/15/07 18:44	11070601-2	54.96149		60.39	mg/L	109.9	85	115			
L63006-05AS	AS	06/15/07 19:34	11070601-2	54.96149	129	178.88	mg/L	90.8	85	115			
-63006-05ASD	ASD	06/15/07 19:37	11070601-2	54.96149	129	183.06	mg/L	98.4	85	115	2.31	20	
Nitrate/Nitrite a	s N, diss	olved	M353.2 -	Automated	d Cadmiur	n Reduc	tion						
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG225946													
NG225946ICV	ICV	06/05/07 18:01	WI070308-3	2.416		2.346	mg/L	97.1	90	110			
VG225946ICB	ICB	06/05/07 18:02				U	mg/L		-0.06	0.06			
VG225946LFB1	LFB	06/05/07 18:07	WI070307-9	2		1.989	mg/L	99.5	90	110			
NG225946LFB2	LFB	06/05/07 18:45	WI070307-9	2		1.942	mg/L	97.1	90	110			
_63006-07AS	AS	06/05/07 18:51	WI070307-9	2	.5	2.477	mg/L	98.9	90	110			
_63006-08DUP	DUP	06/05/07 18:53		_	.11	.108	mg/L	00.0	00		1.8	20	F
Nitrite as N, dis	solved		M353.2 -	Automated	d Cadmiur	n Reduc	tion						
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG225946													
WG225946ICV	ICV	06/05/07 18:01	WI070308-3	.609		.616	mg/L	101.1	90	110			
WG225946ICB	ICB	06/05/07 18:02				U	mg/L		-0.03	0.03			
NG225946LFB1	LFB	06/05/07 18:07	WI070307-9	1		1.021	mg/L	102.1	90	110			
NG225946LFB2	LFB	06/05/07 18:45	WI070307-9	1		1.002	mg/L	100.2	90	110			
_63006-07AS	AS	06/05/07 18:51	WI070307-9	1	U	1.032	mg/L	103.2	90	110			
_63006-08DUP	DUP	06/05/07 18:53	WIO70307-3		.02	.023	mg/L	100.2	30	110	14	20	F
Potassium, diss	olved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226498													
NG226498ICV	ICV	06/15/07 18:28	11070612-3	20		20.01	mg/L	100.1	95	105			
WG226498ICB	ICB	06/15/07 18:31		_0		U	mg/L	100.1	-0.9	0.9			
WG226498LFB	LFB	06/15/07 18:44	11070601-2	99.69893		104.95	mg/L	105.3	85	115			
_63006-05AS	AS	06/15/07 19:34	11070601-2		1.0	108.67	_	107.1					
_63006-05ASD	ASD	06/15/07 19:37	11070601-2	99.69893 99.69893	1.9 1.9	115.95	mg/L mg/L	114.4	85 85	115 115	6.48	20	
Residue, Filtera	ble (TD	S) @180C	160.1 / S	M2540C									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226260													
VG226260PRW	PBW	06/11/07 13:20				U	ma/l		-20	20			
NG226260PBW NG226260LCSW	PBW LCSW	06/11/07 13:20 06/11/07 13:21	PCN27107	261		U 278	mg/L mg/L	106.5	-20 80	20 120			

Phelps Dodge Sierrita

Project ID: OJ03Z5 ACZ Project ID: L63026

Sodium, dissol	ved		M200.7	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226498													
WG226498ICV	ICV	06/15/07 18:28	11070612-3	100		100.99	mg/L	101	95	105			
WG226498ICB	ICB	06/15/07 18:31				U	mg/L		-0.9	0.9			
WG226498LFB	LFB	06/15/07 18:44	11070601-2	98.01954		103.97	mg/L	106.1	85	115			
L63006-05AS	AS	06/15/07 19:34	11070601-2	98.01954	84.6	180.7	mg/L	98	85	115			
L63006-05ASD	ASD	06/15/07 19:37	11070601-2	98.01954	84.6	187.73	mg/L	105.2	85	115	3.82	20	
Sulfate			300.0 - I	on Chromat	tography								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226250													
WG226250ICV	ICV	06/11/07 13:52	IC070606-1	50.15		51.51	mg/L	102.7	90	110			
WG226250ICB	ICB	06/11/07 14:10				U	mg/L		-1.5	1.5			
WG226250LFB1	LFB	06/11/07 14:28	IC070205-3	30		30.86	mg/L	102.9	90	110			
WG226250LFB2	LFB	06/11/07 23:13	IC070205-3	30		30.57	mg/L	101.9	90	110			
WG226250ICV1	ICV	06/12/07 14:59	IC070606-1	50.15		51.17	mg/L	102	90	110			
WG226250ICB1	ICB	06/12/07 15:17				U	mg/L		-1.5	1.5			
L62993-03DUP	DUP	06/12/07 17:42			390	388	mg/L				0.5	20	
L62993-04AS	AS	06/12/07 18:18	IC070205-3	600	1120	1606	mg/L	81	90	110			

Inorganic Extended Qualifier Report

Phelps Dodge Sierrita

ACZ Project ID: L63026

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L63026-01	WG226250	Sulfate	300.0 - Ion Chromatography	M2	Matrix spike recovery was low, the method control sample recovery was acceptable.
L63026-02	WG226250	Chloride	M300.0 - Ion Chromatography	M2	Matrix spike recovery was low, the method control sample recovery was acceptable.
		Fluoride	M300.0 - Ion Chromatography	M2	Matrix spike recovery was low, the method control sample recovery was acceptable.
			M300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG225946	Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
		Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG226250	Sulfate	300.0 - Ion Chromatography	M2	Matrix spike recovery was low, the method control sample recovery was acceptable.

Certification Qualifiers

Phelps Dodge Sierrita ACZ Project ID: L63026

No certification qualifiers associated with this analysis

Sample Receipt

L63026

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Phelps Dodge Sierrita

OJ03Z5 Date Received: 6/5/2007

Received By:

ACZ Project ID:

Date Printed: 6/5/2007

Receipt Verification

- 1) Does this project require special handling procedures such as CLP protocol?
- 2) Are the custody seals on the cooler intact?
- 3) Are the custody seals on the sample containers intact?
- 4) Is there a Chain of Custody or other directive shipping papers present?
- 5) Is the Chain of Custody complete?
- 6) Is the Chain of Custody in agreement with the samples received?
- 7) Is there enough sample for all requested analyses?
- 8) Are all samples within holding times for requested analyses?
- 9) Were all sample containers received intact?
- 10) Are the temperature blanks present?
- 11) Are the trip blanks (VOA and/or Cyanide) present?
- 12) Are samples requiring no headspace, headspace free?
- 13) Do the samples that require a Foreign Soils Permit have one?

YES	NO	NA
		Х
Χ		
		Х
Χ		
Х		
Х		
X		
Χ		
Χ		
		Х
		Х
		Х
		Х

Exceptions: If you answered no to any of the above questions, please describe

N/A

Contact (For any discrepancies, the client must be contacted)

N/A

Shipping Containers

Cooler Id	Temp (°C)	Rad (µR/hr)
NA3706	4.2	15

Client must contact ACZ Project Manager if analysis should not proceed for samples received outside of thermal preservation acceptance criteria.

Notes

Sample Receipt

Phelps Dodge Sierrita

OJ03Z5

ACZ Project ID: Date Received: Received By: L63026

6/5/2007

Sample Container Preservation

S	AMPLE	CLIENT ID	R < 2	G < 2	BK < 2	Y< 2	YG< 2	B< 2	0 < 2	T >12	N/A	RAD	ID
L	63026-01	UF-605898-060407									Х		
L	63026-02	FGW-605898-060407		Υ									

Sample Container Preservation Legend

Abbreviation	Description	Container Type	Preservative/Limits
R	Raw/Nitric	RED	pH must be < 2
В	Filtered/Sulfuric	BLUE	pH must be < 2
BK	Filtered/Nitric	BLACK	pH must be < 2
G	Filtered/Nitric	GREEN	pH must be < 2
0	Raw/Sulfuric	ORANGE	pH must be < 2
Р	Raw/NaOH	PURPLE	pH must be > 12 *
Т	Raw/NaOH Zinc Acetate	TAN	pH must be > 12
Υ	Raw/Sulfuric	YELLOW	pH must be < 2
YG	Raw/Sulfuric	YELLOW GLASS	pH must be < 2
N/A	No preservative needed	Not applicable	
RAD	Gamma/Beta dose rate	Not applicable	must be < 250 µR/hr

^{*} pH check performed by analyst prior to sample preparation

Sample IDs Reviewed By:	
Campic 120 11011011011011	

ACZ Labor 2773 Downhill Drive Steamboat Spr	ratories, Inc. ings, CO 80487 (800) 334-	5493	Lo	3C) (A	φ	СН	AIN d	of Cl	USTO	YDC
Report to: Name: Kin balcle Company: Hydro bes Ch E-mail: King Wheeine.	em Ire			ss: 5 Tuc.	Sen.	A2	<u> </u>	mur 703 500	-16	1 578 3	
Copy of Report to: Name: Ved Hall Bill Company: PDST / HG	Docis Vim Nous	\$	E-mail Teleph	: Jimn none: Z	0 hg.	<u>uine.</u> 1500	Com, Dx13	<i>billy</i> 3	docri 64<	305	mI.6 73
Name: Ned Hall Company: PD SI E-mail: Ned-hall@ FI If sample(s) received past holding		t HT rema	Teleph	one:	3w.3		Gree	n Val	YES	R 1 728	562
analysis before expiration, shall A If "NO" then ACZ will contact clier is indicated, ACZ will proceed with PROJECT INFORMATION	nt for further instruction. If	f neither '	'YES" r Γ is exp	or "NO	d data				NO use que	ote num	ber)
Quote #: Sie(Nite She) Project/PO #: () N 3 Z Reporting state for compliance to Sampler's Name: Mu/K A Are any samples NRC licensable	Prneson e material? Vo		# of Containers	204-	· My Na K	UK, TDS, SOY		.,,	- سعر	7.	
SAMPLE IDENTIFICATION <u>UF-605898-060407</u> <u>FGW-605898-060407</u>	DATE:TIME 6/4/07:1455 6/4/07:1455	Matrix GW GW	7	X	X	X		7.20 7.20	EC 411 411	7emp ⁶ 25.9 25.9	
REMARKS	(Ground Water) · WW (Waste Waste Was			_	SL (Slud	ge) · SO	(Soil) · C	L (Oil) · C	Other (Sp	ecify)	
UF= unfi FGW= Filter Please re RELINQUISHED BY	efer to ACZ's terms & con	nditions k		on the r		e side d		COC.	Đ	ATE:TI	ME
//m///m		17/5			0				6.5	(C)	1:40

June 19, 2007

Report to:

Ned Hall Phelps Dodge Sierrita P.O. Box 527 6200 W. Duval Mine Rd.

Green Valley, AZ 85622-0527

cc: Kim Garcia, Jim Norris, Bill Dorris

Project ID: OJ03Z5 ACZ Project ID: L63094

Ned Hall:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on June 07, 2007. This project has been assigned to ACZ's project number, L63094. Please reference this number in all future inquiries.

Bill to:

Accounts Payable

P.O. Box 2671

Phelps Dodge Sierrita

Phoenix, AZ 85002-2671

All analyses were performed according to ACZ's Quality Assurance Plan, version 11.0. The enclosed results relate only to the samples received under L63094. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after July 19, 2007. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years.

If you have any questions or other needs, please contact your Project Manager.

Inorganic Analytical Results

Phelps Dodge Sierrita

ACZ Sample ID: L63094-01 OJ03Z5

06/06/07 07:50 Date Sampled:

Sample ID: UGW-627483-060607 Date Received: 06/07/07

> Sample Matrix: Ground Water

Wet Chemistry

Project ID:

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	58.7		mg/L	0.5	3	06/14/07 18:02	jlf

Arizona license number: AZ0102

Phelps Dodge Sierrita

Project ID: OJ03Z5

Sample ID: FGW-627483-060607 ACZ Sample ID: L63094-02

06/06/07 07:50 Date Sampled:

Date Received: 06/07/07

Sample Matrix: Ground Water

Metals Analysis									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Calcium, dissolved	M200.7 ICP	56.1			mg/L	0.2	1	06/15/07 2:26	djt
Magnesium, dissolved	M200.7 ICP	10.9		*	mg/L	0.2	1	06/15/07 2:26	djt
Potassium, dissolved	M200.7 ICP	3.0			mg/L	0.3	2	06/15/07 2:26	djt
Sodium, dissolved	M200.7 ICP	30.5			mg/L	0.3	2	06/15/07 2:26	djt
Wet Chemistry									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration								
Bicarbonate as CaCO3		140			mg/L	2	20	06/14/07 0:00	cas
Carbonate as CaCO3	1		U		mg/L	2	20	06/14/07 0:00	cas
Hydroxide as CaCO3			U		mg/L	2	20	06/14/07 0:00	cas
Total Alkalinity		140			mg/L	2	20	06/14/07 0:00	cas
Cation-Anion Balance	Calculation								
Cation-Anion Balance		4.1			%			06/19/07 11:04	calc
Sum of Anions		4.7			meq/L	0.1	0.5	06/19/07 11:04	calc
Sum of Cations		5.1			meq/L	0.1	0.5	06/19/07 11:04	calc
Chloride	M300.0 - Ion Chromatography	17.7			mg/L	0.5	3	06/14/07 18:38	jlf
Fluoride	M300.0 - Ion Chromatography	0.3	В	*	mg/L	0.1	0.5	06/14/07 18:38	jlf
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2	2.92			mg/L	0.02	0.1	06/19/07 11:04	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	2.92		*	mg/L	0.02	0.1	06/07/07 22:06	pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction		U	*	mg/L	0.01	0.05	06/07/07 22:06	pjb
Residue, Filterable (TDS) @180C	160.1 / SM2540C	300		*	mg/L	10	20	06/13/07 11:35	aeh
Sulfate	300.0 - Ion Chromatography	57.9			mg/L	0.5	3	06/14/07 18:38	jlf
TDS (calculated)	Calculation	273			mg/L	10	50	06/19/07 11:04	calc
TDS (ratio - measured/calculated)	Calculation	1.10						06/19/07 11:04	calc

Arizona license number: AZ0102

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report Header Explanations

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest

Limit Upper limit for RPD, in %.

Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit, typically 5 times the MDL.

QC True Value of the Control Sample or the amount added to the Spike

Rec Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

QC Sample Types

AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calivation Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution

QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method or calibration procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method.

Spikes/Fortified Matrix Determines sample matrix interferences, if any.

Standard Verifies the validity of the calibration.

ACZ Qualifiers (Qual)

B Analyte concentration detected at a value between MDL and PQL.

H Analysis exceeded method hold time. pH is a field test with an immediate hold time.

U Analyte was analyzed for but not detected at the indicated MDL

Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (5) EPA SW-846. Test Methods for Evaluating Solid Waste, Third Edition with Update III, December 1996.
- (6) Standard Methods for the Examination of Water and Wastewater, 19th edition, 1995.

Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.

Phelps Dodge Sierrita

Alkalinity as Ca(CO3		SM2320E	3 - Titration									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226491													
WG226491PBW1	PBW	06/14/07 13:05				U	mg/L		-20	20			
WG226491LCSW2	LCSW	06/14/07 13:16	WC070601-1	820		795.7	mg/L	97	90	110			
WG226491PBW2	PBW	06/14/07 16:31				U	mg/L		-20	20			
WG226491LCSW5	LCSW	06/14/07 16:44	WC070601-1	820		816.8	mg/L	99.6	90	110			
WG226491PBW3	PBW	06/14/07 21:05				U	mg/L		-20	20			
WG226491LCSW8	LCSW	06/14/07 21:16	WC070601-1	820		821.3	mg/L	100.2	90	110			
L63094-02DUP	DUP	06/14/07 22:47			140	138.9	mg/L				0.8	20	
WG226491PBW4	PBW	06/15/07 0:31				U	mg/L		-20	20			
WG226491LCSW11	LCSW	06/15/07 0:44	WC070601-1	820		820.5	mg/L	100.1	90	110			
WG226491LCSW14	LCSW	06/15/07 3:13	WC070601-1	820		821.3	mg/L	100.2	90	110			
Calcium, dissolv	/Ad		M200.7 I	^p									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qua
	.,,,,,	7			oup.o					орро.			
WG226522													
WG226522ICV	ICV	06/15/07 1:15	11070612-3	100		98.57	mg/L	98.6	95	105			
WG226522ICB	ICB	06/15/07 1:19				U	mg/L		-0.6	0.6			
WG226522LFB	LFB	06/15/07 1:36	11070601-2	67.99189		68.69	mg/L	101	85	115			
L63071-02AS	AS	06/15/07 1:44	11070601-2	67.99189	135	198.46	mg/L	93.3	85	115			
L63071-02ASD	ASD	06/15/07 1:48	11070601-2	67.99189	135	196.18	mg/L	90	85	115	1.16	20	
Chloride			M300.0 -	Ion Chrom	atography	/							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qua
WG226250													
WG226250ICV	ICV	06/11/07 13:52	IC070606-1	20		20.34	mg/L	101.7	90	110			
WG226250ICB	ICB	06/11/07 14:10				U	mg/L		-1.5	1.5			
WG226250ICV1	ICV	06/12/07 14:59	IC070606-1	20		20.31	mg/L	101.6	90	110			
WG226250ICB1	ICB	06/12/07 15:17				U	mg/L		-1.5	1.5			
WG226534							Ü						
WG226534ICV	ICV	06/11/07 13:52	IC070606-1	20		20.34	mg/L	101.7	90	110			
WG226534ICB	ICB	06/11/07 14:10				U	mg/L		-1.5	1.5			
WG226534ICV1	ICV	06/14/07 14:10	IC070606-1	20		20.3	mg/L	101.5	90	110			
WG226534ICB1	ICB	06/14/07 16:49				U	mg/L		-1.5	1.5			
WG226534LFB	LFB	06/14/07 17:07	IC070205-3	30		30	mg/L	100	90	110			
L63014-01DUP	DUP	06/14/07 17:43	.007.0200.0	30	49.3	49.1	mg/L	.50	50	. 10	0.4	20	
	AS	06/14/07 17:43	IC070205-3	30	18	46.28	mg/L	94.3	90	110	J.7	_0	
					.0	10.20	9,∟	U 1.U	50	110			
L63094-01AS WG226534ICV2	ICV	06/18/07 11:10	IC070606-1	20		20.25	mg/L	101.3	90	110			

Phelps Dodge Sierrita

Fluoride			M300.0	- Ion Chrom	natography	/							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226250													
WG226250ICV	ICV	06/11/07 13:52	IC070606-1	3.984		4.13	mg/L	103.7	90	110			
WG226250ICB	ICB	06/11/07 14:10				U	mg/L		-0.3	0.3			
WG226250ICV1	ICV	06/12/07 14:59	IC070606-1	3.984		4.11	mg/L	103.2	90	110			
WG226250ICB1	ICB	06/12/07 15:17				U	mg/L		-0.3	0.3			
WG226534													
WG226534ICV	ICV	06/11/07 13:52	IC070606-1	3.984		4.13	mg/L	103.7	90	110			
WG226534ICB	ICB	06/11/07 14:10				U	mg/L		-0.3	0.3			
WG226534ICV1	ICV	06/14/07 16:31	IC070606-1	3.984		4.12	mg/L	103.4	90	110			
WG226534ICB1	ICB	06/14/07 16:49				U	mg/L		-0.3	0.3			
WG226534LFB	LFB	06/14/07 17:07	IC070205-3	1.5		1.55	mg/L	103.3	90	110			
L63014-01DUP	DUP	06/14/07 17:43			.3	.29	mg/L				3.4	20	RA
L63094-01AS	AS	06/14/07 18:20	IC070205-3	1.5	.2	1.77	mg/L	104.7	90	110			
WG226534ICV2	ICV	06/18/07 11:10	IC070606-1	3.984		4.11	mg/L	103.2	90	110			
WG226534ICB2	ICB	06/18/07 11:28				.11	mg/L		-0.3	0.3			
Magnesium, di	ssolved		M200.7	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226522													
WG226522ICV	ICV	06/15/07 1:15	11070612-3	100		99.9	mg/L	99.9	95	105			
WG226522ICB	ICB	06/15/07 1:19	11070012-3	100		U	mg/L	33.3	-0.6	0.6			
WG226522LFB	LFB	06/15/07 1:19	11070601-2	54.96149		54.94	mg/L	100	85	115			
L63071-02AS	AS	06/15/07 1:44	11070601-2	54.96149	11.9	71.91	mg/L	109.2	85	115			
L63071-02ASD	ASD	06/15/07 1:48	11070601-2	54.96149	11.9	76.64	mg/L	117.8	85	115	6.37	20	MA
-													
Nitrate/Nitrite a	Type	Analyzed	PCN/SCN	- Automated	Sample	Found		Rec	Lower	Upper	RPD	Limit	Qual
	туре	Allalyzeu	FCN/3CN	QC	Sample	Found	Offics	Nec	Lowel	Орреі	KFD	Lillin	Quai
WG226127													
WG226127ICV	ICV	06/07/07 21:06	WI070308-3	2.416		2.331	mg/L	96.5	90	110			
WG226127ICB	ICB	06/07/07 21:07				U	mg/L		-0.06	0.06			
WG226127LFB1	LFB	06/07/07 21:12	WI070307-9	2		2.008	mg/L	100.4	90	110			
WG226127LFB2	LFB	06/07/07 21:50	WI070307-9	2		1.938	mg/L	96.9	90	110			
L63089-08AS	AS	06/07/07 21:56	WI070307-9	2	U	1.981	mg/L	99.1	90	110			
L63089-09DUP	DUP	06/07/07 21:59			U	U	mg/L				0	20	RA
Nitrite as N, dis	ssolved		M353.2	- Automated	d Cadmiun	n Redu	ction						
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226127													
WG226127ICV	ICV	06/07/07 21:06	WI070308-3	.609		.61	mg/L	100.2	90	110			
WG226127ICB	ICB	06/07/07 21:07				U	mg/L		-0.03	0.03			
WG226127LFB1	LFB	06/07/07 21:12	WI070307-9	1		1.017	mg/L	101.7	90	110			
WG226127LFB2	LFB	06/07/07 21:50	WI070307-9	1		.992	mg/L	99.2	90	110			
L63089-08AS	AS	06/07/07 21:56	WI070307-9	1	U	1.026	mg/L	102.6	90	110			
L63089-09DUP	DUP	06/07/07 21:59			U	U	mg/L				0	20	RA

Phelps Dodge Sierrita

Potassium, dis	sorvea		M200.7										
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226522													
WG226522ICV	ICV	06/15/07 1:15	11070612-3	20		20.56	mg/L	102.8	95	105			
WG226522ICB	ICB	06/15/07 1:19				U	mg/L		-0.9	0.9			
WG226522LFB	LFB	06/15/07 1:36	11070601-2	99.69893		102.15	mg/L	102.5	85	115			
L63071-02AS	AS	06/15/07 1:44	11070601-2	99.69893	28.5	135.22	mg/L	107	85	115			
L63071-02ASD	ASD	06/15/07 1:48	11070601-2	99.69893	28.5	132.62	mg/L	104.4	85	115	1.94	20	
Residue, Filtera	able (TD	S) @180C	160.1 / S	M2540C									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226419													
WG226419PBW	PBW	06/13/07 11:20				U	mg/L		-20	20			
WG226419LCSW	LCSW	06/13/07 11:21	PCN27107	261		296	mg/L	113.4	80	120			
L63119-03DUP	DUP	06/13/07 11:38			60	70	mg/L				15.4	20	R
Sodium, dissol	ved		M200.7	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226522													
WG226522ICV	ICV	06/15/07 1:15	11070612-3	100		101.88	mg/L	101.9	95	105			
WG226522ICB	ICB	06/15/07 1:19				U	mg/L		-0.9	0.9			
WG226522LFB	LFB	06/15/07 1:36	11070601-2	98.01954		100.11	mg/L	102.1	85	115			
L63071-02AS	AS	06/15/07 1:44	11070601-2	98.01954	91.3	189.06	mg/L	99.7	85	115			
L63071-02ASD	ASD	06/15/07 1:48	11070601-2	98.01954	91.3	188.61	mg/L	99.3	85	115	0.24	20	
Sulfate			300.0 - I	on Chromat	tography								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226250													
WG226250ICV	ICV	06/11/07 13:52	IC070606-1	50.15		51.51	mg/L	102.7	90	110			
WG226250ICB	ICB	06/11/07 14:10				U	mg/L		-1.5	1.5			
WG226250ICV1	ICV	06/12/07 14:59	IC070606-1	50.15		51.17	mg/L	102	90	110			
WG226250ICB1	ICB	06/12/07 15:17				U	mg/L		-1.5	1.5			
WG226534													
WG226534ICV	ICV	06/11/07 13:52	IC070606-1	50.15		51.51	mg/L	102.7	90	110			
WG226534ICB	ICB	06/11/07 14:10				U	mg/L		-1.5	1.5			
WG226534ICV1	ICV	06/14/07 16:31	IC070606-1	50.15		51.2	mg/L	102.1	90	110			
WG226534ICB1	ICB	06/14/07 16:49				U	mg/L		-1.5	1.5			
WG226534LFB	LFB	06/14/07 17:07	IC070205-3	30		30.14	mg/L	100.5	90	110			
L63094-01AS	AS	06/14/07 18:20	IC070205-3	30	58.7	85.95	mg/L	90.8	90	110			
WG226534ICV2	ICV	06/18/07 11:10	IC070606-1	50.15		50.97	mg/L	101.6	90	110			
WG226534ICB2	ICB	06/18/07 11:28				U	mg/L		-1.5	1.5			
L63014-01DUP	DUP	06/18/07 12:05			385	385.9	mg/L				0.2	20	

Inorganic Extended
Qualifier Report

Phelps Dodge Sierrita

ACZ Project ID: L63094

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L63094-02	WG226522	Magnesium, dissolved	M200.7 ICP	MA	Recovery for either the spike or spike duplicate was outside of the acceptance limits; the RPD was within the acceptance limits.
	WG226534	Fluoride	M300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG226127	Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
		Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG226419	Residue, Filterable (TDS) @180C	160.1 / SM2540C	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).

Certification Qualifiers

Phelps Dodge Sierrita ACZ Project ID: L63094

No certification qualifiers associated with this analysis

Sample Receipt

L63094

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Phelps Dodge Sierrita

OJ03Z5 Date Received: 6/7/2007

Received By:

ACZ Project ID:

Date Printed: 6/8/2007

Receipt Verification

1) Does this project require special handling procedures such as CLP protocol?

2) Are the custody seals on the cooler intact?

3) Are the custody seals on the sample containers intact?

4) Is there a Chain of Custody or other directive shipping papers present?

5) Is the Chain of Custody complete?

6) Is the Chain of Custody in agreement with the samples received?

7) Is there enough sample for all requested analyses?

8) Are all samples within holding times for requested analyses?

9) Were all sample containers received intact?

10) Are the temperature blanks present?

11) Are the trip blanks (VOA and/or Cyanide) present?

12) Are samples requiring no headspace, headspace free?

13) Do the samples that require a Foreign Soils Permit have one?

YES	NO	NA
		Х
Х		
		Х
Х		
Х		
X		
Х		
Х		
Х		
		Х
		Х
		Х
		Х

Exceptions: If you answered no to any of the above questions, please describe

N/A

Contact (For any discrepancies, the client must be contacted)

N/A

Shipping Containers

Cooler Id	Temp (°C)	Rad (µR/hr)
NA3729	2.5	14

Client must contact ACZ Project Manager if analysis should not proceed for samples received outside of thermal preservation acceptance criteria.

Notes

Sample Receipt

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Phelps Dodge Sierrita

OJ03Z5

ACZ Project ID: Date Received: L63094 6/7/2007

Received By:

Sample Container Preservation

SAMPLE	CLIENT ID	R < 2	G < 2	BK < 2	Y< 2	YG< 2	B< 2	0 < 2	T >12	N/A	RAD	ID
L63094-01	UGW-627483-060607									Х		
L63094-02	FGW-627483-060607		Υ									

Sample Container Preservation Legend

Abbreviation	Description	Container Type	Preservative/Limits
R	Raw/Nitric	RED	pH must be < 2
В	Filtered/Sulfuric	BLUE	pH must be < 2
BK	Filtered/Nitric	BLACK	pH must be < 2
G	Filtered/Nitric	GREEN	pH must be < 2
0	Raw/Sulfuric	ORANGE	pH must be < 2
Р	Raw/NaOH	PURPLE	pH must be > 12 *
Т	Raw/NaOH Zinc Acetate	TAN	pH must be > 12
Υ	Raw/Sulfuric	YELLOW	pH must be < 2
YG	Raw/Sulfuric	YELLOW GLASS	pH must be < 2
N/A	No preservative needed	Not applicable	
RAD	Gamma/Beta dose rate	Not applicable	must be < 250 µR/hr

^{*} pH check performed by analyst prior to sample preparation

Sample IDs Reviewed By	v:

AGZ Laboratorie 2773 Downhill Drive Steamboat Springs, CO 804	· .	185	94	CHAIN o	of CUSTODY	
Report to:	167 (600) 334-3493		'			
.,		,	1) , ,			
Name: Kim Gaicia		Address: 5				
Company: Hydro beo (bem Inc.	2	- / // C.	500, AZ	85	105	
E-mail: King@hgcine com		Telephone:	520129	3-1500	4/23	
Copy of Report to:			· · · · · · · · · · · · · · · · · · ·			
Name: Ned Hall, Bill, Don's, Dim 1	Vollis	درس ال E-mail:	Dageine.	cam hilly	Jose's Ofmica	m
Company: PDSI/HGC		Telephone: >	93-1500 x	1/23 6	Jorris Ofmico 548-9873	
Invoice to:		•				
Name: Ned Hall		Address:	30011	Duralla	Les Del	
Company: PI)SI					1/e, AZ 856	, ,
E-mail: ned-halle Fmican		Telephone: <)	: (
If sample(s) received past holding time (HT), or	if insufficient HT rem			000	YES (
analysis before expiration, shall ACZ proceed v	with requested short l	HT analyses?			NO	
If "NO" then ACZ will contact client for further i						
is indicated, ACZ will proceed with the request PROJECT INFORMATION	ed analyses, even it n				ise quote number)	
			, (
Quote #: Sielling Short		81	77.77			
Project/PO#: 00 & 32.5	13	of Container	A 3,4	,		
Reporting state for compliance testing:	72		S 3			
Sampler's Name: Mark Alneso	AL	6 5	27/12			
Are any samples NRC licensable material? SAMPLE IDENTIFICATION DATE	E:TIME Matrix	 	1 × 1	PH	re to	
				I I	EC Teno 2 449 35.3	
46W-627483-060607 66607:			77			
FGW-62743-060607 6/6/07;	0/30 00			7.79	449 25.3	
		 				
	<u> </u>	 				
		-				
		 				
N (5 0W(0 5 0 W + 2	AAGA(/la/aata \Afata)	(Deienlein en Ménénen) C) (Shidas) 60 (S-II) OI (OII) O	than (Caraita)	
Matrix SW (Surface Water) · GW (Ground Water)	· vvvv (vvaste vvater) · Dvv	(Drinking water) · S	st (Slugge) · SO (Soll) · OL (Oll) · Ol	ner (Specify)	
REMARKS						
Please Rush Results						
UGW = unfilered Gioung	Wester Sum	مرد				
FGW : Filtered Ground	•	-			×	
Please refer to ACZ's		i e	everse side e	f this COC	Į	
RELINQUISHED BY:	DATE:TIME		everse side of ECEIVED BY		DATE:TIME	
May Maron			// 1		107/07.0	ہـــا
// ///////////////////////////////////	6/6/07:1558	 			01/107/12	1/
		-			· · · · · · · · · · · · · · · · · · ·	
		<u> </u>				

June 26, 2007

Report to:

Ned Hall
Phelps Dodge Sierrita
P.O. Box 527 6200 W. Duval Mine Rd.

Green Valley, AZ 85622-0527

cc: Bill Dorris, Jim Norris, Rick Zimmerman

Project ID: OJ03Z5
ACZ Project ID: L63262

Ned Hall:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on June 16, 2007. This project has been assigned to ACZ's project number, L63262. Please reference this number in all future inquiries.

Bill to:

Accounts Payable

P.O. Box 2671

Phelps Dodge Sierrita

Phoenix, AZ 85002-2671

All analyses were performed according to ACZ's Quality Assurance Plan, version 11.0. The enclosed results relate only to the samples received under L63262. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after July 26, 2007. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years.

If you have any questions or other needs, please contact your Project Manager.

Phelps Dodge Sierrita

ACZ Sample ID: L63262-01 Project ID: OJ03Z5 06/14/07 15:50 Date Sampled:

Sample ID: MO-2PT Date Received: 06/16/07

Sample Matrix: Ground Water

Metals Analysis									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Calcium, dissolved	M200.7 ICP	196			mg/L	0.2	1	06/22/07 1:48	msh
Magnesium, dissolved	M200.7 ICP	35.5			mg/L	0.2	1	06/22/07 1:48	msh
Potassium, dissolved	M200.7 ICP	7.7			mg/L	0.3	2	06/22/07 1:48	msh
Sodium, dissolved	M200.7 ICP	73.5			mg/L	0.3	2	06/22/07 1:48	msh
Wet Chemistry									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration								
Bicarbonate as CaCO3		108			mg/L	2	20	06/20/07 0:00	cas
Carbonate as CaCO3	;		U		mg/L	2	20	06/20/07 0:00	cas
Hydroxide as CaCO3			U		mg/L	2	20	06/20/07 0:00	cas
Total Alkalinity		108		*	mg/L	2	20	06/20/07 0:00	cas
Cation-Anion Balance	Calculation								
Cation-Anion Balance		2.2			%			06/26/07 0:00	calc
Sum of Anions		15.4			meq/L	0.1	0.5	06/26/07 0:00	calc
Sum of Cations		16.1			meq/L	0.1	0.5	06/26/07 0:00	calc
Chloride	M300.0 - Ion Chromatography	28.3			mg/L	0.5	3	06/20/07 23:58	jlf
Fluoride	M300.0 - Ion Chromatography	0.3	В	*	mg/L	0.1	0.5	06/20/07 23:58	jlf
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2	0.94			mg/L	0.02	0.1	06/26/07 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	0.94			mg/L	0.02	0.1	06/16/07 15:33	pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction		U	*	mg/L	0.01	0.05	06/16/07 15:33	pjb
Residue, Filterable (TDS) @180C	160.1 / SM2540C	1060			mg/L	10	20	06/20/07 14:49	seb
Sulfate	300.0 - Ion Chromatography	591			mg/L	5	30	06/21/07 16:45	jlf
TDS (calculated)	Calculation	1000			mg/L	10	50	06/26/07 0:00	calc
TDS (ratio - measured/calculated)	Calculation	1.06						06/26/07 0:00	calc

Arizona license number: AZ0102

Inorganic Analytical Results

MO-2PT(RAW)

Phelps Dodge Sierrita

ACZ Sample ID: L63262-02

Project ID: OJ03Z5 06/14/07 15:50 Date Sampled:

> Date Received: 06/16/07

Sample Matrix: Ground Water

Wet Chemistry

Sample ID:

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	596		mg/L	5	30	06/21/07 17:03	ilf

Arizona license number: AZ0102

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report Header Explanations

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest

Limit Upper limit for RPD, in %.

Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit, typically 5 times the MDL.

QC True Value of the Control Sample or the amount added to the Spike

Rec Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

QC Sample Types

AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calivation Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution

QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method or calibration procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method.

Spikes/Fortified Matrix Determines sample matrix interferences, if any.

Standard Verifies the validity of the calibration.

ACZ Qualifiers (Qual)

B Analyte concentration detected at a value between MDL and PQL.

H Analysis exceeded method hold time. pH is a field test with an immediate hold time.

U Analyte was analyzed for but not detected at the indicated MDL

Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (5) EPA SW-846. Test Methods for Evaluating Solid Waste, Third Edition with Update III, December 1996.
- (6) Standard Methods for the Examination of Water and Wastewater, 19th edition, 1995.

Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.

Phelps Dodge Sierrita

Project ID: OJ03Z5

ACZ Project ID: L63262

Alkalinity as Ca(CO3		SM2320E	3 - Titration									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226816													
WG226816PBW1	PBW	06/19/07 15:52				U	mg/L		-20	20			
WG226816LCSW2	LCSW	06/19/07 16:04	WC070614-1	820		819	mg/L	99.9	90	110			
WG226816PBW2	PBW	06/19/07 18:54				U	mg/L		-20	20			
WG226816LCSW5	LCSW	06/19/07 19:06	WC070614-1	820		821.1	mg/L	100.1	90	110			
WG226816PBW3	PBW	06/19/07 22:17				U	mg/L		-20	20			
WG226816LCSW8	LCSW	06/19/07 22:30	WC070614-1	820		822.5	mg/L	100.3	90	110			
WG226816PBW4	PBW	06/20/07 1:19				U	mg/L		-20	20			
WG226816LCSW11	LCSW	06/20/07 1:32	WC070614-1	820		825.2	mg/L	100.6	90	110			
L63272-09DUP	DUP	06/20/07 4:36			54	53.7	mg/L				0.6	20	
WG226816LCSW14	LCSW	06/20/07 4:48	WC070614-1	820		825.4	mg/L	100.7	90	110			
Calcium, dissolv	/ed		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226818													
WG226818ICV	ICV	06/21/07 23:38	11070612-3	100		98.44	mg/L	98.4	95	105			
WG226818ICB	ICB	06/21/07 23:42				U	mg/L		-0.6	0.6			
WG226818LFB	LFB	06/21/07 23:58	11070615-2	67.97008		68.98	mg/L	101.5	85	115			
L63114-01AS	AS	06/22/07 1:03	11070615-2	339.8504	1100	1431.5	mg/L	97.5	85	115			
L63114-01ASD	ASD	06/22/07 1:07	11070615-2	339.8504	1100	1428.9	mg/L	96.8	85	115	0.18	20	
Chloride			M300.0 -	Ion Chrom	atograph	y							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226250													
NG226250ICV	ICV	06/11/07 13:52	IC070606-1	20		20.34	mg/L	101.7	90	110			
WG226250ICB	ICB	06/11/07 14:10				U	mg/L		-1.5	1.5			
WG226250ICV1	ICV	06/12/07 14:59	IC070606-1	20		20.31	mg/L	101.6	90	110			
WG226250ICB1	ICB	06/12/07 15:17				U	mg/L		-1.5	1.5			
WG226894													
WG226894ICV	ICV	06/11/07 13:52	IC070606-1	20		20.34	mg/L	101.7	90	110			
WG226894ICB	ICB	06/11/07 14:10				U	mg/L		-1.5	1.5			
WG226894ICV1	ICV	06/20/07 15:49	IC070606-1	20		20	mg/L	100	90	110			
WG226894ICB1	ICB	06/20/07 16:07				U	mg/L		-1.5	1.5			
WG226894LFB	LFB	06/20/07 16:25	IC070205-3	30		30.39	mg/L	101.3	90	110			
L63250-05DUP	DUP	06/20/07 21:15		-	80.2	80.3	mg/L				0.1	20	
WG226894ICV2	ICV	06/21/07 11:55	IC070606-1	20		20.72	mg/L	103.6	90	110	-	-	
WG226894ICB2	ICB	06/21/07 12:13				U	mg/L		-1.5	1.5			
		25,2.,57 12.10				J	9, ⊏		1.0	٠.٠			

Phelps Dodge Sierrita

Fluoride			M300.0 -	Ion Chrom	atograph	/							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226250													
WG226250ICV	ICV	06/11/07 13:52	IC070606-1	3.984		4.13	mg/L	103.7	90	110			
WG226250ICB	ICB	06/11/07 14:10				U	mg/L		-0.3	0.3			
WG226250ICV1	ICV	06/12/07 14:59	IC070606-1	3.984		4.11	mg/L	103.2	90	110			
WG226250ICB1	ICB	06/12/07 15:17				U	mg/L		-0.3	0.3			
WG226894													
WG226894ICV	ICV	06/11/07 13:52	IC070606-1	3.984		4.13	mg/L	103.7	90	110			
WG226894ICB	ICB	06/11/07 14:10				U	mg/L		-0.3	0.3			
WG226894ICV1	ICV	06/20/07 15:49	IC070606-1	3.984		4.07	mg/L	102.2	90	110			
WG226894ICB1	ICB	06/20/07 16:07				.12	mg/L		-0.3	0.3			
WG226894LFB	LFB	06/20/07 16:25	IC070205-3	1.5		1.54	mg/L	102.7	90	110			
L63250-05DUP	DUP	06/20/07 21:15			3.3	3.31	mg/L				0.3	20	
L63250-06AS	AS	06/20/07 21:51	IC070205-3	1.5	2.7	3.94	mg/L	82.7	90	110			N
WG226894ICV2	ICV	06/21/07 11:55	IC070606-1	3.984		4.09	mg/L	102.7	90	110			
WG226894ICB2	ICB	06/21/07 12:13				U	mg/L		-0.3	0.3			
Magnesium, dis	solved		M200.7 I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226818													
WG226818ICV	ICV	06/21/07 23:38	11070612-3	100		99.49	mg/L	99.5	95	105			
WG226818ICB	ICB	06/21/07 23:42				U	mg/L		-0.6	0.6			
WG226818LFB	LFB	06/21/07 23:58	11070615-2	54.96908		55.39	mg/L	100.8	85	115			
L63114-01AS	AS	06/22/07 1:03	11070615-2	274.8454	2360	2610.8	mg/L	91.3	85	115			
L63114-01ASD	ASD	06/22/07 1:07	11070615-2	274.8454	2360	2609.2	mg/L	90.7	85	115	0.06	20	
Nitrate/Nitrite as	N, diss	olved	M353.2 -	Automated	d Cadmiur	n Reduc	ction						
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226660													
WG226660ICV	ICV	06/16/07 15:27	WI070609-1	2.416		2.318	mg/L	95.9	90	110			
WG226660ICB	ICB	06/16/07 15:28		20		U	mg/L	00.0	-0.06	0.06			
L63262-01DUP	DUP	06/16/07 15:34			.94	.943	mg/L				0.3	20	
L63262-01AS	AS	06/16/07 15:35	WI070307-9	2	.94	3.002	mg/L	103.1	90	110	0.0		
WG226660LFB	LFB	06/16/07 15:38	WI070307-9	2		2.036	mg/L	101.8	90	110			
Nitrite as N, diss	solved		M353 2 -	Automated	d Cadmiur	n Reduc	ction						
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226660													
WG226660ICV	ICV	06/16/07 15:27	WI070609-1	.609		.609	mg/L	100	90	110			
WG226660ICB	ICB	06/16/07 15:27	4 4 10 1 00 0 3- 1	.003		.609 U	mg/L	100	-0.03	0.03			
L63262-01DUP	DUP	06/16/07 15:26			U	U	mg/L		-0.03	0.03	0	20	F
	AS	06/16/07 15:35	WI070307-9	1	U	1.042	mg/L	104.2	90	110	U	20	r
L63262-01AS													

Phelps Dodge Sierrita

Project ID: OJ03Z5 ACZ Project ID: L63262

Potassium, diss	solved		M200.7 I	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226818													
WG226818ICV	ICV	06/21/07 23:38	11070612-3	20		20.1	mg/L	100.5	95	105			
WG226818ICB	ICB	06/21/07 23:42				.4	mg/L		-0.9	0.9			
WG226818LFB	LFB	06/21/07 23:58	11070615-2	99.76186		101.28	mg/L	101.5	85	115			
L63114-01AS	AS	06/22/07 1:03	11070615-2	498.8093	138	703.2	mg/L	113.3	85	115			
L63114-01ASD	ASD	06/22/07 1:07	11070615-2	498.8093	138	706.8	mg/L	114	85	115	0.51	20	
Residue, Filtera	ble (TD	S) @180C	160.1 / S	SM2540C									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226892													
WG226892PBW	PBW	06/20/07 14:28				U	mg/L		-20	20			
WG226892LCSW	LCSW	06/20/07 14:30	PCN27102	260		274	mg/L	105.4	80	120			
L63276-04DUP	DUP	06/20/07 15:00			150	144	mg/L				4.1	20	
Sodium, dissolv	ved		M200.7 I	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226818													
WG226818ICV	ICV	06/21/07 23:38	11070612-3	100		101.29	mg/L	101.3	95	105			
WG226818ICB	ICB	06/21/07 23:42				U	mg/L		-0.9	0.9			
WG226818LFB	LFB	06/21/07 23:58	11070615-2	98.21624		100.19	mg/L	102	85	115			
L63114-01AS	AS	06/22/07 1:03	11070615-2	491.0812	841	1360.5	mg/L	105.8	85	115			
L63114-01ASD	ASD	06/22/07 1:07	11070615-2	491.0812	841	1367.2	mg/L	107.2	85	115	0.49	20	
Sulfate			300.0 - le	on Chromat	ography								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226250													
WG226250ICV	ICV	06/11/07 13:52	IC070606-1	50.15		51.51	mg/L	102.7	90	110			
WG226250ICB	ICB	06/11/07 14:10				U	mg/L		-1.5	1.5			
WG226250ICV1	ICV	06/12/07 14:59	IC070606-1	50.15		51.17	mg/L	102	90	110			
WG226250ICB1	ICB	06/12/07 15:17				U	mg/L		-1.5	1.5			
WG226894													
WG226894ICV	ICV	06/11/07 13:52	IC070606-1	50.15		51.51	mg/L	102.7	90	110			
WG226894ICB	ICB	06/11/07 14:10				U	mg/L		-1.5	1.5			
WG226894ICV1	ICV	06/20/07 15:49	IC070606-1	50.15		50.43	mg/L	100.6	90	110			
WG226894ICB1	ICB	06/20/07 16:07				U	mg/L		-1.5	1.5			
WG226894LFB	LFB	06/20/07 16:25	IC070205-3	30		30.38	mg/L	101.3	90	110			
WG226894ICV2	ICV	06/21/07 11:55	IC070606-1	50.15		50.81	mg/L	101.3	90	110			
WG226894ICB2	ICB	06/21/07 12:13				U	mg/L		-1.5	1.5			
L63250-05DUP	DUP	06/21/07 15:14			305	305.3	mg/L		-	-	0.1	20	
							- J						

Inorganic Extended Qualifier Report

Phelps Dodge Sierrita

ACZ Project ID: L63262

AL DESCRIPTION

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L63262-01	WG226894	Fluoride	M300.0 - Ion Chromatography	M2	Matrix spike recovery was low, the method control sample recovery was acceptable.
	WG226660	Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG226816	Total Alkalinity	SM2320B - Titration		Sample container with preservation type specified by the method was not available for analysis. Alternate sample container was used.

Certification Qualifiers

Phelps Dodge Sierrita ACZ Project ID: L63262

No certification qualifiers associated with this analysis

Sample Receipt

Phelps Dodge Sierrita

OJ03Z5

ACZ Project ID: Date Received:

L63262

6/16/2007

Received By:

Date Printed: 6/18/2007

Receipt Verification

- 1) Does this project require special handling procedures such as CLP protocol?
- 2) Are the custody seals on the cooler intact?
- 3) Are the custody seals on the sample containers intact?
- 4) Is there a Chain of Custody or other directive shipping papers present?
- 5) Is the Chain of Custody complete?
- 6) Is the Chain of Custody in agreement with the samples received?
- 7) Is there enough sample for all requested analyses?
- 8) Are all samples within holding times for requested analyses?
- 9) Were all sample containers received intact?
- 10) Are the temperature blanks present?
- 11) Are the trip blanks (VOA and/or Cyanide) present?
- 12) Are samples requiring no headspace, headspace free?
- 13) Do the samples that require a Foreign Soils Permit have one?

YES	NO	NA
		Х
Χ		
		Х
Х		
Χ		
Χ		
Х		
Χ		
Χ		
		Х
		Х
		Х
		Х

Exceptions: If you answered no to any of the above questions, please describe

N/A

Contact (For any discrepancies, the client must be contacted)

N/A

Shipping Containers

Cooler Id	Temp (°C)	Rad (µR/hr)
NA3792	5.5	16

Client must contact ACZ Project Manager if analysis should not proceed for samples received outside of thermal preservation acceptance criteria.

Notes

Sample Receipt

Phelps Dodge Sierrita

ACZ Project ID: Date Received:

L63262 6/16/2007

Received By:

Sample Container Preservation

SAMPLE	CLIENT ID	R < 2	G < 2	BK < 2	Y< 2	YG< 2	B< 2	0 < 2	T >12	N/A	RAD	ID
L63262-01	MO-2PT		Υ									
L63262-02	MO-2PT(RAW)									Х		

Sample Container Preservation Legend

Abbreviation	Description	Container Type	Preservative/Limits
R	Raw/Nitric	RED	pH must be < 2
В	Filtered/Sulfuric	BLUE	pH must be < 2
BK	Filtered/Nitric	BLACK	pH must be < 2
G	Filtered/Nitric	GREEN	pH must be < 2
0	Raw/Sulfuric	ORANGE	pH must be < 2
Р	Raw/NaOH	PURPLE	pH must be > 12 *
Т	Raw/NaOH Zinc Acetate	TAN	pH must be > 12
Υ	Raw/Sulfuric	YELLOW	pH must be < 2
YG	Raw/Sulfuric	YELLOW GLASS	pH must be < 2
N/A	No preservative needed	Not applicable	
RAD	Gamma/Beta dose rate	Not applicable	must be < 250 µR/hr

^{*} pH check performed by analyst prior to sample preparatior

Sample IDs Reviewed By:	
Sample IDS Neviewed by.	

Laboratories, Inc. CHAIN of CUSTODY 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493 Report to: 51 W. Wetmore Rd., Sufe 101 TULSON, AZ 85705 Rick Zimmerman Name: Company: Telephone: (520) 293-1500 E-mail: Copy of Report to: E-mail: JIMA @ hgcinc.com, billydocris @fmi.com
Telephone: 620 293-1500 x 123, (620) 648-8873 Med Hall / Billy Dorris / Jim Morris Name: Company: PDSエノHGム Invoice to: Address: 6200 W. Dural Mine Rd Ned Hall Name: POBOX 527 Green Valley, AZ 85622 Company: PDSI Telephone: (520) 648 -8854 E-mail: ned-hall a) timi, com If sample(s) received past holding time (HT), or if insufficient HT remains to complete analysis before expiration, shall ACZ proceed with requested short HT analyses? If "NO" then ACZ will contact client for further instruction. If neither "YES" nor "NO" is indicated, ACZ will proceed with the requested analyses, even if HT is expired, and data will be qualifled. ANALYSES REQUESTED (attach list or use quote number) PROJECT INFORMATION Quote #: Sterrita Short # of Containers Project/PO#: OJも3そ5 Reporting state for compliance testing: AZ Sampler's Name: //ATHAN Are any samples NRC licensable material? DATE:TIME Matrix SAMPLE IDENTIFICATION MO-2 PT 6-14-07 1550 GW MO-2 PT (Raw) 7.05 1372 322 6-14-0+1660 aw SW (Surface Water) · GW (Ground Water) · WW (Waste Water) · DW (Drinking Water) · SL (Sludge) · SO (Soil) · OL (Oil) · Other (Specify) Matrix REMARKS RUSH Please refer to ACZ's terms & conditions located on the reverse side of this COC.

RELINQUISHED BY:	DATE:TIME	RECEIVED BY:	DATE:TIME
The Newy	6-15-07 7:	MOS	10.10.01
	Ÿ		11:03

July 18, 2007

Report to:

Ned Hall
Phelps Dodge Sierrita
P.O. Box 527 6200 W. Duval Mine Rd.

Green Valley, AZ 85622-0527

cc: Bill Dorris, Jim Norris, Kim Garcia

Project ID: OJ03Z5 ACZ Project ID: L63562

Ned Hall:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on June 30, 2007. This project has been assigned to ACZ's project number, L63562. Please reference this number in all future inquiries.

Bill to:

Accounts Payable

P.O. Box 2671

Phelps Dodge Sierrita

Phoenix, AZ 85002-2671

All analyses were performed according to ACZ's Quality Assurance Plan, version 11.0. The enclosed results relate only to the samples received under L63562. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after August 18, 2007. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years.

If you have any questions or other needs, please contact your Project Manager.

Case Narrative

2773 Downhill DriveSteamboat Springs, CO 8048; (800) 334-5493

Phelps Dodge Sierrita July 18, 2007

Project ID: OJ03Z5 ACZ Project ID: L63562

Sample Receipt

ACZ Laboratories, Inc. (ACZ) received 2 ground water samples from Phelps Dodge Sierrita on June 30, 2007. The samples were received in good condition. Upon receipt, the sample custodian removed the samples from the cooler, inspected the contents, and logged the samples into ACZ's computerized Laboratory Information Management System (LIMS). The samples were assigned ACZ LIMS project number L63562. The custodian verified the sample information entered into the computer against the chain of custody (COC) forms and sample bottle labels.

Samples were received outside the EPA recommended temperature of 0-6 degrees C.

Holding Times

Any analyses not performed within EPA recommended holding times have been qualified with an "H" flag.

Sample Analysis

These samples were analyzed for inorganic parameters. The individual methods are referenced on both, the ACZ invoice and the analytical reports. The extended qualifier reports may contain footnotes qualifying specific elements due to QC failures.

Phelps Dodge Sierrita

ACZ Sample ID: L63562-01 Project ID: OJ03Z5 06/28/07 16:00 Date Sampled:

MO-3-1FGW Sample ID: Date Received: 06/30/07

Sample Matrix: Ground Water

Metals Analysis									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Calcium, dissolved	M200.7 ICP	28.2			mg/L	0.2	1	07/13/07 18:00	msh
Magnesium, dissolved	M200.7 ICP	1.4			mg/L	0.2	1	07/13/07 18:00	msh
Potassium, dissolved	M200.7 ICP	3.3			mg/L	0.3	2	07/13/07 18:00	msh
Sodium, dissolved	M200.7 ICP	93.4			mg/L	0.3	2	07/13/07 18:00	msh
Wet Chemistry									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration								
Bicarbonate as CaCO3		103			mg/L	2	20	07/05/07 0:00	jlf/lcp
Carbonate as CaCO3	l .		U		mg/L	2	20	07/05/07 0:00	jlf/lcp
Hydroxide as CaCO3			U		mg/L	2	20	07/05/07 0:00	jlf/lcp
Total Alkalinity		103			mg/L	2	20	07/05/07 0:00	jlf/lcp
Cation-Anion Balance	Calculation								
Cation-Anion Balance		2.7			%			07/18/07 11:01	calc
Sum of Anions		5.4			meq/L	0.1	0.5	07/18/07 11:01	calc
Sum of Cations		5.7			meq/L	0.1	0.5	07/18/07 11:01	calc
Chloride	M300.0 - Ion Chromatography	11.4		*	mg/L	0.5	3	07/16/07 22:04	jag
Fluoride	M300.0 - Ion Chromatography	3.1		*	mg/L	0.1	0.5	07/16/07 22:04	jag
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2	0.30			mg/L	0.02	0.1	07/18/07 11:01	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	0.30	Н	*	mg/L	0.02	0.1	06/30/07 16:16	pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction		HU	*	mg/L	0.01	0.05	06/30/07 16:16	pjb
Residue, Filterable (TDS) @180C	160.1 / SM2540C	380			mg/L	10	20	07/05/07 13:42	kmc
Sulfate	300.0 - Ion Chromatography	136		*	mg/L	3	10	07/17/07 12:21	jag
TDS (calculated)	Calculation	340			mg/L	10	50	07/18/07 11:01	calc
TDS (ratio - measured/calculated)	Calculation	1.12						07/18/07 11:01	calc

Arizona license number: AZ0102

Inorganic Analytical Results

Phelps Dodge Sierrita

ACZ Sample ID: L63562-02 Project ID: OJ03Z5 06/28/07 16:00 Date Sampled:

MO-3-1GW Sample ID: Date Received: 06/30/07

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	136	*	mg/L	3	10	07/17/07 12:40	jag

Arizona license number: AZ0102

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report Header Explanations

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest

Limit Upper limit for RPD, in %.

Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit, typically 5 times the MDL.

QC True Value of the Control Sample or the amount added to the Spike

Rec Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

QC Sample Types

AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calivation Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution

QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method or calibration procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method.

Spikes/Fortified Matrix Determines sample matrix interferences, if any.

Standard Verifies the validity of the calibration.

ACZ Qualifiers (Qual)

B Analyte concentration detected at a value between MDL and PQL.

H Analysis exceeded method hold time. pH is a field test with an immediate hold time.

U Analyte was analyzed for but not detected at the indicated MDL

Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (5) EPA SW-846. Test Methods for Evaluating Solid Waste, Third Edition with Update III, December 1996.
- (6) Standard Methods for the Examination of Water and Wastewater, 19th edition, 1995.

Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.

Phelps Dodge Sierrita

Project ID: OJ03Z5

Alkalinity as Ca	CO3		SM2320E	3 - Titration									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG228017													
WG228017PBW1	PBW	07/05/07 10:52				U	mg/L		-20	20			
WG228017LCSW1	LCSW	07/05/07 11:01	WC070628-1	820		816.9	mg/L	99.6	90	110			
L63561-01DUP	DUP	07/05/07 14:24			125	125.5	mg/L				0.4	20	
WG228017PBW2	PBW	07/05/07 14:43				U	mg/L		-20	20			
WG228017LCSW2	LCSW	07/05/07 14:53	WC070628-1	820		828.6	mg/L	101	90	110			
WG228017PBW3	PBW	07/05/07 18:25				U	mg/L		-20	20			
WG228017LCSW3	LCSW	07/05/07 18:35	WC070628-1	820		823.4	mg/L	100.4	90	110			
Calcium, dissol	ved		M200.7 I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG228215													
WG228215ICV	ICV	07/13/07 17:16	11070703-2	100		100.2	mg/L	100.2	95	105			
WG228215ICB	ICB	07/13/07 17:20				U	mg/L		-0.6	0.6			
WG228215LFB	LFB	07/13/07 17:34	11070709-3	67.97008		71.72	mg/L	105.5	85	115			
L63470-01AS	AS	07/13/07 17:45	11070709-3	67.97008	45.5	117.35	mg/L	105.7	85	115			
L63470-01ASD	ASD	07/13/07 17:49	11070709-3	67.97008	45.5	118.43	mg/L	107.3	85	115	0.92	20	
Chloride			M300.0 -	Ion Chrom	atograph	y							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226250													
WG226250ICV	ICV	06/11/07 13:52	IC070606-1	20		20.34	mg/L	101.7	90	110			
WG226250ICB	ICB	06/11/07 14:10				U	mg/L		-1.5	1.5			
WG226250ICV1	ICV	06/12/07 14:59	IC070606-1	20		20.31	mg/L	101.6	90	110			
WG226250ICB1	ICB	06/12/07 15:17				U	mg/L		-1.5	1.5			
WG228384													
WG228384ICV	ICV	06/11/07 13:52	IC070710-1	20		20.34	mg/L	101.7	90	110			
WG228384ICB	ICB	06/11/07 14:10				U	mg/L		-1.5	1.5			
WG228384ICV1	ICV	07/16/07 13:37	IC070710-1	20		20.13	mg/L	100.7	90	110			
WG228384ICB1	ICB	07/16/07 13:55				U	mg/L		-1.5	1.5			
WG228384LFB1	LFB	07/16/07 14:13	IC070205-3	30		31.26	mg/L	104.2	90	110			
L63539-03DUP	DUP	07/16/07 19:03			.6	.62	mg/L				3.3	20	
L63539-04AS	AS	07/16/07 19:39	IC070205-3	30	1.5	30.9	mg/L	98	90	110			

WG228384LFB2

LFB

07/16/07 22:58 IC070205-3

30

31.37 mg/L

104.6

90

110

Phelps Dodge Sierrita

Project ID: OJ03Z5

Fluoride			M300.0 -	Ion Chrom	atograph	y							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226250													
WG226250ICV	ICV	06/11/07 13:52	IC070606-1	3.984		4.13	mg/L	103.7	90	110			
WG226250ICB	ICB	06/11/07 14:10				U	mg/L		-0.3	0.3			
WG226250ICV1	ICV	06/12/07 14:59	IC070606-1	3.984		4.11	mg/L	103.2	90	110			
WG226250ICB1	ICB	06/12/07 15:17				U	mg/L		-0.3	0.3			
WG228384													
WG228384ICV	ICV	06/11/07 13:52	IC070710-1	3.984		4.13	mg/L	103.7	90	110			
WG228384ICB	ICB	06/11/07 14:10				U	mg/L		-0.3	0.3			
WG228384ICV1	ICV	07/16/07 13:37	IC070710-1	3.984		4.08	mg/L	102.4	90	110			
WG228384ICB1	ICB	07/16/07 13:55				U	mg/L		-0.3	0.3			
WG228384LFB1	LFB	07/16/07 14:13	IC070205-3	1.5		1.58	mg/L	105.3	90	110			
L63539-03DUP	DUP	07/16/07 19:03			.1	.12	mg/L				18.2	20	R/
L63539-04AS	AS	07/16/07 19:39	IC070205-3	1.5	.2	1.7	mg/L	100	90	110			
WG228384LFB2	LFB	07/16/07 22:58	IC070205-3	1.5		1.63	mg/L	108.7	90	110			
Magnesium, di	ssolved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG228215													
WG228215ICV	ICV	07/13/07 17:16	11070703-2	100		101.15	ma/l	101.2	95	105			
WG228215ICV WG228215ICB	ICB	07/13/07 17:10	11070703-2	100		U	mg/L	101.2	-0.6	0.6			
	LFB		11070700 2	E4.00000			mg/L	105.0					
WG228215LFB L63470-01AS	AS	07/13/07 17:34 07/13/07 17:45	II070709-3 II070709-3	54.96908 54.96908	21	58.16 82.02	mg/L mg/L	105.8 111	85 85	115 115			
L63470-01ASD	ASD	07/13/07 17:49	11070709-3	54.96908	21	82.9	mg/L	112.6	85	115	1.07	20	
Nitrate/Nitrite a	e N dies	colved	M353.2	Automated	1 Cadmiur	n Paduc	rtion						
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found		Rec	Lower	Upper	RPD	Limit	Qual
WG227541	•												
	10) (00/00/07 47 40	14/10=0000 4										
WG227541ICV	ICV	06/30/07 15:19	WI070609-1	2.416		2.314	mg/L	95.8	90	110			
WG227541ICB	ICB	06/30/07 15:20	14/1070000 4	0.440		U	mg/L	00.0	-0.06	0.06			
WG227541ICV1	ICV	06/30/07 15:42	WI070609-1	2.416		2.268	mg/L	93.9	90	110			
WG227541ICB1	ICB	06/30/07 15:44				U	mg/L		-0.06	0.06			
WG227543													
WG227543ICV	ICV	06/30/07 15:55	WI070609-1	2.416		2.336	mg/L	96.7	90	110			
WG227543ICB	ICB	06/30/07 15:56				U	mg/L		-0.06	0.06			
WG227543LFB	LFB	06/30/07 15:57	WI070307-9	2		2.065	mg/L	103.3	90	110			
L63526-02AS	AS	06/30/07 16:00	WI070307-9	2	.1	2.07	mg/L	98.5	90	110			
L63559-01DUP	DUP	06/30/07 16:02			U	.022	mg/L				200	20	R/
Nitrite as N, dis	solved		M353.2 -	Automated	d Cadmiur	n Reduc	tion						
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG227543													
WG227543ICV	ICV	06/30/07 15:55	WI070609-1	.609		.621	mg/L	102	90	110			
WG227543ICB	ICB	06/30/07 15:56				U	mg/L		-0.03	0.03			
WG227543LFB	LFB	06/30/07 15:57	WI070307-9	1		1.031	mg/L	103.1	90	110			
L63526-02AS	AS	06/30/07 16:00	WI070307-9	1	U	1.02	mg/L	102	90	110			
L63559-01DUP	DUP	06/30/07 16:02			U	U	mg/L				0	20	R/

Phelps Dodge Sierrita

Project ID: OJ03Z5

Potassium, dis	solved		M200.7	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG228215													
WG228215ICV	ICV	07/13/07 17:16	11070703-2	20		19.92	mg/L	99.6	95	105			
WG228215ICB	ICB	07/13/07 17:20				U	mg/L		-0.9	0.9			
WG228215LFB	LFB	07/13/07 17:34	11070709-3	99.76186		103.41	mg/L	103.7	85	115			
L63470-01AS	AS	07/13/07 17:45	11070709-3	99.76186	20.1	123.34	mg/L	103.5	85	115			
L63470-01ASD	ASD	07/13/07 17:49	11070709-3	99.76186	20.1	124.18	mg/L	104.3	85	115	0.68	20	
Residue, Filtera	able (TD	S) @180C	160.1 / S	SM2540C									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG227774													
WG227774PBW	PBW	07/05/07 12:45				U	mg/L		-20	20			
WG227774LCSW	LCSW	07/05/07 12:47	PCN27105	261		278	mg/L	106.5	80	120			
L63562-01DUP	DUP	07/05/07 13:45	1 01127 100	201	380	376	mg/L	100.0	00	120	1.1	20	
Sodium, dissol	ved		M200.7	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WC22024E	71	•											
WG228215													
WG228215ICV	ICV	07/13/07 17:16	11070703-2	100		101.02	mg/L	101	95	105			
WG228215ICB	ICB	07/13/07 17:20				U	mg/L		-0.9	0.9			
WG228215LFB	LFB	07/13/07 17:34	11070709-3	98.21624		102.85	mg/L	104.7	85	115			
L63470-01AS	AS	07/13/07 17:45	11070709-3	98.21624	38.7	135.71	mg/L	98.8	85	115			
L63470-01ASD	ASD	07/13/07 17:49	11070709-3	98.21624	38.7	137.01	mg/L	100.1	85	115	0.95	20	
Sulfate			300.0 - I	on Chromat	ography								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226250													
NG226250ICV	ICV	06/11/07 13:52	IC070606-1	50.15		51.51	mg/L	102.7	90	110			
WG226250ICB	ICB	06/11/07 14:10				U	mg/L		-1.5	1.5			
WG226250ICV1	ICV	06/12/07 14:59	IC070606-1	50.15		51.17	mg/L	102	90	110			
WG226250ICB1	ICB	06/12/07 15:17				U	mg/L		-1.5	1.5			
WG228384													
WG228384ICV	ICV	06/11/07 13:52	IC070710-1	50.15		51.51	mg/L	102.7	90	110			
WG228384ICB	ICB	06/11/07 14:10				U	mg/L		-1.5	1.5			
WG228384ICV1	ICV	07/16/07 13:37	IC070710-1	50.15		50.8	mg/L	101.3	90	110			
WG228384ICB1	ICB	07/16/07 13:55		230		U	mg/L		-1.5	1.5			
WG228384LFB1	LFB	07/16/07 13:33	IC070205-3	30		31.21	mg/L	104	90	110			
L63539-03DUP	DUP		10010200-3	30	2.7		•	104	30	110	1.8	20	
		07/16/07 19:03	10070005.0	20		2.75	mg/L	07.7	00	140	1.0	20	
L63539-04AS	AS	07/16/07 19:39	IC070205-3	30	3	32.31	mg/L	97.7	90	110			
WG228384LFB2	LFB	07/16/07 22:58	IC070205-3	30		31.13	mg/L	103.8	90	110			

Inorganic Extended Qualifier Report

Phelps Dodge Sierrita

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L63562-01	WG228384	Chloride	M300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
		Fluoride	M300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG227543	Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZ's Terms & Conditions).
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
		Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZ's Terms & Conditions).
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG228384	Sulfate	300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
L63562-02	WG228384	Sulfate	300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).

Certification Qualifiers

Phelps Dodge Sierrita ACZ Project ID: L63562

No certification qualifiers associated with this analysis

Sample Receipt

Phelps Dodge Sierrita

OJ03Z5

ACZ Project ID:

L63562

Date Received:

6/30/2007

Received By:

Date Printed: 6/30/2007

Receipt Verification

- 1) Does this project require special handling procedures such as CLP protocol?
- 2) Are the custody seals on the cooler intact?
- 3) Are the custody seals on the sample containers intact?
- 4) Is there a Chain of Custody or other directive shipping papers present?
- 5) Is the Chain of Custody complete?
- 6) Is the Chain of Custody in agreement with the samples received?
- 7) Is there enough sample for all requested analyses?
- 8) Are all samples within holding times for requested analyses?
- 9) Were all sample containers received intact?
- 10) Are the temperature blanks present?
- 11) Are the trip blanks (VOA and/or Cyanide) present?
- 12) Are samples requiring no headspace, headspace free?
- 13) Do the samples that require a Foreign Soils Permit have one?

YES	NO	NA
		Х
Х		
		Х
Х		
Х		
Х		
Х		
X		
Х		
		Х
		Χ
		X
		Χ

Exceptions: If you answered no to any of the above questions, please describe

N/A

Contact (For any discrepancies, the client must be contacted)

N/A

Shipping Containers

Cooler Id	Temp (°C)	Rad (µR/hr)
NA3885	8.5	15

Client must contact ACZ Project Manager if analysis should not proceed for samples received outside of thermal preservation acceptance criteria.

Notes

Sample Receipt

Phelps Dodge Sierrita

OJ03Z5

ACZ Project ID: Date Received: L63562 6/30/2007

Received By:

Sample Container Preservation

SAMPLE	CLIENT ID	R < 2	G < 2	BK < 2	Y< 2	YG< 2	B< 2	0 < 2	T >12	N/A	RAD	ID
L63562-01	MO-3-1FGW		Υ									
L63562-02	MO-3-1GW									Χ		

Sample Container Preservation Legend

Abbreviation	Description	Container Type	Preservative/Limits
R	Raw/Nitric	RED	pH must be < 2
В	Filtered/Sulfuric	BLUE	pH must be < 2
BK	Filtered/Nitric	BLACK	pH must be < 2
G	Filtered/Nitric	GREEN	pH must be < 2
0	Raw/Sulfuric	ORANGE	pH must be < 2
Р	Raw/NaOH	PURPLE	pH must be > 12 *
Т	Raw/NaOH Zinc Acetate	TAN	pH must be > 12
Υ	Raw/Sulfuric	YELLOW	pH must be < 2
YG	Raw/Sulfuric	YELLOW GLASS	pH must be < 2
N/A	No preservative needed	Not applicable	
RAD	Gamma/Beta dose rate	Not applicable	must be $< 250 \mu R/hr$

^{*} pH check performed by analyst prior to sample preparation

Sample IDs Reviewed B	v:

Laboratories, Inc. CHAIN of CUSTODY 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493 Report to: Address: 51 W. Wetmore RI Name: Grea Schnow Tucson A7 35705-1678 s Geo Clem, Inc. Telephone: 520-293-1500 ext. 118 E-mail: gregs@hgcinc.com Copy of Report to: Name: Ned Hall Billy Dorn's Jim Nom's E-mail: Jim NG hacing con, Billy Donis & Fui con Telephone: 713-1500, ext 113, 640-8873 Invoice to: Address: 6200 W. Dural Mine RI Ned Hall Name: PO By 527 Green Valley AZ 35622 elephone: 648-8857 Company: PDS I Nes-Hall &fmi. Com E-mail: If sample(s) received past holding time (HT), or if insufficient HT remains to complete NO analysis before expiration, shall ACZ proceed with requested short HT analyses? If "NO" then ACZ will contact client for further instruction. If neither "YES" nor "NO" is indicated, ACZ will proceed with the requested analyses, even if HT is expired, and data will be qualified. ANALYSES REQUESTED (attach list or use quote number) PROJECT INFORMATION Sierrita Short Quote #: # of Containers 051325 Project/PO #: Reporting state for compliance testing: Sampler's Name: Geg Samaw NO Are any samples NRC licensable material? DATE:TIME SAMPLE IDENTIFICATION Matrix 6.28.07 16:00 MO-3-1FGW GW. 6.28.07 16:00 MO-3-1GW SW (Surface Water) · GW (Ground Water) · WW (Waste Water) · DW (Drinking Water) · SL (Sludge) · SO (Soil) · OL (Oil) · Other (Specify) Matrix REMARKS FGW = Filtered groundwater GW = Unfiltered frombuster Please refer to ACZ's terms & conditions located on the reverse side of this COC. RECEIVED BY: DATE: TIME DATE:TIME RELINQUISHED BY: F0.88.)

August 13, 2007

Report to:

Ned Hall Phelps Dodge Sierrita

P.O. Box 527 6200 W. Duval Mine Rd.

Green Valley, AZ 85622-0527

cc: Dan Simpson, Bill Dorris, Jim Norris

Project ID: OJ03Z5 ACZ Project ID: L64202

Ned Hall:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on August 01, 2007. This project has been assigned to ACZ's project number, L64202. Please reference this number in all future inquiries.

Bill to:

Accounts Payable

P.O. Box 2671

Phelps Dodge Sierrita

Phoenix, AZ 85002-2671

All analyses were performed according to ACZ's Quality Assurance Plan, version 12.0. The enclosed results relate only to the samples received under L64202. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after September 13, 2007. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years.

If you have any questions or other needs, please contact your Project Manager.

Case Narrative

2773 Downhill DriveSteamboat Springs, CO 8048; (800) 334-5493

Phelps Dodge Sierrita August 13, 2007

Project ID: OJ03Z5 ACZ Project ID: L64202

Sample Receipt

ACZ Laboratories, Inc. (ACZ) received 2 ground water samples from Phelps Dodge Sierrita on August 1, 2007. The samples were received in good condition. Upon receipt, the sample custodian removed the samples from the cooler, inspected the contents, and logged the samples into ACZ's computerized Laboratory Information Management System (LIMS). The samples were assigned ACZ LIMS project number L64202. The custodian verified the sample information entered into the computer against the chain of custody (COC) forms and sample bottle labels.

Samples were received outside the EPA recommended temperature of 0-6 degrees C.

Holding Times

Any analyses not performed within EPA recommended holding times have been qualified with an "H" flag.

Sample Analysis

These samples were analyzed for inorganic parameters. The individual methods are referenced on both, the ACZ invoice and the analytical reports. The extended qualifier reports may contain footnotes qualifying specific elements due to QC failures.

Phelps Dodge Sierrita

Project ID: OJ03Z5

Sample ID: MO-2007-IC-F ACZ Sample ID: *L64202-01*

07/31/07 15:20 Date Sampled:

Date Received: 08/01/07

Sample Matrix: Ground Water

Field Data									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Conductivity (Field)	Field Measurement	523			mS/cm			07/31/07 15:20	kg
pH (Field)	Field Measurement	7.4			units			07/31/07 15:20	kg
Temperature (Field)	Field Measurement	27.9			С			07/31/07 15:20	kg
Metals Analysis									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Calcium, dissolved	M200.7 ICP	57.5			mg/L	0.2	1	08/09/07 3:47	djt
Magnesium, dissolved	M200.7 ICP	9.3			mg/L	0.2	1	08/09/07 3:47	djt
Potassium, dissolved	M200.7 ICP	4.8			mg/L	0.3	2	08/09/07 3:47	djt
Sodium, dissolved	M200.7 ICP	49.3			mg/L	0.3	2	08/09/07 3:47	djt
Wet Chemistry									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration								
Bicarbonate as		124		*	mg/L	2	20	08/06/07 0:00	lcp/jlf
CaCO3									
Carbonate as CaCO3	3		U	*	mg/L	2	20	08/06/07 0:00	lcp/jlf
Hydroxide as CaCO3			U	*	mg/L	2	20	08/06/07 0:00	lcp/jlf
Total Alkalinity		124		*	mg/L	2	20	08/06/07 0:00	lcp/jlf
Cation-Anion Balance	Calculation								
Cation-Anion Balance		3.5			%			08/13/07 0:00	calc
Sum of Anions		5.5			meq/L	0.1	0.5	08/13/07 0:00	calc
Sum of Cations		5.9			meq/L	0.1	0.5	08/13/07 0:00	calc
Chloride	M300.0 - Ion Chromatography	22.4			mg/L	0.5	3	08/03/07 22:52	jag
Fluoride	M300.0 - Ion Chromatography	0.5		*	mg/L	0.1	0.5	08/03/07 22:52	jag
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2	0.82			mg/L	0.02	0.1	08/13/07 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	0.82		*	mg/L	0.02	0.1	08/01/07 18:08	pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction		U	*	mg/L	0.01	0.05	08/01/07 18:08	pjb
Residue, Filterable (TDS) @180C	160.1 / SM2540C	380			mg/L	10	20	08/07/07 9:18	aeh
Sulfate	300.0 - Ion Chromatography	112			mg/L	5	30	08/08/07 20:47	jag
TDS (calculated)	Calculation	334			mg/L	10	50	08/13/07 0:00	calc
TDS (ratio - measured/calculated)	Calculation	1.14			J			08/13/07 0:00	calc

Arizona license number: AZ0102

OJ03Z5

MO-2007-IC-U

Inorganic Analytical Results

Phelps Dodge Sierrita

ACZ Sample ID: L64202-02

07/31/07 15:20 Date Sampled:

> Date Received: 08/01/07

Sample Matrix: Ground Water

Wet Chemistry

Project ID:

Sample ID:

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	114		mg/L	5	30	08/08/07 21:42	jag

Arizona license number: AZ0102

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report Header Explanations

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest

Limit Upper limit for RPD, in %.

Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit, typically 5 times the MDL.

QC True Value of the Control Sample or the amount added to the Spike

Rec Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

QC Sample Types

AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calivation Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution

QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method or calibration procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method.

Spikes/Fortified Matrix Determines sample matrix interferences, if any.

Standard Verifies the validity of the calibration.

ACZ Qualifiers (Qual)

B Analyte concentration detected at a value between MDL and PQL.

H Analysis exceeded method hold time. pH is a field test with an immediate hold time.

U Analyte was analyzed for but not detected at the indicated MDL

Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (5) EPA SW-846. Test Methods for Evaluating Solid Waste, Third Edition with Update III, December 1996.
- (6) Standard Methods for the Examination of Water and Wastewater, 19th edition, 1995.

Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.

ACZ Project ID: L64202

Phelps Dodge Sierrita

Project ID: OJ03Z5

Alkalinity as Ca	03		SM2320E	3 - Titration									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG229683													
WG229683PBW1	PBW	08/06/07 11:12				U	mg/L		-20	20			
WG229683LCSW2	LCSW	08/06/07 11:23	WC070723-9	820		816.7	mg/L	99.6	90	110			
WG229683PBW2	PBW	08/06/07 14:13				U	mg/L		-20	20			
WG229683LCSW5	LCSW	08/06/07 14:26	WC070723-9	820		823.2	mg/L	100.4	90	110			
WG229683PBW3	PBW	08/06/07 17:41				U	mg/L		-20	20			
WG229683LCSW8	LCSW	08/06/07 17:54	WC070723-9	820		822.9	mg/L	100.4	90	110			
L64210-01DUP	DUP	08/06/07 20:48			99	99.1	mg/L				0.1	20	
WG229683PBW4	PBW	08/06/07 20:54				U	mg/L		-20	20			
WG229683LCSW11	LCSW	08/06/07 21:06	WC070723-9	820		824.7	mg/L	100.6	90	110			
WG229683LCSW14	LCSW	08/06/07 23:51	WC070723-9	820		825.4	mg/L	100.7	90	110			
Calcium, dissolv	ed		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG229899													
WG229899ICV	ICV	08/09/07 1:29	11070725-7	100		97.05	mg/L	97.1	95	105			
WG229899ICB	ICB	08/09/07 1:33				U	mg/L		-0.6	0.6			
WG229899LFB	LFB	08/09/07 1:50	11070806-9	67.97008		68.56	mg/L	100.9	85	115			
L64189-10AS	AS	08/09/07 2:57	11070806-9	67.97008	113	179.72	mg/L	98.2	85	115			
L64189-10ASD	ASD	08/09/07 3:01	11070806-9	67.97008	113	175.95	mg/L	92.6	85	115	2.12	20	

L64189-10ASD	ASD	08/09/07 3:01	11070806-9	67.97008	113	175.95	mg/L	92.6	85	115	2.12	20	
Chloride			M300.0 -	· Ion Chrom	atograph	у							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226250													
WG226250ICV	ICV	06/11/07 13:52	IC070606-1	20		20.34	mg/L	101.7	90	110			
WG226250ICB	ICB	06/11/07 14:10				U	mg/L		-1.5	1.5			
WG226250ICV1	ICV	06/12/07 14:59	IC070606-1	20		20.31	mg/L	101.6	90	110			
WG226250ICB1	ICB	06/12/07 15:17				U	mg/L		-1.5	1.5			
WG229613													
WG229613ICV	ICV	06/11/07 13:52	IC070710-1	20		20.34	mg/L	101.7	90	110			
WG229613ICB	ICB	06/11/07 14:10				U	mg/L		-1.5	1.5			
WG229613ICV1	ICV	08/03/07 14:25	IC070710-1	20		20.22	mg/L	101.1	90	110			
WG229613ICB1	ICB	08/03/07 14:44				U	mg/L		-1.5	1.5			
WG229613LFB	LFB	08/03/07 15:02	WI070727-1	30		31.38	mg/L	104.6	90	110			
L63999-07DUP	DUP	08/03/07 19:51			27.8	27.75	mg/L				0.2	20	
L64014-01AS	AS	08/03/07 20:28	WI070727-1	30	66	95.08	mg/L	96.9	90	110			
WG229613ICV1	ICV	08/08/07 17:28	IC070710-1	20		20.11	mg/L	100.6	90	110			
WG229613ICB1	ICB	08/08/07 17:46				U	mg/L		-1.5	1.5			
L64014-01AS	AS	08/08/07 19:35	WI070727-1	300	62	356.8	mg/L	98.3	90	110			

ACZ Project ID: L64202

Phelps Dodge Sierrita

Project ID: OJ03Z5

Fluoride			M300.0 -	Ion Chrom	atograph	y							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226250													
WG226250ICV	ICV	06/11/07 13:52	IC070606-1	3.984		4.13	mg/L	103.7	90	110			
WG226250ICB	ICB	06/11/07 14:10				U	mg/L		-0.3	0.3			
WG226250ICV1	ICV	06/12/07 14:59	IC070606-1	3.984		4.11	mg/L	103.2	90	110			
WG226250ICB1	ICB	06/12/07 15:17				U	mg/L		-0.3	0.3			
WG229613													
WG229613ICV	ICV	06/11/07 13:52	IC070710-1	3.984		4.13	mg/L	103.7	90	110			
WG229613ICB	ICB	06/11/07 14:10				U	mg/L		-0.3	0.3			
WG229613ICV1	ICV	08/03/07 14:25	IC070710-1	3.984		4.14	mg/L	103.9	90	110			
WG229613ICB1	ICB	08/03/07 14:44				U	mg/L		-0.3	0.3			
WG229613LFB	LFB	08/03/07 15:02	WI070727-1	1.5		1.61	mg/L	107.3	90	110			
L63999-07DUP	DUP	08/03/07 19:51			U	U	mg/L				0	20	R/
L64014-01AS	AS	08/03/07 20:28	WI070727-1	1.5	.2	1.92	mg/L	114.7	90	110			M
WG229613ICV1	ICV	08/08/07 17:28	IC070710-1	3.984		4.09	mg/L	102.7	90	110			
WG229613ICB1	ICB	08/08/07 17:46				U	mg/L		-0.3	0.3			
Magnesium, dis	ssolved		M200.7 I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG229899													
WG229899ICV	ICV	08/09/07 1:29	11070725-7	100		98.49	mg/L	98.5	95	105			
WG229899ICB	ICB	08/09/07 1:33				U	mg/L		-0.6	0.6			
WG229899LFB	LFB	08/09/07 1:50	11070806-9	54.96908		55.4	mg/L	100.8	85	115			
L64189-10AS	AS	08/09/07 2:57	11070806-9	54.96908	22.1	78.74	mg/L	103	85	115			
L64189-10ASD	ASD	08/09/07 3:01	11070806-9	54.96908	22.1	77.24	mg/L	100.3	85	115	1.92	20	
Nitrate/Nitrite a	s N, diss	solved	M353.2 -	Automated	d Cadmiu	n Reduc	ction						
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG229490													
WG229490ICV	ICV	08/01/07 17:47	WI070609-1	2.416		2.47	mg/L	102.2	90	110			
WG229490ICB	ICB	08/01/07 17:48	WIO70003-1	2.410		U.47	mg/L	102.2	-0.06	0.06			
WG229490LFB	LFB	08/01/07 17:53	WI070307-9	2		2.168	-	108.4	90	110			
L64185-01AS	AS	08/01/07 17:56	WI070307-9 WI070307-9	2	U	2.155	mg/L mg/L	100.4	90	110			
L64185-02DUP	DUP	08/01/07 17:58	VVIO70307-9	2	U	.022	mg/L	107.0	90	110	200	20	R/
Nitrite as N, dis	ealyad		M252.2	Automated	1 Cadmiu	m Podu	otion						
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
	Турс	Allalyzeu	I CIV/SCIV	QC.	Jampie	i odila	Office	1160	LOWE	Орры	KI D		Quai
WG229490													
WG229490ICV	ICV	08/01/07 17:47	WI070609-1	.609		.647	mg/L	106.2	90	110			
WG229490ICB	ICB	08/01/07 17:48				U	mg/L		-0.03	0.03			
WG229490LFB	LFB	08/01/07 17:53	WI070307-9	1		1.078	mg/L	107.8	90	110			
L64185-01AS	AS	08/01/07 17:56	WI070307-9	1	.03	1.102	mg/L	107.2	90	110			
L64185-02DUP	DUP	08/01/07 17:58			.09	.091	mg/L				1.1	20	R/

ACZ Project ID: L64202

Phelps Dodge Sierrita

Project ID: OJ03Z5

Potassium, diss	solved		M200.7	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG229899													
WG229899ICV	ICV	08/09/07 1:29	11070725-7	20		20.13	mg/L	100.7	95	105			
WG229899ICB	ICB	08/09/07 1:33				U	mg/L		-0.9	0.9			
WG229899LFB	LFB	08/09/07 1:50	11070806-9	99.76186		102.4	mg/L	102.6	85	115			
L64189-10AS	AS	08/09/07 2:57	11070806-9	99.76186	16.8	127.68	mg/L	111.1	85	115			
L64189-10ASD	ASD	08/09/07 3:01	11070806-9	99.76186	16.8	124.13	mg/L	107.6	85	115	2.82	20	
Residue, Filtera	ble (TDS	S) @180C	160.1 / 8	SM2540C									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qua
WG229752													
WG229752PBW	PBW	08/07/07 9:00				U	mg/L		-20	20			
WG229752LCSW	LCSW	08/07/07 9:01	PCN27688	260		306	mg/L	117.7	80	120			
L64217-04DUP	DUP	08/07/07 9:29	. 0.12.000	200	6820	6780	mg/L		00	0	0.6	20	
Sodium, dissol	ved.		M200.7	ICP									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qua
	- 7	,											
WG229899													
WG229899ICV	ICV	08/09/07 1:29	11070725-7	100		100.25	mg/L	100.3	95	105			
WG229899ICB	ICB	08/09/07 1:33				U	mg/L		-0.9	0.9			
WG229899LFB	LFB	08/09/07 1:50	11070806-9	98.21624		100.45	mg/L	102.3	85	115			
L64189-10AS	AS	08/09/07 2:57	11070806-9	98.21624	116	216.52	mg/L	102.3	85	115			
L64189-10ASD	ASD	08/09/07 3:01	11070806-9	98.21624	116	212.59	mg/L	98.3	85	115	1.83	20	
Sulfate			300.0 - I	on Chromat	tography								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qua
WG226250													
NG226250ICV	ICV	06/11/07 13:52	IC070606-1	50.15		51.51	mg/L	102.7	90	110			
WG226250ICB	ICB	06/11/07 14:10				U	mg/L		-1.5	1.5			
WG226250ICV1	ICV	06/12/07 14:59	IC070606-1	50.15		51.17	mg/L	102	90	110			
WG226250ICB1	ICB	06/12/07 15:17				U	mg/L		-1.5	1.5			
WG229613													
WG229613ICV	ICV	06/11/07 13:52	IC070710-1	50.15		51.51	mg/L	102.7	90	110			
WG229613ICB	ICB	06/11/07 14:10				U	mg/L		-1.5	1.5			
WG229613ICV1	ICV	08/03/07 14:25	IC070710-1	50.15		51.03	mg/L	101.8	90	110			
WG229613ICB1	ICB	08/03/07 14:44				U	mg/L		-1.5	1.5			
WG229613LFB	LFB	08/03/07 15:02	WI070727-1	30		32.91	mg/L	109.7	90	110			
L63999-07DUP	DUP	08/03/07 19:51			41.5	41.5	mg/L				0	20	
WG229613ICV1	ICV	08/08/07 17:28	IC070710-1	50.15		50.57	mg/L	100.8	90	110			
WG229613ICB1	ICB	08/08/07 17:46				U	mg/L		-1.5	1.5			
L64014-01AS	AS	08/08/07 19:35	WI070727-1	300	68	357.6	mg/L	96.5	90	110			

Inorganic Extended Qualifier Report

Phelps Dodge Sierrita

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L64202-01	WG229683	Bicarbonate as CaCO3	SM2320B - Titration	QA	Sample container with preservation type specified by the method was not available for analysis. Alternate sample container was used.
		Carbonate as CaCO3	SM2320B - Titration	QA	Sample container with preservation type specified by the method was not available for analysis. Alternate sample container was used.
	WG229613	Fluoride	M300.0 - Ion Chromatography	M1	Matrix spike recovery was high, the method control sample recovery was acceptable.
			M300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG229683	Hydroxide as CaCO3	SM2320B - Titration	QA	Sample container with preservation type specified by the method was not available for analysis. Alternate sample container was used.
	WG229490	Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
		Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG229683	Total Alkalinity	SM2320B - Titration	QA	Sample container with preservation type specified by the method was not available for analysis. Alternate sample container was used.

Certification Qualifiers

Phelps Dodge Sierrita ACZ Project ID: L64202

No certification qualifiers associated with this analysis

Sample Receipt

Phelps Dodge Sierrita

OJ03Z5

ACZ Project ID:

L64202

Date Received:

8/1/2007

Received By:

Date Printed: 8/1/2007

Receipt Verification

- 1) Does this project require special handling procedures such as CLP protocol?
- 2) Are the custody seals on the cooler intact?
- 3) Are the custody seals on the sample containers intact?
- 4) Is there a Chain of Custody or other directive shipping papers present?
- 5) Is the Chain of Custody complete?
- 6) Is the Chain of Custody in agreement with the samples received?
- 7) Is there enough sample for all requested analyses?
- 8) Are all samples within holding times for requested analyses?
- 9) Were all sample containers received intact?
- 10) Are the temperature blanks present?
- 11) Are the trip blanks (VOA and/or Cyanide) present?
- 12) Are samples requiring no headspace, headspace free?
- 13) Do the samples that require a Foreign Soils Permit have one?

YES	NO	NA
		Х
		Х
		Χ
Х		
Х		
Χ		
Χ		
Х		
Х		
		Х
		Χ
_		Χ
		Х
•		•

Exceptions: If you answered no to any of the above questions, please describe

N/A

Contact (For any discrepancies, the client must be contacted)

N/A

Shipping Containers

Cooler Id	Temp (°C)	Rad (µR/hr)
NA4088	14.8	14

Client must contact ACZ Project Manager if analysis should not proceed for samples received outside of thermal preservation acceptance criteria.

Notes

Sample Receipt

Phelps Dodge Sierrita

OJ03Z5

ACZ Project ID: Date Received: L64202 8/1/2007

Received By:

Sample Container Preservation

SAMPLE	CLIENT ID	R < 2	G < 2	BK < 2	Y< 2	YG< 2	B< 2	0 < 2	T >12	N/A	RAD	ID
L64202-01	MO-2007-IC-F		Υ									
L64202-02	MO-2007-IC-U									Χ		

Sample Container Preservation Legend

Abbreviation	Description	Container Type	Preservative/Limits
R	Raw/Nitric	RED	pH must be < 2
В	Filtered/Sulfuric	BLUE	pH must be < 2
BK	Filtered/Nitric	BLACK	pH must be < 2
G	Filtered/Nitric	GREEN	pH must be < 2
0	Raw/Sulfuric	ORANGE	pH must be < 2
Р	Raw/NaOH	PURPLE	pH must be > 12 *
Т	Raw/NaOH Zinc Acetate	TAN	pH must be > 12
Υ	Raw/Sulfuric	YELLOW	pH must be < 2
YG	Raw/Sulfuric	YELLOW GLASS	pH must be < 2
N/A	No preservative needed	Not applicable	
RAD	Gamma/Beta dose rate	Not applicable	must be < 250 µR/hr

^{*} pH check performed by analyst prior to sample preparation

Sample IDs Reviewed By:

ACZ 2773 Downhill Drive St		atories		5493	1	9	\bigcirc		CHA	AIN o	of CL	JSTO	DY
Report to:	ourcias o Geo (Jim No.	MS 1C		Addre Telepl		01WW Tucs 1520-2	12/ AC	2 85	5705	101		
Copy of Report to: Name: Ind Hall Company: DSE	18olly 1	domis		-			talle 520·U		_	ally-l	2maC	<u>EFNI</u>	<u>com</u>
Name:	ition, shall A contact clien	time (HT), or CZ proceed w t for further i	vith requested nstruction. If	HT rema	Γanaly YES" ι is exp	none: comple ses? nor "NO	o" nd data y	√048 ·	ıualifie	<u>)</u> , ,	YES NO	Kd uzz	
Quote #: Siemon Project/PO #: OT Reporting state for postuper's Name: Sampler's Name: SAMPLE IDENTIFE	ATION ON STATE OMPHIANCE to OMPHIANCE ON O	esting: A2	Vo ≅:TIME	Matrix	# of Containers	G. Mg Nr K	ACK, TDS, SQL CL., F., NOS, ND,	SOUT.	(attach	list or t	Se quo	Temp gwb	eer)
MO-2007-10 MO-2007-10	ピード ピーリ	7/31/200		GN GW	2	X	X	Х.		7.35 7.35	523 523	27.9 27.9	
Matrix SW (Surfac	e Water) · GW	(Ground Water)	· WW (Waste W	ater) · DW	(Drinking	y Water)	· SL (Slud	ge) · SO	(Soil) C	L (Oil) · C	Other (Sp	ecify)	
REMARKS	= Filte = Unf	and iltered	J										
RELINQU	Please r		DATE:T		A C	7	RECEIV) /ED B,		COC.	(ج کی ا	ATE:TII	NE 10650

Analytical Report

August 20, 2007

Report to: Bill to:

Ned Hall Accounts Payable
Phelps Dodge Sierrita Phelps Dodge Sierrita

P.O. Box 527 6200 W. Duval Mine Rd. P.O. Box 2671

Green Valley, AZ 85622-0527 Phoenix, AZ 85002-2671

cc: Rick Zimmerman, Bill Dorris, Jim Norris, Dan Simpson

Project ID: OJ03Z5 ACZ Project ID: L64254

Ned Hall:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on August 03, 2007. This project has been assigned to ACZ's project number, L64254. Please reference this number in all future inquiries.

All analyses were performed according to ACZ's Quality Assurance Plan, version 12.0. The enclosed results relate only to the samples received under L64254. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after September 20, 2007. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years.

If you have any questions or other needs, please contact your Project Manager.

Phelps Dodge Sierrita

Project ID: OJ03Z5

Sample ID: MO-2007-1B-FGW ACZ Sample ID: L64254-01

Date Sampled: 08/02/07 14:45

Date Received: 08/03/07

Sample Matrix: Ground Water

Field Data									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Conductivity (Field)	Field Measurement	321			mS/cm			08/02/07 14:45	ma
pH (Field)	Field Measurement	7.4			units			08/02/07 14:45	ma
Temperature (Field)	Field Measurement	30.7			С			08/02/07 14:45	ma
Metals Analysis									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Calcium, dissolved	M200.7 ICP	32.4			mg/L	0.2	1	08/16/07 21:26	djt
Magnesium, dissolved	M200.7 ICP	4.3			mg/L	0.2	1	08/16/07 21:26	djt
Potassium, dissolved	M200.7 ICP	3.2			mg/L	0.3	2	08/16/07 21:26	djt
Sodium, dissolved	M200.7 ICP	40.5			mg/L	0.3	2	08/16/07 21:26	djt
Wet Chemistry									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration								
Bicarbonate as CaCO3		140			mg/L	2	20	08/08/07 0:00	jlf
Carbonate as CaCO3			U		mg/L	2	20	08/08/07 0:00	jlf
Hydroxide as CaCO3			U		mg/L	2	20	08/08/07 0:00	jlf
Total Alkalinity		140		*	mg/L	2	20	08/08/07 0:00	jlf
Cation-Anion Balance	Calculation								
Cation-Anion Balance		2.7			%			08/17/07 16:14	calc
Sum of Anions		3.6			meq/L	0.1	0.5	08/17/07 16:14	calc
Sum of Cations		3.8			meq/L	0.1	0.5	08/17/07 16:14	calc
Chloride	M300.0 - Ion Chromatography	12.4		*	mg/L	0.5	3	08/10/07 15:31	jag
Fluoride	M300.0 - Ion Chromatography	0.6		*	mg/L	0.1	0.5	08/10/07 15:31	jag
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2	0.71			mg/L	0.02	0.1	08/17/07 16:14	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	0.71	Н	*	mg/L	0.02	0.1	08/07/07 18:36	pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction		UH	*	mg/L	0.01	0.05	08/07/07 18:36	pjb
Residue, Filterable (TDS) @180C	160.1 / SM2540C	220			mg/L	10	20	08/09/07 13:33	aeh
Sulfate	300.0 - Ion Chromatography	18.9			mg/L	0.5	3	08/10/07 15:31	jag
TDS (calculated)	Calculation	199			mg/L	10	50	08/17/07 16:14	calc
TDS (ratio - measured/calculated)	Calculation	1.11						08/17/07 16:14	calc

Arizona license number: AZ0102

Inorganic Analytical Results

Phelps Dodge Sierrita

ACZ Sample ID: L64254-02 Project ID: OJ03Z5

Date Sampled: 08/02/07 14:45 Sample ID: MO-2007-1B-UGW Date Received: 08/03/07

Sample Matrix: Ground Water

Field Data

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst	
Conductivity (Field)	Field Measurement	321		mS/cm			08/02/07 14:45	ma	
pH (Field)	Field Measurement	7.4		units			08/02/07 14:45	ma	
Temperature (Field)	Field Measurement	30.7		С			08/02/07 14:45	ma	
Wet Chemistry									

Sulfate 300.0 - Ion Chromatography 18.9 0.5 mg/L 3 08/10/07 15:49 jag

Arizona license number: AZ0102

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report Header Explanations

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest

Limit Upper limit for RPD, in %.

Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit, typically 5 times the MDL.

QC True Value of the Control Sample or the amount added to the Spike

Rec Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

QC Sample Types

AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calivation Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution

QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method or calibration procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method.

Spikes/Fortified Matrix Determines sample matrix interferences, if any.

Standard Verifies the validity of the calibration.

ACZ Qualifiers (Qual)

B Analyte concentration detected at a value between MDL and PQL.

H Analysis exceeded method hold time. pH is a field test with an immediate hold time.

U Analyte was analyzed for but not detected at the indicated MDL

Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (5) EPA SW-846. Test Methods for Evaluating Solid Waste, Third Edition with Update III, December 1996.
- (6) Standard Methods for the Examination of Water and Wastewater, 19th edition, 1995.

Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.

(800) 334-5493

Phelps Dodge Sierrita

Project ID: OJ03Z5

Alkalinity as CaC	О3		SM2320B	- Titration									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG229895													
WG229895PBW1	PBW	08/08/07 17:01				U	mg/L		-20	20			
WG229895LCSW2	LCSW	08/08/07 17:13	WC070723-9	820		800.6	mg/L	97.6	90	110			
WG229895PBW2	PBW	08/08/07 20:01				U	mg/L		-20	20			
WG229895LCSW5	LCSW	08/08/07 20:13	WC070723-9	820		800	mg/L	97.6	90	110			
L64255-02DUP	DUP	08/08/07 22:57			318	314.4	mg/L				1.1	20	
WG229895PBW3	PBW	08/08/07 23:20				U	mg/L		-20	20			
NG229895LCSW8	LCSW	08/08/07 23:30	WC070723-9	820		801.1	mg/L	97.7	90	110			
NG229895PBW4	PBW	08/09/07 2:17				U	mg/L		-20	20			
WG229895LCSW11	LCSW	08/09/07 2:29	WC070723-9	820		804.1	mg/L	98.1	90	110			
WG229895LCSW14	LCSW	08/09/07 5:38	WC070723-9	820		805	mg/L	98.2	90	110			
Calcium, dissolve	ed		M200.7 IC	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
NG230464													
NG230464ICV	ICV	08/16/07 20:19	11070815-5	100		96.81	mg/L	96.8	95	105			
WG230464ICB	ICB	08/16/07 20:24				U	mg/L		-0.6	0.6			
WG230464LFB	LFB	08/16/07 20:40	11070814-4	67.97008		69.34	mg/L	102	85	115			
L64131-03AS	AS	08/16/07 20:48	11070814-4	67.97008	36.6	102.42	mg/L	96.8	85	115			
L64131-03ASD	ASD	08/16/07 20:52	11070814-4	67.97008	36.6	103.76	mg/L	98.8	85	115	1.3	20	
Chloride			M300.0 -	Ion Chrom	atography	/							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226250													
NG226250ICV	ICV	06/11/07 13:52	IC070606-1	20		20.34	mg/L	101.7	90	110			
WG226250ICB	ICB	06/11/07 14:10				U	mg/L		-1.5	1.5			
WG226250ICV1	ICV	06/12/07 14:59	IC070606-1	20		20.31	mg/L	101.6	90	110			
WG226250ICB1	ICB	06/12/07 15:17				U	mg/L		-1.5	1.5			
WG230073													
WG230073ICV	ICV	06/11/07 13:52	IC070710-1	20		20.34	mg/L	101.7	90	110			
NG230073ICB	ICB	06/11/07 14:10				U	mg/L		-1.5	1.5			
WG230073ICV1	ICV	08/10/07 14:37	IC070710-1	20		20.11	mg/L	100.6	90	110			
NG230073ICB1	ICB	08/10/07 14:55				U	mg/L		-1.5	1.5			
WG230073LFB	LFB	08/10/07 15:13	WI070727-1	30		29.43	mg/L	98.1	90	110			
_64277-01DUP	DUP	08/10/07 16:26			1	1.04	mg/L				3.9	20	
_64277-02AS	AS	08/10/07 17:02	WI070727-1	30	1	30.81	mg/L	99.4	90	110			

20

0

RA

ACZ Project ID: L64254

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Phelps Dodge Sierrita

Project ID: OJ03Z5

Fluoride M300.0 - Ion Chromatography ACZ ID Туре Analyzed PCN/SCN Sample Found Units WG226250 WG226250ICV ICV 06/11/07 13:52 IC070606-1 3.984 4 13 mg/L 103.7 90 110 WG226250ICB ICB 06/11/07 14:10 U mg/L -0.3 0.3 WG226250ICV1 06/12/07 14:59 4.11 **ICV** IC070606-1 3.984 mg/L 103.2 90 110 ICB WG226250ICB1 06/12/07 15:17 U mg/L -0.3 0.3 WG230073 WG230073ICV ICV 06/11/07 13:52 IC070710-1 3.984 4.13 mg/L 103.7 90 110 WG230073ICB **ICB** 06/11/07 14:10 U mg/L -0.30.3 WG230073ICV1 ICV 08/10/07 14:37 IC070710-1 3 984 4 11 mg/L 103.2 90 110 WG230073ICB1 ICB 08/10/07 14:55 .15 mg/L -0.3 0.3 WG230073LFB LFB 08/10/07 15:13 WI070727-1 1.5 1.5 mg/L 100 90 110 L64277-01DUP DUP 08/10/07 16:26 9.5 20 RA .1 .11 mg/L L64277-02AS AS 08/10/07 17:02 WI070727-1 1.5 U 1.54 102.7 90 110 mg/L M200.7 ICP Magnesium, dissolved ACZ ID PCN/SCN QC Found Units Rec Upper Туре Analyzed Sample Lower WG230464 WG230464ICV ICV 100 98.8 98.8 105 08/16/07 20:19 11070815-5 mg/L 95 WG230464ICB ICB 08/16/07 20:24 U -0.6 0.6 mg/L WG230464LFB LFB 08/16/07 20:40 11070814-4 54.96908 56.95 mg/L 103.6 85 115 L64131-03AS AS 08/16/07 20:48 11070814-4 54.96908 38.9 92.36 mg/L 97.3 85 115 L64131-03ASD ASD 08/16/07 20:52 11070814-4 54.96908 38.9 93.44 mg/L 99.2 85 115 1.16 20 Nitrate/Nitrite as N, dissolved M353.2 - Automated Cadmium Reduction ACZ ID Lower Analyzed PCN/SCN QC Found Units Rec Upper RPD Limit Qual WG229813 WG229813ICV ICV 08/07/07 18:09 WI070609-1 2.416 2.4 mg/L 99.3 90 110 WG229813ICB ICB 08/07/07 18:11 U mg/L -0.06 0.06 WG229818 WG229818ICV ICV 08/07/07 18:32 WI070609-1 2.416 2.283 90 110 mg/L 94.5 WG229818ICB ICB 08/07/07 18:33 U mg/L -0.06 0.06 WG229818LFB WI070307-9 2 1.965 I FB 08/07/07 18:34 mg/L 98.3 90 110 L64254-01AS WI070307-9 2 .71 90 AS 08/07/07 18:37 2 013 65.2 110 M2 mg/L L64274-01DUP DUP 08/07/07 18:39 .04 .041 2.5 20 RA mg/L Nitrite as N, dissolved M353.2 - Automated Cadmium Reduction ACZ ID Found Units Туре Analyzed PCN/SCN Sample Rec Lower Upper RPD Limit WG229813 WG229813ICV ICV 08/07/07 18:09 102.5 WI070609-1 .609 .624 mg/L 90 110 WG229813ICB ICB 08/07/07 18:11 U -0.03 0.03 mg/L WG229818 WG229818ICV ICV 08/07/07 18:32 WI070609-1 .609 .631 mg/L 103.6 90 110 -0.03 WG229818ICB **ICB** 08/07/07 18:33 U 0.03 mg/L WG229818LFB LFB 08/07/07 18:34 WI070307-9 1 1.02 mg/L 102 90 110 L64254-01AS AS 08/07/07 18:37 WI070307-9 1 U 1.05 mg/L 105 90 110

U

U

mg/L

DUP

08/07/07 18:39

L64274-01DUP

(800) 334-5493

Phelps Dodge Sierrita

Project ID: OJ03Z5

Potassium, diss	olved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG230464													
WG230464ICV	ICV	08/16/07 20:19	11070815-5	20		20.67	mg/L	103.4	95	105			
WG230464ICB	ICB	08/16/07 20:24				U	mg/L		-0.9	0.9			
WG230464LFB	LFB	08/16/07 20:40	11070814-4	99.76186		107.73	mg/L	108	85	115			
L64131-03AS	AS	08/16/07 20:48	11070814-4	99.76186	4.4	113.89	mg/L	109.8	85	115			
L64131-03ASD	ASD	08/16/07 20:52	11070814-4	99.76186	4.4	115.5	mg/L	111.4	85	115	1.4	20	
Residue, Filteral	ble (TDS) @180C	160.1 / S	M2540C									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG229962													
WG229962PBW	PBW	08/09/07 13:20				U	mg/L		-20	20			
WG229962LCSW	LCSW	08/09/07 13:21	PCN27688	260		268	mg/L	103.1	80	120			
L64255-02DUP	DUP	08/09/07 13:38			470	474	mg/L				8.0	20	
Sodium, dissolv	red		M200.7 I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG230464													
WG230464ICV	ICV	08/16/07 20:19	11070815-5	100		103.53	mg/L	103.5	95	105			
WG230464ICB	ICB	08/16/07 20:24				U	mg/L		-0.9	0.9			
WG230464LFB	LFB	08/16/07 20:40	11070814-4	98.21624		106.12	mg/L	108	85	115			
L64131-03AS	AS	08/16/07 20:48	11070814-4	98.21624	276	361.73	mg/L	87.3	85	115			
L64131-03ASD	ASD	08/16/07 20:52	11070814-4	98.21624	276	364.24	mg/L	89.8	85	115	0.69	20	
Sulfate			300.0 - Id	on Chromat	ography								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226250													
WG226250ICV	ICV	06/11/07 13:52	IC070606-1	50.15		51.51	mg/L	102.7	90	110			
WG226250ICB	ICB	06/11/07 14:10		230		U	mg/L		-1.5	1.5			
WG226250ICV1	ICV	06/12/07 14:59	IC070606-1	50.15		51.17	mg/L	102	90	110			
WG226250ICB1	ICB	06/12/07 15:17				U	mg/L		-1.5	1.5			
WG230073							-						
WG230073ICV	ICV	06/11/07 13:52	IC070710-1	50.15		51.51	mg/L	102.7	90	110			
WG230073ICB	ICB	06/11/07 14:10				U	mg/L		-1.5	1.5			
WG230073ICV1	ICV	08/10/07 14:37	IC070710-1	50.15		50.61	mg/L	100.9	90	110			
WG230073ICB1	ICB	08/10/07 14:55				U	mg/L		-1.5	1.5			
	LFB	08/10/07 15:13	WI070727-1	30		30.61	mg/L	102	90	110			
WG230073LFB	_						g. =						
WG230073LFB L64277-01DUP	DUP	08/10/07 16:26			6.6	6.61	mg/L				0.2	20	

Inorganic Extended Qualifier Report

ACZ Project ID: L64254

Phelps Dodge Sierrita

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L64254-01	WG230073	Chloride	M300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
		Fluoride	M300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG229818	Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	H1	Sample analysis performed past holding time.
			M353.2 - Automated Cadmium Reduction	M2	Matrix spike recovery was low, the method control sample recovery was acceptable.
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
		Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	H1	Sample analysis performed past holding time.
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG229895	Total Alkalinity	SM2320B - Titration	QA	Sample container with preservation type specified by the method was not available for analysis. Alternate sample container was used.

Certification Qualifiers

Phelps Dodge Sierrita ACZ Project ID: L64254

No certification qualifiers associated with this analysis

Sample Receipt

Phelps Dodge Sierrita

OJ03Z5

ACZ Project ID:

L64254

Date Received:

8/3/2007

Received By:

Date Printed: 8/3/2007

Receipt Verification

- 1) Does this project require special handling procedures such as CLP protocol?
- 2) Are the custody seals on the cooler intact?
- 3) Are the custody seals on the sample containers intact?
- 4) Is there a Chain of Custody or other directive shipping papers present?
- 5) Is the Chain of Custody complete?
- 6) Is the Chain of Custody in agreement with the samples received?
- 7) Is there enough sample for all requested analyses?
- 8) Are all samples within holding times for requested analyses?
- 9) Were all sample containers received intact?
- 10) Are the temperature blanks present?
- 11) Are the trip blanks (VOA and/or Cyanide) present?
- 12) Are samples requiring no headspace, headspace free?
- 13) Do the samples that require a Foreign Soils Permit have one?

YES	NO	NA
		Х
		Х
		Х
Х		
Х		
Х		
Х		
Х		
Х		
		Х
		Х
		Х
		Х
		Χ

Exceptions: If you answered no to any of the above questions, please describe

N/A

Contact (For any discrepancies, the client must be contacted)

N/A

Shipping Containers

Cooler Id	Temp (°C)	Rad (µR/hr)
NA4016	3.7	15

Client must contact ACZ Project Manager if analysis should not proceed for samples received outside of thermal preservation acceptance criteria.

Notes

Sample Receipt

Phelps Dodge Sierrita

OJ03Z5

ACZ Project ID: Date Received: L64254 8/3/2007

Received By:

Sample Container Preservation

SAMPLE	CLIENT ID	R < 2	G < 2	BK < 2	Y< 2	YG< 2	B< 2	0 < 2	T >12	N/A	RAD	ID
L64254-01	MO-2007-1B-FGW		Υ									
L64254-02	MO-2007-1B-UGW									Χ		

Sample Container Preservation Legend

Abbreviation	Description	Container Type	Preservative/Limits
R	Raw/Nitric	RED	pH must be < 2
В	Filtered/Sulfuric	BLUE	pH must be < 2
BK	Filtered/Nitric	BLACK	pH must be < 2
G	Filtered/Nitric	GREEN	pH must be < 2
0	Raw/Sulfuric	ORANGE	pH must be < 2
Р	Raw/NaOH	PURPLE	pH must be > 12 *
T	Raw/NaOH Zinc Acetate	TAN	pH must be > 12
Υ	Raw/Sulfuric	YELLOW	pH must be < 2
YG	Raw/Sulfuric	YELLOW GLASS	pH must be < 2
N/A	No preservative needed	Not applicable	
RAD	Gamma/Beta dose rate	Not applicable	must be $< 250 \mu R/hr$

^{*} pH check performed by analyst prior to sample preparation

	ratories, Inc.		104	10	Kr	\downarrow	CHA	AIN o	of Cl	JSTO	DDY
2773 Downhill Drive Steamboat Spri	ings, CO 80487 (800) 334-5	5493	W_	ال							
Report to:											
Name: Rick Zimmern	19n		Addre	ss: <u>5</u>	JW.	We	y mo	ce k			
Company: Hydro Geo Cl	nem Inc.			Ιυ	ccsen	1	<u>Z</u>	852	05		
E-mail: rickz@hacine.]	Telep	hone: 、	<u>520</u>)29	13-1	500	<u> 1 V</u>	3/	
Copy of Report to:											
	Doris Vin Noiris		E-mai	i: .).`.	nne	1906	1 (0	/bi	1/4-1	vr.562	Cmi.coi
2 2 -/ 1 11	76.	1	Telep	hone: <	520)29	3-15	OOx 11	5	20)64	18-80	7 7
	· · · · · · · · · · · · · · · · · · ·				7	3 10		-	v-/v	0 -1 -7	-
Invoice to:			4.1.1	1	700	1	n	./ .	W r	\overline{D}	
Name: Ned Hall		-	Addre	iss: (7	<u> 200</u>	$\frac{u}{2}$	Va	<u>/a/ </u>	11/10		72.2
Company: PDSL		4	<u> </u>		<u>x 52</u>				y # C	_ &)€	560
E-mail: Ned-hall@FMI.			•		520	64	8-8	60 /		177	
If sample(s) received past holding	time (HT), or if insufficient	t HT rema	lins to Tanah	comple	te				YES	X	
analysis before expiration, shall A If "NO" then ACZ will contact clier	.cz proceed with requested at for further instruction. If	neither '	'YE\$"	nor "NC)"						
is indicated, ACZ will proceed with						vill be o	qualified	l.			
PROJECT INFORMATION					S REQU				use que	ote num	ber)
Quote #: Sierrita Sho	<u></u>				2,4						İ
Project/PO#: OTO3Z	5	1	ers		1X 3						
Reporting state for compliance to	esting: A	1	# of Containers	N.	N 2						
100 12	.n	1	Š	1/2	17,3	١ ,					
	Hineson	1	<u>م</u> (3	1/1	<u> </u>					
Are any samples NRC licensable SAMPLE IDENTIFICATION	DATE:TIME	Matrix	*	8	11/2	\sim		PΗ	FC	Tem	,
	8/2/07:1445	64	7	1	\ <u>\</u>		,	7.41	321	30.7	
MO-2007-115-FGW	 	64	<u> </u>	$+ \sim$		V		7041 741	321	30.7	
mo-2007-113-46W	8/2/07: 14:45	100	<u> </u>	+	-			177]	111	20.7	
		<u> </u>		-							
				<u> </u>	ļ						
				<u> </u>	ļ						
				<u> </u>	-						
						_					
Matrix SW (Surface Water) - GW	(Ground Water) · WW (Waste Waste Was	ater) · DW	(Drinkin	g Water)	· SL (Sludç	je) · SO	(Soil) · Ol	_ (Oil) - (Other (Sp	ecify)	
REMARKS											
Fall- Eilteren	1 Groundwater	Sen	np/e	,			·				
UGW=UnFilt	red Groundway	H1 50	em	ple							
	f (ACT ()	. aliki !		l on #5 -		, olds -	of thic C	·OC			
	efer to ACZ's terms & con		ocated		RECEIV			,	D	ATE:TII	ME
RELINQUISHED BY	Jan Ara a r	אוויה. _ היי				// \					Q/ L
1/1/W/ 1/1/V	1500 -	4210)	1500)	/	ك			8-3	~ t	7:18
			_				<u></u>				

August 24, 2007

Report to:

Ned Hall

Phelps Dodge Sierrita

P.O. Box 527 6200 W. Duval Mine Rd.

Green Valley, AZ 85622-0527

cc: Dan Simpson, Bill Dorris, Jim Norris

Project ID: OJ03Z5

ACZ Project ID: L64349

Ned Hall:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on August 09, 2007. This project has been assigned to ACZ's project number, L64349. Please reference this number in all future inquiries.

Bill to:

Accounts Payable
Phelps Dodge Sierrita

Phoenix, AZ 85002-2671

P.O. Box 2671

All analyses were performed according to ACZ's Quality Assurance Plan, version 12.0. The enclosed results relate only to the samples received under L64349. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after September 24, 2007. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years.

If you have any questions or other needs, please contact your Project Manager.

Phelps Dodge Sierrita

Project ID: OJ03Z5

Sample ID: FGW-MO-2007-1A

ACZ Sample ID: L64349-01

Date Sampled: 08/08/07 13:00

Date Received: 08/09/07

Sample Matrix: Ground Water

Field Data									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Conductivity (Field)	Field Measurement	370			mS/cm			08/08/07 13:00	ma
pH (Field)	Field Measurement	7.2			units			08/08/07 13:00	ma
Temperature (Field)	Field Measurement	29.0			С			08/08/07 13:00	ma
Metals Analysis									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Calcium, dissolved	M200.7 ICP	40.4			mg/L	0.2	1	08/22/07 0:55	wfg
Magnesium, dissolved	M200.7 ICP	6.4			mg/L	0.2	1	08/22/07 0:55	wfg
Potassium, dissolved	M200.7 ICP	3.0			mg/L	0.3	2	08/22/07 0:55	wfg
Sodium, dissolved	M200.7 ICP	30.4			mg/L	0.3	2	08/22/07 0:55	wfg
Wet Chemistry									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration								
Bicarbonate as CaCO3		164		*	mg/L	2	20	08/14/07 0:00	lcp/jlf
Carbonate as CaCO3			U	*	mg/L	2	20	08/14/07 0:00	lcp/jlf
Hydroxide as CaCO3			U	*	mg/L	2	20	08/14/07 0:00	lcp/jlf
Total Alkalinity		164		*	mg/L	2	20	08/14/07 0:00	lcp/jlf
Cation-Anion Balance	Calculation								
Cation-Anion Balance		0.0			%			08/23/07 9:53	calc
Sum of Anions		3.9			meq/L	0.1	0.5	08/23/07 9:53	calc
Sum of Cations		3.9			meq/L	0.1	0.5	08/23/07 9:53	calc
Chloride	M300.0 - Ion Chromatography	8.4		*	mg/L	0.5	3	08/16/07 6:23	jag
Fluoride	M300.0 - Ion Chromatography	0.4	В	*	mg/L	0.1	0.5	08/16/07 6:23	jag
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2	0.54			mg/L	0.02	0.1	08/23/07 9:53	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	0.54		*	mg/L	0.02	0.1	08/09/07 19:46	pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction		U	*	mg/L	0.01	0.05	08/09/07 19:46	pjb
Residue, Filterable (TDS) @180C	160.1 / SM2540C	250			mg/L	10	20	08/14/07 14:57	ear
Sulfate	300.0 - Ion Chromatography	19.2		*	mg/L	0.5	3	08/16/07 6:23	jag
TDS (calculated)	Calculation	209			mg/L	10	50	08/23/07 9:53	calc
TDS (ratio - measured/calculated)	Calculation	1.20			-			08/23/07 9:53	calc

Arizona license number: AZ0102

Inorganic Analytical Results

Phelps Dodge Sierrita

Project ID: OJ03Z5

Sample ID: UGW-MO-2007-1A ACZ Sample ID: L64349-02

Date Sampled: 08/08/07 13:00

Date Received: 08/09/07

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	19.2	*	mg/L	0.5	3	08/16/07 6:41	jag

Arizona license number: AZ0102

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report Header Explanations

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest

Limit Upper limit for RPD, in %.

Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit, typically 5 times the MDL.

QC True Value of the Control Sample or the amount added to the Spike

Rec Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

QC Sample Types

AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calivation Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution

QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method or calibration procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method.

Spikes/Fortified Matrix Determines sample matrix interferences, if any.

Standard Verifies the validity of the calibration.

ACZ Qualifiers (Qual)

B Analyte concentration detected at a value between MDL and PQL.

H Analysis exceeded method hold time. pH is a field test with an immediate hold time.

U Analyte was analyzed for but not detected at the indicated MDL

Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (5) EPA SW-846. Test Methods for Evaluating Solid Waste, Third Edition with Update III, December 1996.
- (6) Standard Methods for the Examination of Water and Wastewater, 19th edition, 1995.

Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.

(800) 334-5493

Phelps Dodge Sierrita

Project ID: OJ03Z5 ACZ Project ID: L64349

Alkalinity as CaC	O3		SM2320B	- Titration									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG230251													
WG230251PBW1	PBW	08/14/07 10:08				U	mg/L		-20	20			
WG230251LCSW2	LCSW	08/14/07 10:20	WC070809-7	820		797.4	mg/L	97.2	90	110			
WG230251PBW2	PBW	08/14/07 14:29				U	mg/L		-20	20			
WG230251LCSW5	LCSW	08/14/07 14:41	WC070809-7	820		807.9	mg/L	98.5	90	110			
WG230251PBW3	PBW	08/14/07 17:30				U	mg/L		-20	20			
WG230251LCSW8	LCSW	08/14/07 17:41	WC070809-7	820		809	mg/L	98.7	90	110			
L64357-01DUP	DUP	08/14/07 20:30			97	96	mg/L				1	20	
WG230251PBW4	PBW	08/14/07 20:36				U	mg/L		-20	20			
WG230251LCSW11	LCSW	08/14/07 20:47	WC070809-7	820		808.9	mg/L	98.6	90	110			
WG230251LCSW14	LCSW	08/14/07 23:46	WC070809-7	820		810.1	mg/L	98.8	90	110			
Calcium, dissolv	ed		M200.7 IC	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG230744													
WG230744ICV	ICV	08/21/07 23:31	11070821-3	100		98.13	mg/L	98.1	95	105			
WG230744ICB	ICB	08/21/07 23:35				U	mg/L		-0.6	0.6			
WG230744LFB	LFB	08/21/07 23:52	11070814-4	67.97008		68.22	mg/L	100.4	85	115			
L64349-01AS	AS	08/22/07 0:59	11070814-4	67.97008	40.4	107.42	mg/L	98.6	85	115			
L64349-01ASD	ASD	08/22/07 1:03	11070814-4	67.97008	40.4	107.97	mg/L	99.4	85	115	0.51	20	
Chloride			M300.0 -	Ion Chrom	atography	,							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226250													
WG226250ICV	ICV	06/11/07 13:52	IC070606-1	20		20.34	mg/L	101.7	90	110			
WG226250ICB	ICB	06/11/07 14:10				U	mg/L		-1.5	1.5			
WG226250ICV1	ICV	06/12/07 14:59	IC070606-1	20		20.31	mg/L	101.6	90	110			
WG226250ICB1	ICB	06/12/07 15:17				U	mg/L		-1.5	1.5			
WG230384													
WG230384ICV	ICV	06/11/07 13:52	IC070710-1	20		20.34	mg/L	101.7	90	110			
WG230384ICB	ICB	06/11/07 14:10				U	mg/L		-1.5	1.5			
WG230384LFB	LFB	08/15/07 22:32	WI070727-1	30		31.17	mg/L	103.9	90	110			
L63661-02DUP	DUP	08/16/07 3:04			.8	.75	mg/L				6.5	20	
L63661-02AS	AS	08/16/07 3:58	WI070727-1	30	.8	30.36	mg/L	98.5	90	110			
L63661-02AS	AS	08/16/07 9:48	WI070727-1	300	6	285.8	mg/L	93.3	90	110			
L63661-02DUP	DUP	08/16/07 10:06			6	5.7	mg/L				5.1	20	

(800) 334-5493

Phelps Dodge Sierrita

Project ID: OJ03Z5 ACZ Project ID: L64349

Fluoride			M300.0 -	Ion Chrom	atography	/							
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226250													
WG226250ICV	ICV	06/11/07 13:52	IC070606-1	3.984		4.13	mg/L	103.7	90	110			
WG226250ICB	ICB	06/11/07 14:10				U	mg/L		-0.3	0.3			
WG226250ICV1	ICV	06/12/07 14:59	IC070606-1	3.984		4.11	mg/L	103.2	90	110			
WG226250ICB1	ICB	06/12/07 15:17				U	mg/L		-0.3	0.3			
WG230384													
WG230384ICV	ICV	06/11/07 13:52	IC070710-1	3.984		4.13	mg/L	103.7	90	110			
WG230384ICB	ICB	06/11/07 14:10				U	mg/L		-0.3	0.3			
WG230384LFB	LFB	08/15/07 22:32	WI070727-1	1.5		1.62	mg/L	108	90	110			
L63661-02DUP	DUP	08/16/07 3:04			.3	.3	mg/L				0	20	R
L63661-02AS	AS	08/16/07 3:58	WI070727-1	1.5	.3	1.86	mg/L	104	90	110			
L63661-02AS	AS	08/16/07 9:48	WI070727-1	15	U	15.7	mg/L	104.7	90	110			
L63661-02DUP	DUP	08/16/07 10:06			U	U	mg/L				0	20	R
Magnesium, dis	solved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG230744													
WG230744ICV	ICV	08/21/07 23:31	11070821-3	100		99.43	mg/L	99.4	95	105			
WG230744ICB	ICB	08/21/07 23:35				U	mg/L		-0.6	0.6			
WG230744LFB	LFB	08/21/07 23:52	11070814-4	54.96908		54.69	mg/L	99.5	85	115			
L64349-01AS	AS	08/22/07 0:59	11070814-4	54.96908	6.4	61.65	mg/L	100.5	85	115			
L64349-01ASD	ASD	08/22/07 1:03	11070814-4	54.96908	6.4	61.71	mg/L	100.6	85	115	0.1	20	
Nitrate/Nitrite as	s N, diss	olved	M353.2 -	Automated	l Cadmiur	n Reduc	tion						
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG229998													
WG229998ICV	ICV	08/09/07 18:50	WI070609-1	2.416		2.407	mg/L	99.6	90	110			
WG229998ICB	ICB	08/09/07 18:51				U	mg/L		-0.06	0.06			
WG229998LFB1	LFB	08/09/07 18:56	WI070307-9	2		2.013	mg/L	100.7	90	110			
WG229998LFB2	LFB	08/09/07 19:32	WI070307-9	2		1.994	mg/L	99.7	90	110			
L64337-06AS	AS	08/09/07 19:38	WI070307-9	2	.68	2.71	mg/L	101.5	90	110			
L64337-07DUP	DUP	08/09/07 19:40	***************************************	-	U	U	mg/L	101.0	00	110	0	20	R
Nitrite as N, dis	solved		M353.2 -	Automated	l Cadmiur	n Reduc	tion						
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG229998													
WG229998ICV	ICV	08/09/07 18:50	WI070609-1	.609		.637	mg/L	104.6	90	110			
WG229998ICB	ICB	08/09/07 18:51		.500		U	mg/L	.01.0	-0.03	0.03			
WG229998LFB1	LFB	08/09/07 18:56	WI070307-9	1		1.021	mg/L	102.1	90	110			
WG229998LFB2	LFB	08/09/07 19:32	WI070307-9 WI070307-9	1		1.012	•	101.2	90	110			
L64337-06AS	AS	08/09/07 19:32	WI070307-9 WI070307-9	1	.06	1.012	mg/L mg/L	101.2	90	110			

ACZ Project ID: L64349

(800) 334-5493

Phelps Dodge Sierrita

Project ID: OJ03Z5

	olved		M200.7 I										
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG230744													
WG230744ICV	ICV	08/21/07 23:31	11070821-3	20		19.93	mg/L	99.7	95	105			
WG230744ICB	ICB	08/21/07 23:35				U	mg/L		-0.9	0.9			
WG230744LFB	LFB	08/21/07 23:52	11070814-4	99.76186		99.96	mg/L	100.2	85	115			
L64349-01AS	AS	08/22/07 0:59	11070814-4	99.76186	3	105.56	mg/L	102.8	85	115			
L64349-01ASD	ASD	08/22/07 1:03	11070814-4	99.76186	3	105.87	mg/L	103.1	85	115	0.29	20	
Residue, Filtera	ble (TDS) @180C	160.1 / S	M2540C									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qua
WG230298													
WG230298PBW	PBW	08/14/07 14:00				16	mg/L		-20	20			
WG230298LCSW	LCSW	08/14/07 14:02	PCN27692	260		284	mg/L	109.2	80	120			
L64349-01DUP	DUP	08/14/07 15:00			250	246	mg/L				1.6	20	
Sodium, dissolv	ed		M200.7 I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qua
WG230744													
WG230744ICV	ICV	08/21/07 23:31	11070821-3	100		100.54	mg/L	100.5	95	105			
WG230744ICB	ICB	08/21/07 23:35				U	mg/L		-0.9	0.9			
WG230744LFB	LFB	08/21/07 23:52	11070814-4	98.21624		98.35	mg/L	100.1	85	115			
L64349-01AS	AS	08/22/07 0:59	11070814-4	98.21624	30.4	129.53	mg/L	100.9	85	115			
L64349-01ASD	ASD	08/22/07 1:03	11070814-4	98.21624	30.4	129.34	mg/L	100.7	85	115	0.15	20	
Sulfate			300.0 - Id	on Chromat	ography								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qua
WG226250													
WG226250ICV	ICV	06/11/07 13:52	IC070606-1	50.15		51.51	mg/L	102.7	90	110			
WG226250ICB	ICB	06/11/07 14:10				U	mg/L		-1.5	1.5			
WG226250ICV1	ICV	06/12/07 14:59	IC070606-1	50.15		51.17	mg/L	102	90	110			
WG226250ICB1	ICB	06/12/07 15:17				U	mg/L		-1.5	1.5			
WG230384													
WG230384ICV	ICV	06/11/07 13:52	IC070710-1	50.15		51.51	mg/L	102.7	90	110			
WG230384ICB	ICB	06/11/07 14:10				U	mg/L		-1.5	1.5			
WG230384LFB	LFB	08/15/07 22:32	WI070727-1	30		32.71	mg/L	109	90	110			
L63661-02AS	AS	08/16/07 9:48	WI070727-1	300	162	429.5	mg/L	89.2	90	110			

Inorganic Extended Qualifier Report

ACZ Project ID: L64349

Phelps Dodge Sierrita

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L64349-01	WG230251	Bicarbonate as CaCO3	SM2320B - Titration	QA	Sample container with preservation type specified by the method was not available for analysis. Alternate sample container was used.
		Carbonate as CaCO3	SM2320B - Titration	QA	Sample container with preservation type specified by the method was not available for analysis. Alternate sample container was used.
	WG230384	Chloride	M300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
		Fluoride	M300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG230251	Hydroxide as CaCO3	SM2320B - Titration	QA	Sample container with preservation type specified by the method was not available for analysis. Alternate sample container was used.
	WG229998	Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
		Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG230384	Sulfate	300.0 - Ion Chromatography	M2	Matrix spike recovery was low, the method control sample recovery was acceptable.
	WG230251	Total Alkalinity	SM2320B - Titration	QA	Sample container with preservation type specified by the method was not available for analysis. Alternate sample container was used.
L64349-02	WG230384	Sulfate	300.0 - Ion Chromatography	M2	Matrix spike recovery was low, the method control sample recovery was acceptable.

Certification Qualifiers

Phelps Dodge Sierrita ACZ Project ID: L64349

No certification qualifiers associated with this analysis

Sample Receipt

Phelps Dodge Sierrita

OJ03Z5

ACZ Project ID:

L64349

Date Received:

8/9/2007

Received By:

Date Printed: 8/9/2007

Receipt Verification

- 1) Does this project require special handling procedures such as CLP protocol?
- 2) Are the custody seals on the cooler intact?
- 3) Are the custody seals on the sample containers intact?
- 4) Is there a Chain of Custody or other directive shipping papers present?
- 5) Is the Chain of Custody complete?
- 6) Is the Chain of Custody in agreement with the samples received?
- 7) Is there enough sample for all requested analyses?
- 8) Are all samples within holding times for requested analyses?
- 9) Were all sample containers received intact?
- 10) Are the temperature blanks present?
- 11) Are the trip blanks (VOA and/or Cyanide) present?
- 12) Are samples requiring no headspace, headspace free?
- 13) Do the samples that require a Foreign Soils Permit have one?

NO	NA
	Х
	Х
	Х
	Х
	Х
	Х
	Х
	NO

Exceptions: If you answered no to any of the above questions, please describe

N/A

Contact (For any discrepancies, the client must be contacted)

N/A

Shipping Containers

Cooler Id	Temp (°C)	Rad (µR/hr)
NA4154	3.7	19

Client must contact ACZ Project Manager if analysis should not proceed for samples received outside of thermal preservation acceptance criteria.

Notes

Sample Receipt

Phelps Dodge Sierrita

OJ03Z5

ACZ Project ID: Date Received: L64349 8/9/2007

Received By:

Sample Container Preservation

SAMPLE	CLIENT ID	R < 2	G < 2	BK < 2	Y< 2	YG< 2	B< 2	0 < 2	T >12	N/A	RAD	ID
L64349-01	FGW-MO-2007-1A		Υ									
L64349-02	UGW-MO-2007-1A									Χ		

Sample Container Preservation Legend

Abbreviation	Description	Container Type	Preservative/Limits
R	Raw/Nitric	RED	pH must be < 2
В	Filtered/Sulfuric	BLUE	pH must be < 2
BK	Filtered/Nitric	BLACK	pH must be < 2
G	Filtered/Nitric	GREEN	pH must be < 2
0	Raw/Sulfuric	ORANGE	pH must be < 2
P	Raw/NaOH	PURPLE	pH must be > 12 *
Т	Raw/NaOH Zinc Acetate	TAN	pH must be > 12
Υ	Raw/Sulfuric	YELLOW	pH must be < 2
YG	Raw/Sulfuric	YELLOW GLASS	pH must be < 2
N/A	No preservative needed	Not applicable	
RAD	Gamma/Beta dose rate	Not applicable	must be $< 250 \mu R/hr$

^{*} pH check performed by analyst prior to sample preparation

Sample IDs Reviewed By:

164349

ACZ La	boratorie	•	5402	6	3 (<i>5</i> 6 890	H	СН	AIN (of Cl	JSTO	YDC
	at Springs, CO 604	107 (000) 334-1	0493	_ ,								
Report to:						,~ <u>1</u>	1 1		/.		N /	
Name: Jan Dings			-	Addres	-	٧	w	100		<u>~~</u>	lld_	
Company: Hydro Ge	o Chem I	<u> </u>	-			ucso	\ /- '	42	<u> </u>	510	<u>.</u>	
E-mail: duns@hgc	IAC. LOM			Teleph	one:	520	12	<u>93-7</u>	50	<u>o</u>		
Copy of Report to:												
Name: Ned Hull B	14 Doras)im Nori.	4	E-mail	Vin	oh	rise.	conj	billy	-doi:	OF	m/ do.
Company: P551	1 AGC "		_	Teleph	one: 5	20) <u>2</u>	93-	1500	<u> </u>	5W/	548-6	803
Invoice to:												
Name: 1/kg/ Hall	•			Addres	ss: 6	700	W.	Dur	JMI	ne Ro		
Company: P/)SL			1	P							856	.25
- 1 1/0	fmi com		1	Teleph		52	0 . 6	447	44.C	711	100	, ,
E-mail: カールー トゥル ピー If sample(s) received past ho		if insufficient	」 ·HT rem:				<u> </u>	1-0.	000	YEŞ	1/	
analysis before expiration, si If "NO" then ACZ will contact	hall ACZ proceed	with requested	i short H	iT analy:	ses?					NO		
is indicated, ACZ will procee							will be d	gualifie	d.			
PROJECT INFORMATION		ou analyses, s								use quo	te numt	oer)
						1 7	y				,	
Quote #: 5/2/1/4 5	No T		1	SI	\	L Q\$						
Project/PO #: () J Q 3	<u> </u>		-	Containers	1	× × ×	,					
Reporting state for complian	/		4) ut	3	75	1			:		
Sampler's Name: ///ar/	HINESON	····-/	4	οĘ	~5	1/2	7					
Are any samples NRC licer		NO		0 #	1/2	*	Q		ر سود	+		
SAMPLE IDENTIFICATI	ON DAT	E:TIME	Matrix		<u></u>	1 J	A 2	PH	とし	lenj	>	
FGW-MO-2007-11	A 8/8/0	1.1300	60	2	Δ	\mathbf{x}		7.17	370	29,0		
Ubw+mo-2007-1	A 6 8 0	7:1300	GW			``	X	7/17	370	29.0		I
			 									
			 							·		
			 									
			ļ									
			<u> </u>									
			<u> </u>									
			<u> </u>									
Matrix SW (Surface Water)	· GW (Ground Water)	· WW (Waste Wa	iter) · DW	(Drinking	Water) ·	SL (Slude	ge) · SO ((Soil) · Ol	L (Oil) · C	ther (Spe	ecify)	
REMARKS												
FGW=Filtere Ub-W=Unfl	ed bround litered Gr	woter S oundre	sant	oles San	ple	5		-				
<u>.</u>					••			e 41-7: ~				
	ase refer to ACZ's			ocated o					UU.	-0-4		
RELINQUISHED	DBY:	DATE:T	IVIE			RECEIV	(BUBY			D).	TE:TIN	
W/MV/Mear	<u> </u>	8/8/07;	1331			KU)			8-0	19	K(87)
												·

Analytical Report

August 28, 2007

Report to:

Ned Hall

Phelps Dodge Sierrita

P.O. Box 527 6200 W. Duval Mine Rd.

Green Valley, AZ 85622-0527

cc: Dan Simpson, Bill Dorris, Jim Norris

Project ID: OJ03Z5 ACZ Project ID: L64503

Ned Hall:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on August 17, 2007. This project has been assigned to ACZ's project number, L64503. Please reference this number in all future inquiries.

Bill to:

Accounts Payable
Phelps Dodge Sierrita

Phoenix, AZ 85002-2671

P.O. Box 2671

All analyses were performed according to ACZ's Quality Assurance Plan, version 12.0. The enclosed results relate only to the samples received under L64503. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after September 28, 2007. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years.

If you have any questions or other needs, please contact your Project Manager.

Phelps Dodge Sierrita

Project ID: OJ03Z5

Sample ID: FGW-MO-2007-4C ACZ Sample ID: L64503-01

Date Sampled: 08/16/07 11:50

Date Received: 08/17/07

Sample Matrix: Ground Water

Field Data									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Conductivity (Field)	Field Measurement	472			mS/cm			08/16/07 11:50	nb
pH (Field)	Field Measurement	7.6			units			08/16/07 11:50	nb
Temperature (Field)	Field Measurement	35.2			С			08/16/07 11:50	nb
Metals Analysis									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Calcium, dissolved	M200.7 ICP	13.0			mg/L	0.2	1	08/23/07 20:33	wfg
Magnesium, dissolved	M200.7 ICP	0.3	В		mg/L	0.2	1	08/23/07 20:33	wfg
Potassium, dissolved	M200.7 ICP	1.9	В		mg/L	0.3	2	08/23/07 20:33	wfg
Sodium, dissolved	M200.7 ICP	80.8			mg/L	0.3	2	08/23/07 20:33	wfg
Wet Chemistry									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration								
Bicarbonate as		101			mg/L	2	20	08/19/07 0:00	cas
CaCO3									
Carbonate as CaCO3		2	В		mg/L	2	20	08/19/07 0:00	cas
Hydroxide as CaCO3			U		mg/L	2	20	08/19/07 0:00	cas
Total Alkalinity		103		*	mg/L	2	20	08/19/07 0:00	cas
Cation-Anion Balance	Calculation								
Cation-Anion Balance		-1.2			%			08/28/07 0:00	calc
Sum of Anions		4.3			meq/L	0.1	0.5	08/28/07 0:00	calc
Sum of Cations		4.2			meq/L	0.1	0.5	08/28/07 0:00	calc
Chloride	M300.0 - Ion Chromatography	11.8		*	mg/L	0.5	3	08/25/07 0:00	jag
Fluoride	M300.0 - Ion Chromatography	5.0		*	mg/L	0.1	0.5	08/25/07 0:00	jag
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2	0.48			mg/L	0.02	0.1	08/28/07 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	0.48		*	mg/L	0.02	0.1	08/17/07 18:59	pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction		U	*	mg/L	0.01	0.05	08/17/07 18:59	pjb
Residue, Filterable (TDS) @180C	160.1 / SM2540C	310			mg/L	10	20	08/22/07 11:05	lcp
Sulfate	300.0 - Ion Chromatography	78.7			mg/L	0.5	3	08/25/07 0:00	jag
TDS (calculated)	Calculation	256			mg/L	10	50	08/28/07 0:00	calc
TDS (ratio - measured/calculated)	Calculation	1.21			3			08/28/07 0:00	calc

Arizona license number: AZ0102

Inorganic Analytical Results

Phelps Dodge Sierrita

Project ID: OJ03Z5

Sample ID: UGW-MO-2007-4C Date Sampled: 08/16/07 11:50

Date Received: 08/17/07

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	78.6		ma/L	0.5	3	08/25/07 0:19	iaa

Arizona license number: AZ0102

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report Header Explanations

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest

Limit Upper limit for RPD, in %.

Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit, typically 5 times the MDL.

QC True Value of the Control Sample or the amount added to the Spike

Rec Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

QC Sample Types

AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calivation Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution

QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method or calibration procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method.

Spikes/Fortified Matrix Determines sample matrix interferences, if any.

Standard Verifies the validity of the calibration.

ACZ Qualifiers (Qual)

B Analyte concentration detected at a value between MDL and PQL.

H Analysis exceeded method hold time. pH is a field test with an immediate hold time.

U Analyte was analyzed for but not detected at the indicated MDL

Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (5) EPA SW-846. Test Methods for Evaluating Solid Waste, Third Edition with Update III, December 1996.
- (6) Standard Methods for the Examination of Water and Wastewater, 19th edition, 1995.

Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.

ACZ Project ID: L64503

(800) 334-5493

Phelps Dodge Sierrita

Project ID: OJ03Z5

ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG230595													
WG230595PBW1	PBW	08/18/07 16:05				3	mg/L		-20	20			
WG230595LCSW2	LCSW	08/18/07 16:17	WC070809-7	820		808	mg/L	98.5	90	110			
WG230595PBW2	PBW	08/18/07 19:21				U	mg/L		-20	20			
WG230595LCSW5	LCSW	08/18/07 19:33	WC070809-7	820		799.8	mg/L	97.5	90	110			
WG230595PBW3	PBW	08/18/07 22:29				U	mg/L		-20	20			
WG230595LCSW8	LCSW	08/18/07 22:42	WC070809-7	820		806.4	mg/L	98.3	90	110			
WG230595PBW4	PBW	08/19/07 1:33				U	mg/L		-20	20			
WG230595LCSW11	LCSW	08/19/07 1:45	WC070809-7	820		802	mg/L	97.8	90	110			
L64506-02DUP	DUP	08/19/07 2:45			52	52.7	mg/L				1.3	20	
WG230595LCSW14	LCSW	08/19/07 3:20	WC070809-7	820		803.5	mg/L	98	90	110			
Calcium, dissolv	ed		M200.7 IC	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG230926													
WG230926ICV	ICV	08/23/07 18:30	11070821-3	100		100.08	mg/L	100.1	95	105			
WG230926ICB	ICB	08/23/07 18:34				U	mg/L		-0.6	0.6			
WG230926LFB	LFB	08/23/07 18:48	11070823-2	67.97008		70.66	mg/L	104	85	115			
L64394-04AS	AS	08/23/07 19:48	11070823-2	67.97008	26.8	92.6	mg/L	96.8	85	115			
L64394-04ASD	ASD	08/23/07 19:52	11070823-2	67.97008	26.8	94.15	mg/L	99.1	85	115	1.66	20	
Chloride			M300.0 -	Ion Chrom	atography	,							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226250													
WG226250ICV	ICV	06/11/07 13:52	IC070606-1	20		20.34	mg/L	101.7	90	110			
WG226250ICB	ICB	06/11/07 14:10	10070000 1	20		U	mg/L	101.7	-1.5	1.5			
WG226250ICV1	ICV	06/12/07 14:59	IC070606-1	20		20.31	mg/L	101.6	90	110			
WG226250ICB1	ICB	06/12/07 15:17	10070000 1	20		U	mg/L	101.0	-1.5	1.5			
WG230989	102	00/12/07 10:17				Ü	mg/L		1.0	1.0			
WG230989LFB	LFB	08/24/07 16:28	WI070727-1	30		32.1	ma/l	107	90	110			
L64434-01AS	AS	08/24/07 10:28	WI070727-1 WI070727-1	600	40	671	mg/L mg/L	105.2	90	110			
L64434-01DUP	DUP	08/24/07 21:17	VVIO70727-1	000	40	43	mg/L	103.2	90	110	7.2	20	R
Fluoride			M300.0 -	Ion Chrom	atography	,							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample		Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226250													
WG226250ICV	ICV	06/11/07 13:52	IC070606-1	3.984		4.13	mg/L	103.7	90	110			
WG226250ICV WG226250ICB	ICB	06/11/07 13:32	.007,0000 1	0.004		U	mg/L	100.1	-0.3	0.3			
WG226250ICV1	ICV	06/12/07 14:59	IC070606-1	3.984		4.11	mg/L	103.2	90	110			
WG226250ICB1	ICB	06/12/07 15:17	.55.5500 1	3.301		U	mg/L		-0.3	0.3			
WG230989							Ŭ						
WG230989LFB	LFB	08/24/07 16:28	WI070727-1	1.5		1.63	mg/L	108.7	90	110			
							_						_
L64434-01AS	AS	08/24/07 21:17	WI070727-1	30	U	35.1	mg/L	117	90	110			N

(800) 334-5493

Phelps Dodge Sierrita

Project ID: OJ03Z5 ACZ Project ID: L64503

Magnesium, dis	solved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG230926													
WG230926ICV	ICV	08/23/07 18:30	11070821-3	100		100.01	mg/L	100	95	105			
WG230926ICB	ICB	08/23/07 18:34				U	mg/L		-0.6	0.6			
WG230926LFB	LFB	08/23/07 18:48	11070823-2	54.96908		57.39	mg/L	104.4	85	115			
L64394-04AS	AS	08/23/07 19:48	11070823-2	54.96908	2	57.46	mg/L	100.9	85	115			
L64394-04ASD	ASD	08/23/07 19:52	11070823-2	54.96908	2	58.77	mg/L	103.3	85	115	2.25	20	
Nitrate/Nitrite as	N, diss	olved	M353.2 -	Automated	Cadmiun	n Reduc	tion						
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG230583													
WG230583ICV	ICV	08/17/07 18:01	WI070609-1	2.416		2.353	mg/L	97.4	90	110			
WG230583ICB	ICB	08/17/07 18:02				U	mg/L		-0.06	0.06			
WG230583LFB1	LFB	08/17/07 18:07	WI070307-9	2		1.971	mg/L	98.6	90	110			
L64501-05AS	AS	08/17/07 18:45	WI070307-9	2	.02	1.82	mg/L	90	90	110			
WG230583LFB2	LFB	08/17/07 18:46	WI070307-9	2		1.87	mg/L	93.5	90	110			
L64501-06DUP	DUP	08/17/07 18:52			U	U	mg/L				0	20	R
Nitrite as N, diss	solved		M353.2 -	Automated	Cadmiun	n Reduc	tion						
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG230583													
WG230583ICV	ICV	08/17/07 18:01	WI070609-1	.609		.627	mg/L	103	90	110			
WG230583ICB	ICB	08/17/07 18:02				U	mg/L		-0.03	0.03			
WG230583LFB1	LFB	08/17/07 18:07	WI070307-9	1		.983	mg/L	98.3	90	110			
L64501-05AS	AS	08/17/07 18:45	WI070307-9	1	U	.927	mg/L	92.7	90	110			
WG230583LFB2	LFB	08/17/07 18:46	WI070307-9	1		.959	mg/L	95.9	90	110			
L64501-06DUP	DUP	08/17/07 18:52			U	U	mg/L				0	20	R
Potassium, diss	olved		M200.7 I	CP									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG230926													
WG230926ICV	ICV	08/23/07 18:30	11070821-3	20		19.97	mg/L	99.9	95	105			
WG230926ICB	ICB	08/23/07 18:34				U	mg/L		-0.9	0.9			
WG230926LFB	LFB	08/23/07 18:48	11070823-2	99.76186		100.53	mg/L	100.8	85	115			
L64394-04AS	AS	08/23/07 19:48	11070823-2	99.76186	U	99.53	mg/L	99.8	85	115			
L64394-04ASD	ASD	08/23/07 19:52	11070823-2	99.76186	U	101.2	mg/L	101.4	85	115	1.66	20	
Residue, Filteral	ble (TDS	i) @180C	160.1 / S	M2540C									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG230779													
	PBW	08/22/07 10:45				20	ma/L		-20	20			
WG230779 WG230779PBW WG230779LCSW	PBW LCSW	08/22/07 10:45 08/22/07 10:46	PCN27691	260		20 312	mg/L mg/L	120	-20 80	20 120			

(800) 334-5493

Phelps Dodge Sierrita

Project ID: OJ03Z5 ACZ Project ID: L64503

Sodium, dissolv	ved		M200.7 I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG230926													
WG230926ICV	ICV	08/23/07 18:30	11070821-3	100		99.9	mg/L	99.9	95	105			
WG230926ICB	ICB	08/23/07 18:34				U	mg/L		-0.9	0.9			
WG230926LFB	LFB	08/23/07 18:48	11070823-2	98.21624		98.26	mg/L	100	85	115			
L64394-04AS	AS	08/23/07 19:48	11070823-2	98.21624	4	97.19	mg/L	94.9	85	115			
L64394-04AS	AS	08/23/07 19:48	11070823-2	98.21624	4	94.1	mg/L	91.7	85	115			
L64394-04ASD	ASD	08/23/07 19:52	11070823-2	98.21624	4	95.1	mg/L	92.8	85	115	1.06	20	
L64394-04ASD	ASD	08/23/07 19:52	11070823-2	98.21624	4	98.61	mg/L	96.3	85	115	1.06	20	
Sulfate			300.0 - Id	on Chromat	ography								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226250													
WG226250ICV	ICV	06/11/07 13:52	IC070606-1	50.15		51.51	mg/L	102.7	90	110			
WG226250ICB	ICB	06/11/07 14:10				U	mg/L		-1.5	1.5			
WG226250ICV1	ICV	06/12/07 14:59	IC070606-1	50.15		51.17	mg/L	102	90	110			
WG226250ICB1	ICB	06/12/07 15:17				U	mg/L		-1.5	1.5			
WG230989													
WG230989LFB	LFB	08/24/07 16:28	WI070727-1	30		32.21	mg/L	107.4	90	110			
L64434-01AS	AS	08/24/07 21:17	WI070727-1	600	670	1298	mg/L	104.7	90	110			
L64434-01DUP	DUP	08/24/07 21:36			670	680	mg/L				1.5	20	

Inorganic Extended Qualifier Report

ACZ Project ID: L64503

container was used.

Phelps Dodge Sierrita

ACZ ID WORKNUM PARAMETER METHOD QUAL DESCRIPTION L64503-01 WG230989 Chloride M300.0 - Ion Chromatography RA Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL). M1 Matrix spike recovery was high, the method control sample Fluoride M300.0 - Ion Chromatography recovery was acceptable. RA Relative Percent Difference (RPD) was not used for data M300.0 - Ion Chromatography validation because the sample concentration is too low for accurate evaluation (< 10x MDL). WG230583 RA Relative Percent Difference (RPD) was not used for data Nitrate/Nitrite as N, dissolved M353.2 - Automated Cadmium Reduction validation because the sample concentration is too low for accurate evaluation (< 10x MDL). Nitrite as N, dissolved M353.2 - Automated Cadmium RA Relative Percent Difference (RPD) was not used for data Reduction validation because the sample concentration is too low for accurate evaluation (< 10x MDL). SM2320B - Titration WG230595 Total Alkalinity QA Sample container with preservation type specified by the method was not available for analysis. Alternate sample

Certification Qualifiers

Phelps Dodge Sierrita ACZ Project ID: L64503

No certification qualifiers associated with this analysis

Sample Receipt

Phelps Dodge Sierrita

OJ03Z5

ACZ Project ID:

L64503

Date Received:

8/17/2007

Received By:

Date Printed: 8/17/2007

Receipt Verification

- 1) Does this project require special handling procedures such as CLP protocol?
- 2) Are the custody seals on the cooler intact?
- 3) Are the custody seals on the sample containers intact?
- 4) Is there a Chain of Custody or other directive shipping papers present?
- 5) Is the Chain of Custody complete?
- 6) Is the Chain of Custody in agreement with the samples received?
- 7) Is there enough sample for all requested analyses?
- 8) Are all samples within holding times for requested analyses?
- 9) Were all sample containers received intact?
- 10) Are the temperature blanks present?
- 11) Are the trip blanks (VOA and/or Cyanide) present?
- 12) Are samples requiring no headspace, headspace free?
- 13) Do the samples that require a Foreign Soils Permit have one?

YES	NO	NA
		Х
		Х
		Х
Х		
Х		
Х		
Х		
X		
Х		
		Х
		Х
		X
		Х
•		

Exceptions: If you answered no to any of the above questions, please describe

N/A

Contact (For any discrepancies, the client must be contacted)

N/A

Shipping Containers

Cooler Id	Temp (°C)	Rad (µR/hr)
NA4227	1.3	16

Client must contact ACZ Project Manager if analysis should not proceed for samples received outside of thermal preservation acceptance criteria.

Notes

Sample Receipt

Phelps Dodge Sierrita

OJ03Z5

ACZ Project ID: Date Received: L64503 8/17/2007

Received By:

Sample Container Preservation

SAMPLE	CLIENT ID	R < 2	G < 2	BK < 2	Y< 2	YG< 2	B< 2	0 < 2	T >12	N/A	RAD	ID
L64503-01	FGW-MO-2007-4C		Υ									
L64503-02	UGW-MO-2007-4C									Х		

Sample Container Preservation Legend

Abbreviation	Description	Container Type	Preservative/Limits
R	Raw/Nitric	RED	pH must be < 2
В	Filtered/Sulfuric	BLUE	pH must be < 2
BK	Filtered/Nitric	BLACK	pH must be < 2
G	Filtered/Nitric	GREEN	pH must be < 2
0	Raw/Sulfuric	ORANGE	pH must be < 2
Р	Raw/NaOH	PURPLE	pH must be > 12 *
Т	Raw/NaOH Zinc Acetate	TAN	pH must be > 12
Υ	Raw/Sulfuric	YELLOW	pH must be < 2
YG	Raw/Sulfuric	YELLOW GLASS	pH must be < 2
N/A	No preservative needed	Not applicable	
RAD	Gamma/Beta dose rate	Not applicable	must be < 250 µR/hr

^{*} pH check performed by analyst prior to sample preparation

Sample IDs Reviewed By:

ACZ 2773 Downhill Drive S				<u></u> (de	Š)2)	CHA	AIN o	of Cl	JST	ODY
Report to:	ocambout opn	ingo, 00 0010	(000) 001	-									
	MPSON)			Addre	ss: 5	ω.	hist	-hot	ع			
Company: HGC,				İ	7	7065	iο _N / ,	AZ	85	705			
E-mail: danse				1			(52					<u> </u>	
	-	<u>9711</u>						<u> </u>	1				
Copy of Report to:		- \~ 1		"			- 1			(C.B.)			
Name: Ned hal	Sill Do	402 7 1W	North>	-	E-mai	JiM	nekg	Cinc.	COM	40 (17-	dorn vyo	501	Faircon 73
Company: PDSI	/HGZ,	INC.			l elepi	none/	א (פשר	13-100	°x.112	1026)	610	-20	./>
Invoice to:													
Name: Ned Ha	<i>:}</i> //						200						
Company: PDS7					Po	BX	527	Gre	W/Va	1/27,	42	3 <i>5</i> 4	<u>22</u>
E-mail: ned-ha							520)	<u>648</u>	-88	57			
If sample(s) received	past holding	time (HT), or i	if insufficient	HT rem	ains to	comple	te				YES	1	_
analysis before expired in the second in the)"				NO	4	-
is indicated, ACZ wil								vill be	qualified	d			
PROJECT INFORM							S REQUI				use quo	ote nu	mber)
Quote #: Sierri	ta Shor	- 9					M					ļ	
Project/PO#: 63) sers	N	1, 8						
Reporting state for			L.		of Containers	1	KIK TOS, SOY.						
Sampler's Name: /	WT. Bad	3			5	ર્	K TB\$ 564	2				İ	
Are any samples N			vo		t of	5	7 2	į,				: :	
SAMPLE IDENT			:TIME	Matrix	#	18	£ 2	V		PH	80	TE	
FGW-M0-20	07-4C	8-16-07/	11:50	SW	2	X	X			7.62	472	35.	2
UGW-10-20		8-16-57/	11:50	600	1			X		7.62	472	35	2
			·		1								
<u> </u>													
							<u> </u>						
													
				 									
	<u> </u>												
Matrix SW (Surfa	ace Water) · GW	(Ground Water) ·	WW (Waste Wa	ater) · DW	(Drinking	Water) ·	SL (Slude	je) · SO	(Soil) · O	L (Oil) · C	Other (Sp	ecify)	
REMARKS													
WEIGHT CO	01/1		C S	Q Mal	12								
1 F6W	2/17	hered (5 W -	- 9	10								
isku.	= UN-F	iHered	6 m - 5	× Mp	12								į
	•												
								- اسائیس	.e.u.!- ~	200			1
		efer to ACZ's			ocated		reverse RECEIV			JUU.	В	ATE:	TIME
	UISHED BY		DATE:T	_		ν	· / /	ED D			۷ د ۱	. اسر س	1-
M. Oull			0-16-07/1	14,00							01	1-07	_///©
					<u> </u>								
					<u></u>	_							

Analytical Report

September 18, 2007

Report to:

Ned Hall

Phelps Dodge Sierrita

P.O. Box 527 6200 W. Duval Mine Rd.

Green Valley, AZ 85622-0527

cc: Bill Dorris, Jim Norris, Dan Simpson

Project ID: OJO3Z5 ACZ Project ID: L64629

Ned Hall:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on August 24, 2007. This project has been assigned to ACZ's project number, L64629. Please reference this number in all future inquiries.

Bill to:

Accounts Payable
Phelps Dodge Sierrita

Phoenix, AZ 85002-2671

P.O. Box 2671

All analyses were performed according to ACZ's Quality Assurance Plan, version 12.0. The enclosed results relate only to the samples received under L64629. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after October 18, 2007. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years.

If you have any questions or other needs, please contact your Project Manager.

Phelps Dodge Sierrita

Project ID: OJO3Z5

Sample ID: FGW-MO-2007-5C ACZ Sample ID: L64629-01

Date Sampled: 08/23/07 14:30

Date Received: 08/24/07

Sample Matrix: Ground Water

Field Data									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Conductivity (Field)	Field Measurement	780			mS/cm			08/23/07 14:30	ma
pH (Field)	Field Measurement	7.5			units			08/23/07 14:30	ma
Temperature (Field)	Field Measurement	31.4			С			08/23/07 14:30	ma
Metals Analysis									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Calcium, dissolved	M200.7 ICP	30.0			mg/L	0.2	1	09/03/07 19:54	djt
Magnesium, dissolved	M200.7 ICP	1.4			mg/L	0.2	1	09/03/07 19:54	djt
Potassium, dissolved	M200.7 ICP	7.1			mg/L	0.3	2	09/03/07 19:54	djt
Sodium, dissolved	M200.7 ICP	129		*	mg/L	0.3	2	09/03/07 19:54	djt
Wet Chemistry									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration								
Bicarbonate as		71			mg/L	2	20	08/30/07 0:00	lcp
CaCO3									
Carbonate as CaCO3			U		mg/L	2	20	08/30/07 0:00	lcp
Hydroxide as CaCO3			U		mg/L	2	20	08/30/07 0:00	lcp
Total Alkalinity		71		*	mg/L	2	20	08/30/07 0:00	lcp
Cation-Anion Balance	Calculation								
Cation-Anion Balance		2.8			%			09/18/07 0:00	calc
Sum of Anions		7.0			meq/L	0.1	0.5	09/18/07 0:00	calc
Sum of Cations		7.4			meq/L	0.1	0.5	09/18/07 0:00	calc
Chloride	M300.0 - Ion Chromatography	12			mg/L	3	10	09/14/07 10:29	сср
Fluoride	M300.0 - Ion Chromatography	2.1		*	mg/L	0.1	0.5	09/13/07 18:42	сср
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2	0.13			mg/L	0.02	0.1	09/18/07 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	0.15			mg/L	0.02	0.1	08/24/07 21:18	pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	0.02	В	*	mg/L	0.01	0.05	08/24/07 21:18	pjb
Residue, Filterable (TDS) @180C	160.1 / SM2540C	540			mg/L	10	20	08/29/07 11:05	cas
Sulfate	300.0 - Ion Chromatography	248		*	mg/L	3	10	09/14/07 10:29	сср
TDS (calculated)	Calculation	473			mg/L	10	50	09/18/07 0:00	calc
TDS (ratio - measured/calculated)	Calculation	1.14			J			09/18/07 0:00	calc

Arizona license number: AZ0102

Inorganic Analytical Results

Phelps Dodge Sierrita

ACZ Sample ID: L64629-02 OJO3Z5

Project ID: Date Sampled: 08/23/07 14:30 Sample ID: UGW-MO-2007-5C Date Received: 08/24/07

Sample Matrix: Ground Water

Field Data

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Conductivity (Field)	Field Measurement	780		mS/cm			08/23/07 14:30	ma
pH (Field)	Field Measurement	7.5		units			08/23/07 14:30	ma
Temperature (Field)	Field Measurement	31.4		С			08/23/07 14:30	ma
Wet Chemistry								

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	252	*	mg/L	3	10	09/14/07 10:47	сср

Arizona license number: AZ0102

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report Header Explanations

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest

Limit Upper limit for RPD, in %.

Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit, typically 5 times the MDL.

QC True Value of the Control Sample or the amount added to the Spike

Rec Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

QC Sample Types

AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calivation Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution

QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method or calibration procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method.

Spikes/Fortified Matrix Determines sample matrix interferences, if any.

Standard Verifies the validity of the calibration.

ACZ Qualifiers (Qual)

B Analyte concentration detected at a value between MDL and PQL.

H Analysis exceeded method hold time. pH is a field test with an immediate hold time.

U Analyte was analyzed for but not detected at the indicated MDL

Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (5) EPA SW-846. Test Methods for Evaluating Solid Waste, Third Edition with Update III, December 1996.
- (6) Standard Methods for the Examination of Water and Wastewater, 19th edition, 1995.

Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.

(800) 334-5493

Phelps Dodge Sierrita

Project ID: OJO3Z5 ACZ Project ID: L64629

Alkalinity as CaCo	03		SM2320B	3 - Titration									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG231352													
WG231352PBW1	PBW	08/30/07 11:22				U	mg/L		-20	20			
WG231352LCSW2	LCSW	08/30/07 11:34	WC070828-1	820		811.7	mg/L	99	90	110			
L64658-01DUP	DUP	08/30/07 14:17			125	125.6	mg/L				0.5	20	
WG231352PBW2	PBW	08/30/07 14:22				U	mg/L		-20	20			
WG231352LCSW5	LCSW	08/30/07 14:35	WC070828-1	820		824.4	mg/L	100.5	90	110			
WG231352PBW3	PBW	08/30/07 18:14				U	mg/L		-20	20			
WG231352LCSW8	LCSW	08/30/07 18:26	WC070828-1	820		826.8	mg/L	100.8	90	110			
WG231352PBW4	PBW	08/30/07 21:22				U	mg/L		-20	20			
WG231352LCSW11	LCSW	08/30/07 21:34	WC070828-1	820		828.7	mg/L	101.1	90	110			
WG231352LCSW14	LCSW	08/31/07 0:12	WC070828-1	820		826.4	mg/L	100.8	90	110			
Calcium, dissolve	ed		M200.7 IC	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG231536													
WG231536ICV	ICV	09/03/07 17:42	11070821-3	100		101.94	mg/L	101.9	95	105			
WG231536ICB	ICB	09/03/07 17:47				U	mg/L		-0.6	0.6			
WG231536LFB	LFB	09/03/07 18:03	11070829-11	67.97008		71.99	mg/L	105.9	85	115			
L64613-03AS	AS	09/03/07 19:09	11070829-11	67.97008	3.3	76.71	mg/L	108	85	115			
L64613-03ASD	ASD	09/03/07 19:13	11070829-11	67.97008	3.3	75.24	mg/L	105.8	85	115	1.93	20	
Chloride			M300.0 -	Ion Chroma	atography	,							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG232234													
WG232234ICV	ICV	09/13/07 15:59	WI070910-1	20		19.89	mg/L	99.5	90	110			
WG232234ICB	ICB	09/13/07 16:17				U	mg/L		-1.5	1.5			
WG232234LFB	LFB	09/13/07 16:35	WI070727-1	30		29.34	mg/L	97.8	90	110			
L64532-01DUP	DUP	09/13/07 17:11			69	70.9	mg/L				2.7	20	
L64532-02AS	AS	09/13/07 17:47	WI070727-1	30	8.4	36.91	mg/L	95	90	110			
Fluoride			M300.0 -	Ion Chroma	atography	,							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG232234													
WG232234ICV	ICV	09/13/07 15:59	WI070910-1	3.984		4.19	mg/L	105.2	90	110			
WG232234ICB	ICB	09/13/07 16:17				U	mg/L		-0.3	0.3			
WG232234LFB	LFB	09/13/07 16:35	WI070727-1	1.5		1.54	mg/L	102.7	90	110			
L64532-01DUP	DUP	09/13/07 17:11			44.6	45.71	mg/L				2.5	20	
L64532-02AS	AS	09/13/07 17:47	WI070727-1	1.5	4.3	5.51	mg/L	80.7	90	110			M2
Magnesium, disso	olved		M200.7 IC	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG231536													
WG231536ICV	ICV	09/03/07 17:42	11070821-3	100		103.02	mg/L	103	95	105			
	ICB	09/03/07 17:47				U	mg/L		-0.6	0.6			
							-						
	LFB	09/03/07 18:03	11070829-11	54.96908		58.14	mg/L	105.8	85	115			
WG231536LFB		09/03/07 18:03 09/03/07 19:09	II070829-11 II070829-11	54.96908 54.96908	.8	58.14 59.62	mg/L mg/L	105.8 107	85 85	115 115			

ACZ Project ID: L64629

(800) 334-5493

Phelps Dodge Sierrita

Project ID: OJO3Z5

Nitrate/Nitrite as	s N, diss	olved	M353.2 -	Automated	d Cadmiur	n Reduc	tion						
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG231014													
WG231014ICV	ICV	08/24/07 20:17	WI070609-1	2.416		2.375	mg/L	98.3	90	110			
WG231014ICB	ICB	08/24/07 20:18				U	mg/L		-0.06	0.06			
WG231014LFB1	LFB	08/24/07 20:23	WI070307-9	2		1.979	mg/L	99	90	110			
WG231014LFB2	LFB	08/24/07 21:02	WI070307-9	2		1.881	mg/L	94.1	90	110			
L64613-07AS	AS	08/24/07 21:08	WI070307-9	2	U	1.794	mg/L	89.7	90	110			
L64621-01DUP	DUP	08/24/07 21:10			1.33	1.351	mg/L				1.6	20	
Nitrite as N, dis	solved		M353.2 -	Automated	d Cadmiur	n Reduc	tion						
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG231014													
WG231014ICV	ICV	08/24/07 20:17	WI070609-1	.609		.633	mg/L	103.9	90	110			
WG231014ICB	ICB	08/24/07 20:18				U	mg/L		-0.03	0.03			
WG231014LFB1	LFB	08/24/07 20:23	WI070307-9	1		1.016	mg/L	101.6	90	110			
WG231014LFB2	LFB	08/24/07 21:02	WI070307-9	1		1.018	mg/L	101.8	90	110			
L64613-07AS	AS	08/24/07 21:08	WI070307-9	1	U	.984	mg/L	98.4	90	110			
L64621-01DUP	DUP	08/24/07 21:10			U	U	mg/L				0	20	R/
Potassium, diss	solved		M200.7 I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG231536													
WG231536ICV	ICV	09/03/07 17:42	11070821-3	20		19.71	mg/L	98.6	95	105			
WG231536ICB	ICB	09/03/07 17:47				U	mg/L		-0.9	0.9			
WG231536LFB	LFB	09/03/07 18:03	11070829-11	99.76186		100.95	mg/L	101.2	85	115			
L64613-03AS	AS	09/03/07 19:09	11070829-11	99.76186	3.5	112.67	mg/L	109.4	85	115			
L64613-03ASD	ASD	09/03/07 19:13	11070829-11	99.76186	3.5	110.41	mg/L	107.2	85	115	2.03	20	
Residue, Filtera	ble (TDS	S) @180C	160.1 / S	M2540C									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG231255													
WG231255PBW	PBW	08/29/07 11:00				U	mg/L		-20	20			
WG231255LCSW	LCSW	08/29/07 11:01	PCN27686	260		282	mg/L	108.5	80	120			
L64652-02DUP	DUP	08/29/07 11:15			6040	6072	mg/L				0.5	20	
Sodium, dissolv	ved		M200.7 I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG231536													
WG231536ICV	ICV	09/03/07 17:42	11070821-3	100		98.2	mg/L	98.2	95	105			
WG231536ICV	ICV	09/03/07 17:42	11070821-3	100		99.2	mg/L	99.2	95	105			
WG231536ICB	ICB	09/03/07 17:47				U	mg/L		-6	6			
WG231536ICB	ICB	09/03/07 17:47				U	mg/L		-0.9	0.9			
WG231536LFB	LFB	09/03/07 18:03	11070829-11	98.21624		99.2	mg/L	101	85	115			
WG231536LFB	LFB	09/03/07 18:03	11070829-11	98.21624		99.28	mg/L	101.1	85	115			
L64613-03AS	AS	09/03/07 19:09	11070829-11	98.21624	612	684.6	mg/L	73.9	85	115			M
L64613-03ASD	ASD	09/03/07 19:13	11070829-11	98.21624	612	684.2	mg/L	73.5	85	115	0.06	20	M

Inorganic QC **Summary**

(800) 334-5493

Phelps Dodge Sierrita

ACZ Project ID: L64629

Project ID: OJO3Z5

Sulfate			300.0 - Ior	Chroma	tography								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG232234													
WG232234ICV	ICV	09/13/07 15:59	WI070910-1	50.1		52.62	mg/L	105	90	110			
WG232234ICB	ICB	09/13/07 16:17				U	mg/L		-1.5	1.5			
WG232234LFB	LFB	09/13/07 16:35	WI070727-1	30		30.67	mg/L	102.2	90	110			
L64532-01DUP	DUP	09/13/07 17:11			U	U	mg/L				0	20	RA
L64532-02AS	AS	09/14/07 11:59	WI070727-1	300	494	798.9	mg/L	101.6	90	110			

Inorganic Extended Qualifier Report

Phelps Dodge Sierrita

ACZ Project ID: L64629

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L64629-01	WG231536	Sodium, dissolved	M200.7 ICP	М3	The accuracy of the spike recovery does not apply because analyte concentration in the sample is disproportionate to the spike level. The recovery of the method control sample was acceptable.
	WG232234	Fluoride	M300.0 - Ion Chromatography	M2	Matrix spike recovery was low, the method control sample recovery was acceptable.
	WG231014	Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG232234	Sulfate	300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG231352	Total Alkalinity	SM2320B - Titration	QA	Sample container with preservation type specified by the method was not available for analysis. Alternate sample container was used.
L64629-02	WG232234	Sulfate	300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).

Certification Qualifiers

Phelps Dodge Sierrita ACZ Project ID: L64629

No certification qualifiers associated with this analysis

Sample Receipt

Phelps Dodge Sierrita

OJO3Z5

ACZ Project ID:

L64629

Date Received:

8/24/2007

Received By:

Date Printed: 8/28/2007

Receipt Verification

- 1) Does this project require special handling procedures such as CLP protocol?
- 2) Are the custody seals on the cooler intact?
- 3) Are the custody seals on the sample containers intact?
- 4) Is there a Chain of Custody or other directive shipping papers present?
- 5) Is the Chain of Custody complete?
- 6) Is the Chain of Custody in agreement with the samples received?
- 7) Is there enough sample for all requested analyses?
- 8) Are all samples within holding times for requested analyses?
- 9) Were all sample containers received intact?
- 10) Are the temperature blanks present?
- 11) Are the trip blanks (VOA and/or Cyanide) present?
- 12) Are samples requiring no headspace, headspace free?
- 13) Do the samples that require a Foreign Soils Permit have one?

YES	NO	NA
		Х
Х		
		Х
Х		
Х		
Х		
Х		
Х		
Х		
		Х
		Х
		X
		Х
	-	

Exceptions: If you answered no to any of the above questions, please describe

N/A

Contact (For any discrepancies, the client must be contacted)

N/A

Shipping Containers

Cooler Id	Temp (°C)	Rad (µR/hr)
NA4279	4.2	14

Client must contact ACZ Project Manager if analysis should not proceed for samples received outside of thermal preservation acceptance criteria.

Notes

Sample Receipt

Phelps Dodge Sierrita

OJO3Z5

ACZ Project ID: Date Received: L64629 8/24/2007

Received By:

Sample Container Preservation

SAMI	PLE	CLIENT ID	R < 2	G < 2	BK < 2	Y< 2	YG< 2	B< 2	0 < 2	T >12	N/A	RAD	ID
L646	529-01	FGW-MO-2007-5C		Υ									
L646	529-02	UGW-MO-2007-5C						·			Χ		

Sample Container Preservation Legend

Abbreviation	Description	Container Type	Preservative/Limits
R	Raw/Nitric	RED	pH must be < 2
В	Filtered/Sulfuric	BLUE	pH must be < 2
BK	Filtered/Nitric	BLACK	pH must be < 2
G	Filtered/Nitric	GREEN	pH must be < 2
0	Raw/Sulfuric	ORANGE	pH must be < 2
Р	Raw/NaOH	PURPLE	pH must be > 12 *
Т	Raw/NaOH Zinc Acetate	TAN	pH must be > 12
Υ	Raw/Sulfuric	YELLOW	pH must be < 2
YG	Raw/Sulfuric	YELLOW GLASS	pH must be < 2
N/A	No preservative needed	Not applicable	
RAD	Gamma/Beta dose rate	Not applicable	must be $< 250 \mu R/hr$

^{*} pH check performed by analyst prior to sample preparation

Sample IDs Reviewed B	v:

ACZ Labora	ntories, Inc.	110	4(0'	79	СН	AIN d	of Cl	JSTO	YDC
2773 Downhill Drive Steamboat Spring	gs, CO 80487 (800) 334-5	499	(0/						
Report to:		1		> /					
Name: Dan Simpson		Ad	dress: 5	We.	st We			4	
Company: Hydro Geo Ch	en Inc	├	/ <i>l</i>	uson,	142	85	105		
E-mail: dun se hacine &	<u></u>	Tel	ephone:	50)	2934/	500		11	· · · · · ·
Copy of Report to:								11-1	
Name: New Hall Bith Dorni	3 Dan Norris	E-r	nail:חילע	Phycino	60x bil	ly-de	cis w	fmi.	con
Company: PDST 7 HGC	,/	Tel	ephone: 5	<u>20) 243-</u>	Lon, bil 1500 x112	520)	<u> </u>	887	3
Invoice to:								(13)	
Name: led Hust		Ad	dress: 6	()050	W.D	ı val	Mi	10	12.1
Company: PD 57				enValle		83	562	7	
E-mail: ned-holle Cm	incom	Tel	ephone: 1		48~84	357			_
If sample(s) received past holding til	me (HT), or if insufficient	HT remains	to complet				YES		
analysis before expiration, shall AC				••			NO		
If "NO" then ACZ will contact client t is indicated, ACZ will proceed with t					be qualifie	d.			
PROJECT INFORMATION					ED (attach		ıse quo	te num	ber)
Quote #: Siem to Short	<u> </u>			2.5					
Project/PO#: () 763Z	5			35	<u>_</u>				
Reporting state for compliance tes	ting: A7		3	200	\aleph				
100 1/ 17	Ineson		3 -3	73	100				
Are any samples NRC licensable r	A 7	1 3	5 🚉	12/2	80				
SAMPLE IDENTIFICATION	DATE:TIME	Matrix	* \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		$\langle \mathcal{A} \rangle$	PH	EC	Temp	
FGW-MO-2007-56	82307: 1430	6W 6	2			7.46	780	31.4	
	107:1430	bw				7.46	780	314	
								4	
						<u></u>	L		
Matrix SW (Surface Water) · GW (Gr	round Water) · WW (Waste Wa	ter) · DW (Drin	king Water) ·	SL (Sludge)	· SO (Soil) · O	L (Oil) · C	other (Sp	ecify)	
REMARKS									
FGW = Pilter	ed Groundle	ater							
UGW= Unfil	teral Cround	wate	r						
5 1		ditions !	and on the	max.com + -:	da af ibi- c	200			
Please refe	er to ACZ's terms & cond DATE:TI			reverse si RECEIVED		JUU.	n_	ATE:TO	ME.
	DATE: II	1 >-1~	1/	(A					
HIMMANNI _	<u> </u>	15/2		√ <u>~</u>			00	1.7	<u> </u>
					· · · · · · · · · · · · · · · · · · ·				
							L		

September 27, 2007

Report to:

Ned Hall

Phelps Dodge Sierrita

P.O. Box 527 6200 W. Duval Mine Rd.

Green Valley, AZ 85622-0527

cc: Bill Dorris, Jim Norris, Dan Simpson

Project ID: OJ03Z5

ACZ Project ID: L64942

Ned Hall:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on September 11, 2007. This project has been assigned to ACZ's project number, L64942. Please reference this number in all future inquiries.

Bill to:

Accounts Payable
Phelps Dodge Sierrita

Phoenix, AZ 85002-2671

P.O. Box 2671

All analyses were performed according to ACZ's Quality Assurance Plan, version 12.0. The enclosed results relate only to the samples received under L64942. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after October 27, 2007. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years.

If you have any questions or other needs, please contact your Project Manager.

Phelps Dodge Sierrita

Project ID: OJ03Z5

Sample ID: FGW-MO-2007-3B ACZ Sample ID: L64942-01

Date Sampled: 09/10/07 14:26

Date Received: 09/11/07

Sample Matrix: Ground Water

Field Data									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Conductivity (Field)	Field Measurement	28.7			mS/cm			09/10/07 14:26	ma
pH (Field)	Field Measurement	7.5			units			09/10/07 14:26	ma
Temperature (Field)	Field Measurement	373.0			С			09/10/07 14:26	ma
Metals Analysis									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Calcium, dissolved	M200.7 ICP	31.5			mg/L	0.2	1	09/13/07 18:06	msh
Magnesium, dissolved	M200.7 ICP	2.8			mg/L	0.2	1	09/13/07 18:06	msh
Potassium, dissolved	M200.7 ICP	3.1			mg/L	0.3	2	09/13/07 18:06	msh
Sodium, dissolved	M200.7 ICP	44.1			mg/L	0.3	2	09/13/07 18:06	msh
Wet Chemistry									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration								
Bicarbonate as		134			mg/L	2	20	09/19/07 0:00	lcp
CaCO3									
Carbonate as CaCO3			U		mg/L	2	20	09/19/07 0:00	lcp
Hydroxide as CaCO3			U		mg/L	2	20	09/19/07 0:00	lcp
Total Alkalinity		134		*	mg/L	2	20	09/19/07 0:00	lcp
Cation-Anion Balance	Calculation								
Cation-Anion Balance		1.3			%			09/27/07 0:00	calc
Sum of Anions		3.7			meq/L	0.1	0.5	09/27/07 0:00	calc
Sum of Cations		3.8			meq/L	0.1	0.5	09/27/07 0:00	calc
Chloride	M300.0 - Ion Chromatography	7			mg/L	1	5	09/14/07 11:05	сср
Fluoride	M300.0 - Ion Chromatography	0.5		*	mg/L	0.1	0.5	09/13/07 20:30	сср
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2	0.33			mg/L	0.02	0.1	09/27/07 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	0.33			mg/L	0.02	0.1	09/11/07 20:09	pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction		UH	*	mg/L	0.01	0.05	09/19/07 20:29	pjb
Residue, Filterable (TDS) @180C	160.1 / SM2540C	250			mg/L	10	20	09/14/07 15:06	ear
Sulfate	300.0 - Ion Chromatography	38		*	mg/L	1	5	09/14/07 11:05	сср
TDS (calculated)	Calculation	209			mg/L	10	50	09/27/07 0:00	calc
TDS (ratio - measured/calculated)	Calculation	1.20			j			09/27/07 0:00	calc

Arizona license number: AZ0102

Inorganic Analytical Results

Phelps Dodge Sierrita

Project ID: OJ03Z5

Sample ID: UGW-MO-2007-3B

ACZ Sample ID: L64942-02

Date Sampled: 09/10/07 14:26

Date Received: 09/11/07

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	38	*	ma/L	1	5	09/14/07 11:23	CCD

Arizona license number: AZ0102

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report Header Explanations

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest

Limit Upper limit for RPD, in %.

Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit, typically 5 times the MDL.

QC True Value of the Control Sample or the amount added to the Spike

Rec Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

QC Sample Types

AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calivation Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution

QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method or calibration procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method.

Spikes/Fortified Matrix Determines sample matrix interferences, if any.

Standard Verifies the validity of the calibration.

ACZ Qualifiers (Qual)

B Analyte concentration detected at a value between MDL and PQL.

H Analysis exceeded method hold time. pH is a field test with an immediate hold time.

U Analyte was analyzed for but not detected at the indicated MDL

Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (5) EPA SW-846. Test Methods for Evaluating Solid Waste, Third Edition with Update III, December 1996.
- (6) Standard Methods for the Examination of Water and Wastewater, 19th edition, 1995.

Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.

(800) 334-5493

Phelps Dodge Sierrita

Project ID: OJ03Z5 ACZ Project ID: L64942

Alkalinity as CaC	O3		SM2320E	3 - Titration									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG232583													
WG232583PBW1	PBW	09/19/07 10:18				U	mg/L		-20	20			
WG232583LCSW2	LCSW	09/19/07 10:30	WC070917-1	820		829.6	mg/L	101.2	90	110			
WG232583PBW2	PBW	09/19/07 13:42				U	mg/L		-20	20			
WG232583LCSW5	LCSW	09/19/07 13:55	WC070917-1	820		838.2	mg/L	102.2	90	110			
L64945-01DUP	DUP	09/19/07 15:21			451	452.8	mg/L				0.4	20	
WG232583PBW3	PBW	09/19/07 16:51				U	mg/L		-20	20			
WG232583LCSW8	LCSW	09/19/07 17:04	WC070917-1	820		840.6	mg/L	102.5	90	110			
WG232583PBW4	PBW	09/19/07 20:24				U	mg/L		-20	20			
WG232583LCSW11		09/19/07 20:36	WC070917-1	820		842.6	mg/L	102.8	90	110			
WG232583LCSW14	LCSW	09/19/07 23:19	WC070917-1	820		846.6	mg/L	103.2	90	110			
Calcium, dissolve	ed		M200.7 IC	CP									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG232231													
WG232231ICV	ICV	09/13/07 17:01	11070911-1	100		97.12	mg/L	97.1	95	105			
WG232231ICB	ICB	09/13/07 17:05				U	mg/L		-0.6	0.6			
WG232231LFB	LFB	09/13/07 17:20	11070829-11	67.97008		69.37	mg/L	102.1	85	115			
L64933-02AS	AS	09/13/07 17:32	11070829-11	67.97008	80.4	149.47	mg/L	101.6	85	115			
L64933-02ASD	ASD	09/13/07 17:35	11070829-11	67.97008	80.4	149.24	mg/L	101.3	85	115	0.15	20	
Chloride			M300.0 -	Ion Chroma	atography	′							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG232234													
WG232234ICV	ICV	09/13/07 15:59	WI070910-1	20		19.89	mg/L	99.5	90	110			
WG232234ICB	ICB	09/13/07 16:17				U	mg/L		-1.5	1.5			
WG232234LFB	LFB	09/13/07 16:35	WI070727-1	30		29.34	mg/L	97.8	90	110			
L64532-01DUP	DUP	09/13/07 17:11			69	70.9	mg/L				2.7	20	
L64532-02AS	AS	09/13/07 17:47	WI070727-1	30	8.4	36.91	mg/L	95	90	110			
Fluoride			M300.0 -	Ion Chroma	atography	′							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG232234													
WG232234ICV	ICV	09/13/07 15:59	WI070910-1	3.984		4.19	mg/L	105.2	90	110			
WG232234ICB	ICB	09/13/07 16:17				U	mg/L		-0.3	0.3			
WG232234LFB	LFB	09/13/07 16:35	WI070727-1	1.5		1.54	mg/L	102.7	90	110			
L64532-01DUP	DUP	09/13/07 17:11			44.6	45.71	mg/L				2.5	20	
L64532-02AS	AS	09/13/07 17:47	WI070727-1	1.5	4.3	5.51	mg/L	80.7	90	110			M2
Magnesium, diss	olved		M200.7 IC	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG232231													
WG232231ICV	ICV	09/13/07 17:01	11070911-1	100		98.04	mg/L	98	95	105			
WG232231ICB	ICB	09/13/07 17:05				U	mg/L		-0.6	0.6			
WG232231LFB	LFB	09/13/07 17:20	11070829-11	54.96908		55.54	mg/L	101	85	115			
L64933-02AS	AS	09/13/07 17:32	11070829-11	54.96908	7.1	64.3	mg/L	104.1	85	115			
L64933-02ASD	ASD	09/13/07 17:35	11070829-11	54.96908	7.1	64.05	mg/L	103.6	85	115	0.39	20	
-													

0.37

20

115

L64942

ACZ Project ID:

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Phelps Dodge Sierrita

Project ID: OJ03Z5

Nitrate/Nitrite as N, dissolved M353.2 - Automated Cadmium Reduction ACZ ID Analyzed PCN/SCN QC Sample Found Units RPD Limit WG232070 WG232070ICV ICV 09/11/07 18:54 WI070911-1 2.416 2.428 mg/L 100.5 90 110 WG232070ICB ICB 09/11/07 18:55 U mg/L -0.06 0.06 WG232070LFB LFB WI070911-4 2 2.052 09/11/07 19:00 mg/L 102.6 90 110 .64 L64923-01AS AS 09/11/07 19:21 WI070911-4 2 2.564 mg/L 96.2 90 110 L64924-01DUP DUP 09/11/07 19:24 .67 .707 5.4 20 mg/L Nitrite as N, dissolved M353.2 - Automated Cadmium Reduction Sample Found Rec Туре Analyzed Upper RPD WG232665 WG232665ICV 100.7 ICV 09/19/07 20:15 WI070911-1 .609 .613 90 110 mg/L WG232665ICB ICB 09/19/07 20:16 U -0.03 0.03 mg/L 1.007 WG232665LFB1 LFB 09/19/07 20:22 WI070911-4 mg/L 100.7 90 110 1 U L64923-01AS AS 09/19/07 20:24 WI070911-4 1 .959 mg/L 95.9 90 110 L64924-01DUP DUP U U 20 RA 09/19/07 20:27 mg/L WG232665LFB2 LFB 09/19/07 21:00 WI070911-4 1 1.008 mg/L 100.8 90 110 Potassium, dissolved M200.7 ICP ACZ ID Type Analyzed PCN/SCN QC Found Units Rec Lower Upper RPD Limit Qual WG232231 WG232231ICV ICV 09/13/07 17:01 11070911-1 20 19.91 mg/L 99.6 95 105 WG232231ICB ICB U 09/13/07 17:05 -0.9 0.9 mg/L WG232231LFB LFB 09/13/07 17:20 11070829-11 99.76186 102.39 mg/L 102.6 85 115 L64933-02AS AS 09/13/07 17:32 11070829-11 99.76186 1.5 109.32 mg/L 108 1 85 115 L64933-02ASD ASD 09/13/07 17:35 11070829-11 99.76186 109.12 85 1.5 mg/L 107.9 115 0.18 20 160.1 / SM2540C Residue, Filterable (TDS) @180C ACZ ID Туре Analyzed PCN/SCN Sample Found Units Lower Upper WG232320 WG232320PRW PRW 09/14/07 14:55 10 -20 20 mg/L WG232320LCSW **LCSW** 09/14/07 14:57 PCN27694 261 288 mg/L 110.3 80 120 L64959-01DUP DUP 09/14/07 15:23 3780 3774 mg/L 0.2 20 Sodium, dissolved M200.7 ICP ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit Qual WG232231 WG232231ICV ICV 09/13/07 17:01 11070911-1 100 99.91 105 mg/L 99.9 95 WG232231ICB ICB U 09/13/07 17:05 -0.9 0.9 mg/L WG232231LFB LFB 100.88 09/13/07 17:20 11070829-11 98.21624 mg/L 102.7 85 115 L64933-02AS AS 09/13/07 17:32 11070829-11 98.21624 1.7 106.91 mg/L 107.1 85 115

L64933-02ASD

09/13/07 17:35

11070829-11

98.21624

1.7

106.52

mg/L

106.7

85

ASD

Inorganic QC Summary

(800) 334-5493

Phelps Dodge Sierrita

ACZ Project ID: L64942

Project ID: OJ03Z5

Sulfate			300.0 - Ior	n Chroma	tography								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG232234													
WG232234ICV	ICV	09/13/07 15:59	WI070910-1	50.1		52.62	mg/L	105	90	110			
WG232234ICB	ICB	09/13/07 16:17				U	mg/L		-1.5	1.5			
WG232234LFB	LFB	09/13/07 16:35	WI070727-1	30		30.67	mg/L	102.2	90	110			
L64532-01DUP	DUP	09/13/07 17:11			U	U	mg/L				0	20	RA
L64532-02AS	AS	09/14/07 11:59	WI070727-1	300	494	798.9	mg/L	101.6	90	110			

Inorganic Extended Qualifier Report

ACZ Project ID: L64942

Phelps Dodge Sierrita

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L64942-01	WG232234	Fluoride	M300.0 - Ion Chromatography	M2	Matrix spike recovery was low, the method control sample recovery was acceptable.
	WG232665	Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HC	Initial analysis within holding time. Reanalysis was past holding time, which was required due to a QC failure during the initial analysis.
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG232234	Sulfate	300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG232583	Total Alkalinity	SM2320B - Titration	QA	Sample container with preservation type specified by the method was not available for analysis. Alternate sample container was used.
L64942-02	WG232234	Sulfate	300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).

Certification Qualifiers

Phelps Dodge Sierrita ACZ Project ID: L64942

No certification qualifiers associated with this analysis

Sample Receipt

Phelps Dodge Sierrita

OJ03Z5

ACZ Project ID:

L64942

Date Received:

9/11/2007

Received By:

Date Printed: 9/11/2007

Receipt Verification

- 1) Does this project require special handling procedures such as CLP protocol?
- 2) Are the custody seals on the cooler intact?
- 3) Are the custody seals on the sample containers intact?
- 4) Is there a Chain of Custody or other directive shipping papers present?
- 5) Is the Chain of Custody complete?
- 6) Is the Chain of Custody in agreement with the samples received?
- 7) Is there enough sample for all requested analyses?
- 8) Are all samples within holding times for requested analyses?
- 9) Were all sample containers received intact?
- 10) Are the temperature blanks present?
- 11) Are the trip blanks (VOA and/or Cyanide) present?
- 12) Are samples requiring no headspace, headspace free?
- 13) Do the samples that require a Foreign Soils Permit have one?

YES	NO	NA
		Х
		Х
		Х
Х		
X		
X		
Х		
X		
		Х
		Х
		Х
		Х
	1	

Exceptions: If you answered no to any of the above questions, please describe

N/A

Contact (For any discrepancies, the client must be contacted)

N/A

Shipping Containers

Cooler Id	Temp (°C)	Rad (µR/hr)
NA4410	2.2	16

Client must contact ACZ Project Manager if analysis should not proceed for samples received outside of thermal preservation acceptance criteria.

Notes

Sample Receipt

Phelps Dodge Sierrita

OJ03Z5

ACZ Project ID: Date Received: L64942 9/11/2007

Received By:

Sample Container Preservation

SAMPLE	CLIENT ID	R < 2	G < 2	BK < 2	Y< 2	YG< 2	B< 2	0 < 2	T >12	N/A	RAD	ID
L64942-01	FGW-MO-2007-3B		Υ									
L64942-02	UGW-MO-2007-3B											

Sample Container Preservation Legend

Abbreviation	Description	Container Type	Preservative/Limits
R	Raw/Nitric	RED	pH must be < 2
В	Filtered/Sulfuric	BLUE	pH must be < 2
BK	Filtered/Nitric	BLACK	pH must be < 2
G	Filtered/Nitric	GREEN	pH must be < 2
0	Raw/Sulfuric	ORANGE	pH must be < 2
Р	Raw/NaOH	PURPLE	pH must be > 12 *
Т	Raw/NaOH Zinc Acetate	TAN	pH must be > 12
Υ	Raw/Sulfuric	YELLOW	pH must be < 2
YG	Raw/Sulfuric	YELLOW GLASS	pH must be < 2
N/A	No preservative needed	Not applicable	
RAD	Gamma/Beta dose rate	Not applicable	must be $< 250 \mu R/hr$

^{*} pH check performed by analyst prior to sample preparation

Sample IDs Reviewed By:

ACZ Labo	ratories, Inc.						CHAIN	of CU	STODY
2773 Downhill Drive Steamboat Sp	orings, CO 80487 (800) 33	4-5 <u>4</u> 93							
Report to:	<u> </u>					,			
Name: Dan Sinpso	<u>7</u>	_	Addre	ess: <u>5</u>	1 u		letmore		
Company: Hydro Geo		_			1CSOX	,	2 85	705	<u> </u>
E-mail: dans@ hycinc.	Com		Telep	hone: (<u>520</u>	293	-1500)	
Copy of Report to:									
Name: Ned Hall/B111, Do 11	is) in Norris		E-ma	il: Jimi	n@ha	cinc.c	on bill	y docis	@fml.co
Company: PDST / HG			Telep	hone: 5	20 29	3-150	o kur	648-9	4873
Invoice to:							- 7/1	<u> </u>	7070
Name: Ned Hall			Addre	2001	620	<u> </u>	D	ha c	D
Company: POSI	<u>-</u>	-		PO Box	<u>ຍ </u>	7 (Dural	101,4e	Ildi.
E-mail: ned-hall@fm		-			1			ley, HZ	45622
If sample(s) received past holding	·			hone:		678-	1588	·	
analysis before expiration, shall A					•			YES /	Δ
If "NO" then ACZ will contact clier									
is indicated, ACZ will proceed wit	n the requested analyses,	even if H							
PROJECT INFORMATION			AN	ALYSES	REQUE	STED (a	ittach list or	use quote	number)
Quote #: Sierrita Sho	<u>d</u>	_	ري		- 3				
Project/PO#: OJQ3Z	5	4	of Containers	\ \	8 7				
Reporting state for compliance to		_	nta	-4	۵, <u>چ</u>				
Sampler's Name: M. Arne:		_	ြင္မ	3	たり	77			
Are any samples NRC licensable			*	3	ろこ	Ŏ			
SAMPLE IDENTIFICATION	DATE:TIME	Matrix		<u> </u>	₹ 0	<u> </u>	ρH	EC 1	emp
FGW-MO-2007-3B		GW	2	X	X		7.53	373 2	8.7
UGW-MO-2007-3B	9-10-07: 1426	GW		<u> </u>		$X \perp$	7.53	373 2	\$.2
			ļ						
**									
Matrix SW (Surface Water) - GW (Ground Water) · WW (Waste Wa	ater) · DW	(Drinking	Water) · S	L (Sludge) SO (So	ii) · OL (Oil) · C	Other (Specify	/)
REMARKS									
FGW = Filtered	(County works	· 41	mole		. =				
FGW= Filtered UGW = Unfilte	1) ()]
UGW - Until	red bround mot	er su	mpic						
Diago vo	for to AC7's tarms 0 can	dition - J	ا- علمم						
RELINQUISHED BY:	fer to ACZ's terms & con- DATE:T		cated				nis COC.	6.4=	
// \//Au \/ //			1		CEIVE	D BY:		DATE	TIME
1 / MINNIMINA	9-10-07:	1500	_ h	SYC				7-11-07	11:07
		-						·	
]

October 19, 2007

Report to:

Ned Hall

Phelps Dodge Sierrita

P.O. Box 527 6200 W. Duval Mine Rd.

Green Valley, AZ 85622-0527

cc: Bill Dorris, Jim Norris, Dan Simpson

Project ID: OJ03Z5

ACZ Project ID: L65452

Ned Hall:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on October 04, 2007. This project has been assigned to ACZ's project number, L65452. Please reference this number in all future inquiries.

Bill to:

Accounts Payable
Phelps Dodge Sierrita

Phoenix, AZ 85002-2671

P.O. Box 2671

All analyses were performed according to ACZ's Quality Assurance Plan, version 12.0. The enclosed results relate only to the samples received under L65452. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after November 19, 2007. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years.

If you have any questions or other needs, please contact your Project Manager.

Project ID: OJ03Z5

Sample ID: MO-2007-6AF Date Sampled: 10/02/07 14:55

Date Received: 10/04/07

Sample Matrix: Ground Water

Field Data									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Conductivity (Field)	Field Measurement	405			mS/cm			10/02/07 14:55	ma
pH (Field)	Field Measurement	7.5			units			10/02/07 14:55	ma
Temperature (Field)	Field Measurement	28.5			С			10/02/07 14:55	ma
Metals Analysis									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Calcium, dissolved	M200.7 ICP	36.3			mg/L	0.2	1	10/13/07 6:22	erf
Magnesium, dissolved	M200.7 ICP	5.4			mg/L	0.2	1	10/13/07 6:22	erf
Potassium, dissolved	M200.7 ICP	3.8			mg/L	0.3	2	10/13/07 6:22	erf
Sodium, dissolved	M200.7 ICP	39.8			mg/L	0.3	2	10/13/07 6:22	erf
Wet Chemistry									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration								
Bicarbonate as CaCO3		164			mg/L	2	20	10/06/07 0:00	lcp
Carbonate as CaCO3			U		mg/L	2	20	10/06/07 0:00	lcp
Hydroxide as CaCO3			U		mg/L	2	20	10/06/07 0:00	lcp
Total Alkalinity		164		*	mg/L	2	20	10/06/07 0:00	lcp
Cation-Anion Balance	Calculation								
Cation-Anion Balance		-1.2			%			10/19/07 0:00	calc
Sum of Anions		4.2			meq/L	0.1	0.5	10/19/07 0:00	calc
Sum of Cations		4.1			meq/L	0.1	0.5	10/19/07 0:00	calc
Chloride	M300.0 - Ion Chromatography	10.5			mg/L	0.5	3	10/11/07 23:58	jlf
Fluoride	M300.0 - Ion Chromatography	0.3	В	*	mg/L	0.1	0.5	10/11/07 23:58	jlf
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2	0.99			mg/L	0.02	0.1	10/19/07 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	0.99	Н	*	mg/L	0.02	0.1	10/04/07 21:16	pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction		HU	*	mg/L	0.01	0.05	10/04/07 21:16	pjb
Residue, Filterable (TDS) @180C	160.1 / SM2540C	920			mg/L	10	20	10/04/07 16:35	ear
Sulfate	300.0 - Ion Chromatography	26.5			mg/L	0.5	3	10/11/07 23:58	jlf
TDS (calculated)	Calculation	225			mg/L	10	50	10/19/07 0:00	calc

Project ID: OJ03Z5

Sample ID: MO-2007-6A Date Sampled: 10/02/07 14:55

Date Received: 10/04/07

Sample Matrix: Ground Water

┌∶┈	ı	Data	_

Parameter	EPA Method	Result	Qual X	Q Units	MDL	PQL	Date	Analyst
Conductivity (Field)	Field Measurement	405		mS/cm			10/02/07 14:55	ma
pH (Field)	Field Measurement	7.5		units			10/02/07 14:55	ma
Temperature (Field)	Field Measurement	28.5		С			10/02/07 14:55	ma
Wet Chemistry								
Parameter	EPA Method	Result	Qual X	Q Units	MDL	PQL	Date	Analyst
Parameter Chloride	EPA Method M300.0 - Ion Chromatography	Result 11		Q Units * mg/L	MDL 3	PQL 10	Date 10/12/07 0:16	Analyst jlf
			,					

Project ID: OJ03Z5

Sample ID: MO-2007-DUPF Date Sampled: 10/02/07 15:00

Date Received: 10/04/07

Sample Matrix: Ground Water

Field Data									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Conductivity (Field)	Field Measurement	405			mS/cm			10/02/07 15:00	ma
pH (Field)	Field Measurement	7.5			units			10/02/07 15:00	ma
Temperature (Field)	Field Measurement	28.5			С			10/02/07 15:00	ma
Metals Analysis									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Calcium, dissolved	M200.7 ICP	36.4			mg/L	0.2	1	10/13/07 6:26	erf
Magnesium, dissolved	M200.7 ICP	5.4			mg/L	0.2	1	10/13/07 6:26	erf
Potassium, dissolved	M200.7 ICP	3.8			mg/L	0.3	2	10/13/07 6:26	erf
Sodium, dissolved	M200.7 ICP	40.0			mg/L	0.3	2	10/13/07 6:26	erf
Wet Chemistry									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration								
Bicarbonate as CaCO3		163			mg/L	2	20	10/06/07 0:00	lcp
Carbonate as CaCO3			U		mg/L	2	20	10/06/07 0:00	lcp
Hydroxide as CaCO3			U		mg/L	2	20	10/06/07 0:00	Icp
Total Alkalinity		163		*	mg/L	2	20	10/06/07 0:00	lcp
Cation-Anion Balance	Calculation								
Cation-Anion Balance	•	-1.2			%			10/19/07 0:00	calc
Sum of Anions		4.2			meq/L	0.1	0.5	10/19/07 0:00	calc
Sum of Cations		4.1			meq/L	0.1	0.5	10/19/07 0:00	calc
Chloride	M300.0 - Ion Chromatography	10.5			mg/L	0.5	3	10/12/07 0:34	jlf
Fluoride	M300.0 - Ion Chromatography	0.3	В	*	mg/L	0.1	0.5	10/12/07 0:34	jlf
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2	0.98			mg/L	0.02	0.1	10/19/07 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	0.98	Н	*	mg/L	0.02	0.1	10/04/07 21:18	pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction		HU	*	mg/L	0.01	0.05	10/04/07 21:18	pjb
Residue, Filterable (TDS) @180C	160.1 / SM2540C	260			mg/L	10	20	10/05/07 14:48	ear
Sulfate	300.0 - Ion Chromatography	26.5			mg/L	0.5	3	10/12/07 0:34	jlf
TDS (calculated)	Calculation	225			mg/L	10	50	10/19/07 0:00	calc

Project ID: OJ03Z5

Sample ID: MO-2007-DUP Date Sampled: 10/02/07 15:00

Date Received: 10/04/07

Sample Matrix: Ground Water

Fie	ld	Da	ta
Ьıе	ld	Dα	ta

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Conductivity (Field)	Field Measurement	405		mS/cm			10/02/07 15:00	ma
pH (Field)	Field Measurement	7.5		units			10/02/07 15:00	ma
Temperature (Field)	Field Measurement	28.5		С			10/02/07 15:00	ma
Wet Chemistry								
Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Chloride	M300.0 - Ion Chromatography	10.5	*	mg/L	0.5	3	10/12/07 0:52	jlf
Residue, Filterable (TDS) @180C	160.1 / SM2540C	240		mg/L	10	20	10/05/07 14:50	ear
Sulfate	300.0 - Ion Chromatography	26.5	*	mg/L	0.5	3	10/12/07 0:52	ilf

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report Header Explanations

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest

Limit Upper limit for RPD, in %.

Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit, typically 5 times the MDL.

QC True Value of the Control Sample or the amount added to the Spike

Rec Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

QC Sample Types

AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calivation Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution

QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method or calibration procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method.

Spikes/Fortified Matrix Determines sample matrix interferences, if any.

Standard Verifies the validity of the calibration.

ACZ Qualifiers (Qual)

B Analyte concentration detected at a value between MDL and PQL.

H Analysis exceeded method hold time. pH is a field test with an immediate hold time.

U Analyte was analyzed for but not detected at the indicated MDL

Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (5) EPA SW-846. Test Methods for Evaluating Solid Waste, Third Edition with Update III, December 1996.
- (6) Standard Methods for the Examination of Water and Wastewater, 19th edition, 1995.

Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.

ACZ Project ID: L65452

(800) 334-5493

Phelps Dodge Sierrita

Project ID: OJ03Z5

Alkalinity as CaC	O3		SM2320E	3 - Titration									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qua
WG233788													
WG233788PBW1	PBW	10/05/07 17:34				U	mg/L		-20	20			
WG233788LCSW2	LCSW	10/05/07 17:47	WC070928-1	820		834	mg/L	101.7	90	110			
WG233788PBW2	PBW	10/05/07 20:17				U	mg/L		-20	20			
WG233788LCSW5	LCSW	10/05/07 20:28	WC070928-1	820		841.5	mg/L	102.6	90	110			
WG233788PBW3	PBW	10/05/07 23:47				U	mg/L		-20	20			
WG233788LCSW8	LCSW	10/05/07 23:59	WC070928-1	820		830.9	mg/L	101.3	90	110			
WG233788PBW3	PBW	10/06/07 9:12				8.5	mg/L		-20	20			
WG233788LCSW8	LCSW	10/06/07 9:24	WC070928-1	820		833	mg/L	101.6	90	110			
L65464-09DUP	DUP	10/06/07 11:11			1300	1292.7	mg/L				0.6	20	
WG233788PBW4	PBW	10/06/07 12:50				2.7	mg/L		-20	20			
WG233788LCSW11	LCSW	10/06/07 13:02	WC070928-1	820		840.1	mg/L	102.5	90	110			
WG233788LCSW14	LCSW	10/06/07 15:59	WC070928-1	820		842.5	mg/L	102.7	90	110			
Calcium, dissolv	ed		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qua
WG234257													
WG234257ICV	ICV	10/13/07 4:07	11071009-7	100		98.89	mg/L	98.9	95	105			
WG234257ICB	ICB	10/13/07 4:12				U	mg/L		-0.6	0.6			
NG234257LFB	LFB	10/13/07 4:28	11071012-2	67.97008		69.17	mg/L	101.8	85	115			
L65449-07AS	AS	10/13/07 5:36	11071012-2	67.97008	23	91.75	mg/L	101.1	85	115			
_65449-07ASD	ASD	10/13/07 5:40	11071012-2	67.97008	23	92.03	mg/L	101.6	85	115	0.3	20	
Chloride			M300.0 -	Ion Chrom	atography	,							
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qua
WG226250													
WG226250ICV	ICV	06/11/07 13:52	IC070606-1	20		20.34	mg/L	101.7	90	110			
WG226250ICB	ICB	06/11/07 14:10				U	mg/L		-1.5	1.5			
WG226250ICV1	ICV	06/12/07 14:59	IC070606-1	20		20.31	mg/L	101.6	90	110			
WG226250ICB1	ICB	06/12/07 15:17				U	mg/L		-1.5	1.5			
WG234134													
WG234134ICV	ICV	06/11/07 13:52	WI070910-1	20		20.34	mg/L	101.7	90	110			
WG234134ICB	ICB	06/11/07 14:10				U	mg/L		-1.5	1.5			
WG234134LFB1	LFB	10/11/07 12:30	WI070727-1	30		30.84	mg/L	102.8	90	110			
WG234134LFB2	LFB	10/11/07 21:15	WI070727-1	30		29.41	mg/L	98	90	110			
_65451-09DUP	DUP	10/11/07 21:51			8.4	8.44	mg/L				0.5	20	
							J.						

L65451-10AS

AS

10/11/07 22:27 WI070727-1

30

8.2

37.81

mg/L

98.7

90

110

ACZ Project ID: L65452

(800) 334-5493

Phelps Dodge Sierrita

Project ID: OJ03Z5

Fluoride			M300.0 -	Ion Chrom	atography	′							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226250													
WG226250ICV	ICV	06/11/07 13:52	IC070606-1	3.984		4.13	mg/L	103.7	90	110			
WG226250ICB	ICB	06/11/07 14:10				U	mg/L		-0.3	0.3			
WG226250ICV1	ICV	06/12/07 14:59	IC070606-1	3.984		4.11	mg/L	103.2	90	110			
WG226250ICB1	ICB	06/12/07 15:17				U	mg/L		-0.3	0.3			
WG234134													
WG234134ICV	ICV	06/11/07 13:52	WI070910-1	3.984		4.13	mg/L	103.7	90	110			
WG234134ICB	ICB	06/11/07 14:10				U	mg/L		-0.3	0.3			
WG234134LFB1	LFB	10/11/07 12:30	WI070727-1	1.5		1.58	mg/L	105.3	90	110			
WG234134LFB2	LFB	10/11/07 21:15	WI070727-1	1.5		1.51	mg/L	100.7	90	110			
L65451-09DUP	DUP	10/11/07 21:51			.6	.64	mg/L				6.5	20	R/
L65451-10AS	AS	10/11/07 22:27	WI070727-1	1.5	.7	2.18	mg/L	98.7	90	110			
Magnesium, dis	solved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG234257													
WG234257ICV	ICV	10/13/07 4:07	11071009-7	100		99.98	mg/L	100	95	105			
WG234257ICB	ICB	10/13/07 4:12				U	mg/L	.00	-0.6	0.6			
WG234257LFB	LFB	10/13/07 4:28	11071012-2	54.96908		55.73	mg/L	101.4	85	115			
L65449-07AS	AS	10/13/07 5:36	11071012-2	54.96908	9.3	65.4	mg/L	102.1	85	115			
L65449-07ASD	ASD	10/13/07 5:40	11071012-2	54.96908	9.3	65.45	mg/L	102.1	85	115	0.08	20	
Nitrate/Nitrite as	s N, diss	olved	M353.2 -	Automated	I Cadmiur	n Reduc	tion						
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG233713													
WG233713ICV	ICV	10/04/07 20:50	WI070911-1	2.416		2.38	mg/L	98.5	90	110			
WG233713ICB	ICB	10/04/07 20:51				U	mg/L		-0.06	0.06			
WG233713LFB	LFB	10/04/07 20:56	WI070911-4	2		1.964	mg/L	98.2	90	110			
L65452-01AS	AS	10/04/07 21:17	WI070911-4	2	.99	2.848	mg/L	92.9	90	110			
L65452-03DUP	DUP	10/04/07 21:19			.98	.981	mg/L				0.1	20	
Nitrite as N, dis	solved		M353.2 -	Automated	I Cadmiur	n Reduc	tion						
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG233713													
WG233713ICV	ICV	10/04/07 20:50	WI070911-1	.609		.606	mg/L	99.5	90	110			
WG233713ICB	ICB	10/04/07 20:51	111010011-1	.003		.000 U	mg/L	55.5	-0.03	0.03			
WG233713LFB	LFB	10/04/07 20:56	WI070911-4	1		.991	mg/L	99.1	90	110			
L65452-01AS	AS	10/04/07 21:17	WI070911-4	1		1.002	mg/L	100.2	90	110			
	,	10,01,01 21.11	JUIT										

(800) 334-5493

Phelps Dodge Sierrita

Project ID: OJ03Z5 ACZ Project ID: L65452

Residue, Filter>	Potassium, diss	olved		M200.7 I	СР									
WG234257 CV CV 10/13/07 4/07 10/10/08-7 20 20,33 mg L 101.7 95 105 105 106 107 1	ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG234257CB	WG234257													
WG23425TJFB	WG234257ICV	ICV	10/13/07 4:07	11071009-7	20		20.33	mg/L	101.7	95	105			
WG23425TJFB LFB	WG234257ICB	ICB	10/13/07 4:12				U	•		-0.9	0.9			
Residue, Filter>	WG234257LFB	LFB	10/13/07 4:28	11071012-2	99.76186		102.31	-	102.6	85	115			
Residue, Filterable (TDS)	L65449-07AS	AS	10/13/07 5:36	11071012-2	99.76186	2.8	107.88	mg/L	105.3	85	115			
ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit Qual	L65449-07ASD	ASD	10/13/07 5:40	11071012-2	99.76186	2.8	108.46	mg/L	105.9	85	115	0.54	20	
WG233688 WG233688PPW	Residue, Filteral	ble (TDS) @180C	160.1 / S	M2540C									
WG23368BPBW	ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG23368BLCSW	WG233688													
WG23368BLCSW	WG233688PBW	PBW	10/04/07 15:50				U	ma/L		-20	20			
MG234773 MG234773 MG234773 MG234773 MG234773 MG234773 MG234773 MG234773 MG234773 MG234773 MG234773 MG234773 MG234773 MG234773 MG234773 MG234773 MG23473				PCN28206	260			•	119.5					
WG233773 WG233773 PBW						4110		•				0.6	20	
WG233773PBW														
WG233773LCSW		DR\W	10/05/07 14:30				- 11	ma/l		-20	20			
M200.7 CP M200.7 CP M200.7 CP M200.7 CP M200.7 CP M200.7 CP M200.7 CP M200.7 CP M200.7 CP M200.7 CP M200.7 CP M200.7 CP M200.7 CP M200.7				DCN38306	260			-	07.3					
M200.7 CP Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit Qual				1 01120200	200	1380		•	37.5	00	120	0.4	20	
MG234257 MG234257 MG234	-		10/03/07 13.01			1360	1374	IIIg/L				0.4	20	
WG234257ICV ICV 10/13/07 4:07 II071009-7 100 100.25 mg/L 100.3 95 105 WG234257ICP ICB 10/13/07 4:12 U mg/L -0.9 0.9 WG234257ICP ICB 10/13/07 4:28 II071012-2 98.21624 99.59 mg/L 101.4 85 115 L65449-07AS AS 10/13/07 5:36 II071012-2 98.21624 15.2 115.4 mg/L 102 85 115 L65449-07AS AS 10/13/07 5:40 II071012-2 98.21624 15.2 115.35 mg/L 102 85 115 0.04 20 Sulfate 30.0 - Ion Chromatography ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit Qual WG226250 WG226250 WG226250ICV ICV 06/11/07 13:52 IC070606-1 50.15 51.51 mg/L 102.7 90 110 WG226250ICB ICB 06/11/07 14:10 U mg/L -1.5 1.5 WG226250ICV ICV 06/12/07 14:59 IC070606-1 50.15 51.17 mg/L 102 90 110 WG226250ICB ICB 06/12/07 15:17 U mg/L -1.5 1.5 WG226250ICB ICB 06/12/07 15:17 U mg/L -1.5 1.5 WG22613144U ICV 06/11/07 13:52 WI070910-1 50.1 51.51 mg/L 102.8 90 110 WG22613144ICB ICB 06/11/07 14:10 U mg/L -1.5 1.5 WG234134ICB ICB 06/11/07 14:10 U mg/L -1.5 1.5 WG234134ICB ICB 06/11/07 12:30 WI070727-1 30 32.06 mg/L 106.9 90 110 WG234134LFB1 LFB 10/11/07 21:35 WI070727-1 30 30.14 mg/L 100.5 90 110 U L65451-09DUP DUP 10/11/07 21:51 WI070727-1 30 30.14 mg/L 100.5 90 110 L65451-09DUP DUP 10/11/07 21:51 WI070727-1 30 30.14 mg/L 100.5 90 110 L65451-09DUP DUP 10/11/07 21:51 WI070727-1 30 30.14 mg/L 100.5 90 110 U.15 U.15 U.15 U.15 U.15 U.15 U.15 U.15														
WG234257ICV ICV 10/13/07 4:07 I071009-7 100 100.25 mg/L 100.3 95 105 105 WG234257ICB ICB 10/13/07 4:12 98.21624 99.59 mg/L 101.4 85 115 115 165449-07AS AS 10/13/07 5:36 I071012-2 98.21624 15.2 115.4 mg/L 102 85 115 1	ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG234257ICB ICB 10/13/07 4:12	WG234257													
WG234257LFB LFB 10/13/07 4:28 II071012-2 98.21624 99.59 mg/L 101.4 85 115 L65449-07AS AS 10/13/07 5:36 II071012-2 98.21624 15.2 115.4 mg/L 102 85 115 0.04 20 Sulfate 300.0 - Ion Chromatography AGZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit Qual WG226250 WG226250ICV ICV 06/11/07 13:52 IC070606-1 50.15 51.51 mg/L 102 90 110 WG226250ICN1 ICV 06/12/07 14:59 IC070606-1 50.15 51.17 mg/L 102 90 110 WG226250ICN1 ICN 06/12/07 15:17 U mg/L -1.5 1.5 WG234134LV ICN 06/11/07 13:52 WI070910-1 50.1 51.51 mg/L 102.8 90 110 WG234134ICN ICN 06/11/07 12:30 WI070727-1 30 30.04 mg/L -1.5 1.5 WG234134LFB1 LFB 10/11/07 12:30 WI070727-1 30 30.14 mg/L 100.5 90 110 WG234134LFB2 LFB 10/11/07 21:51 WI070727-1 30 30.14 mg/L 100.5 90 110 WG234134LFB2 LFB 10/11/07 21:51 WI070727-1 30 30.14 mg/L 100.5 90 110 U 0.1 20	WG234257ICV	ICV	10/13/07 4:07	11071009-7	100		100.25	mg/L	100.3	95	105			
L65449-07AS AS 10/13/07 5:36 II071012-2 98.21624 15.2 115.4 mg/L 102 85 115 L65449-07ASD ASD 10/13/07 5:40 II071012-2 98.21624 15.2 115.35 mg/L 102 85 115 0.04 20 Sulfate 300.0 - Ion Chromatography ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit Qual WG226250 WG226250ICV ICV 06/11/07 13:52 IC070606-1 50.15 51.51 mg/L 102.7 90 110 WG226250CB ICB 06/11/07 14:10 U mg/L -1.5 1.5 WG226250ICVI ICV 06/12/07 14:59 IC070606-1 50.15 51.17 mg/L 102 90 110 WG226250ICB I ICB 06/12/07 15:17 U mg/L 102 90 110 WG226250ICB I ICB 06/11/07 14:59 IC070606-1 50.15 51.51 mg/L 102 90 110 WG226250ICB I ICB 06/12/07 15:17 U mg/L 102 90 110 WG2341344 WG234134ICV ICV 06/11/07 13:52 WI070910-1 50.1 51.51 mg/L 102.8 90 110 WG234134ICB ICB 06/11/07 14:10 U mg/L -1.5 1.5 WG234134LFB1 LFB 10/11/07 12:30 WI070727-1 30 30.4 mg/L 106.9 90 110 WG234134LFB2 LFB 10/11/07 21:15 WI070727-1 30 30.14 mg/L 100.5 90 110 WG234134LFB2 LFB 10/11/07 21:51 WI070727-1 30 30.14 mg/L 100.5 90 110 WG234134LFB2 LFB 10/11/07 21:51 WI070727-1 30 30.14 mg/L 100.5 90 110 WG234134LFB2 LFB 10/11/07 21:51 WI070727-1 30 30.14 mg/L 100.5 90 110 WG234134LFB2 LFB 10/11/07 21:51 WI070727-1 30 30.14 mg/L 100.5 90 110 WG234134LFB2 LFB 10/11/07 21:51 WI070727-1 30 30.14 mg/L 100.5 90 110 WG234134LFB2 LFB 10/11/07 21:51 WI070727-1 30 30.14 mg/L 100.5 90 110 WG234134LFB2 LFB 10/11/07 21:51 WI070727-1 30 30.14 mg/L 100.5 90 110 WG234134LFB2 LFB 10/11/07 21:51 WI070727-1 30 30.14 mg/L 100.5 90 110 WG234134LFB2 LFB 10/11/07 21:51 WI070727-1 30 30.14 mg/L 100.5 90 110 WG234134LFB2 LFB 10/11/07 21:51 WI070727-1 30 30.14 mg/L 100.5 90 110 WG234134LFB3 LFB 10/11/07 21:51 WI070727-1 30 30.14 mg/L 100.5 90 110 WG234134LFB3 LFB 10/11/07 21:51 WI070727-1 30 30.14 mg/L 100.5 90 110 WG234134LFB3 LFB 10/11/07 21:51 WI070727-1 30 30.14 mg/L 100.5 90 110 WG234134LFB3 LFB 10/11/07 21:51 WI070727-1 30 30.14 mg/L 100.5 90 110 WG234134LFB3 LFB 10/11/07 21:51 WI070727-1 30 30.14 mg/L 100.5 90	WG234257ICB	ICB	10/13/07 4:12				U	mg/L		-0.9	0.9			
Sulfate 300.0 - In Chromatography Sulfate 300.0 - In Chromatography Sulfate 300.0 - In Chromatography Sulfate 300.0 - In Chromatography Sulfate 300.0 - In Chromatography Sulfate 300.0 - In Chromatography Sulfate 300.0 - In Chromatography Sulfate 300.0 - In Chromatography Sulfate 300.0 - In Chromatography Sulfate 300.0 - In Chromatography Sulfate 300.0 - In Chromatography Sulfate 300.0 - In Chromatography Sulfate Sulf	WG234257LFB	LFB	10/13/07 4:28	11071012-2	98.21624		99.59	mg/L	101.4	85	115			
Sulfate 300.0 - Ion Chromatography ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit Qual WG226250 WG226250ICV ICV 06/11/07 13:52 IC070606-1 50.15 51.51 mg/L 102.7 90 110 MG2626250ICW ICW 06/11/07 14:10 Umag/L -1.5 1.5 Limit Qual Qual MG2626250ICW ICW 06/11/07 14:10 Umag/L 102.7 90 110 MG2626250ICW MG2626250ICW ICW 06/12/07 14:59 IC070606-1 50.15 51.17 mg/L 102 90 110 MG2626250ICW MG2626250ICW ICW 06/12/07 15:17 MG2626250ICW Umag/L 102 90 110 MG2626250ICW MG2626250ICW MG2626250ICW MG2626250ICW MG2626250ICW MG2626250ICW MG2626250ICW MG2626250ICW MG2726250ICW MG2726250ICW MG2726250ICW MG2726250ICW MG2726250ICW MG2726250ICW	L65449-07AS	AS	10/13/07 5:36	II071012-2	98.21624	15.2	115.4	mg/L	102	85	115			
ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit Qual WG226250 WG226250ICV ICV 06/11/07 13:52 IC070606-1 50.15 51.51 mg/L 102.7 90 110 10 110 <	L65449-07ASD	ASD	10/13/07 5:40	11071012-2	98.21624	15.2	115.35	mg/L	102	85	115	0.04	20	
WG226250 WG226250ICV ICV 06/11/07 13:52 IC070606-1 50.15 51.51 mg/L 102.7 90 110 WG226250ICB ICB 06/11/07 14:10 U mg/L -1.5 1.5 WG226250ICV1 ICV 06/12/07 14:59 IC070606-1 50.15 51.17 mg/L 102 90 110 WG226250ICB1 ICB 06/12/07 15:17 U mg/L -1.5 1.5 WG234134 WG234134ICV ICV 06/11/07 13:52 WI070910-1 50.1 51.51 mg/L 102.8 90 110 WG234134ICB ICB 06/11/07 14:10 U mg/L -1.5 1.5 WG234134LFB1 LFB 10/11/07 12:30 WI070727-1 30 32.06 mg/L 106.9 90 110 WG234134LFB2 LFB 10/11/07 21:15 WI070727-1 30 30.14 mg/L 100.5 90 110 L65451-09DUP DUP 10/11/07 21:51 WI	Sulfate			300.0 - Io	on Chromat	ography								
WG226250ICV ICV 06/11/07 13:52 IC070606-1 50.15 51.51 mg/L 102.7 90 110 WG226250ICB ICB 06/11/07 14:10 U mg/L -1.5 1.5 WG226250ICV1 ICV 06/12/07 14:59 IC070606-1 50.15 51.17 mg/L 102 90 110 WG226250ICB1 ICB 06/12/07 15:17 U mg/L -1.5 1.5 WG234134 WG234134ICV ICV 06/11/07 13:52 WI070910-1 50.1 51.51 mg/L 102.8 90 110 WG234134ICB ICB 06/11/07 14:10 U mg/L -1.5 1.5 WG234134LFB1 LFB 10/11/07 12:30 WI070727-1 30 32.06 mg/L 106.9 90 110 WG234134LFB2 LFB 10/11/07 21:15 WI070727-1 30 30.14 mg/L 100.5 90 110 L65451-09DUP DUP 10/11/07 21:51 W 47.7 47.66 mg/L 0.1 20	ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226250ICB ICB 06/11/07 14:10 U mg/L -1.5 1.5 WG226250ICV1 ICV 06/12/07 14:59 IC070606-1 50.15 51.17 mg/L 102 90 110 WG226250ICB1 ICB 06/12/07 15:17 U mg/L 102 90 110 WG234134 WG234134ICV WG234134ICV ICV 06/11/07 13:52 WI070910-1 50.1 51.51 mg/L 102.8 90 110 WG234134ICB ICB 06/11/07 14:10 U mg/L -1.5 1.5 WG234134LFB1 LFB 10/11/07 12:30 WI070727-1 30 32.06 mg/L 106.9 90 110 WG234134LFB2 LFB 10/11/07 21:15 WI070727-1 30 30.14 mg/L 100.5 90 110 L65451-09DUP DUP 10/11/07 21:51 47.7 47.66 mg/L 0.1 20	WG226250													
WG226250ICB ICB 06/11/07 14:10 U mg/L -1.5 1.5 WG226250ICV1 ICV 06/12/07 14:59 IC070606-1 50.15 51.17 mg/L 102 90 110 WG226250ICB1 ICB 06/12/07 15:17 U mg/L -1.5 1.5 WG234134 WG234134ICV ICV 06/11/07 13:52 WI070910-1 50.1 51.51 mg/L 102.8 90 110 WG234134ICB ICB 06/11/07 14:10 U mg/L -1.5 1.5 WG234134LFB1 LFB 10/11/07 12:30 WI070727-1 30 32.06 mg/L 106.9 90 110 WG234134LFB2 LFB 10/11/07 21:15 WI070727-1 30 30.14 mg/L 100.5 90 110 L65451-09DUP DUP 10/11/07 21:51 47.7 47.66 mg/L 0.1 20	WG226250ICV	ICV	06/11/07 13:52	IC070606-1	50.15		51.51	mg/L	102.7	90	110			
WG226250ICV1 ICV 06/12/07 14:59 IC070606-1 50.15 51.17 mg/L 102 90 110 WG226250ICB1 ICB 06/12/07 15:17 U mg/L -1.5 1.5 WG234134 WG234134ICV ICV 06/11/07 13:52 WI070910-1 50.1 51.51 mg/L 102.8 90 110 WG234134ICB ICB 06/11/07 14:10 U mg/L -1.5 1.5 WG234134LFB1 LFB 10/11/07 12:30 WI070727-1 30 32.06 mg/L 106.9 90 110 WG234134LFB2 LFB 10/11/07 21:15 WI070727-1 30 30.14 mg/L 100.5 90 110 L65451-09DUP DUP 10/11/07 21:51 47.7 47.66 mg/L 0.1 20	WG226250ICB	ICB	06/11/07 14:10				U	•		-1.5	1.5			
WG234134 WG234134ICV ICV 06/11/07 13:52 WI070910-1 50.1 51.51 mg/L 102.8 90 110 WG234134ICB ICB 06/11/07 12:30 WI070727-1 30 32.06 mg/L 106.9 90 110 WG234134LFB2 LFB 10/11/07 21:51 WI070727-1 30 30.14 mg/L 100.5 90 110 L65451-09DUP DUP 10/11/07 21:51 47.7 47.66 mg/L 0.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1	WG226250ICV1	ICV	06/12/07 14:59	IC070606-1	50.15		51.17	•	102	90	110			
WG234134ICV ICV 06/11/07 13:52 WI070910-1 50.1 51.51 mg/L 102.8 90 110 WG234134ICB ICB 06/11/07 14:10 U mg/L -1.5 1.5 WG234134LFB1 LFB 10/11/07 12:30 WI070727-1 30 32.06 mg/L 106.9 90 110 WG234134LFB2 LFB 10/11/07 21:15 WI070727-1 30 30.14 mg/L 100.5 90 110 L65451-09DUP DUP 10/11/07 21:51 47.7 47.66 mg/L 0.1 20	WG226250ICB1	ICB	06/12/07 15:17				U	mg/L		-1.5	1.5			
WG234134LFB1 LFB 10/11/07 12:30 WI070727-1 30 32.06 mg/L 106.9 90 110 WG234134LFB2 LFB 10/11/07 21:15 WI070727-1 30 30.14 mg/L 100.5 90 110 L65451-09DUP DUP 10/11/07 21:51 47.7 47.66 mg/L 0.1 20	WG234134													
WG234134LFB1 LFB 10/11/07 12:30 WI070727-1 30 32.06 mg/L 106.9 90 110 WG234134LFB2 LFB 10/11/07 21:15 WI070727-1 30 30.14 mg/L 100.5 90 110 L65451-09DUP DUP 10/11/07 21:51 47.7 47.66 mg/L 0.1 20	WG234134ICV	ICV	06/11/07 13:52	WI070910-1	50.1		51.51	mg/L	102.8	90	110			
WG234134LFB2 LFB 10/11/07 21:15 WI070727-1 30 30.14 mg/L 100.5 90 110 L65451-09DUP DUP 10/11/07 21:51 47.7 47.66 mg/L 0.1 20	WG234134ICB	ICB	06/11/07 14:10				U	mg/L		-1.5	1.5			
L65451-09DUP DUP 10/11/07 21:51 47.7 47.66 mg/L 0.1 20	WG234134LFB1	LFB	10/11/07 12:30	WI070727-1	30		32.06	mg/L	106.9	90	110			
	WG234134LFB2	LFB	10/11/07 21:15	WI070727-1	30		30.14	mg/L	100.5	90	110			
L65451-10AS AS 10/11/07 22:27 WI070727-1 30 47.4 75.63 mg/L 94.1 90 110	L65451-09DUP	DUP	10/11/07 21:51			47.7	47.66	mg/L				0.1	20	
	L65451-10AS	AS	10/11/07 22:27	WI070727-1	30	47.4	75.63	mg/L	94.1	90	110			

Inorganic Extended Qualifier Report

Phelps Dodge Sierrita

ACZ Project ID: L65452

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L65452-01	WG234134	Fluoride	M300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG233713	Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZ's Terms & Conditions).
		Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZ's Terms & Conditions).
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG233788	Total Alkalinity	SM2320B - Titration	QA	Sample container with preservation type specified by the method was not available for analysis. Alternate sample container was used.
L65452-02	WG234134	Chloride	M300.0 - Ion Chromatography	DH	Sample required dilution due to high TDS and/or EC value.
			M300.0 - Ion Chromatography	QA	Sample container with preservation type specified by the method was not available for analysis. Alternate sample container was used.
	WG233688	Residue, Filterable (TDS) @180C	160.1 / SM2540C	ZO	TDS concentration is based on a final residue greater than 200 mg.
	WG234134	Sulfate	300.0 - Ion Chromatography	DH	Sample required dilution due to high TDS and/or EC value.
			300.0 - Ion Chromatography	QA	Sample container with preservation type specified by the method was not available for analysis. Alternate sample container was used.
L65452-03	WG234134	Fluoride	M300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG233713	Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZ's Terms & Conditions).
		Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZ's Terms & Conditions).
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG233788	Total Alkalinity	SM2320B - Titration	QA	Sample container with preservation type specified by the method was not available for analysis. Alternate sample container was used.
L65452-04	WG234134	Chloride	M300.0 - Ion Chromatography	QA	Sample container with preservation type specified by the method was not available for analysis. Alternate sample container was used.
		Sulfate	300.0 - Ion Chromatography	QA	Sample container with preservation type specified by the method was not available for analysis. Alternate sample container was used.

Certification Qualifiers

Phelps Dodge Sierrita ACZ Project ID: L65452

No certification qualifiers associated with this analysis

Sample Receipt

Phelps Dodge Sierrita

OJ03Z5

ACZ Project ID:

L65452

Date Received:

10/4/2007

Received By:

Date Printed: 10/5/2007

Receipt Verification

- 1) Does this project require special handling procedures such as CLP protocol?
- 2) Are the custody seals on the cooler intact?
- 3) Are the custody seals on the sample containers intact?
- 4) Is there a Chain of Custody or other directive shipping papers present?
- 5) Is the Chain of Custody complete?
- 6) Is the Chain of Custody in agreement with the samples received?
- 7) Is there enough sample for all requested analyses?
- 8) Are all samples within holding times for requested analyses?
- 9) Were all sample containers received intact?
- 10) Are the temperature blanks present?
- 11) Are the trip blanks (VOA and/or Cyanide) present?
- 12) Are samples requiring no headspace, headspace free?
- 13) Do the samples that require a Foreign Soils Permit have one?

YES	NO	NA
		Х
		Х
		Х
Х		
Х		
Х		
Х		
Х		
Х		
		Х
		Х
		Х
		Х
		Χ

Exceptions: If you answered no to any of the above questions, please describe

N/A

Contact (For any discrepancies, the client must be contacted)

N/A

Shipping Containers

Cooler Id	Temp (°C)	Rad (µR/hr)
1964	6	17

Client must contact ACZ Project Manager if analysis should not proceed for samples received outside of thermal preservation acceptance criteria.

Notes

Sample 1 on COC has an F on the end of ID the bottle's from that sample are missing the F on the bottle ID, but are Filtered samples.

Sample Receipt

Phelps Dodge Sierrita

OJ03Z5

ACZ Project ID: Date Received: L65452 10/4/2007

Received By:

Sample Container Preservation

SAMPLE	CLIENT ID	R < 2	G < 2	BK < 2	Y< 2	YG< 2	B< 2	0 < 2	T >12	N/A	RAD	ID
L65452-01	MO-2007-6AF		Υ									
L65452-02	MO-2007-6A									X		
L65452-03	MO-2007-DUPF		Υ									
L65452-04	MO-2007-DUP									Χ		

Sample Container Preservation Legend

Abbreviation	Description	Container Type	Preservative/Limits
R	Raw/Nitric	RED	pH must be < 2
В	Filtered/Sulfuric	BLUE	pH must be < 2
BK	Filtered/Nitric	BLACK	pH must be < 2
G	Filtered/Nitric	GREEN	pH must be < 2
0	Raw/Sulfuric	ORANGE	pH must be < 2
P	Raw/NaOH	PURPLE	pH must be > 12 *
T	Raw/NaOH-Zinc Acetate	TAN	pH must be > 12
Υ	Raw/Sulfuric	YELLOW	pH must be < 2
YG	Raw/Sulfuric	YELLOW GLASS	pH must be < 2
N/A	No preservative needed	Not applicable	
RAD	Gamma/Beta dose rate	Not applicable	must be $< 250 \mu R/hr$

^{*} pH check performed by analyst prior to sample preparation

Camania IDa Davianna d Don	
Sample IDs Reviewed By:	

AGZ Labo	oratories	s, Inc.	4	54	52			CHA	MN c	of CL	JSTC	DDY
2773 Downhill Drive Steamboat S	Springs, CO 8048	87: (800) 334-	5493									
Report to:					_		,			-		
Name:	o i n	.,	<u> </u>	Addres	ss:	<u>51 1</u>	W_	LJe	+moj	re /2	4	
Company	Sam A	С,] [ucz	o 9 1	2	_8	<u>570</u>	5	
E-mail:				Teleph	one:	520	79	3-1	500	1		
Copy of Report to						9 1	-					
	2 4 7 1 1	Varis		E mail	. } ·	01	\ .		lon.	A	م 2 رجياً	· · · Comm
Name:	JAZ .	Varria	-	C-IIIaII Talank	1/14/	293-	ge inc	Aem,	<i>LDUIX</i> :	17-4	<u> </u>	<u>), (o</u> n
Company:	MAC			ı elepr	ione:	<u> </u>	1500)	<u> </u>	X - C	עוס	
Invoice to:												
Name:				Addre	ss: (6200	o W	<u>" Du</u>	vol:	Mine	- Rd)
Company:	-			PC	Bo	x SD	7 G1	cen	lalle.		85	62C
	Fmi.com		7 . [Teleph		520)	648	-88	57	*#	.,,	
If sample(s) received past holdi		If insufficient				te	**			YES		
analysis before expiration, shal	I ACZ proceed w	vith requeste	d short H1	analy	ses?					NO		
If "NO" then ACZ will contact cl							م مط الأس	malifica	ł			- 1
is indicated, ACZ will proceed w	vitn the requeste	ea anaiyses, e	even IT M I	AM.	neu, an	REQU	401 DE C	(attach	i. list or i	use aud	te <u>num</u>	ber)
						1.1						
- 77	vort		- 1	ត		do.	,					
Project/PO#: 01032	.5		-	ă,		V) **	\					
Reporting state for compliance			-	ont	3.	20,2	1					
	830 h	<u>,, , , , , , , , , , , , , , , , , , ,</u>	4	of Containers	×		7					
Are any samples NRC licensa		ν_0		*	ξ	天	K		۱ (س	,	_{+/} ,]	
SAMPLE IDENTIFICATION	DATE	E:TIME	Matrix		بركب	42			PH	せん	1cm	
MO-2007-6AF	10/2/07:	1455	GW	<u></u>	X	У			7.92	75	Se'2	
mo-7.007-6A	10/2/07:	<u> 1455 </u>	6				X		252	45	W .5	
mo-2007-DUF	10/2/07:	1500	6h	2	此	X			252	15	V.5	,
0-2007-DUP	10/2/07:	1500	6W				X		7.52	495	245.5	
<u> </u>		_										
		_										
												·
			†									
Matrix SW (Surface Water) · G	I W (Ground Water) ⋅	WW (Waste W	ater) · DW (Drinking	Water) ·	SL (Slude	ge) · SO i	(Soil) · Ol	_ (Oil) - C	ther (Sp	ecify)	
REMARKS	, (0.00.00	, , , , , , , , , , , , , , , , , , ,					,	,	,		• • •	
XF is a	F'/JULES) Zum	حاه د									
-1) 1 13 a	, , , , u u q		717									
												- 1
							÷					- 1
	e refer to ACZ's			cated					OC.			
RELINGUISHED E	BY:	DATE:T	IME			RECEIV	ED BY	:		DA	ATE:TII	VΙΕ
1/1/11/ July		10/2/07	1538		11					104	(2)	10.7
1/1 2		-,		\mathcal{V}								
	_											
												

October 22, 2007

Report to:

Ned Hall

Phelps Dodge Sierrita

P.O. Box 527 6200 W. Duval Mine Rd.

Green Valley, AZ 85622-0527

cc: Bill Dorris, Jim Norris, Dan Simpson

Project ID: OJ03Z5 ACZ Project ID: L65477

Ned Hall:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on October 05, 2007. This project has been assigned to ACZ's project number, L65477. Please reference this number in all future inquiries.

Bill to:

Accounts Payable
Phelps Dodge Sierrita

Phoenix, AZ 85002-2671

P.O. Box 2671

All analyses were performed according to ACZ's Quality Assurance Plan, version 12.0. The enclosed results relate only to the samples received under L65477. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after November 22, 2007. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years.

If you have any questions or other needs, please contact your Project Manager.

Project ID: OJ03Z5

Sample ID: MO-2007-6BF

Date Sampled: 10/04/07 14:00

Date Received: 10/05/07

Sample Matrix: Ground Water

Field Data									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Conductivity (Field)	Field Measurement	483			mS/cm			10/14/07 14:00	ma
pH (Field)	Field Measurement	7.7			units			10/14/07 14:00	ma
Temperature (Field)	Field Measurement	33.1			С			10/14/07 14:00	ma
Metals Analysis									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Calcium, dissolved	M200.7 ICP	28.1			mg/L	0.2	1	10/14/07 4:30	erf
Magnesium, dissolved	M200.7 ICP	2.9			mg/L	0.2	1	10/14/07 4:30	erf
Potassium, dissolved	M200.7 ICP	11.3			mg/L	0.3	2	10/14/07 4:30	erf
Sodium, dissolved	M200.7 ICP	60.6			mg/L	0.3	2	10/14/07 4:30	erf
Wet Chemistry									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration								
Bicarbonate as CaCO3		119		*	mg/L	2	20	10/09/07 0:00	lcp
Carbonate as CaCO3		5	В	*	mg/L	2	20	10/09/07 0:00	lcp
Hydroxide as CaCO3			U	*	mg/L	2	20	10/09/07 0:00	lcp
Total Alkalinity		125		*	mg/L	2	20	10/09/07 0:00	lcp
Cation-Anion Balance	Calculation								
Cation-Anion Balance		-2.1			%			10/19/07 0:00	calc
Sum of Anions		4.8			meq/L	0.1	0.5	10/19/07 0:00	calc
Sum of Cations		4.6			meq/L	0.1	0.5	10/19/07 0:00	calc
Chloride	M300.0 - Ion Chromatography	10.9			mg/L	0.5	3	10/12/07 1:10	jlf
Fluoride	M300.0 - Ion Chromatography	0.5		*	mg/L	0.1	0.5	10/12/07 1:10	jlf
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2	0.67			mg/L	0.02	0.1	10/19/07 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	0.69		*	mg/L	0.02	0.1	10/05/07 20:02	pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	0.02	В	*	mg/L	0.01	0.05	10/05/07 20:02	pjb
Residue, Filterable (TDS) @180C	160.1 / SM2540C	400			mg/L	10	20	10/08/07 13:50	ear
Sulfate	300.0 - Ion Chromatography	93.6			mg/L	0.5	3	10/12/07 1:10	jlf
TDS (calculated)	Calculation	287			mg/L	10	50	10/19/07 0:00	calc
TDS (ratio - measured/calculated)	Calculation	1.39			-			10/19/07 0:00	calc

Inorganic Analytical Results

Phelps Dodge Sierrita

ACZ Sample ID: L65477-02 OJ03Z5

Project ID: Date Sampled: 10/04/07 14:00 Sample ID: MO-2007-6B Date Received: 10/05/07

Sample Matrix: Ground Water

Field Data

Parameter	EPA Method	Result	Qual XQ Units	MDL PQL	Date	Analyst
Conductivity (Field)	Field Measurement	483	mS/cm		10/14/07 14:01	ma
pH (Field)	Field Measurement	7.7	units		10/14/07 14:01	ma
Temperature (Field)	Field Measurement	33.1	С		10/14/07 14:01	ma
Wat Chamistry						

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	93.5	*	mg/L	0.5	3	10/12/07 1:29	jlf

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report Header Explanations

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest

Limit Upper limit for RPD, in %.

Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit, typically 5 times the MDL.

QC True Value of the Control Sample or the amount added to the Spike

Rec Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

QC Sample Types

AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calivation Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution

QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method or calibration procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method.

Spikes/Fortified Matrix Determines sample matrix interferences, if any.

Standard Verifies the validity of the calibration.

ACZ Qualifiers (Qual)

B Analyte concentration detected at a value between MDL and PQL.

H Analysis exceeded method hold time. pH is a field test with an immediate hold time.

U Analyte was analyzed for but not detected at the indicated MDL

Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (5) EPA SW-846. Test Methods for Evaluating Solid Waste, Third Edition with Update III, December 1996.
- (6) Standard Methods for the Examination of Water and Wastewater, 19th edition, 1995.

Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.

ACZ Project ID: L65477

(800) 334-5493

Phelps Dodge Sierrita

Project ID: OJ03Z5

Alkalinity as CaC	:03		SM2320B	- Titration									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG233896													
WG233896PBW1	PBW	10/09/07 10:20				22.1	mg/L		-20	20			Е
WG233896LCSW2	LCSW	10/09/07 10:32	WC070928-1	820		816.3	mg/L	99.5	90	110			
L65479-02DUP	DUP	10/09/07 13:23			5	5.8	mg/L				14.8	20	R
WG233896PBW2	PBW	10/09/07 13:29				U	mg/L		-20	20			
WG233896LCSW5	LCSW	10/09/07 13:40	WC070928-1	820		833.8	mg/L	101.7	90	110			
WG233896PBW3	PBW	10/09/07 16:16				U	mg/L		-20	20			
WG233896LCSW8	LCSW	10/09/07 16:28	WC070928-1	820		845.7	mg/L	103.1	90	110			
WG233896PBW4	PBW	10/09/07 19:23				U	mg/L		-20	20			
WG233896LCSW11	LCSW	10/09/07 19:36	WC070928-1	820		853.5	mg/L	104.1	90	110			
WG233896LCSW14	LCSW	10/09/07 22:37	WC070928-1	820		846.9	mg/L	103.3	90	110			
Calcium, dissolv	ed		M200.7 IC	CP									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG234289													
WG234289ICV	ICV	10/14/07 2:11	11071009-7	100		99.61	mg/L	99.6	95	105			
WG234289ICB	ICB	10/14/07 2:16				U	mg/L		-0.6	0.6			
WG234289LFB	LFB	10/14/07 2:32	11071012-2	67.97008		75.27	mg/L	110.7	85	115			
L65410-03AS	AS	10/14/07 4:00	11071012-2	67.97008	15.9	91.41	mg/L	111.1	85	115			
L65410-03ASD	ASD	10/14/07 4:05	11071012-2	67.97008	15.9	88.99	mg/L	107.5	85	115	2.68	20	
Chloride			M300.0 -	Ion Chrom	atography	,							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226250													
WG226250ICV	ICV	06/11/07 13:52	IC070606-1	20		20.34	mg/L	101.7	90	110			
WG226250ICB	ICB	06/11/07 14:10				U	mg/L		-1.5	1.5			
WG226250ICV1	ICV	06/12/07 14:59	IC070606-1	20		20.31	mg/L	101.6	90	110			
WG226250ICB1	ICB	06/12/07 15:17				U	mg/L		-1.5	1.5			
WG234134													
WG234134ICV	ICV	06/11/07 13:52	WI070910-1	20		20.34	mg/L	101.7	90	110			
WG234134ICB	ICB	06/11/07 14:10				U	mg/L		-1.5	1.5			
WG234134LFB1	LFB	10/11/07 12:30	WI070727-1	30		30.84	mg/L	102.8	90	110			
WG234134LFB2	LFB	10/11/07 21:15	WI070727-1	30		29.41	mg/L	98	90	110			
L65451-09DUP	DUP	10/11/07 21:51			8.4	8.44	mg/L				0.5	20	
		4044407 00 57											

L65451-10AS

AS

10/11/07 22:27 WI070727-1

30

8.2

37.81

mg/L

98.7

90

110

ACZ Project ID: L65477

(800) 334-5493

Phelps Dodge Sierrita

Project ID: OJ03Z5

Fluoride			M300.0 -	Ion Chrom	atography	/							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226250													
WG226250ICV	ICV	06/11/07 13:52	IC070606-1	3.984		4.13	mg/L	103.7	90	110			
WG226250ICB	ICB	06/11/07 14:10				U	mg/L		-0.3	0.3			
WG226250ICV1	ICV	06/12/07 14:59	IC070606-1	3.984		4.11	mg/L	103.2	90	110			
WG226250ICB1	ICB	06/12/07 15:17				U	mg/L		-0.3	0.3			
WG234134													
WG234134ICV	ICV	06/11/07 13:52	WI070910-1	3.984		4.13	mg/L	103.7	90	110			
WG234134ICB	ICB	06/11/07 14:10				U	mg/L		-0.3	0.3			
WG234134LFB1	LFB	10/11/07 12:30	WI070727-1	1.5		1.58	mg/L	105.3	90	110			
WG234134LFB2	LFB	10/11/07 21:15	WI070727-1	1.5		1.51	mg/L	100.7	90	110			
L65451-09DUP	DUP	10/11/07 21:51			.6	.64	mg/L				6.5	20	R
L65451-10AS	AS	10/11/07 22:27	WI070727-1	1.5	.7	2.18	mg/L	98.7	90	110			
Magnesium, dis	solved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG234289													
WG234289ICV	ICV	10/14/07 2:11	11071009-7	100		100.54	mg/L	100.5	95	105			
WG234289ICB	ICB	10/14/07 2:16				U	mg/L		-0.6	0.6			
WG234289LFB	LFB	10/14/07 2:32	11071012-2	54.96908		59.92	mg/L	109	85	115			
L65410-03AS	AS	10/14/07 4:00	11071012-2	54.96908	.9	62.54	mg/L	112.1	85	115			
L65410-03ASD	ASD	10/14/07 4:05	II071012-2	54.96908	.9	60.93	mg/L	109.2	85	115	2.61	20	
Nitrate/Nitrite as	s N, diss	olved	M353.2 -	Automated	I Cadmiur	n Reduc	tion						
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG233802													
WG233802ICV	ICV	10/05/07 19:08	WI070911-1	2.416		2.388	mg/L	98.8	90	110			
WG233802ICV WG233802ICB	ICB	10/05/07 19:09	VVIO70911-1	2.410		2.300 U	•	90.0	-0.06	0.06			
WG233802LFB1	LFB	10/05/07 19:13	WI070911-4	2		1.988	mg/L	99.4	90	110			
	LFB		WI070911-4	2		2.004	mg/L	100.2	90	110			
WG233802LFB2		10/05/07 19:51					mg/L						
L65470-06AS L65470-07DUP	AS DUP	10/05/07 19:53 10/05/07 20:00	WI070911-4	2	.03	1.945 .023	mg/L mg/L	97.3	90	110	26.4	20	R
Nitrite as N, dis		10,00,01 20.00	M353 2	Automatas									
ACZ ID	Type	Analyzed	PCN/SCN	Automated		Found		Rec	Lower	Upper	RPD	Limit	Qual
	.,,,,	7a.y_5a		4,5	- Julia					орро.	5		G (a)
WG233802	167.4	10/05/07 10 55	MU070044 :	000		004		00.0		440			
WG233802ICV	ICV	10/05/07 19:08	WI070911-1	.609		.604	mg/L	99.2	90	110			
WG233802ICB	ICB	10/05/07 19:09				U	mg/L		-0.03	0.03			
WG233802LFB1	LFB	10/05/07 19:13	WI070911-4	1		.988	mg/L	98.8	90	110			
WG233802LFB2	LFB	10/05/07 19:51	WI070911-4	1		1.023	mg/L	102.3	90	110			
L65470-06AS	AS	10/05/07 19:53	WI070911-4	1		.974	mg/L	97.4	90	110			
L65470-07DUP	DUP	10/05/07 20:00				U	mg/L				0	20	R

(800) 334-5493

Phelps Dodge Sierrita

Project ID: OJ03Z5 ACZ Project ID: L65477

Potassium, diss	olved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qua
WG234289													
WG234289ICV	ICV	10/14/07 2:11	11071009-7	20		20.02	mg/L	100.1	95	105			
WG234289ICB	ICB	10/14/07 2:16				U	mg/L		-0.9	0.9			
WG234289LFB	LFB	10/14/07 2:32	11071012-2	99.76186		107.85	mg/L	108.1	85	115			
L65410-03AS	AS	10/14/07 4:00	11071012-2	99.76186	.9	113.9	mg/L	113.3	85	115			
L65410-03ASD	ASD	10/14/07 4:05	11071012-2	99.76186	.9	111.92	mg/L	111.3	85	115	1.75	20	
Residue, Filtera	ble (TDS) @180C	160.1 / S	M2540C									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qua
WG233879													
WG233879PBW	PBW	10/08/07 13:25				U	mg/L		-20	20			
WG233879LCSW	LCSW	10/08/07 13:26	PCN28214	260		278	mg/L	106.5	80	120			
L65502-01DUP	DUP	10/08/07 14:09			4120	4156	mg/L				0.9	20	
Sodium, dissolv	ed		M200.7 I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qua
WG234289													
WG234289ICV	ICV	10/14/07 2:11	11071009-7	100		99.93	mg/L	99.9	95	105			
WG234289ICB	ICB	10/14/07 2:16				U	mg/L		-0.9	0.9			
WG234289LFB	LFB	10/14/07 2:32	11071012-2	98.21624		106.13	mg/L	108.1	85	115			
L65410-03AS	AS	10/14/07 4:00	11071012-2	98.21624	36.6	143.53	mg/L	108.9	85	115			
L65410-03ASD	ASD	10/14/07 4:05	11071012-2	98.21624	36.6	140.73	mg/L	106	85	115	1.97	20	
Sulfate			300.0 - Io	on Chromat	ography								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qua
WG226250													
WG226250ICV	ICV	06/11/07 13:52	IC070606-1	50.15		51.51	mg/L	102.7	90	110			
WG226250ICB	ICB	06/11/07 14:10				U	mg/L		-1.5	1.5			
WG226250ICV1	ICV	06/12/07 14:59	IC070606-1	50.15		51.17	mg/L	102	90	110			
WG226250ICB1	ICB	06/12/07 15:17				U	mg/L		-1.5	1.5			
WG234134													
WG234134ICV	ICV	06/11/07 13:52	WI070910-1	50.1		51.51	mg/L	102.8	90	110			
WG234134ICB	ICB	06/11/07 14:10				U	mg/L		-1.5	1.5			
WG234134LFB1	LFB	10/11/07 12:30	WI070727-1	30		32.06	mg/L	106.9	90	110			
WG234134LFB2	LFB	10/11/07 21:15	WI070727-1	30		30.14	mg/L	100.5	90	110			
L65451-09DUP	DUP	10/11/07 21:51			47.7	47.66	mg/L				0.1	20	
L65451-10AS	AS	10/11/07 22:27	WI070727-1	30	47.4	75.63	mg/L	94.1	90	110			

Inorganic Extended Qualifier Report

ACZ Project ID: L65477

QA Sample container with preservation type specified by the method was not available for analysis. Alternate sample

Phelps Dodge Sierrita

L65477-02 WG234134 Sulfate

ACZ ID WORKNUM PARAMETER **METHOD** QUAL DESCRIPTION L65477-01 WG233896 Bicarbonate as CaCO3 SM2320B - Titration QA Sample container with preservation type specified by the method was not available for analysis. Alternate sample container was used. Carbonate as CaCO3 SM2320B - Titration QA Sample container with preservation type specified by the method was not available for analysis. Alternate sample container was used RA Relative Percent Difference (RPD) was not used for data WG234134 Fluoride M300.0 - Ion Chromatography validation because the sample concentration is too low for accurate evaluation (< 10x MDL). WG233896 Hydroxide as CaCO3 SM2320B - Titration QA Sample container with preservation type specified by the method was not available for analysis. Alternate sample container was used. WG233802 Nitrate/Nitrite as N, dissolved M353.2 - Automated Cadmium RA Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for Reduction accurate evaluation (< 10x MDL). Nitrite as N. dissolved M353.2 - Automated Cadmium RA Relative Percent Difference (RPD) was not used for data Reduction validation because the sample concentration is too low for accurate evaluation (< 10x MDL). WG233896 Total Alkalinity SM2320B - Titration B4 Target analyte detected in blank at or above the acceptance criteria. SM2320B - Titration QA Sample container with preservation type specified by the method was not available for analysis. Alternate sample container was used. SM2320B - Titration RA Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).

300.0 - Ion Chromatography

Certification Qualifiers

Phelps Dodge Sierrita ACZ Project ID: L65477

No certification qualifiers associated with this analysis

Sample Receipt

Phelps Dodge Sierrita

OJ03Z5

ACZ Project ID:

L65477

Date Received:

10/5/2007

Received By:

Date Printed: 10/5/2007

Receipt Verification

- 1) Does this project require special handling procedures such as CLP protocol?
- 2) Are the custody seals on the cooler intact?
- 3) Are the custody seals on the sample containers intact?
- 4) Is there a Chain of Custody or other directive shipping papers present?
- 5) Is the Chain of Custody complete?
- 6) Is the Chain of Custody in agreement with the samples received?
- 7) Is there enough sample for all requested analyses?
- 8) Are all samples within holding times for requested analyses?
- 9) Were all sample containers received intact?
- 10) Are the temperature blanks present?
- 11) Are the trip blanks (VOA and/or Cyanide) present?
- 12) Are samples requiring no headspace, headspace free?
- 13) Do the samples that require a Foreign Soils Permit have one?

YES	NO	NA
		Х
Х		
		Х
Х		
Х		
Х		
Х		
X		
Х		
		Х
		Х
		X
		Х

Exceptions: If you answered no to any of the above questions, please describe

N/A

Contact (For any discrepancies, the client must be contacted)

N/A

Shipping Containers

Cooler Id	Temp (°C)	Rad (µR/hr)
1375	1.2	14

Client must contact ACZ Project Manager if analysis should not proceed for samples received outside of thermal preservation acceptance criteria.

Notes

Sample Receipt

Phalma Dados Ciamita

Phelps Dodge Sierrita

OJ03Z5

ACZ Project ID: Date Received: L65477 10/5/2007

Received By:

Sample Container Preservation

SAMPLE	CLIENT ID	R < 2	G < 2	BK < 2	Y< 2	YG< 2	B< 2	0 < 2	T >12	N/A	RAD	ID
L65477-01	MO-2007-6BF		Υ									
L65477-02	MO-2007-6B									Х		

Sample Container Preservation Legend

Abbreviation	Description	Container Type	Preservative/Limits
R	Raw/Nitric	RED	pH must be < 2
В	Filtered/Sulfuric	BLUE	pH must be < 2
BK	Filtered/Nitric	BLACK	pH must be < 2
G	Filtered/Nitric	GREEN	pH must be < 2
0	Raw/Sulfuric	ORANGE	pH must be < 2
Р	Raw/NaOH	PURPLE	pH must be > 12 *
Т	Raw/NaOH Zinc Acetate	TAN	pH must be > 12
Υ	Raw/Sulfuric	YELLOW	pH must be < 2
YG	Raw/Sulfuric	YELLOW GLASS	pH must be < 2
N/A	No preservative needed	Not applicable	
RAD	Gamma/Beta dose rate	Not applicable	must be < 250 uR/hr

^{*} pH check performed by analyst prior to sample preparation

AGZ 2773 Downhill Drive				5493	6	54	147		CHA	AIN c	of Cl	JSTC	DDY
Company: אלן	Simpson NGCO Ch Whacino				Addre Telepi	J	51 L 520	1 <i>7</i>	Wet 12 3-13	857	Rd 05 x 13	3	
Company: PDS	Bill Dace	is/Jim No.	nહ	_	E-mai Telepi	l: <u>m</u> hone:5	n@hg 20 29:	0.1.50	on, l	0111/0 148-	beris 8873	QFm;	.con
Name: Ned Hall Company: PDSI E-mail: Ned-hall Fm. com If sample(s) received past holding time (HT), or if insufficient HT remains to complete analysis before expiration, shall ACZ proceed with requested short HT analyses? If "NO" then ACZ will contact client for further instruction. If neither "YES" nor "NO" is indicated, ACZ will proceed with the requested analyses, even if HT is expired, and data will be qualified.													
Quote #: Siem Quote #: Siem Project/PO #: Completed Reporting state for Sampler's Name: Are any samples N	MATION Ha Shor O 325 compliance to M. Arnes	t esting: AZ	Vp	-			K TDS SOY F NO. NO.				ise quo	te numl	ber)
SAMPLE IDENT MO-7007 MO-7007	IFICATION	DATE 1014/07; 1014/07!	1400 1400	Matrix GW GW	2	X	X	<i>X</i>		PH 7.70 7.70	EC 483 483	Tenp 33.1 33.1	
Matrix SW (Surface Water) · GW (Ground Water) · WW (Waste Water) · DW (Drinking Water) · SL (Sludge) · SO (Soil) · OL (Oil) · Other (Specify) REMARKS H 1 3 a C, Hered Sample													
KELING	Please re	efer to ACZ's	terms & cor DATE:T		ocated		reverse RECEIV			COC.		ATE:TIM	

October 24, 2007

Report to:

Ned Hall

Phelps Dodge Sierrita

P.O. Box 527 6200 W. Duval Mine Rd.

Green Valley, AZ 85622-0527

cc: Bill Dorris, Jim Norris, Dan Simpson

Project ID: OJ03Z5

ACZ Project ID: L65562

Ned Hall:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on October 10, 2007. This project has been assigned to ACZ's project number, L65562. Please reference this number in all future inquiries.

Bill to:

Accounts Payable
Phelps Dodge Sierrita

Phoenix, AZ 85002-2671

P.O. Box 2671

All analyses were performed according to ACZ's Quality Assurance Plan, version 12.0. The enclosed results relate only to the samples received under L65562. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after November 24, 2007. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years.

If you have any questions or other needs, please contact your Project Manager.

Project ID: OJ03Z5

Sample ID: MO-2007-4A Date Sampled: 10/09/07 14:45

Date Received: 10/10/07

Sample Matrix: Ground Water

Field Data									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Conductivity (Field)	Field Measurement	412			mS/cm			10/09/07 14:45	njb
pH (Field)	Field Measurement	7.5			units			10/09/07 14:45	njb
Temperature (Field)	Field Measurement	27.5			С			10/09/07 14:45	njb
Metals Analysis									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Calcium, dissolved	M200.7 ICP	42.8			mg/L	0.2	1	10/20/07 18:06	erf
Magnesium, dissolved	M200.7 ICP	6.2			mg/L	0.2	1	10/20/07 18:06	erf
Potassium, dissolved	M200.7 ICP	3.3			mg/L	0.3	2	10/20/07 18:06	erf
Sodium, dissolved	M200.7 ICP	37.1			mg/L	0.3	2	10/20/07 18:06	erf
Wet Chemistry									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration								
Bicarbonate as		155			mg/L	2	20	10/11/07 0:00	lcp
CaCO3									
Carbonate as CaCO3		5	В		mg/L	2	20	10/11/07 0:00	Icp
Hydroxide as CaCO3			U		mg/L	2	20	10/11/07 0:00	lcp
Total Alkalinity		160		*	mg/L	2	20	10/11/07 0:00	lcp
Cation-Anion Balance	Calculation								
Cation-Anion Balance		0.0			%			10/24/07 0:00	calc
Sum of Anions		4.3			meq/L	0.1	0.5	10/24/07 0:00	calc
Sum of Cations		4.3			meq/L	0.1	0.5	10/24/07 0:00	calc
Chloride	M300.0 - Ion Chromatography	10.2			mg/L	0.5	3	10/19/07 19:50	сср
Fluoride	M300.0 - Ion Chromatography	0.3	В	*	mg/L	0.1	0.5	10/19/07 19:50	сср
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2	0.93			mg/L	0.02	0.1	10/24/07 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	0.93		*	mg/L	0.02	0.1	10/10/07 18:44	pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction		U	*	mg/L	0.01	0.05	10/10/07 18:44	pjb
Residue, Filterable (TDS) @180C	160.1 / SM2540C	270			mg/L	10	20	10/11/07 12:53	ear
Sulfate	300.0 - Ion Chromatography	37.0			mg/L	0.5	3	10/19/07 19:50	сср
TDS (calculated)	Calculation	239			mg/L	10	50	10/24/07 0:00	calc
TDS (ratio - measured/calculated)	Calculation	1.13			-			10/24/07 0:00	calc

Inorganic Analytical Results

Phelps Dodge Sierrita

Project ID: OJ03Z5

Sample ID: MO-2007-4A Date Sampled: 10/09/07 14:45

Date Received: 10/10/07

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	37.2	*	ma/L	0.5	3	10/19/07 20:08	CCD

Arizona license number: AZ0102

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report Header Explanations

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest

Limit Upper limit for RPD, in %.

Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit, typically 5 times the MDL.

QC True Value of the Control Sample or the amount added to the Spike

Rec Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

QC Sample Types

AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calivation Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution

QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method or calibration procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method.

Spikes/Fortified Matrix Determines sample matrix interferences, if any.

Standard Verifies the validity of the calibration.

ACZ Qualifiers (Qual)

B Analyte concentration detected at a value between MDL and PQL.

H Analysis exceeded method hold time. pH is a field test with an immediate hold time.

U Analyte was analyzed for but not detected at the indicated MDL

Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (5) EPA SW-846. Test Methods for Evaluating Solid Waste, Third Edition with Update III, December 1996.
- (6) Standard Methods for the Examination of Water and Wastewater, 19th edition, 1995.

Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.

(800) 334-5493

Phelps Dodge Sierrita

Project ID: OJ03Z5 ACZ Project ID: L65562

Alkalinity as CaC	О3		SM2320B	- Titration									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG234142													
WG234142PBW1	PBW	10/11/07 13:49				2.1	mg/L		-20	20			
WG234142LCSW2	LCSW	10/11/07 14:01	WC070928-1	820		805.8	mg/L	98.3	90	110			
WG234142PBW2	PBW	10/11/07 16:55				U	mg/L		-20	20			
WG234142LCSW5	LCSW	10/11/07 17:07	WC070928-1	820		823.7	mg/L	100.5	90	110			
WG234142PBW3	PBW	10/11/07 19:57				U	mg/L		-20	20			
WG234142LCSW8	LCSW	10/11/07 20:09	WC070928-1	820		828.8	mg/L	101.1	90	110			
WG234142PBW4	PBW	10/11/07 23:16				U	mg/L		-20	20			
WG234142LCSW11	LCSW	10/11/07 23:27	WC070928-1	820		828	mg/L	101	90	110			
L65566-01DUP	DUP	10/12/07 0:52			38	37.4	mg/L				1.6	20	
WG234142LCSW14	LCSW	10/12/07 2:41	WC070928-1	820		831.4	mg/L	101.4	90	110			
Calcium, dissolve	ed		M200.7 IC	P									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG234667													
WG234667ICV	ICV	10/20/07 16:22	11071009-7	100		98.84	mg/L	98.8	95	105			
WG234667ICB	ICB	10/20/07 16:25				U	mg/L		-0.6	0.6			
WG234667LFB	LFB	10/20/07 16:39	11071012-2	67.97008		66.17	mg/L	97.4	85	115			
L65555-01AS	AS	10/20/07 17:56	11071012-2	67.97008	6.7	75.37	mg/L	101	85	115			
L65555-01ASD	ASD	10/20/07 17:59	11071012-2	67.97008	6.7	73.74	mg/L	98.6	85	115	2.19	20	
Chloride			M300.0 -	Ion Chrom	atography	,							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226250													
WG226250ICV	ICV	06/11/07 13:52	IC070606-1	20		20.34	mg/L	101.7	90	110			
WG226250ICB	ICB	06/11/07 14:10				U	mg/L		-1.5	1.5			
WG226250ICV1	ICV	06/12/07 14:59	IC070606-1	20		20.31	mg/L	101.6	90	110			
WG226250ICB1	ICB	06/12/07 15:17				U	mg/L		-1.5	1.5			
WG234617													
WG234617ICV1	ICV	10/19/07 13:12	WI071019-1	20		19.22	mg/L	96.1	90	110			
WG234617ICB1	ICB	10/19/07 13:30				U	mg/L		-1.5	1.5			
WG234617LFB1	LFB	10/19/07 13:48	WI070727-1	30		29.11	mg/L	97	90	110			
WG234617LFB2	LFB	10/19/07 22:33	WI070727-1	30		30.05	mg/L	100.2	90	110			
L65535-07AS	AS	10/23/07 17:18	WI070727-1	300	432	724.7	mg/L	97.6	90	110			
L65535-07DUP	DUP	10/23/07 17:36			432	430.1	mg/L				0.4	20	

ACZ Project ID: L65562

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Phelps Dodge Sierrita

Project ID: OJ03Z5

Fluoride			M300.0 -	Ion Chrom	atography	1							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226250													
WG226250ICV	ICV	06/11/07 13:52	IC070606-1	3.984		4.13	mg/L	103.7	90	110			
WG226250ICB	ICB	06/11/07 14:10				U	mg/L		-0.3	0.3			
WG226250ICV1	ICV	06/12/07 14:59	IC070606-1	3.984		4.11	mg/L	103.2	90	110			
WG226250ICB1	ICB	06/12/07 15:17				U	mg/L		-0.3	0.3			
WG234617													
WG234617ICV1	ICV	10/19/07 13:12	WI071019-1	3.984		3.94	mg/L	98.9	90	110			
WG234617ICB1	ICB	10/19/07 13:30				U	mg/L		-0.3	0.3			
WG234617LFB1	LFB	10/19/07 13:48	WI070727-1	1.5		1.49	mg/L	99.3	90	110			
L65535-07AS	AS	10/19/07 19:14	WI070727-1	1.5	.5	2.03	mg/L	102	90	110			
L65535-07DUP	DUP	10/19/07 19:32			.5	.54	mg/L				7.7	20	RA
WG234617LFB2	LFB	10/19/07 22:33	WI070727-1	1.5		1.55	mg/L	103.3	90	110			
Magnesium, dis	ssolved		M200.7 I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG234667													
WG234667ICV	ICV	10/20/07 16:22	11071009-7	100		100.12	mg/L	100.1	95	105			
WG234667ICB	ICB	10/20/07 16:25				U	mg/L		-0.6	0.6			
WG234667LFB	LFB	10/20/07 16:39	11071012-2	54.96908		53.47	mg/L	97.3	85	115			
L65555-01AS	AS	10/20/07 17:56	11071012-2	54.96908	1.3	56.81	mg/L	101	85	115			
L65555-01ASD	ASD	10/20/07 17:59	11071012-2	54.96908	1.3	55.82	mg/L	99.2	85	115	1.76	20	
Nitrate/Nitrite as	s N, diss	olved	M353.2 -	Automated	d Cadmiur	n Reduc	tion						
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG234081													
WG234081ICV	ICV	10/10/07 18:07	WI070911-1	2.416		2.513	mg/L	104	90	110			
WG234081ICB	ICB	10/10/07 18:08				U	mg/L		-0.06	0.06			
WG234081LFB1	LFB	10/10/07 18:13	WI070911-4	2		2.069	mg/L	103.5	90	110			
L65550-11AS	AS	10/10/07 18:34	WI070911-4	2	U	2.09	mg/L	104.5	90	110			
L65550-12DUP	DUP	10/10/07 18:37			.04	.054	mg/L				29.8	20	RA
WG234081LFB2	LFB	10/10/07 19:18	WI070911-4	2		2.157	mg/L	107.9	90	110			
Nitrite as N, dis	solved		M353.2 -	Automated	d Cadmiur	n Reduc	tion						
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG234081													
WG234081ICV	ICV	10/10/07 18:07	WI070911-1	.609		.616	mg/L	101.1	90	110			
141000 400 1100	165	10/10/07 10 77							0.00				

U

.991

1.075

U

1.055

.02

U

mg/L

mg/L

mg/L

mg/L

mg/L

99.1

105.5

105.5

-0.03

90

90

90

0.03

110

110

110

0

20

RA

WG234081ICB

WG234081LFB1

L65550-11AS

L65550-12DUP

WG234081LFB2

ICB

LFB

AS

DUP

LFB

10/10/07 18:08

10/10/07 18:13

10/10/07 18:34

10/10/07 18:37

10/10/07 19:18

WI070911-4

WI070911-4

WI070911-4

1

ACZ Project ID: L65562

(800) 334-5493

Phelps Dodge Sierrita

Proiect ID: OJ03Z5

Project ID:	Ů.	J03Z5											
Potassium, diss	olved		M200.7 I	СР									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG234667													
WG234667ICV	ICV	10/20/07 16:22	11071009-7	20		20.04	mg/L	100.2	95	105			
WG234667ICB	ICB	10/20/07 16:25				U	mg/L		-0.9	0.9			
WG234667LFB	LFB	10/20/07 16:39	11071012-2	99.76186		97.21	mg/L	97.4	85	115			
L65555-01AS	AS	10/20/07 17:56	11071012-2	99.76186	.8	103.8	mg/L	103.2	85	115			
L65555-01ASD	ASD	10/20/07 17:59	11071012-2	99.76186	.8	101.44	mg/L	100.9	85	115	2.3	20	
Residue, Filteral	ble (TDS) @180C	160.1 / S	M2540C									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG234143													
WG234143PBW	PBW	10/11/07 12:40				10	mg/L		-20	20			
WG234143LCSW	LCSW	10/11/07 12:42	PCN28214	260		284	mg/L	109.2	80	120			
L65583-02DUP	DUP	10/11/07 13:06			2400	2410	mg/L				0.4	20	
Sodium, dissolv	ed		M200.7 I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG234667													
WG234667ICV	ICV	10/20/07 16:22	11071009-7	100		99.56	mg/L	99.6	95	105			
WG234667ICB	ICB	10/20/07 16:25				U	mg/L		-0.9	0.9			
WG234667LFB	LFB	10/20/07 16:39	11071012-2	98.21624		95.02	mg/L	96.7	85	115			
L65555-01AS	AS	10/20/07 17:56	11071012-2	98.21624	2.4	101.46	mg/L	100.9	85	115			
L65555-01ASD	ASD	10/20/07 17:59	11071012-2	98.21624	2.4	99.39	mg/L	98.8	85	115	2.06	20	
Sulfate			300.0 - Id	on Chromat	ography								
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226250													
WG226250ICV	ICV	06/11/07 13:52	IC070606-1	50.15		51.51	mg/L	102.7	90	110			
WG226250ICB	ICB	06/11/07 14:10				U	mg/L		-1.5	1.5			
WG226250ICV1	ICV	06/12/07 14:59	IC070606-1	50.15		51.17	mg/L	102	90	110			
WG226250ICB1	ICB	06/12/07 15:17				U	mg/L		-1.5	1.5			
WG234617													
WG234617ICV1	ICV	10/19/07 13:12	WI071019-1	50.1		49.65	mg/L	99.1	90	110			
WG234617ICB1	ICB	10/19/07 13:30				U	mg/L		-1.5	1.5			
WG234617LFB1	LFB	10/19/07 13:48	WI070727-1	30		30.34	mg/L	101.1	90	110			
L65535-07AS	AS	10/19/07 19:14	WI070727-1	30	7.5	37.38	mg/L	99.6	90	110			
L65535-07DUP	DUP	10/19/07 19:32			7.5	7.57	mg/L				0.9	20	

30

30.83 mg/L

102.8

90

110

WG234617LFB2 LFB 10/19/07 22:33 WI070727-1

Inorganic Extended
Qualifier Report

ACZ Project ID: L65562

Phelps Dodge Sierrita

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L65562-01	WG234617	Fluoride	M300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG234081	Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
		Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG234142	Total Alkalinity	SM2320B - Titration	QA	Sample container with preservation type specified by the method was not available for analysis. Alternate sample container was used.
L65562-02	WG234617	Sulfate	300.0 - Ion Chromatography	QA	Sample container with preservation type specified by the method was not available for analysis. Alternate sample container was used.

Certification Qualifiers

Phelps Dodge Sierrita ACZ Project ID: L65562

No certification qualifiers associated with this analysis

Sample Receipt

Phelps Dodge Sierrita

OJ03Z5

ACZ Project ID:

L65562

Date Received:

10/10/2007

Received By:

Date Printed: 10/11/2007

Receipt Verification

- 1) Does this project require special handling procedures such as CLP protocol?
- 2) Are the custody seals on the cooler intact?
- 3) Are the custody seals on the sample containers intact?
- 4) Is there a Chain of Custody or other directive shipping papers present?
- 5) Is the Chain of Custody complete?
- 6) Is the Chain of Custody in agreement with the samples received?
- 7) Is there enough sample for all requested analyses?
- 8) Are all samples within holding times for requested analyses?
- 9) Were all sample containers received intact?
- 10) Are the temperature blanks present?
- 11) Are the trip blanks (VOA and/or Cyanide) present?
- 12) Are samples requiring no headspace, headspace free?
- 13) Do the samples that require a Foreign Soils Permit have one?

YES	NO	NA
		Х
		Х
		Х
Х		
Х		
Х		
Х		
Х		
Х		
		Х
		Χ
_		X
		Х

Exceptions: If you answered no to any of the above questions, please describe

N/A

Contact (For any discrepancies, the client must be contacted)

N/A

Shipping Containers

Cooler Id	Temp (°C)	Rad (µR/hr)
NA4622	1.8	16

Client must contact ACZ Project Manager if analysis should not proceed for samples received outside of thermal preservation acceptance criteria.

Notes

Sample Receipt

Phelps Dodge Sierrita

OJ03Z5

ACZ Project ID: Date Received: L65562 10/10/2007

Received By:

Sample Container Preservation

SAMPLE	CLIENT ID	R < 2	G < 2	BK < 2	Y< 2	YG< 2	B< 2	0 < 2	T >12	N/A	RAD	ID
L65562-01	MO-2007-4A		Υ									
L65562-02	MO-2007-4A						·			Χ		

Sample Container Preservation Legend

Abbreviation	Description	Container Type	Preservative/Limits
R	Raw/Nitric	RED	pH must be < 2
В	Filtered/Sulfuric	BLUE	pH must be < 2
BK	Filtered/Nitric	BLACK	pH must be < 2
G	Filtered/Nitric	GREEN	pH must be < 2
0	Raw/Sulfuric	ORANGE	pH must be < 2
Р	Raw/NaOH	PURPLE	pH must be > 12 *
Т	Raw/NaOH Zinc Acetate	TAN	pH must be > 12
Υ	Raw/Sulfuric	YELLOW	pH must be < 2
YG	Raw/Sulfuric	YELLOW GLASS	pH must be < 2
N/A	No preservative needed	Not applicable	
RAD	Gamma/Beta dose rate	Not applicable	must be < 250 uR/hr

^{*} pH check performed by analyst prior to sample preparation

Sample IDs Reviewed By:		

	7
للبا	

Laboratories, Inc. 1_65562 CHAIN of CUSTODY 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493 Address: 5/ W. Wetnore Rd Tucsan, AZ 35705 Telephone: (520) 293-1500 Name: Dan Simpson Company: HGC, INC. E-mail: dans@hgeincem Copy of Report to: Name: red hall /Bill Dopris / Jim Norris E-mail: Jimnel scink.com billy-dorrise FMi. com Telephone/520)293-1500 x.112,(32-0)648-8873 Invoice to: Name: Ned Hall Address: 6200 W. Durall Mine Rd. P.O. BOX SOT G. Valley, AZ 85622 Company: PDSI Telephone (520) 648-8557 E-mail: ned-halle Fri. con If sample(s) received past holding time (HT), or if insufficient HT remains to complete analysis before expiration, shall ACZ proceed with requested short HT analyses? If "NO" then ACZ will contact client for further instruction. If neither "YES" nor "NO" is indicated, ACZ will proceed with the requested analyses, even if HT is expired, and data will be qualified. PROJECT INFORMATION ANALYSES REQUESTED (attach list or use quote number) Quote #: Sierrita Short Project/PO#: 0JØ325 of Containers Reporting state for compliance testing: Sampler's Name: NJ. Balb Are any samples NRC licensable material? VO SAMPLE IDENTIFICATION DATE:TIME Matrix MO-207-4A 10/9/07c14:45 SW (Surface Water) · GW (Ground Water) · WW (Waste Water) · DW (Drinking Water) · SL (Sludge) · SO (Soil) · OL (Oil) · Other (Specify) REMARKS - Gren dot t white dot bottles are Filtered Sangles - No dot bottle is raw/un Filtered Please refer to ACZ's terms & conditions located on the reverse side of this COC. RELINQUISHED BY: DATE:TIME RECEIVED BY: DATE:TIME 10/9/07 C 15:30

Bill to:

Accounts Payable Phelps Dodge Sierrita

Phoenix, AZ 85002-2671

P.O. Box 2671

October 30, 2007

Report to:

Ned Hall

Phelps Dodge Sierrita

P.O. Box 527 6200 W. Duval Mine Rd.

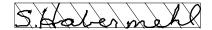
Green Valley, AZ 85622-0527

cc: Bill Dorris, Jim Norris, Dan Simpson

Project ID: OJ03Z5 ACZ Project ID: L65645

Ned Hall:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on October 12, 2007. This project has been assigned to ACZ's project number, L65645. Please reference this number in all future inquiries.


All analyses were performed according to ACZ's Quality Assurance Plan, version 12.0. The enclosed results relate only to the samples received under L65645. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after November 30, 2007. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years.

If you have any questions or other needs, please contact your Project Manager.

Phelps Dodge Sierrita

Project ID: OJ03Z5

Sample ID: MO-2007-4B-F Date Sampled: 10/11/07 08:20

Date Received: 10/12/07

Sample Matrix: Ground Water

Field Data									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Conductivity (Field)	Field Measurement	376			mS/cm			10/11/07 8:20	nb
pH (Field)	Field Measurement	7.9			units			10/11/07 8:20	nb
Temperature (Field)	Field Measurement	26.4			С			10/11/07 8:20	nb
Turbidity (Field)	Field Measurement	5.12			NTU			10/11/07 8:20	nb
Metals Analysis									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Calcium, dissolved	M200.7 ICP	41.6			mg/L	0.2	1	10/25/07 19:49	djt
Magnesium, dissolved	M200.7 ICP	4.3			mg/L	0.2	1	10/25/07 19:49	djt
Potassium, dissolved	M200.7 ICP	2.9			mg/L	0.3	2	10/25/07 19:49	djt
Sodium, dissolved	M200.7 ICP	35.7		*	mg/L	0.3	2	10/25/07 19:49	djt
Wet Chemistry									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration								
Bicarbonate as		143			mg/L	2	20	10/15/07 0:00	aeh
CaCO3									
Carbonate as CaCO3			U		mg/L	2	20	10/15/07 0:00	aeh
Hydroxide as CaCO3			U		mg/L	2	20	10/15/07 0:00	aeh
Total Alkalinity		143		*	mg/L	2	20	10/15/07 0:00	aeh
Cation-Anion Balance	Calculation								
Cation-Anion Balance		1.3			%			10/30/07 0:00	calc
Sum of Anions		3.9			meq/L	0.1	0.5	10/30/07 0:00	calc
Sum of Cations		4.0			meq/L	0.1	0.5	10/30/07 0:00	calc
Chloride	M300.0 - Ion Chromatography	9.1			mg/L	0.5	3	10/25/07 3:01	сср
Fluoride	M300.0 - Ion Chromatography	0.6		*	mg/L	0.1	0.5	10/25/07 3:01	сср
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2	0.77			mg/L	0.02	0.1	10/30/07 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	0.77			mg/L	0.02	0.1	10/12/07 18:34	pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction		U	*	mg/L	0.01	0.05	10/12/07 18:34	pjb
Residue, Filterable (TDS) @180C	160.1 / SM2540C	230			mg/L	10	20	10/16/07 11:24	ear
Sulfate	300.0 - Ion Chromatography	37.6			mg/L	0.5	3	10/25/07 3:01	сср
TDS (calculated)	Calculation	221			mg/L	10	50	10/30/07 0:00	calc
TDS (ratio -	Calculation	1.04			•			10/30/07 0:00	calc
measured/calculated)									

Arizona license number: AZ0102

Inorganic Analytical Results

Phelps Dodge Sierrita

Project ID: OJ03Z5 Date Sampled: 10/11/07 08:20

Sample ID: MO-2007-4B Date Received: 10/12/07

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	37.5		mg/L	0.5	3	10/25/07 3:19	сср

Arizona license number: AZ0102

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report Header Explanations

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest

Limit Upper limit for RPD, in %.

Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit, typically 5 times the MDL.

QC True Value of the Control Sample or the amount added to the Spike

Rec Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

QC Sample Types

AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calivation Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution

QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method or calibration procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method.

Spikes/Fortified Matrix Determines sample matrix interferences, if any.

Standard Verifies the validity of the calibration.

ACZ Qualifiers (Qual)

B Analyte concentration detected at a value between MDL and PQL.

H Analysis exceeded method hold time. pH is a field test with an immediate hold time.

U Analyte was analyzed for but not detected at the indicated MDL

Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (5) EPA SW-846. Test Methods for Evaluating Solid Waste, Third Edition with Update III, December 1996.
- (6) Standard Methods for the Examination of Water and Wastewater, 19th edition, 1995.

Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.

3.1 20 RA

ACZ Project ID: L65645

(800) 334-5493

Phelps Dodge Sierrita

Project ID: OJ03Z5

Alkalinity as CaC	U3		SM2320B	- Titration									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qua
NG234306													
WG234306PBW1	PBW	10/15/07 11:34				U	mg/L		-20	20			
WG234306LCSW2	LCSW	10/15/07 11:47	WC071015-1	820		8.808	mg/L	98.6	90	110			
WG234306PBW2	PBW	10/15/07 15:36				U	mg/L		-20	20			
WG234306LCSW5	LCSW	10/15/07 15:49	WC071015-1	820		821	mg/L	100.1	90	110			
WG234306PBW3	PBW	10/15/07 18:22				U	mg/L		-20	20			
WG234306LCSW8	LCSW	10/15/07 18:35	WC071015-1	820		824.9	mg/L	100.6	90	110			
WG234306PBW4	PBW	10/15/07 21:25				U	mg/L		-20	20			
WG234306LCSW11	LCSW	10/15/07 21:36	WC071015-1	820		822	mg/L	100.2	90	110			
_65660-04DUP	DUP	10/15/07 22:50			234	233.1	mg/L				0.4	20	
WG234306LCSW14	LCSW	10/16/07 0:26	WC071015-1	820		821.1	mg/L	100.1	90	110			
Calcium, dissolv	ed		M200.7 IC	P									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qua
NG234965													
NG234965ICV	ICV	10/25/07 18:15	11071009-6	100		101.88	mg/L	101.9	95	105			
WG234965ICB	ICB	10/25/07 18:19				U	mg/L		-0.6	0.6			
NG234965LFB	LFB	10/25/07 18:31	11071012-2	67.97008		71.35	mg/L	105	85	115			
_65644-01AS	AS	10/25/07 19:33	11071012-2	67.97008	.3	74.03	mg/L	108.5	85	115			
_65644-01ASD	ASD	10/25/07 19:36	11071012-2	67.97008	.3	73.36	mg/L	107.5	85	115	0.91	20	
Chloride			M300.0 -	Ion Chroma	atography	,							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qua
NG226250													
VG226250ICV	ICV	06/11/07 13:52	IC070606-1	20		20.34	mg/L	101.7	90	110			
WG226250ICB	ICB	06/11/07 14:10				U	mg/L		-1.5	1.5			
WG226250ICV1	ICV	06/12/07 14:59	IC070606-1	20		20.31	mg/L	101.6	90	110			
WG226250ICB1	ICB	06/12/07 15:17				U	mg/L		-1.5	1.5			
NG234870													
VG234870ICV	ICV	10/24/07 14:38	WI071019-1	20		19.89	mg/L	99.5	90	110			
VG234870ICB	ICB	10/24/07 14:57				U	mg/L		-1.5	1.5			
VG234870LFB1	LFB	10/24/07 15:15	WI070727-1	30		29.32	mg/L	97.7	90	110			
VG234870LFB2	LFB	10/25/07 0:00	WI070727-1	30		29.44	mg/L	98.1	90	110			
-65634-05AS	AS	10/25/07 17:18	WI070727-1	1500	230	1745	mg/L	101	90	110			
							-						

230

223

mg/L

L65634-05DUP

DUP 10/25/07 17:36

(800) 334-5493

Phelps Dodge Sierrita

Project ID: OJ03Z5 ACZ Project ID: L65645

Fluoride			M300.0 -	Ion Chrom	atography	,							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226250													
WG226250ICV	ICV	06/11/07 13:52	IC070606-1	3.984		4.13	mg/L	103.7	90	110			
WG226250ICB	ICB	06/11/07 14:10				U	mg/L		-0.3	0.3			
WG226250ICV1	ICV	06/12/07 14:59	IC070606-1	3.984		4.11	mg/L	103.2	90	110			
WG226250ICB1	ICB	06/12/07 15:17				U	mg/L		-0.3	0.3			
WG234870													
WG234870ICV	ICV	10/24/07 14:38	WI071019-1	3.984		4.1	mg/L	102.9	90	110			
WG234870ICB	ICB	10/24/07 14:57				U	mg/L		-0.3	0.3			
WG234870LFB1	LFB	10/24/07 15:15	WI070727-1	1.5		1.51	mg/L	100.7	90	110			
WG234870LFB2	LFB	10/25/07 0:00	WI070727-1	1.5		1.55	mg/L	103.3	90	110			
L65634-05AS	AS	10/25/07 0:36	WI070727-1	3	.7	3.73	mg/L	101	90	110			
L65634-05DUP	DUP	10/25/07 0:54			.7	.75	mg/L				6.9	20	R
Magnesium, dis	solved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG234965													
WG234965ICV	ICV	10/25/07 18:15	11071009-6	100		101.9	mg/L	101.9	95	105			
WG234965ICB	ICB	10/25/07 18:19				U	mg/L		-0.6	0.6			
WG234965LFB	LFB	10/25/07 18:31	11071012-2	54.96908		57.06	mg/L	103.8	85	115			
L65644-01AS	AS	10/25/07 19:33	11071012-2	54.96908	U	59.34	mg/L	108	85	115			
L65644-01ASD	ASD	10/25/07 19:36	II071012-2	54.96908	U	59.11	mg/L	107.5	85	115	0.39	20	
Nitrate/Nitrite as	s N, diss	olved	M353.2 -	Automated	I Cadmiun	n Reduc	tion						
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG234250													
WG234250ICV	ICV	10/12/07 17:50	WI070911-1	2.416		2.559	mg/L	105.9	90	110			
WG234250ICB	ICB	10/12/07 17:51				U	mg/L		-0.06	0.06			
WG234250LFB1	LFB	10/12/07 17:55	WI070911-4	2		2.154	mg/L	107.7	90	110			
WG234250LFB2	LFB	10/12/07 18:33	WI070911-4	2		2.148	mg/L	107.4	90	110			
L65645-01AS	AS	10/12/07 18:35	WI070911-4	2	.77	2.885	mg/L	105.8	90	110			
L65646-01DUP	DUP	10/12/07 18:42			1.76	1.778	mg/L				1	20	
Nitrite as N, dis	solved		M353.2 -	Automated	I Cadmiun	n Reduc	tion						
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG234250													
WG234250ICV	ICV	10/12/07 17:50	WI070911-1	.609		.612	mg/L	100.5	90	110			
WG234250ICB	ICB	10/12/07 17:51				U	mg/L		-0.03	0.03			
	LFB	10/12/07 17:55	WI070911-4	1		1.001	mg/L	100.1	90	110			
WG234250LFB1							-						
WG234250LFB1 WG234250LFB2	LFB	10/12/07 18:33	WI070911-4	1		1.015	mg/L	101.5	90	110			
	LFB AS	10/12/07 18:33 10/12/07 18:35	WI070911-4 WI070911-4	1 1	U	1.015 .991	mg/L mg/L	101.5 99.1	90 90	110 110			

ACZ Project ID: L65645

(800) 334-5493

Phelps Dodge Sierrita

Project ID: OJ03Z5

Potassium, diss	oivea		M200.7 I										
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qua
WG234965													
WG234965ICV	ICV	10/25/07 18:15	11071009-6	20		19.79	mg/L	99	95	105			
WG234965ICB	ICB	10/25/07 18:19				U	mg/L		-0.9	0.9			
WG234965LFB	LFB	10/25/07 18:31	11071012-2	99.76186		103.8	mg/L	104	85	115			
L65644-01AS	AS	10/25/07 19:33	11071012-2	99.76186	.9	106.37	mg/L	105.7	85	115			
-65644-01ASD	ASD	10/25/07 19:36	11071012-2	99.76186	.9	105.55	mg/L	104.9	85	115	0.77	20	
Residue, Filtera	ble (TDS) @180C	160.1 / S	M2540C									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qua
WG234373													
WG234373PBW	PBW	10/16/07 11:05				U	mg/L		-20	20			
WG234373LCSW	LCSW	10/16/07 11:07	PCN28213	260		254	mg/L	97.7	80	120			
_65659-03DUP	DUP	10/16/07 11:33			2220	2230	mg/L				0.4	20	
Sodium, dissolv	ed		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qua
WG234965													
WG234965ICV	ICV	10/25/07 18:15	11071009-6	100		101.69	mg/L	101.7	95	105			
VG234965ICB	ICB	10/25/07 18:19				U	mg/L		-0.9	0.9			
NG234965LFB	LFB	10/25/07 18:31	11071012-2	98.21624		101.4	mg/L	103.2	85	115			
_65644-01AS	AS	10/25/07 19:33	11071012-2	98.21624	.9	104.77	mg/L	105.8	85	115			
-65644-01ASD	ASD	10/25/07 19:36	11071012-2	98.21624	.9	103.63	mg/L	104.6	85	115	1.09	20	
Sulfate			300.0 - Id	on Chromat	ography								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qua
NG226250													
WG226250ICV	ICV	06/11/07 13:52	IC070606-1	50.15		51.51	mg/L	102.7	90	110			
NG226250ICB	ICB	06/11/07 14:10				U	mg/L		-1.5	1.5			
WG226250ICV1	ICV	06/12/07 14:59	IC070606-1	50.15		51.17	mg/L	102	90	110			
VG226250ICB1	ICB	06/12/07 15:17				U	mg/L		-1.5	1.5			
NG234870													
WG234870ICV	ICV	10/24/07 14:38	WI071019-1	50.1		51.76	mg/L	103.3	90	110			
WG234870ICB	ICB	10/24/07 14:57				U	mg/L		-1.5	1.5			
WG234870LFB1	LFB	10/24/07 15:15	WI070727-1	30		30.58	mg/L	101.9	90	110			
WG234870LFB2	LFB	10/25/07 0:00	WI070727-1	30		30.19	mg/L	100.6	90	110			
L65634-05AS	AS	10/25/07 17:18	WI070727-1	1500	1610	3110	mg/L	100	90	110			

Inorganic Extended Qualifier Report

ACZ Project ID: L65645

Phelps Dodge Sierrita

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L65645-01	WG234965	Sodium, dissolved	M200.7 ICP	ВВ	Target analyte detected in calibration blank at or above acceptance limit. Sample value was > 10X the concentration in the calibration blank.
	WG234870	Chloride	M300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
		Fluoride	M300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG234250	Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG234306	Total Alkalinity	SM2320B - Titration	QA	Sample container with preservation type specified by the method was not available for analysis. Alternate sample container was used.

Certification Qualifiers

Phelps Dodge Sierrita ACZ Project ID: L65645

No certification qualifiers associated with this analysis

Sample Receipt

Phelps Dodge Sierrita

OJ03Z5

ACZ Project ID:

L65645

Date Received:

10/12/2007

Received By:

Date Printed: 10/12/2007

Receipt Verification

- 1) Does this project require special handling procedures such as CLP protocol?
- 2) Are the custody seals on the cooler intact?
- 3) Are the custody seals on the sample containers intact?
- 4) Is there a Chain of Custody or other directive shipping papers present?
- 5) Is the Chain of Custody complete?
- 6) Is the Chain of Custody in agreement with the samples received?
- 7) Is there enough sample for all requested analyses?
- 8) Are all samples within holding times for requested analyses?
- 9) Were all sample containers received intact?
- 10) Are the temperature blanks present?
- 11) Are the trip blanks (VOA and/or Cyanide) present?
- 12) Are samples requiring no headspace, headspace free?
- 13) Do the samples that require a Foreign Soils Permit have one?

YES	NO	NA
		Х
		Х
		Х
Х		
Х		
Х		
Х		
Х		
Х		
		Х
		Χ
		X
		Х

Exceptions: If you answered no to any of the above questions, please describe

N/A

Contact (For any discrepancies, the client must be contacted)

N/A

Shipping Containers

Cooler Id	Temp (°C)	Rad (µR/hr)
NA4651	3.2	16

Client must contact ACZ Project Manager if analysis should not proceed for samples received outside of thermal preservation acceptance criteria.

Notes

Sample Receipt

Phelps Dodge Sierrita

OJ03Z5

ACZ Project ID: Date Received: L65645 10/12/2007

Received By:

Sample Container Preservation

SAMPLE	CLIENT ID	R < 2	G < 2	BK < 2	Y< 2	YG< 2	B< 2	0 < 2	T >12	N/A	RAD	ID
L65645-01	MO-2007-4B-F		Υ									
L65645-02	MO-2007-4B									Χ		

Sample Container Preservation Legend

Abbreviation	Description	Container Type	Preservative/Limits
R	Raw/Nitric	RED	pH must be < 2
В	Filtered/Sulfuric	BLUE	pH must be < 2
BK	Filtered/Nitric	BLACK	pH must be < 2
G	Filtered/Nitric	GREEN	pH must be < 2
0	Raw/Sulfuric	ORANGE	pH must be < 2
Р	Raw/NaOH	PURPLE	pH must be > 12 *
Т	Raw/NaOH Zinc Acetate	TAN	pH must be > 12
Υ	Raw/Sulfuric	YELLOW	pH must be < 2
YG	Raw/Sulfuric	YELLOW GLASS	pH must be < 2
N/A	No preservative needed	Not applicable	
RAD	Gamma/Beta dose rate	Not applicable	must be $< 250 \mu R/hr$

^{*} pH check performed by analyst prior to sample preparation

Sample IDs Reviewed By	۸.
Campic IBC Novicion B	<i>y</i> •

ACZ Labo 2773 Downhill Drive Steamboat Sp	ratories, Inc.	-5493	.[d	Z	246	ر (ر	СН	AIN	of C	UST	ODY
Report to:											
Name: Dan Simpson			Addre	ess: <i>5</i>	1 W.	vet	hore	Rd.			
Company: HGC, INC			7	TUCS.	N, A	2 2	3570	15			
E-mail: dansehgeine	. com		Telep	hone:¿	(500)	29.	3-15	00			
Copy of Report to:											
Name: ned Hall / Bill Dor	ris/Jim Norris		E-mai	رم آند:ا	akeci	*/CCo.	. 61/4	-domi	SA FA	. Consta	
Company: PDSI	1 HGC, INC		F		520)29		•				
Invoice to:					<u> </u>	,,,,		20-7			
Name: Ned Hall			Addre	ee: /	200 1		alal	no :		-/	
Company: PDST		1			× 50						╗
E-mail: ned-hall & FM	i com	1			(520)					-000	$\widetilde{}$
If sample(s) received past holding		⊐ t HT rema				<u> </u>			YEŞ	2	
analysis before expiration, shall A			-						NO		j
If "NO" then ACZ will contact clied is indicated, ACZ will proceed wit						vill bo a	u alifia	4			
PROJECT INFORMATION	ii tile requested allalyses,	CAGILILI			S REQUI	•	_		use aud	ote num	ber)
Quote #: Signitta Short	-		ŀ						, , , , ,		
Project/PO#: 05032		۱	ers	オ	1,0						
Reporting state for compliance t		1	tain	2/	2004	,					
Sampler's Name: NJ. Ban		-	of Containers	N'64 121	1 2	7 2					
Are any samples NRC licensable		-	5	1	20 A	0			٠	į	
SAMPLE IDENTIFICATION	DATE:TIME	Matrix	*	8	2 7	U		pH	Ec	TE	
MO-2007-4B-F	10-11-67/8:20	6W	a	X	X			7.93	376	23.4	5.12
Mo-2007-4B	10-11-07/8:20	Gu	1			X					
			·			1					
											`
Matrix SW (Surface Water) · GW	(Ground Water) · WW (Waste Wa	ater) · DW (Drinking	Water) ·	SL (Sludg	e) · SO (Soil) · Ol	(Oil) · O	ther (Spe	ecify)	
REMARKS											
-green twhite do	t bottles are Fi	1tre	d sa	mple,	5Cid	enti	file	1 W	and	F)	
										/	
-no dot bottle is a	aw/UN FITTERED										
											1
Please re	efer to ACZ's terms & con	ditions lo	cated	on the	reverse	side of	f this C	OC.			
RELINQUISHED BY:					RECEIV				DA	TE:TI	ΛE
Ad. Mall	10-11-07/13	100		/	W.				14.11.	s >/0	337
- if: Views #	//									~ / / 0	

October 30, 2007

Report to:

Ned Hall

Phelps Dodge Sierrita

P.O. Box 527 6200 W. Duval Mine Rd.

Green Valley, AZ 85622-0527

cc: Dan Simpson, Jim Norris, Bill Dorris

Project ID: OJ03Z5

ACZ Project ID: L65663

Ned Hall:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on October 13, 2007. This project has been assigned to ACZ's project number, L65663. Please reference this number in all future inquiries.

Bill to:

Accounts Payable
Phelps Dodge Sierrita

Phoenix, AZ 85002-2671

P.O. Box 2671

All analyses were performed according to ACZ's Quality Assurance Plan, version 12.0. The enclosed results relate only to the samples received under L65663. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after November 30, 2007. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years.

If you have any questions or other needs, please contact your Project Manager.

Phelps Dodge Sierrita

Project ID: OJ03Z5

Sample ID: MO-2007-5B-F Date Sampled: 10/12/07 10:30

Date Received: 10/13/07

Sample Matrix: Ground Water

Field Data									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Conductivity (Field)	Field Measurement	1150			mS/cm			10/12/07 10:30	njb
pH (Field)	Field Measurement	7.6			units			10/12/07 10:30	njb
Temperature (Field)	Field Measurement	29.9			С			10/12/07 10:30	njb
Turbidity (Field)	Field Measurement	3.48			NTU			10/12/07 10:30	njb
Metals Analysis									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Calcium, dissolved	M200.7 ICP	84.8			mg/L	0.2	1	10/26/07 18:25	djt
Magnesium, dissolved	M200.7 ICP	3.7			mg/L	0.2	1	10/26/07 18:25	djt
Potassium, dissolved	M200.7 ICP	5.5			mg/L	0.3	2	10/26/07 18:25	djt
Sodium, dissolved	M200.7 ICP	164			mg/L	0.3	2	10/26/07 18:25	djt
Wet Chemistry									
Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration								
Bicarbonate as		95			mg/L	2	20	10/16/07 0:00	aeh
CaCO3									
Carbonate as CaCO3			U		mg/L	2	20	10/16/07 0:00	aeh
Hydroxide as CaCO3			U		mg/L	2	20	10/16/07 0:00	aeh
Total Alkalinity		95			mg/L	2	20	10/16/07 0:00	aeh
Cation-Anion Balance	Calculation								
Cation-Anion Balance		0.4			%			10/30/07 0:00	calc
Sum of Anions		11.8			meq/L	0.1	0.5	10/30/07 0:00	calc
Sum of Cations		11.9			meq/L	0.1	0.5	10/30/07 0:00	calc
Chloride	M300.0 - Ion Chromatography	44.5			mg/L	0.5	3	10/25/07 8:09	сср
Fluoride	M300.0 - Ion Chromatography	1.2		*	mg/L	0.1	0.5	10/25/07 8:09	сср
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2	1.97			mg/L	0.04	0.2	10/30/07 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1.98	Н	*	mg/L	0.04	0.2	10/16/07 20:16	pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	0.01	ВН	*	mg/L	0.01	0.05	10/16/07 19:45	pjb
Residue, Filterable (TDS) @180C	160.1 / SM2540C	780			mg/L	10	20	10/16/07 12:06	ear
Sulfate	300.0 - Ion Chromatography	402			mg/L	5	30	10/25/07 21:32	сср
TDS (calculated)	Calculation	771			mg/L	10	50	10/30/07 0:00	calc
TDS (ratio - measured/calculated)	Calculation	1.01			-			10/30/07 0:00	calc

Arizona license number: AZ0102

Inorganic Analytical Results

Phelps Dodge Sierrita

ACZ Sample ID: **L65663-02** Project ID: OJ03Z5 Date Sampled: 10/12/07 10:30

Sample ID: MO-2007-5B Date Received: 10/13/07

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	392		mg/L	5	30	10/25/07 21:50	сср

Arizona license number: AZ0102

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report Header Explanations

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest

Limit Upper limit for RPD, in %.

Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit, typically 5 times the MDL.

QC True Value of the Control Sample or the amount added to the Spike

Rec Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

QC Sample Types

AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calivation Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution

QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method or calibration procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method.

Spikes/Fortified Matrix Determines sample matrix interferences, if any.

Standard Verifies the validity of the calibration.

ACZ Qualifiers (Qual)

B Analyte concentration detected at a value between MDL and PQL.

H Analysis exceeded method hold time. pH is a field test with an immediate hold time.

U Analyte was analyzed for but not detected at the indicated MDL

Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (5) EPA SW-846. Test Methods for Evaluating Solid Waste, Third Edition with Update III, December 1996.
- (6) Standard Methods for the Examination of Water and Wastewater, 19th edition, 1995.

Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.

(800) 334-5493

Phelps Dodge Sierrita

Project ID: OJ03Z5 ACZ Project ID: L65663

WG234306 WG23	Alkalinity as CaC	O3		SM2320B	- Titration									
WG234306FBW1 PBW 10/15/07 11:34	ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG234306LCSW	WG234306													
WG234306FBW2 PBW	WG234306PBW1	PBW	10/15/07 11:34				U	mg/L		-20	20			
WG234306LCSW5	WG234306LCSW2	LCSW	10/15/07 11:47	WC071015-1	820		8.808	mg/L	98.6	90	110			
WG234306PBW3 PBW 10/15/07 18-22 WG071015-1 820 824.9 mg/L 10.66 90 110 WG234306PBW4 PBW 10/15/07 21-25 U mg/L 20.20 20 WG234306PBW4 PBW 10/15/07 21-25 WG071015-1 820 822 mg/L 100.2 90 110 U mg/L 20.20 20 WG234306LCSW11 LCSW 10/15/07 21-25 WG071015-1 820 822 mg/L 100.2 90 110 U mg/L 20.20 20 WG234306LCSW11 LCSW 10/15/07 01-15 WG071015-1 820 821.1 mg/L 100.1 90 110 WG234306LCSW11 LCSW 10/16/07 01-25 WG071015-1 820 WG21406CSW11 LCSW 10/16/07 01-25 WG271015-1 820 WG21406CSW11 LCSW 10/16/07 01-25 WG271015-1 820 WG21406CSW11 LCSW 10/16/07 01-25 WG271015-1 820 WG271015-1 820 WG271015-1 820 WG271015-1 820 WG271015-1 820 WG271015-1 820 WG271015-1 WG271015-	WG234306PBW2	PBW	10/15/07 15:36				U	mg/L		-20	20			
WG234306LCSW8	WG234306LCSW5	LCSW	10/15/07 15:49	WC071015-1	820		821	mg/L	100.1	90	110			
WG234306PBW4 PBW	WG234306PBW3	PBW	10/15/07 18:22				U	mg/L		-20	20			
WG234306LCSW11	WG234306LCSW8	LCSW	10/15/07 18:35	WC071015-1	820		824.9	mg/L	100.6	90	110			
L65663-01DUP DUP 10/16/07 0:15 95 94.3 mg/L 00.1 90 11	WG234306PBW4	PBW	10/15/07 21:25				U	mg/L		-20	20			
WG234306LCSW14	WG234306LCSW11	LCSW	10/15/07 21:36	WC071015-1	820		822	mg/L	100.2	90	110			
M200.7 CP M200.7 CP M200.7 CP M200.7 CP M200.7 CP M200.7 CP M200.7 CP M200.7 CP M200.7 CP M200.7 CP M200.7 CP M200.7 CP M200.7 CP M200.7	L65663-01DUP	DUP	10/16/07 0:15			95	94.3	mg/L				0.7	20	
MG234966 MG23496 MG234970 MG234870 M	WG234306LCSW14	LCSW	10/16/07 0:26	WC071015-1	820		821.1	mg/L	100.1	90	110			
WG234966 WG234966 CV ICV 10/26/07 17:04 II071009-7 100 99.78 mg/L 99.8 95 105 WG234966 CB ICB 10/26/07 17:08 U mg/L -0.6 0.6 0.6 WG234966 CB LFB 10/26/07 17:20 II071012-2 67.97008 78.02 mg/L 114.8 85 115 L65660-10AS AS 10/26/07 18:10 II071012-2 339.8504 604 972 mg/L 108.3 85 115 L65660-10ASD ASD 10/26/07 18:13 II071012-2 339.8504 604 963.2 mg/L 105.7 85 115 0.91 20 Chloride	Calcium, dissolv	ed		M200.7 IC	CP									
WG234966 CV ICV 10/26/07 17:04 II071009-7 100 99.78 mg/L 99.8 95 105 105 WG234966 CB ICB 10/26/07 17:08 U mg/L -0.6 0.6 0.6 WG234966 CB LFB 10/26/07 17:20 II071012-2 67.97008 78.02 mg/L 114.8 85 115 L55660-10AS AS 10/26/07 18:10 II071012-2 339.8504 604 972 mg/L 108.3 85 115 L55660-10ASD ASD 10/26/07 18:13 II071012-2 339.8504 604 963.2 mg/L 105.7 85 115 0.91 20	ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG234966ICB	WG234966													
WG234966ICB	WG234966ICV	ICV	10/26/07 17:04	11071009-7	100		99 78	ma/l	99.8	95	105			
WG234966LFB LFB 10/26/07 17:20 II071012-2 67.97008 78.02 mg/L 114.8 85 115 L65660-10AS AS 10/26/07 18:10 II071012-2 339.8504 604 972 mg/L 108.3 85 115 L65660-10ASD ASD 10/26/07 18:13 II071012-2 339.8504 604 963.2 mg/L 105.7 85 115 0.91 20 Chloride								•	00.0					
L65660-10AS AS 10/26/07 18:10 II071012-2 339.8504 604 972 mg/L 108.3 85 115 L65660-10ASD ASD 10/26/07 18:13 II071012-2 339.8504 604 963.2 mg/L 105.7 85 115 0.91 20 Chloride				11071012-2	67 97008			•	114 8					
M300.0 - Ion Chromatography						604		•						
WG226250 WG226250ICV ICV 06/11/07 13:52 IC070606-1 20 20.34 mg/L 101.7 90 110 V VG226250ICV ICV 06/11/07 14:10 U mg/L 101.7 90 110 V VG226250ICB ICB 06/11/07 14:59 IC070606-1 20 20.34 mg/L 101.6 90 110 VG226250ICB ICB 06/12/07 14:59 IC070606-1 20 20.31 mg/L 101.6 90 110 VG226250ICB ICB 06/12/07 15:17 VG2626250ICB ICB 06/12/07 15:17 VG2626250ICB ICB 06/12/07 14:59 IC070606-1 20 20.31 mg/L 101.6 90 110 VG2626250ICB VG2626250ICB ICB 06/12/07 15:17 VG260720ICB VG260720ICB <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td>0.91</td> <td>20</td> <td></td>								•				0.91	20	
ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit Quarter WG226250 WG226250ICV ICV 06/11/07 13:52 IC070606-1 20 20.34 mg/L 101.7 90 110 90 11	Chloride			M300.0 -	Ion Chrom	atography	,							
WG226250ICV ICV 06/11/07 13:52 IC070606-1 20 20.34 mg/L 101.7 90 110 WG226250ICB ICB 06/11/07 14:10 U mg/L -1.5 1.5 WG226250ICV1 ICV 06/12/07 14:59 IC070606-1 20 20.31 mg/L 101.6 90 110 WG226250ICB1 ICB 06/12/07 15:17 U mg/L -1.5 1.5 WG234870 WG234870 WG234870ICV ICV 10/24/07 14:38 WI071019-1 20 19.89 mg/L 99.5 90 110 WG234870ICB ICB 10/24/07 14:57 U mg/L -1.5 1.5 WG234870ICB ICB 10/24/07 15:15 WI070727-1 30 29.32 mg/L 97.7 90 110 WG234870ICB ICB 10/25/07 0:00 WI070727-1 30 29.32 mg/L 97.7 90 110 WG234870ICB2 ICB 10/25/07 0:00 WI070727-1 30 29.44 mg/L 98.1 90 110 L65660-04AS AS 10/25/07 5:44 37.3 37.29 mg/L 94.6 90 110 L65660-04AS AS 10/25/07 5:44 MI070727-1 150 37 186.4 mg/L 99.6 90 110	ACZ ID	Туре	Analyzed					Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226250ICV ICV 06/11/07 13:52 IC070606-1 20 20.34 mg/L 101.7 90 110 WG226250ICB ICB 06/11/07 14:10 U mg/L -1.5 1.5 WG226250ICV1 ICV 06/12/07 14:59 IC070606-1 20 20.31 mg/L 101.6 90 110 WG226250ICB1 ICB 06/12/07 15:17 U mg/L -1.5 1.5 WG234870 WG234870CV ICV 10/24/07 14:38 WI071019-1 20 19.89 mg/L 99.5 90 110 WG234870ICB ICB 10/24/07 14:57 U mg/L -1.5 1.5 WG234870CB ICB 10/24/07 15:15 WI070727-1 30 29.32 mg/L 97.7 90 110 WG234870FB1 LFB 10/25/07 0:00 WI070727-1 30 29.44 mg/L 98.1 90 110 WG234870FB2 LFB 10/25/07 4:50 WI070727-1 30 37.3 65.68 mg/L 94.6 90 110 L65660-04AS AS 10/25/07 5:44 37.3 37.29 mg/L 99.6 90 110 L65660-04AS AS 10/25/07 5:44 MI070727-1 150 37 186.4 mg/L 99.6 90 110	WG226250													
WG226250ICB ICB 06/11/07 14:10		ICV	06/11/07 13:52	IC070606-1	20		20.34	ma/l	101 7	90	110			
WG226250ICV1 ICV 06/12/07 14:59 IC070606-1 20 20.31 mg/L 101.6 90 110 WG226250ICB1 ICB 06/12/07 15:17 U mg/L -1.5 1.5 WG234870 WG234870ICV ICV 10/24/07 14:38 WI071019-1 20 19.89 mg/L 99.5 90 110 WG234870ICB ICB 10/24/07 14:57 U mg/L -1.5 1.5 WG234870ICB ICB 10/24/07 15:15 WI070727-1 30 29.32 mg/L 97.7 90 110 WG234870ICB2 LFB 10/25/07 0:00 WI070727-1 30 29.44 mg/L 98.1 90 110 L65660-04AS AS 10/25/07 4:50 WI070727-1 30 37.3 65.68 mg/L 94.6 90 110 L65660-04DUP DUP 10/25/07 5:44 37.3 37.29 mg/L 09.6 90 110 L65660-04AS AS 10/25/07 20:01 WI070727-1 150 37 186.4 mg/L 99.6 90 110 L65660-04AS AS 10/25/07 20:01 WI070727-1 150 37 186.4 mg/L 99.6 90 110 L65660-04AS AS 10/25/07 20:01 WI070727-1 150 37 186.4 mg/L 99.6 90 110 L65660-04AS AS 10/25/07 20:01 WI070727-1 150 37 186.4 mg/L 99.6 90 110 L65660-04AS AS 10/25/07 20:01 WI070727-1 150 37 186.4 mg/L 99.6 90 110 L65660-04AS AS 10/25/07 20:01 WI070727-1 150 37 186.4 mg/L 99.6 90 110 L65660-04AS AS 10/25/07 20:01 WI070727-1 150 37 186.4 mg/L 99.6 90 110 L65660-04AS AS 10/25/07 20:01 WI070727-1 150 37 186.4 mg/L 99.6 90 110 L65660-04AS AS 10/25/07 20:01 WI070727-1 150 37 186.4 mg/L 99.6 90 110 L65660-04AS AS 10/25/07 20:01 WI070727-1 150 37 186.4 mg/L 99.6 90 110 L65660-04AS AS 10/25/07 20:01 WI070727-1 150 37 186.4 mg/L 99.6 90 110 L65660-04AS AS 10/25/07 20:01 WI070727-1 150 37 186.4 mg/L 99.6 90 110 L65660-04AS AS 10/25/07 20:01 WI070727-1 150 37 186.4 mg/L 99.6 90 110 L65660-04AS AS 10/25/07 20:01 WI070727-1 150 37 186.4 mg/L 99.6 90 110 L65660-04AS AS 10/25/07 20:01 WI070727-1 150 37 186.4 mg/L 99.6 90 110 L65660-04AS AS 10/25/07 20:01 WI070727-1 150 37 186.4 mg/L 99.6 90 110 L65660-04AS AS 10/25/07 20:01 WI070727-1 150 37 186.4 mg/L 99.6 90 110 L65660-04AS AS 10/25/07 20:01 WI070727-1 150 37 186.4 mg/L 99.6 90 110 L65660-04AS AS 10/25/07 20:01 WI070727-1 150 37 186.4 mg/L 99.6 90 110 L65660-04AS AS 10/25/07 20:01 WI070727-1 150 37 186.4 mg/L 99.6 90 110 L65660-04AS AS 10/25/07 20:01 WI070727-1 150 37 186.4 mg/L 99.6 90 110 L65660-04AS AS 10/25/07 20:01 WI070727-1								•						
WG226250ICB1 ICB 06/12/07 15:17 U mg/L -1.5 1.5 WG234870 WG234870ICV ICV 10/24/07 14:38 WI071019-1 20 19.89 mg/L 99.5 90 110 WG234870ICB ICB 10/24/07 14:57 U mg/L -1.5 1.5 WG234870LFB1 LFB 10/24/07 15:15 WI070727-1 30 29.32 mg/L 97.7 90 110 WG234870LFB2 LFB 10/25/07 0:00 WI070727-1 30 29.44 mg/L 98.1 90 110 L65660-04AS AS 10/25/07 4:50 WI070727-1 30 37.3 65.68 mg/L 94.6 90 110 L65660-04AS AS 10/25/07 5:44 37.3 37.29 mg/L 99.6 90 110				IC070606-1	20			•	101.6					
WG234870ICV ICV 10/24/07 14:38 WI071019-1 20 19.89 mg/L 99.5 90 110 WG234870ICB ICB 10/24/07 14:57 U mg/L -1.5 1.5 WG234870IFB1 LFB 10/24/07 15:15 WI070727-1 30 29.32 mg/L 97.7 90 110 WG234870LFB2 LFB 10/25/07 0:00 WI070727-1 30 29.44 mg/L 98.1 90 110 L65660-04AS AS 10/25/07 4:50 WI070727-1 30 37.3 65.68 mg/L 94.6 90 110 L65660-04DUP DUP 10/25/07 5:44 37.3 37.29 mg/L 0 20 L65660-04AS AS 10/25/07 20:01 WI070727-1 150 37 186.4 mg/L 99.6 90 110				10010000 1	20			•	101.0					
WG234870ICB ICB 10/24/07 14:57 U mg/L -1.5 1.5 WG234870LFB1 LFB 10/24/07 15:15 WI070727-1 30 29.32 mg/L 97.7 90 110 WG234870LFB2 LFB 10/25/07 0:00 WI070727-1 30 29.44 mg/L 98.1 90 110 L65660-04AS AS 10/25/07 4:50 WI070727-1 30 37.3 65.68 mg/L 94.6 90 110 L65660-04DUP DUP 10/25/07 5:44 37.3 37.29 mg/L 99.6 90 110 L65660-04AS AS 10/25/07 20:01 WI070727-1 150 37 186.4 mg/L 99.6 90 110	WG234870							-						
WG234870ICB ICB 10/24/07 14:57 U mg/L -1.5 1.5 WG234870LFB1 LFB 10/24/07 15:15 WI070727-1 30 29.32 mg/L 97.7 90 110 WG234870LFB2 LFB 10/25/07 0:00 WI070727-1 30 29.44 mg/L 98.1 90 110 L65660-04AS AS 10/25/07 4:50 WI070727-1 30 37.3 65.68 mg/L 94.6 90 110 L65660-04DUP DUP 10/25/07 5:44 37.3 37.29 mg/L 99.6 90 110 L65660-04AS AS 10/25/07 20:01 WI070727-1 150 37 186.4 mg/L 99.6 90 110	WG234870ICV	ICV	10/24/07 14:38	WI071019-1	20		19.89	ma/L₋	99.5	90	110			
WG234870LFB1 LFB 10/24/07 15:15 WI070727-1 30 29.32 mg/L 97.7 90 110 WG234870LFB2 LFB 10/25/07 0:00 WI070727-1 30 29.44 mg/L 98.1 90 110 L65660-04AS AS 10/25/07 4:50 WI070727-1 30 37.3 65.68 mg/L 94.6 90 110 L65660-04DUP DUP 10/25/07 5:44 37.3 37.29 mg/L 0 20 L65660-04AS AS 10/25/07 20:01 WI070727-1 150 37 186.4 mg/L 99.6 90 110								•	- 3.0					
WG234870LFB2 LFB 10/25/07 0:00 WI070727-1 30 29.44 mg/L 98.1 90 110 L65660-04AS AS 10/25/07 4:50 WI070727-1 30 37.3 65.68 mg/L 94.6 90 110 L65660-04DUP DUP 10/25/07 5:44 37.3 37.29 mg/L 0 20 L65660-04AS AS 10/25/07 20:01 WI070727-1 150 37 186.4 mg/L 99.6 90 110				WI070727-1	30			•	97.7					
L65660-04AS AS 10/25/07 4:50 WI070727-1 30 37.3 65.68 mg/L 94.6 90 110 L65660-04DUP DUP 10/25/07 5:44 37.3 37.29 mg/L 0 20 L65660-04AS AS 10/25/07 20:01 WI070727-1 150 37 186.4 mg/L 99.6 90 110								•						
L65660-04DUP DUP 10/25/07 5:44 37.3 37.29 mg/L 0 20 L65660-04AS AS 10/25/07 20:01 WI070727-1 150 37 186.4 mg/L 99.6 90 110						37.3		•						
L65660-04AS AS 10/25/07 20:01 WI070727-1 150 37 186.4 mg/L 99.6 90 110					-			•	01.0	00	110	n	20	
· ·				\MI070727_1	150			_	99.6	90	110	Ū	20	
Lababat 197 27 27 27 mail 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	L65660-04DUP	DUP	10/25/07 20:01	VVIO/0/2/-1	150	37	37.3	mg/L	33.0	90	110	0.8	20	

(800) 334-5493

Phelps Dodge Sierrita

Project ID: OJ03Z5 ACZ Project ID: L65663

Fluoride			M300.0 -	Ion Chrom	atography	,							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226250													
WG226250ICV	ICV	06/11/07 13:52	IC070606-1	3.984		4.13	mg/L	103.7	90	110			
WG226250ICB	ICB	06/11/07 14:10				U	mg/L		-0.3	0.3			
WG226250ICV1	ICV	06/12/07 14:59	IC070606-1	3.984		4.11	mg/L	103.2	90	110			
WG226250ICB1	ICB	06/12/07 15:17				U	mg/L		-0.3	0.3			
WG234870													
WG234870ICV	ICV	10/24/07 14:38	WI071019-1	3.984		4.1	mg/L	102.9	90	110			
WG234870ICB	ICB	10/24/07 14:57				U	mg/L		-0.3	0.3			
WG234870LFB1	LFB	10/24/07 15:15	WI070727-1	1.5		1.51	mg/L	100.7	90	110			
WG234870LFB2	LFB	10/25/07 0:00	WI070727-1	1.5		1.55	mg/L	103.3	90	110			
L65660-04AS	AS	10/25/07 4:50	WI070727-1	1.5	.3	1.81	mg/L	100.7	90	110			
L65660-04DUP	DUP	10/25/07 5:44			.3	.29	mg/L				3.4	20	RA
Magnesium, dis	solved		M200.7 I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG234966													
WG234966ICV	ICV	10/26/07 17:04	11071009-7	100		99.99	mg/L	100	95	105			
WG234966ICB	ICB	10/26/07 17:08				U	mg/L		-0.6	0.6			
WG234966LFB	LFB	10/26/07 17:20	11071012-2	54.96908		63.04	mg/L	114.7	85	115			
L65660-10AS	AS	10/26/07 18:10	11071012-2	274.8454	510	802.2	mg/L	106.3	85	115			
L65660-10ASD	ASD	10/26/07 18:13	11071012-2	274.8454	510	787.3	mg/L	100.9	85	115	1.87	20	
Nitrate/Nitrite as	s N, diss	olved	M353.2 -	Automated	I Cadmiur	n Reduc	tion						
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG234423													
WG234423ICV	ICV	10/16/07 19:39	WI070911-1	2.416		2.408	mg/L	99.7	90	110			
WG234423ICB	ICB	10/16/07 19:40		20		U	mg/L	00	-0.06	0.06			
WG234423LFB	LFB	10/16/07 19:44	WI070911-4	2		1.984	mg/L	99.2	90	110			
L65673-01DUP	DUP	10/16/07 19:49		_	.15	.146	mg/L				2.7	20	RA
L65663-01AS	AS	10/16/07 20:17	WI070911-4	4	1.98	6.221	mg/L	106	90	110			
Nitrite as N, dis	solved		M353.2 -	Automated	I Cadmiur	n Reduc	tion						
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG234423													
WG234423ICV	ICV	10/16/07 19:39	WI070911-1	.609		.625	mg/L	102.6	90	110			
WG234423ICB	ICB	10/16/07 19:39	**1070311-1	.000		.023 U	mg/L	102.0	-0.03	0.03			
WG234423LFB	LFB	10/16/07 19:44	WI070911-4	1		1.007	mg/L	100.7	90	110			
L65663-01AS	AS	10/16/07 19:46	WI070911-4	1	.01	1.036	mg/L	100.7	90	110			
		,,		•			9/ =						

ACZ Project ID: L65663

(800) 334-5493

Phelps Dodge Sierrita

Project ID: OJ03Z5

Potassium, diss	olved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG234966													
WG234966ICV	ICV	10/26/07 17:04	11071009-7	20		20.15	mg/L	100.8	95	105			
WG234966ICB	ICB	10/26/07 17:08				U	mg/L		-0.9	0.9			
WG234966LFB	LFB	10/26/07 17:20	11071012-2	99.76186		112.66	mg/L	112.9	85	115			
L65660-10AS	AS	10/26/07 18:10	11071012-2	498.8093	5	565.6	mg/L	112.4	85	115			
L65660-10ASD	ASD	10/26/07 18:13	11071012-2	498.8093	5	570.9	mg/L	113.5	85	115	0.93	20	
Residue, Filtera	ble (TDS) @180C	160.1 / S	M2540C									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG234382													
WG234382PBW	PBW	10/16/07 11:44				U	mg/L		-20	20			
WG234382LCSW	LCSW	10/16/07 11:46	PCN28213	260		264	mg/L	101.5	80	120			
L65663-01DUP	DUP	10/16/07 12:08			780	762	mg/L				2.3	20	
Sodium, dissolv	ed		M200.7 I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG234966													
WG234966ICV	ICV	10/26/07 17:04	11071009-7	100		100.83	mg/L	100.8	95	105			
WG234966ICB	ICB	10/26/07 17:08				U	mg/L		-0.9	0.9			
WG234966LFB	LFB	10/26/07 17:20	11071012-2	98.21624		110.42	mg/L	112.4	85	115			
L65660-10AS	AS	10/26/07 18:10	11071012-2	491.0812	35	572.2	mg/L	109.4	85	115			
L65660-10ASD	ASD	10/26/07 18:13	11071012-2	491.0812	35	578.9	mg/L	110.8	85	115	1.16	20	
Sulfate			300.0 - Id	on Chromat	ography								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG226250													
WG226250ICV	ICV	06/11/07 13:52	IC070606-1	50.15		51.51	mg/L	102.7	90	110			
WG226250ICB	ICB	06/11/07 14:10				U	mg/L		-1.5	1.5			
WG226250ICV1	ICV	06/12/07 14:59	IC070606-1	50.15		51.17	mg/L	102	90	110			
WG226250ICB1	ICB	06/12/07 15:17				U	mg/L		-1.5	1.5			
WG234870													
WG234870ICV	ICV	10/24/07 14:38	WI071019-1	50.1		51.76	mg/L	103.3	90	110			
WG234870ICB	ICB	10/24/07 14:57				U	mg/L		-1.5	1.5			
WG234870LFB1	LFB	10/24/07 15:15	WI070727-1	30		30.58	mg/L	101.9	90	110			
WG234870LFB2	LFB	10/25/07 0:00	WI070727-1	30		30.19	mg/L	100.6	90	110			
L65660-04AS	AS	10/25/07 20:01	WI070727-1	150	218	365.7	mg/L	98.5	90	110			
L65660-04DUP	DUP	10/25/07 20:19			218	215.4	mg/L				1.2	20	

Inorganic Extended
Qualifier Report

Phelps Dodge Sierrita

ACZ Project ID: L65663

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L65663-01	WG234870	Fluoride	M300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG234423	Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	H1	Sample analysis performed past holding time.
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
		Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	H1	Sample analysis performed past holding time.
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).

Certification Qualifiers

Phelps Dodge Sierrita ACZ Project ID: L65663

No certification qualifiers associated with this analysis

Sample Receipt

Phelps Dodge Sierrita

OJ03Z5

ACZ Project ID:

L65663

Date Received:

10/13/2007

Received By:

Date Printed: 10/13/2007

Receipt Verification

- 1) Does this project require special handling procedures such as CLP protocol?
- 2) Are the custody seals on the cooler intact?
- 3) Are the custody seals on the sample containers intact?
- 4) Is there a Chain of Custody or other directive shipping papers present?
- 5) Is the Chain of Custody complete?
- 6) Is the Chain of Custody in agreement with the samples received?
- 7) Is there enough sample for all requested analyses?
- 8) Are all samples within holding times for requested analyses?
- 9) Were all sample containers received intact?
- 10) Are the temperature blanks present?
- 11) Are the trip blanks (VOA and/or Cyanide) present?
- 12) Are samples requiring no headspace, headspace free?
- 13) Do the samples that require a Foreign Soils Permit have one?

YES	NO	NA
		Х
		Х
		Х
Х		
Х		
Х		
Х		
Х		
Х		
		Х
		Χ
_		X
		Х

Exceptions: If you answered no to any of the above questions, please describe

N/A

Contact (For any discrepancies, the client must be contacted)

N/A

Shipping Containers

Cooler Id	Temp (°C)	Rad (µR/hr)
NA4668	3.4	14

Client must contact ACZ Project Manager if analysis should not proceed for samples received outside of thermal preservation acceptance criteria.

Notes

Sample Receipt

Phelps Dodge Sierrita

OJ03Z5

ACZ Project ID: Date Received: L65663 10/13/2007

Received By:

Sample Container Preservation

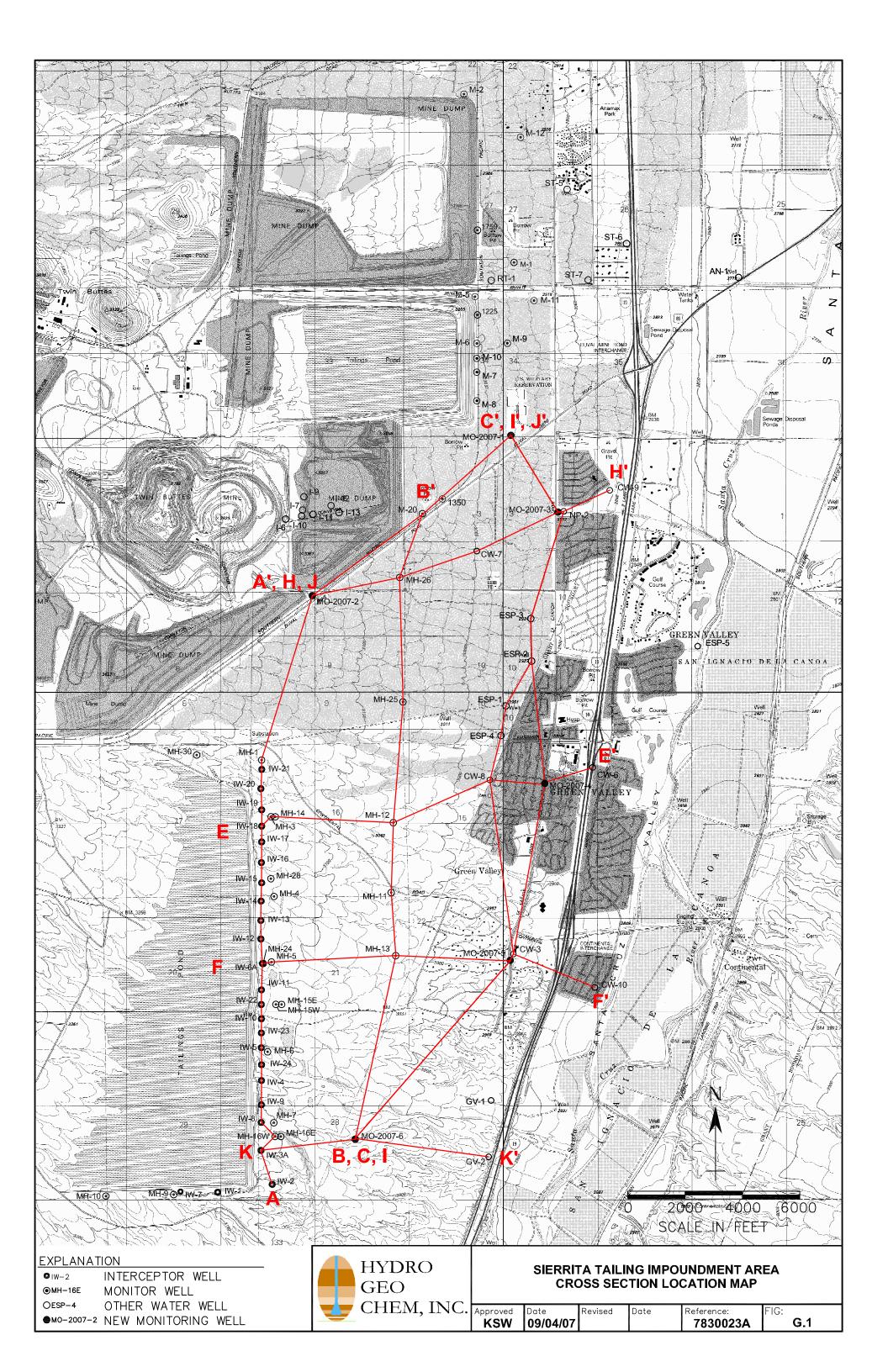
SAMPLE	CLIENT ID	R < 2	G < 2	BK < 2	Y< 2	YG< 2	B< 2	0 < 2	T >12	N/A	RAD	ID
L65663-01	MO-2007-5B-F		Υ									
L65663-02	MO-2007-5B									Χ		

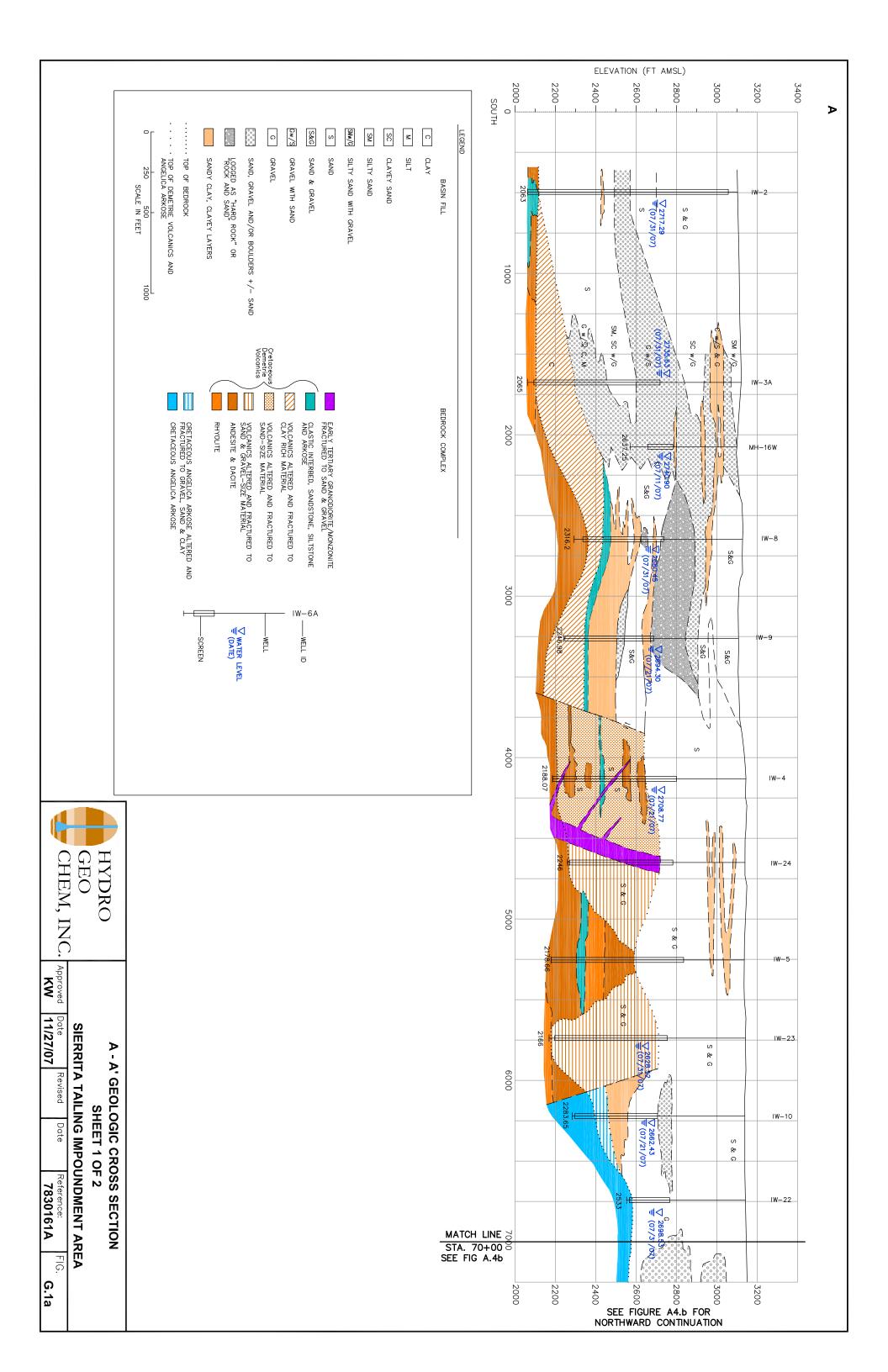
Sample Container Preservation Legend

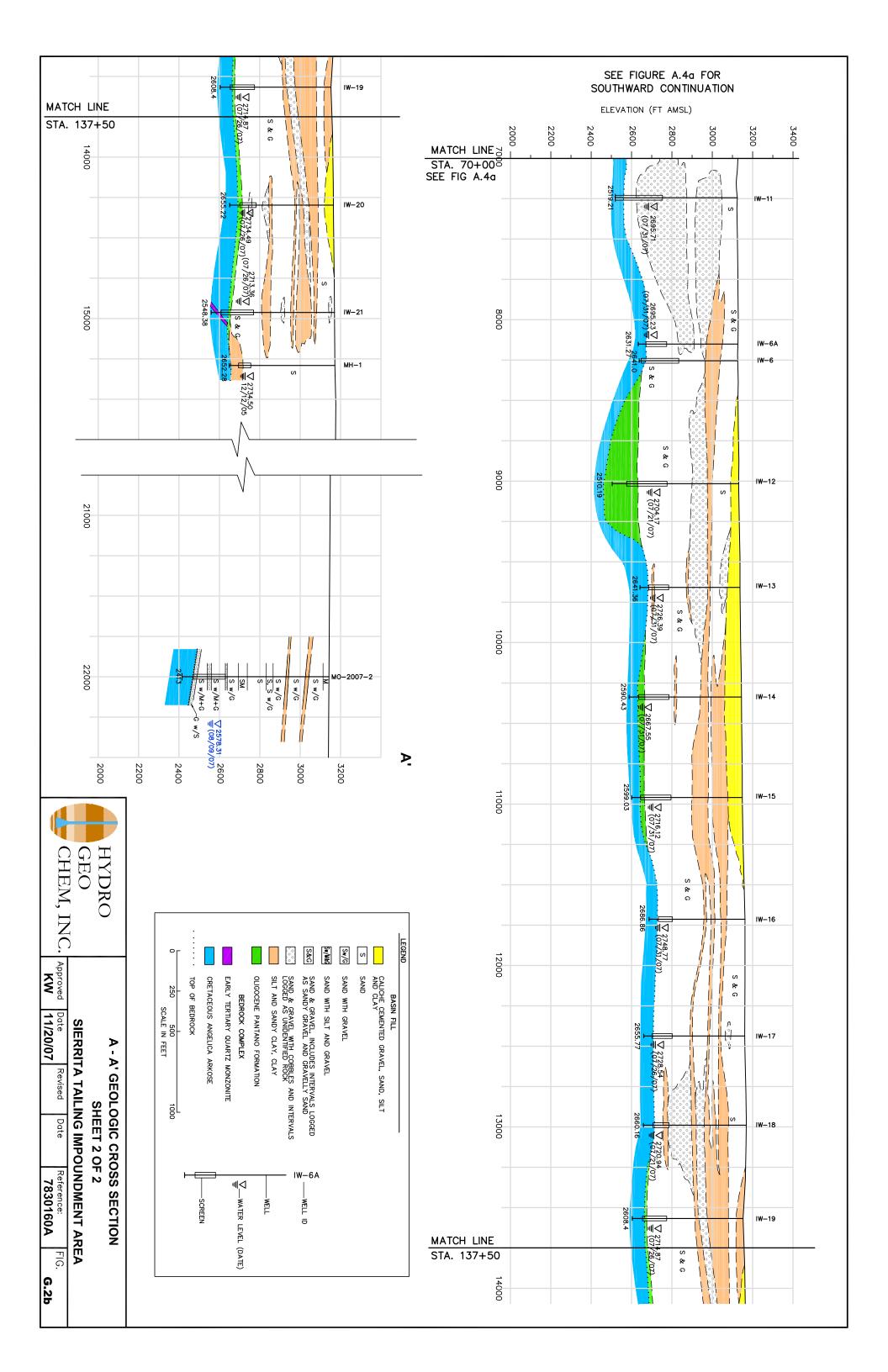
Abbreviation	Description	Container Type	Preservative/Limits
R	Raw/Nitric	RED	pH must be < 2
В	Filtered/Sulfuric	BLUE	pH must be < 2
BK	Filtered/Nitric	BLACK	pH must be < 2
G	Filtered/Nitric	GREEN	pH must be < 2
0	Raw/Sulfuric	ORANGE	pH must be < 2
Р	Raw/NaOH	PURPLE	pH must be > 12 *
Т	Raw/NaOH Zinc Acetate	TAN	pH must be > 12
Υ	Raw/Sulfuric	YELLOW	pH must be < 2
YG	Raw/Sulfuric	YELLOW GLASS	pH must be < 2
N/A	No preservative needed	Not applicable	
RAD	Gamma/Beta dose rate	Not applicable	must be < 250 µR/hr

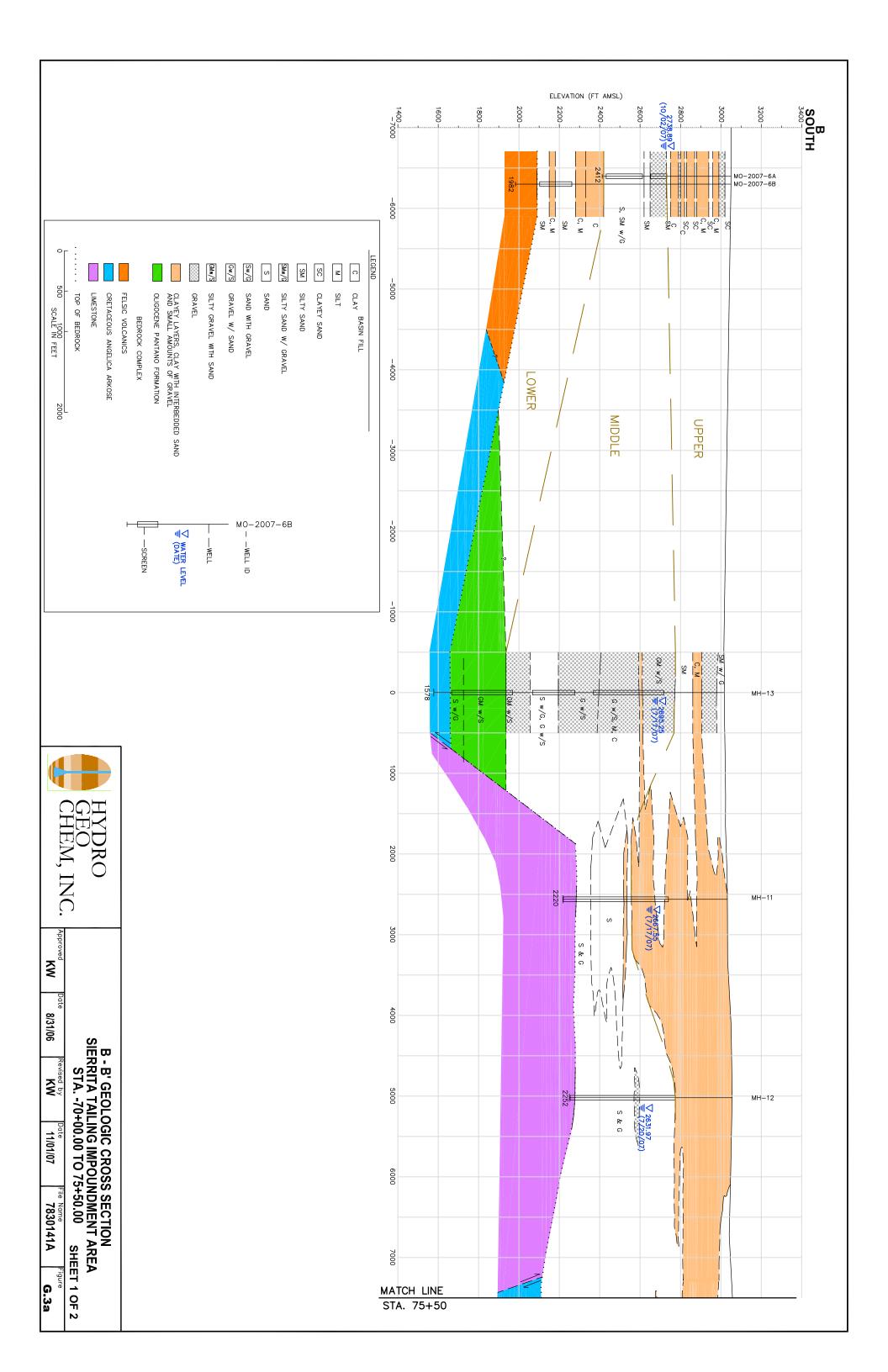
^{*} pH check performed by analyst prior to sample preparation

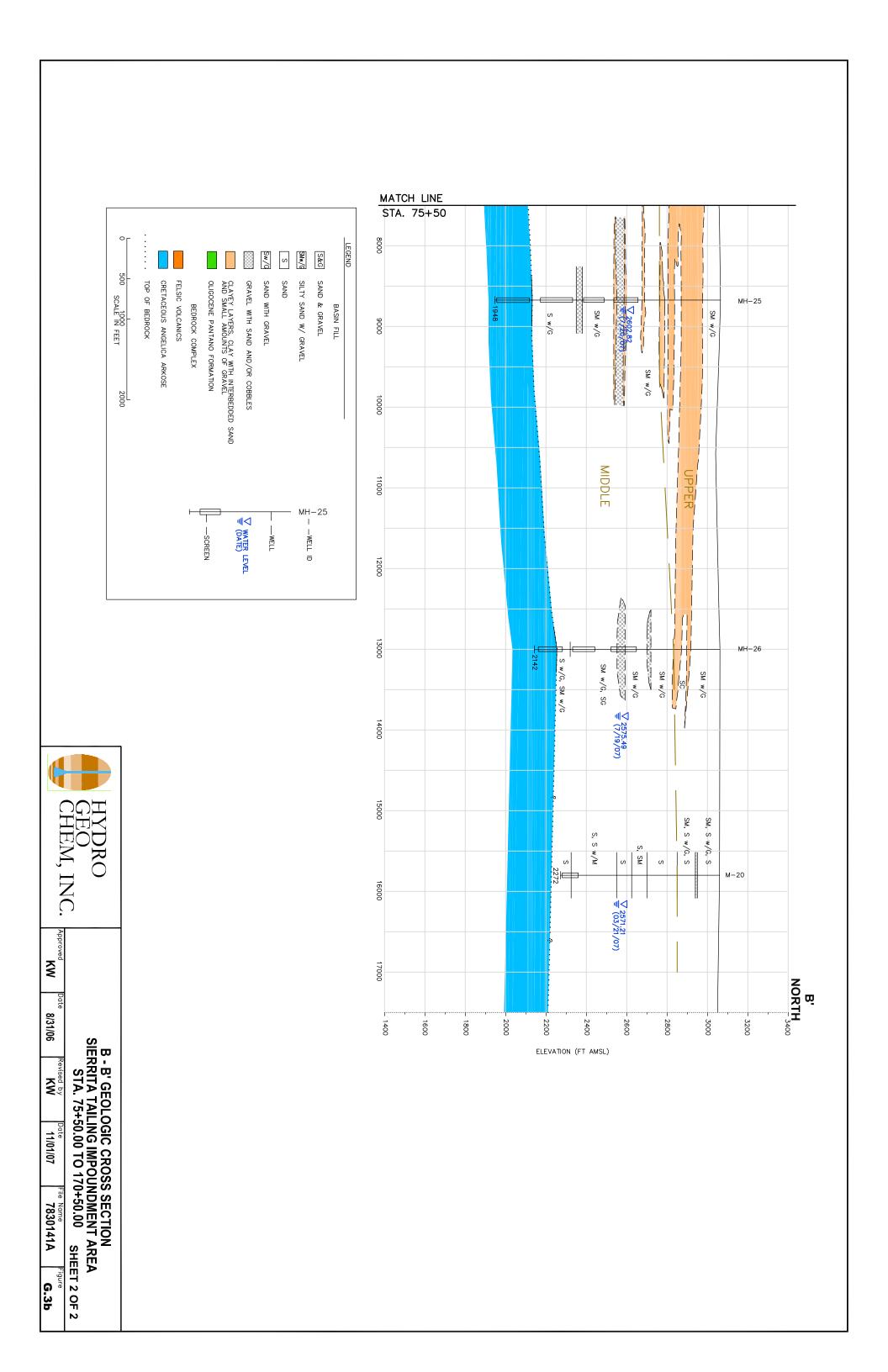
ACZ Labo		-100	1)FX	do	ろ	CHA	VIN o	of CL	JSTC	DOY	
2773 Downhill Drive Steamboat Sp Report to:	rings, CO 80487 (800) 334-5	5493		_								
			Addre	ss: 5	Ίω.	wet	MOCO	Ra	1			
Name: Dan Simpson Company: HGC, Inc.		† †		Tuc	520)	A 2	٤	57	که			
E-mail: dans checinc.co		1 1	Telepi	none: ((520)	29	3-1	500				
			<u> </u>									
Copy of Report to:) - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		E mai		-1:		I hu	1	256	Calc	<i>50</i> 0	
Name: Nad Hall / Bill Dorris/ Jim Norris Company: PDSI / HGC			E-mail: vimnehocincom, billy -dorn's & fmi.com Telephone (520) 293-1500 x.112, (520) 648-8873									
Company: PASE	/ HGC	<u> </u>	reiehi	loneC	120/0	1010	- <u>X.116</u>	100	<u> </u>			
Invoice to:					· _							
Name: Ned Hall			Addre	ss: 6	200	<u>س. د</u>	ンソング	1 /11	Ne 1	20.		
Company: PDSI	P.O. B-X 527, 6. Valley, AZ 85622 Telephone: (520)648-8857											
E-mail: ned-hall ef	ni, com					648	- 20	<u> </u>				
If sample(s) received past holding	ig time (HT), or if insufficient	t HT rema	ins to	comple	ete				YES NO	<u>~</u>		
analysis before expiration, shall If "NO" then ACZ will contact cli	ACZ proceed with requested	d snort H f neither '	ı anaıy 'YES" ı	rses r nor "NC)"				.,,		ł.	
is indicated, ACZ will contact cili	ith the requested analyses,	even if H1	is exp	oired, a	nd data y	vill be (qualifie	d.				
PROJECT INFORMATION			AN	ALYSE	S REQUI	ESTED	(attach	list or l	ise quo	te num	ber)	
Quote #: Sierrita Sho	ct									! !		
Project/PO#: OJØ375		7	of Containers	ļ.,	1, 3							
Reporting state for compliance	testing: AZ	7	igi.	3	20,20	i		1				
Sampler's Name: NJ.B.	Lh	7	5	May May	414, 785, 504 CRT, F. MOZ,				ł			
Are any samples NRC licensal		7	*	2	701	3						
SAMPLE IDENTIFICATION		Matrix		\ 3	± 3	3		PH	E c	Toc	TURS	
MO-2007-5B-F		6w	2	X	X			7.63	1150	29.9	3.48	
MO-2007-5B	10/12/07 @ 10:30	11	t			X						
770 201 20		<u> </u>										
<u></u>		1										
		 										
				╁┈──								
				<u> </u>								
			 	 			T				1	
		 	 				 					
CINI (O ufo Inform) C	W (Ground Water) · WW (Waste V	Vater) DW	(Drinkin	o Water)	· SL (Slud	l lge) · SO	(Soil) · C	DL (Oil) · (Other (Sp	pecify)		
	W (Glouila Water) - WWW (Waste V	valer, Bit	(2000	9	(,	. ,					
(F) indicates	Filtered GW-	San	-[مر	e 5							-	
Please	e refer to ACZ's terms & co	nditions	locate	d on th				COC.				
RELINQUISHED E					RECEI				D	ATE:T	IME	
MiBell	10/12/07/	16:00	$\overline{\Lambda}$	VO	\				$\coprod O_{\cdot}$	13:0	<u>}</u>	
1/1000		•	11	 						11:5	1)	
		·										

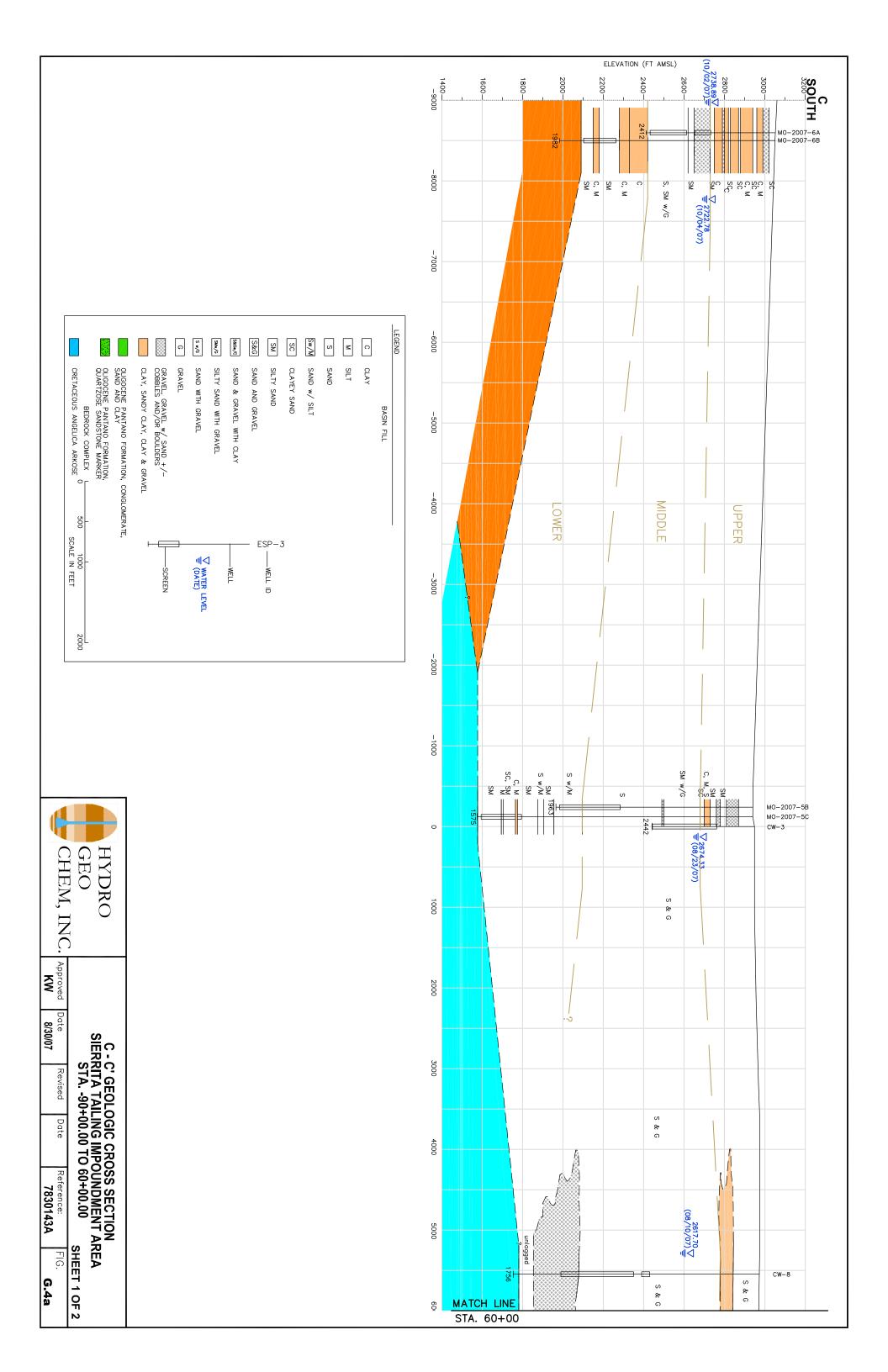

APPENDIX G GEOLOGIC CROSS SECTIONS

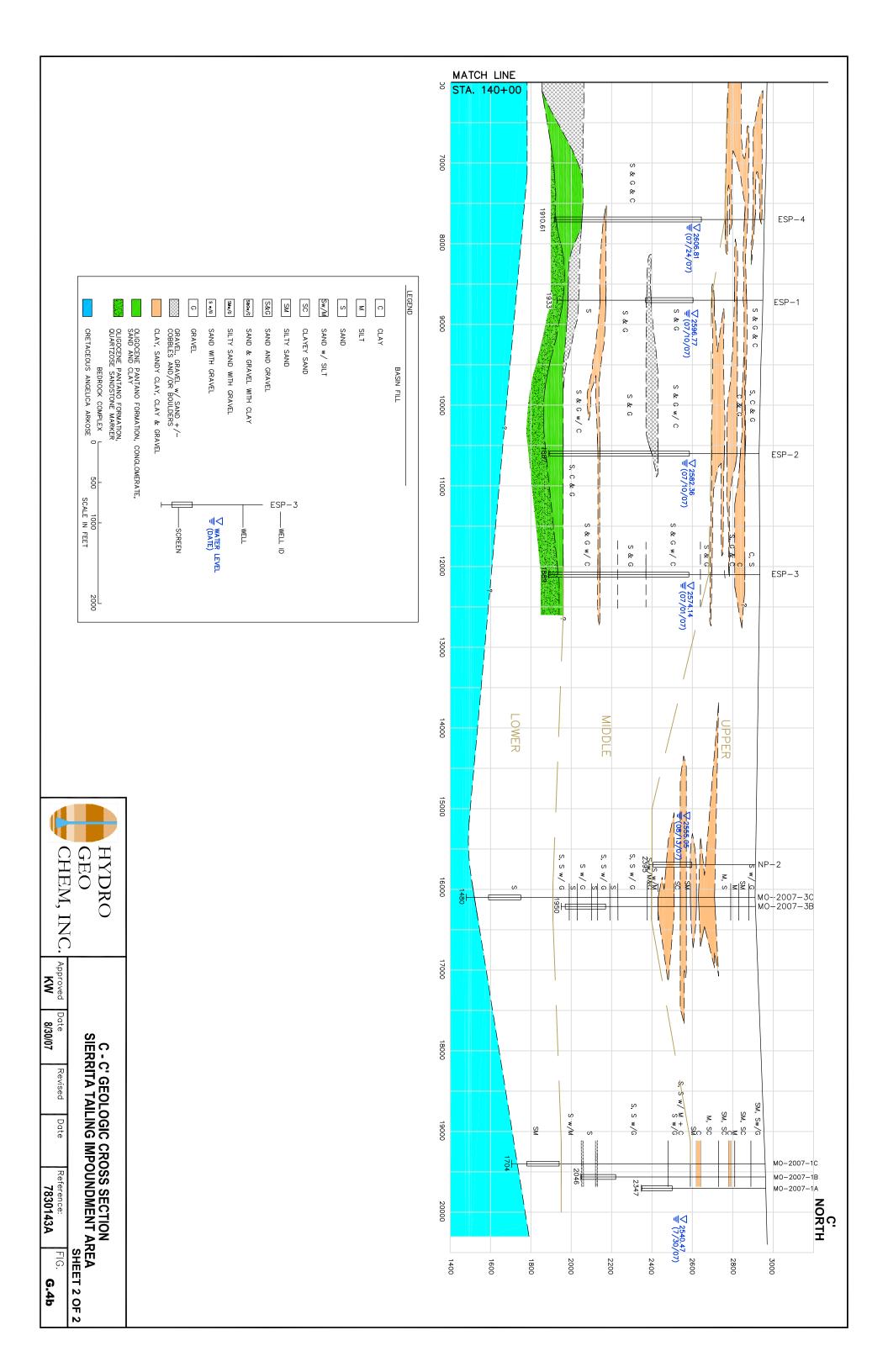

APPENDIX G

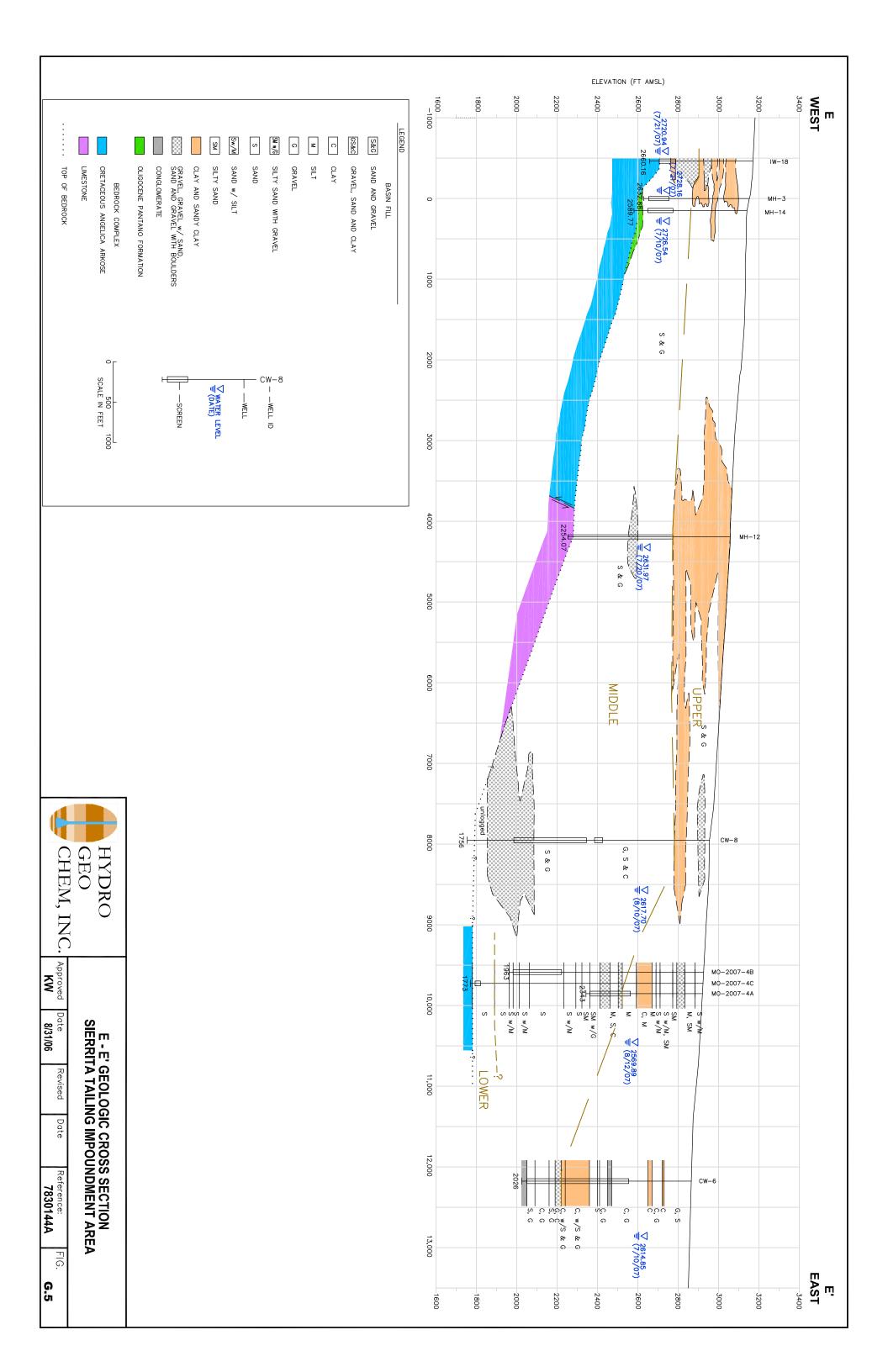

TABLE OF CONTENTS

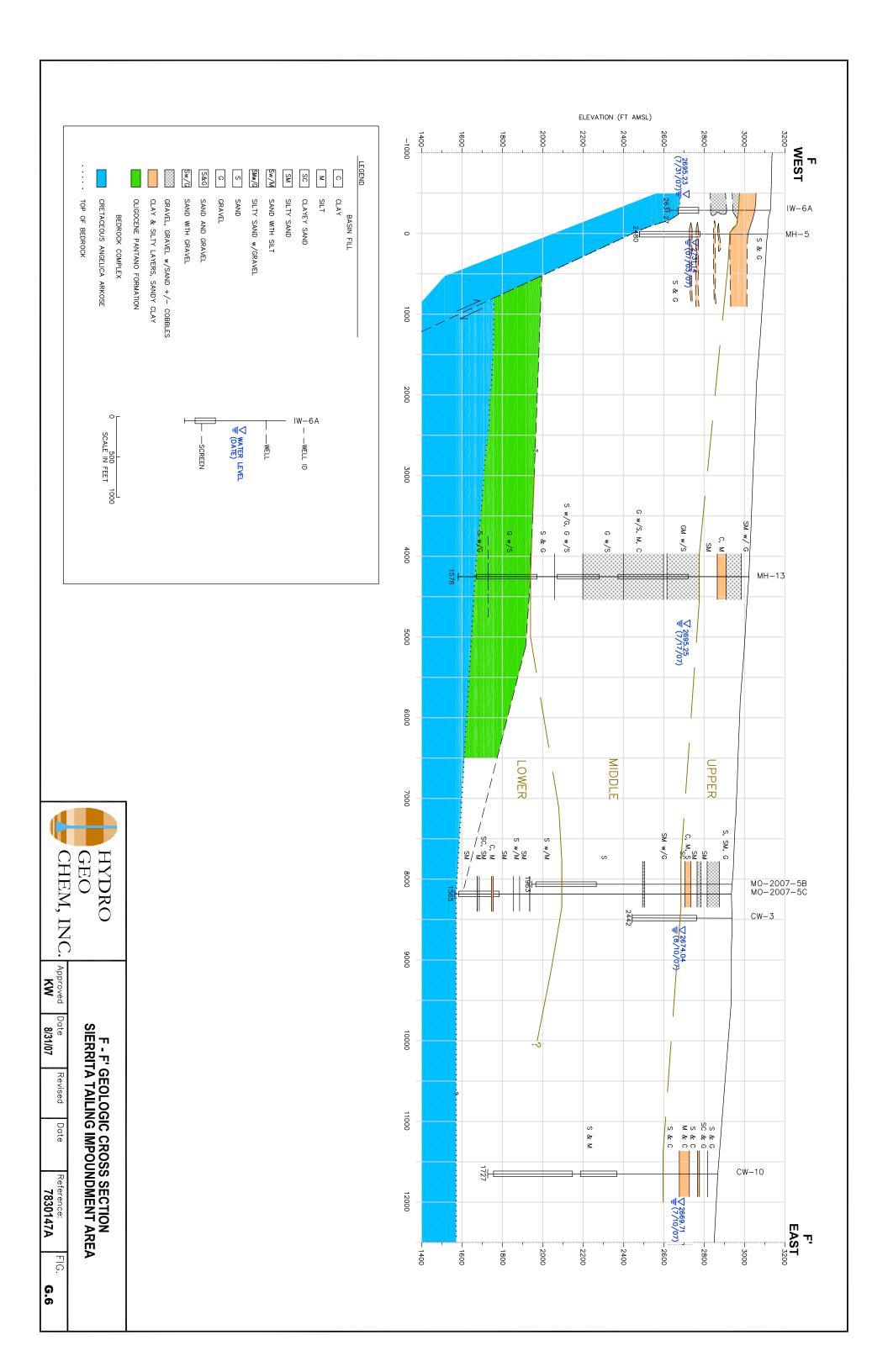

FIGURES

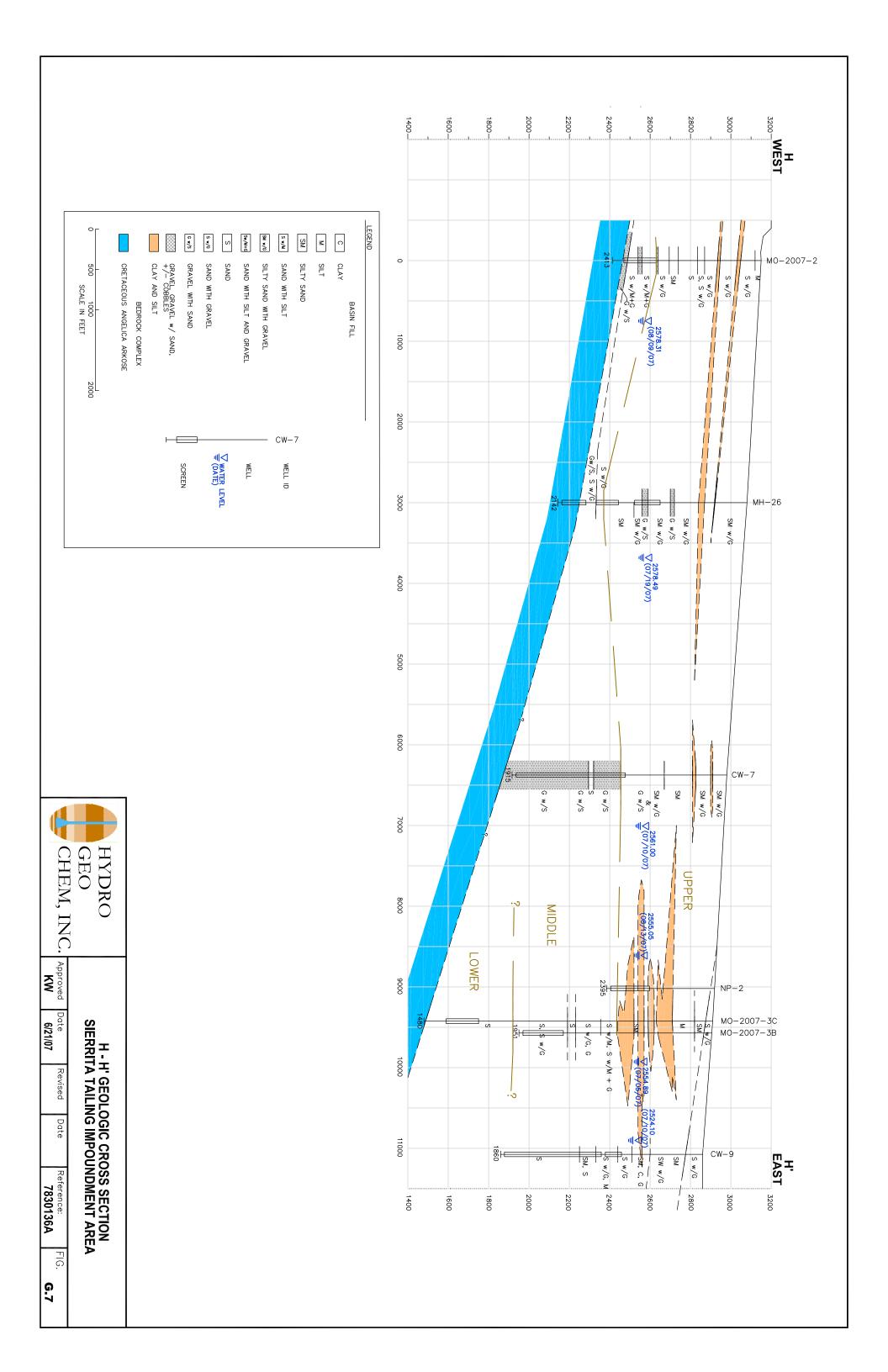

- G.1 Sierrita Tailings Impoundment Area, Cross Section Location Map
- G.2a A-A' Geologic Cross Section Sheet 1 of 2 Sierrita Tailing Impoundment Area
- G.2b A-A' Geologic Cross Section Sheet 2 of 2 Sierrita Tailing Impoundment Area
- G.3a B-B' Geologic Cross Section Sheet 1 of 2 Sierrita Tailing Impoundment Area Sta. -70+00.00 to 75+50.00
- G.3b B-B' Geologic Cross Section Sheet 2 of 2 Sierrita Tailing Impoundment Area Sta. -75+50.00 to 170+50.00
- G.4a C-C' Geologic Cross Section Sheet 1 of 2 Sierrita Tailing Impoundment Area Sta. -90+00.00 to 60+00.00
- G.4b C-C' Geologic Cross Section Sheet 2 of 2 Sierrita Tailing Impoundment Area
- G.5 E-E' Geologic Cross Section Sierrita Tailing Impoundment Area
- G.6 F-F' Geologic Cross Section Sierrita Tailing Impoundment Area
- G.7 H-H' Geologic Cross Section Sierrita Tailing Impoundment Area
- G.8a I-I' Geologic Cross Section Sheet 1 of 2 Sierrita Tailing Impoundment Area Sta. -90+00.00 to 50+50.00
- G.8b I-I' Geologic Cross Section Sheet 2 of 2 Sierrita Tailing Impoundment Area Sta. 50+50.00 to 205+00.00
- G.9 J-J' Geologic Cross Section Sierrita Tailing Impoundment Area
- G.10 K-K' Geologic Cross Section Sierrita Tailing Impoundment Area

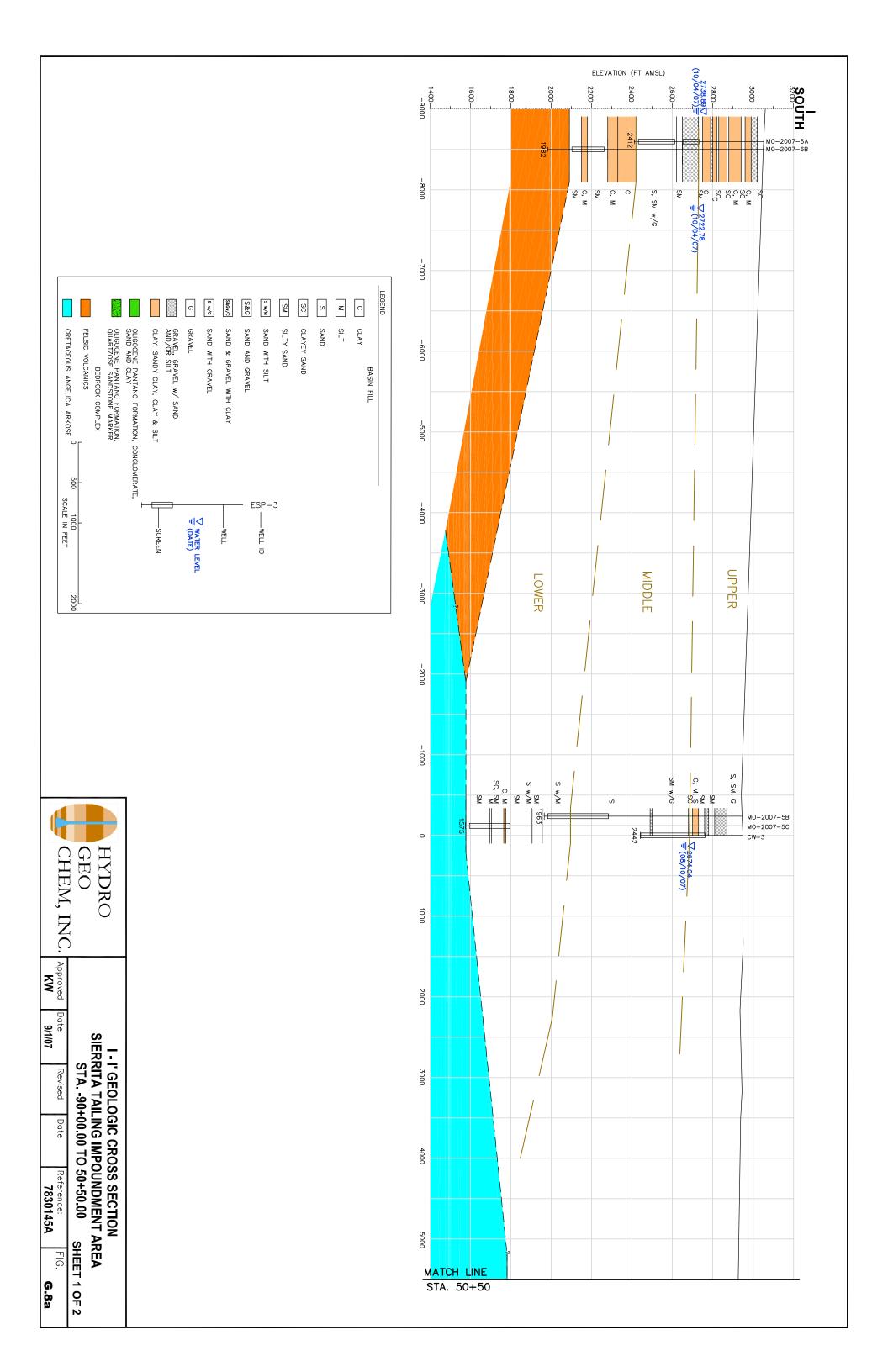


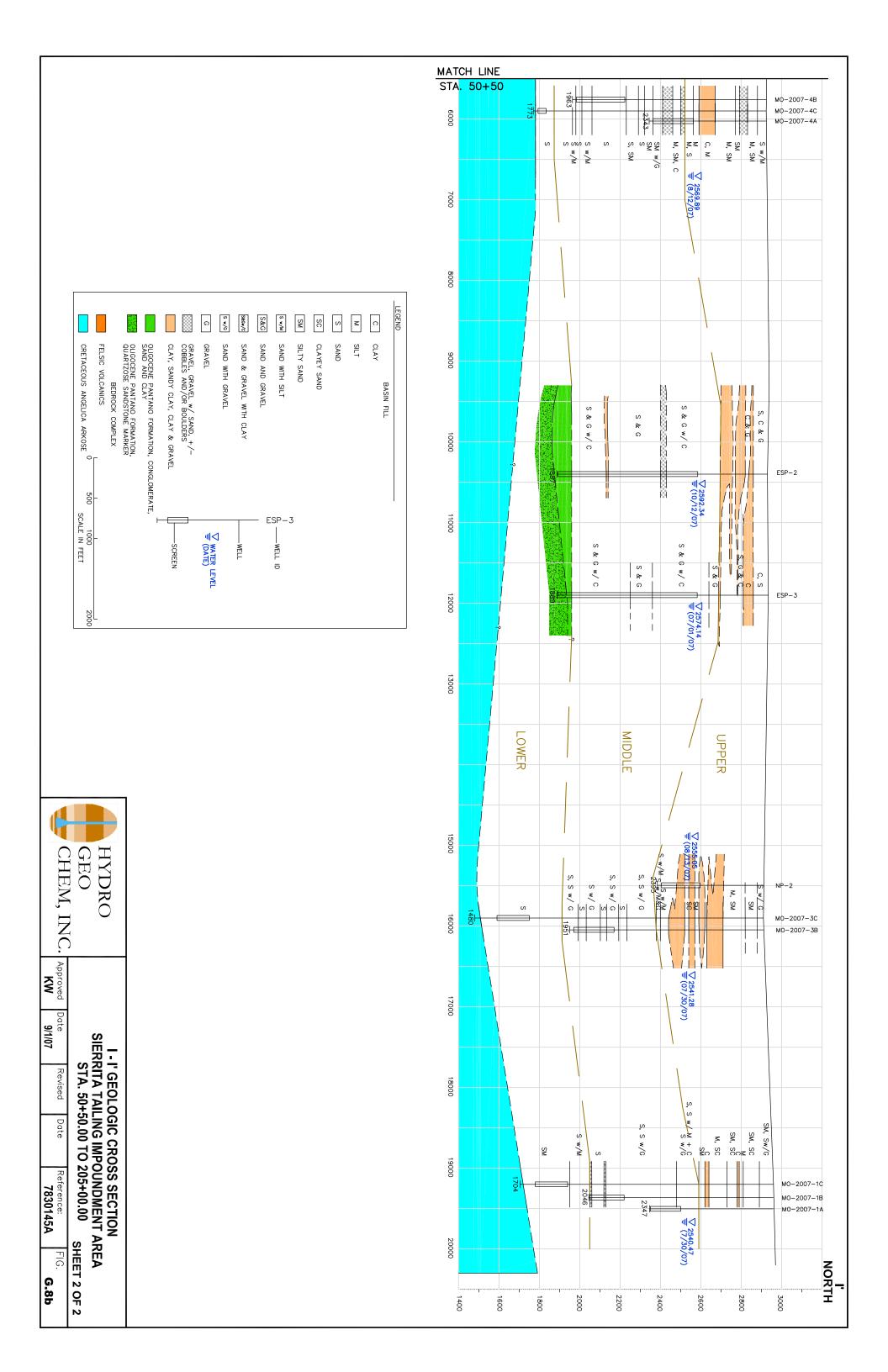


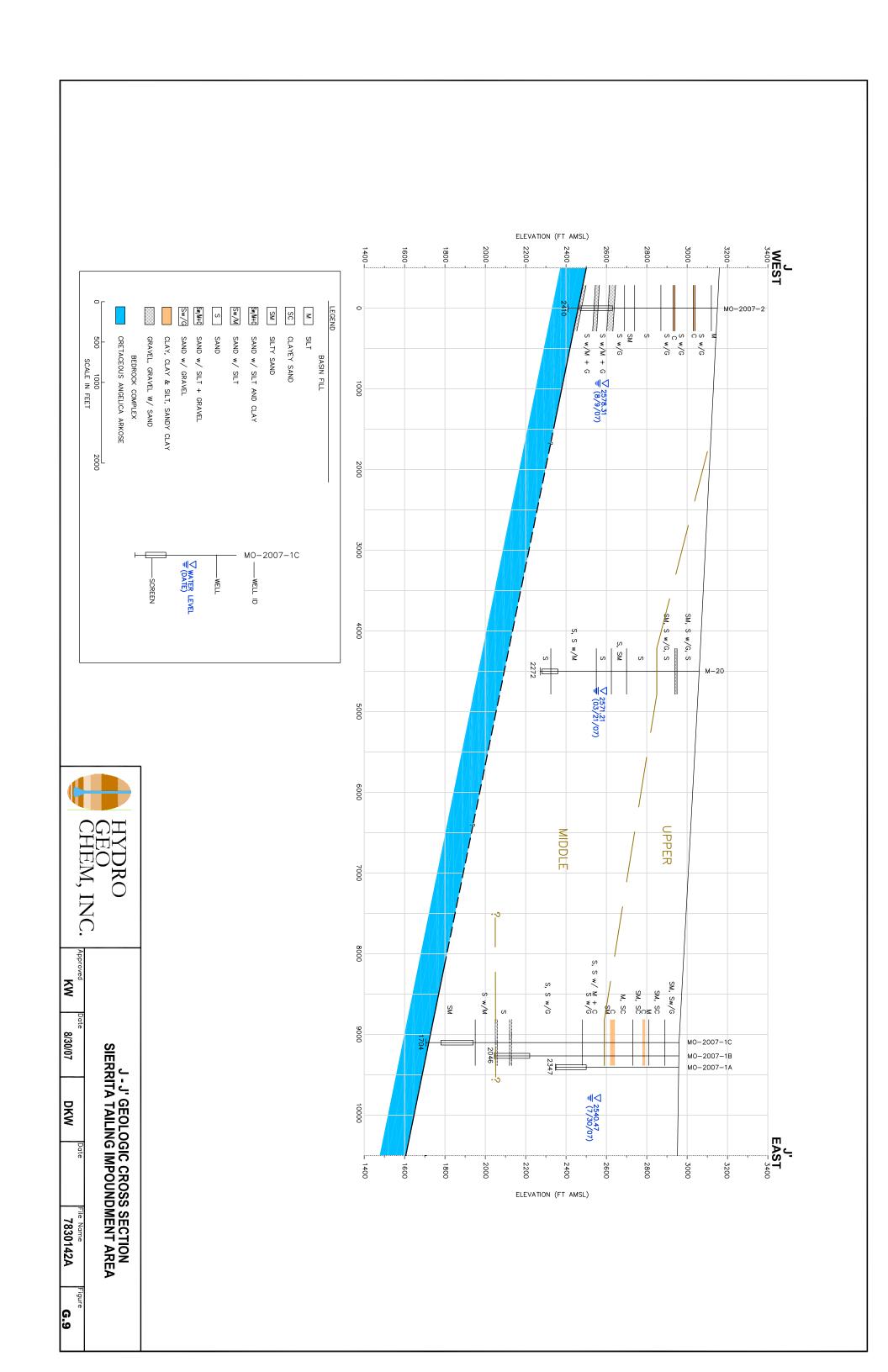


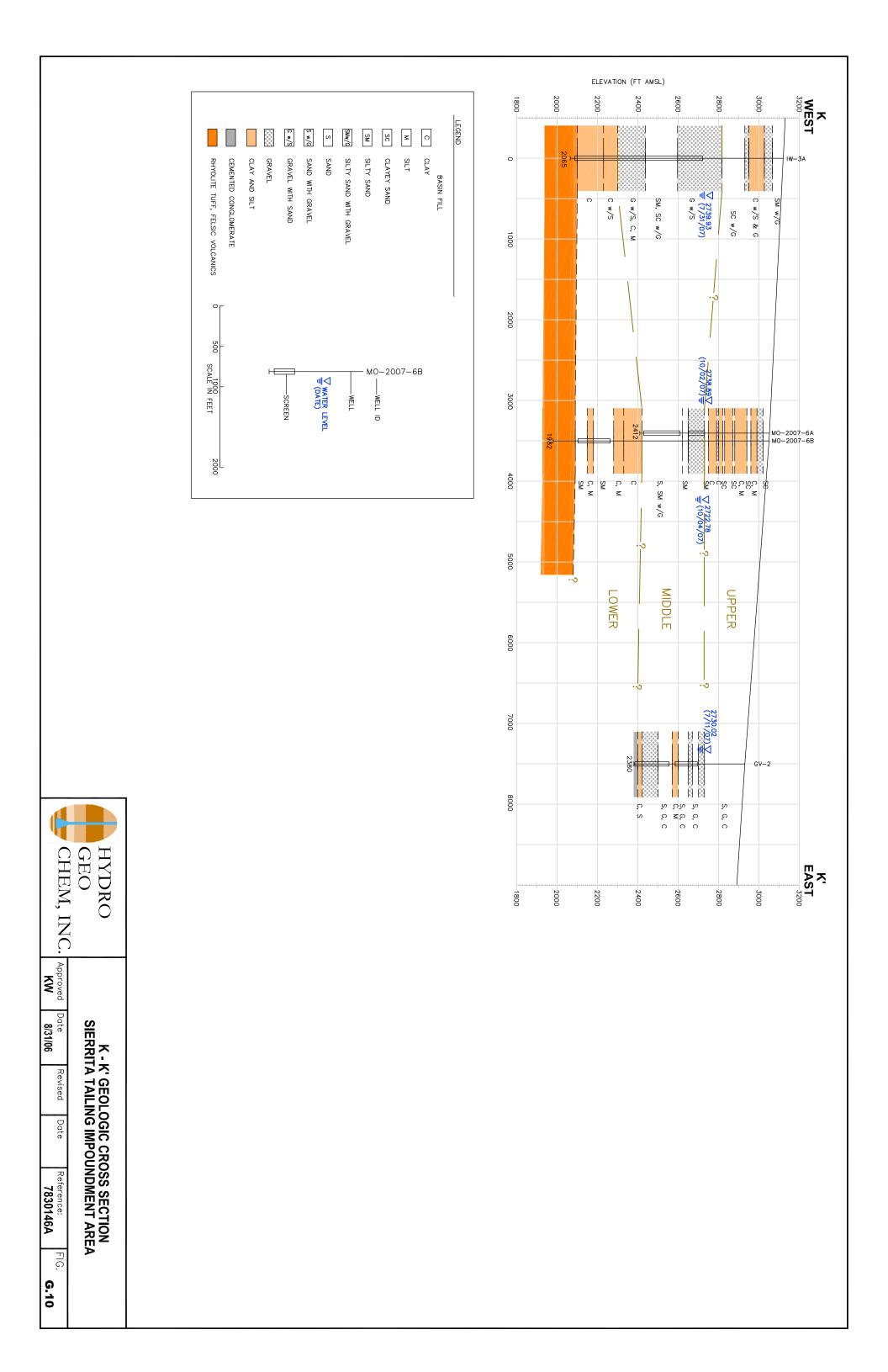




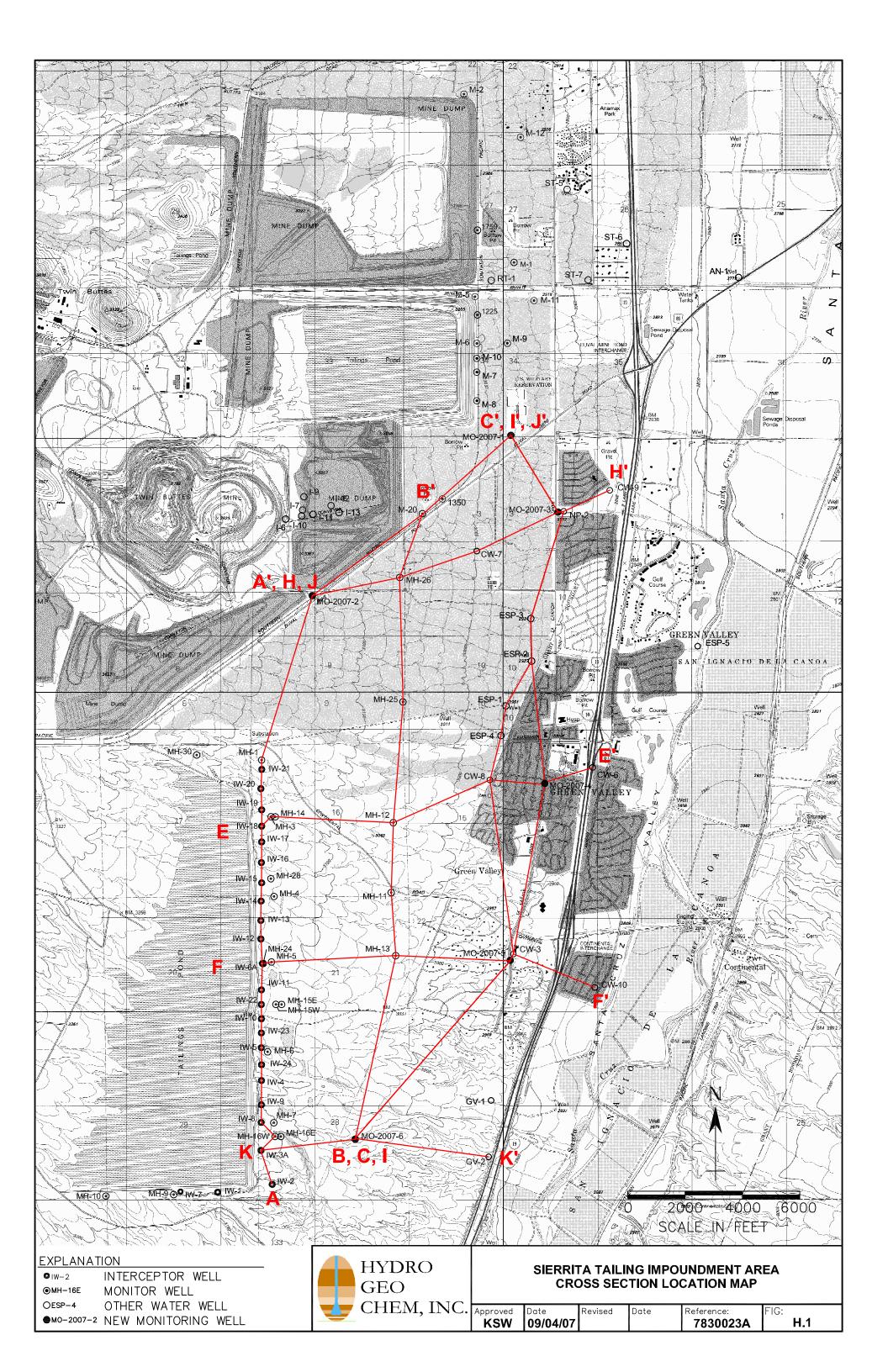


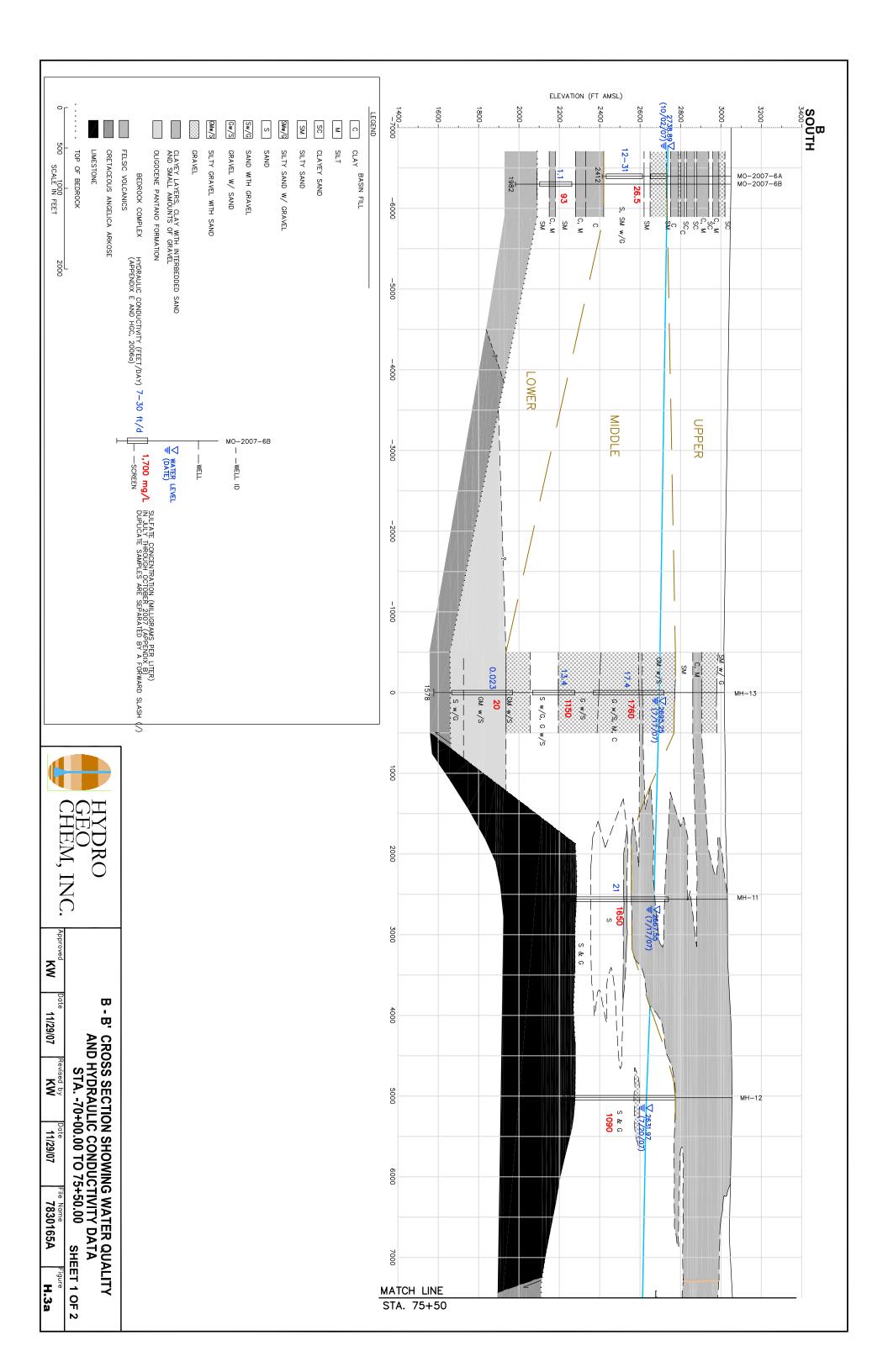


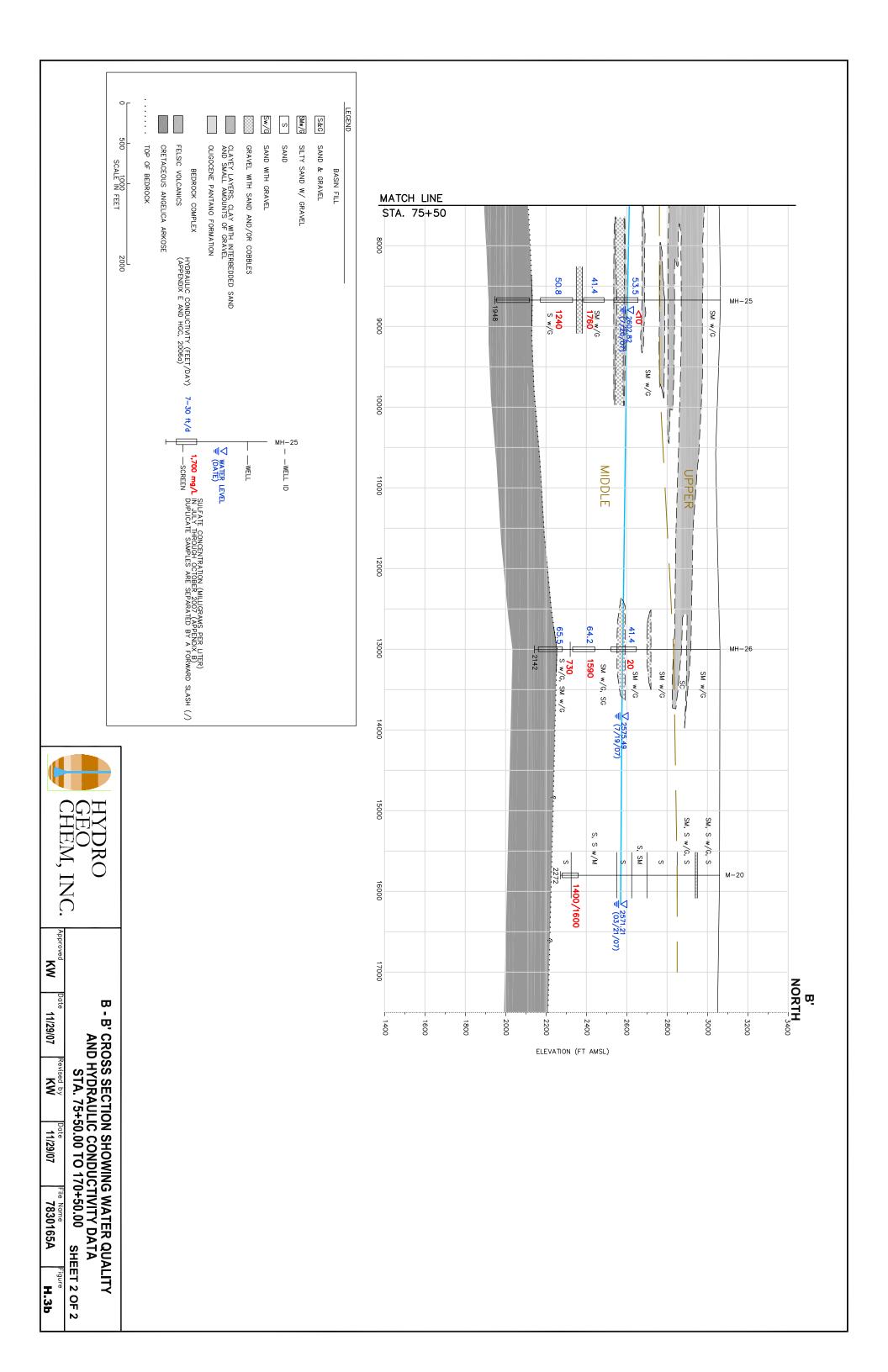


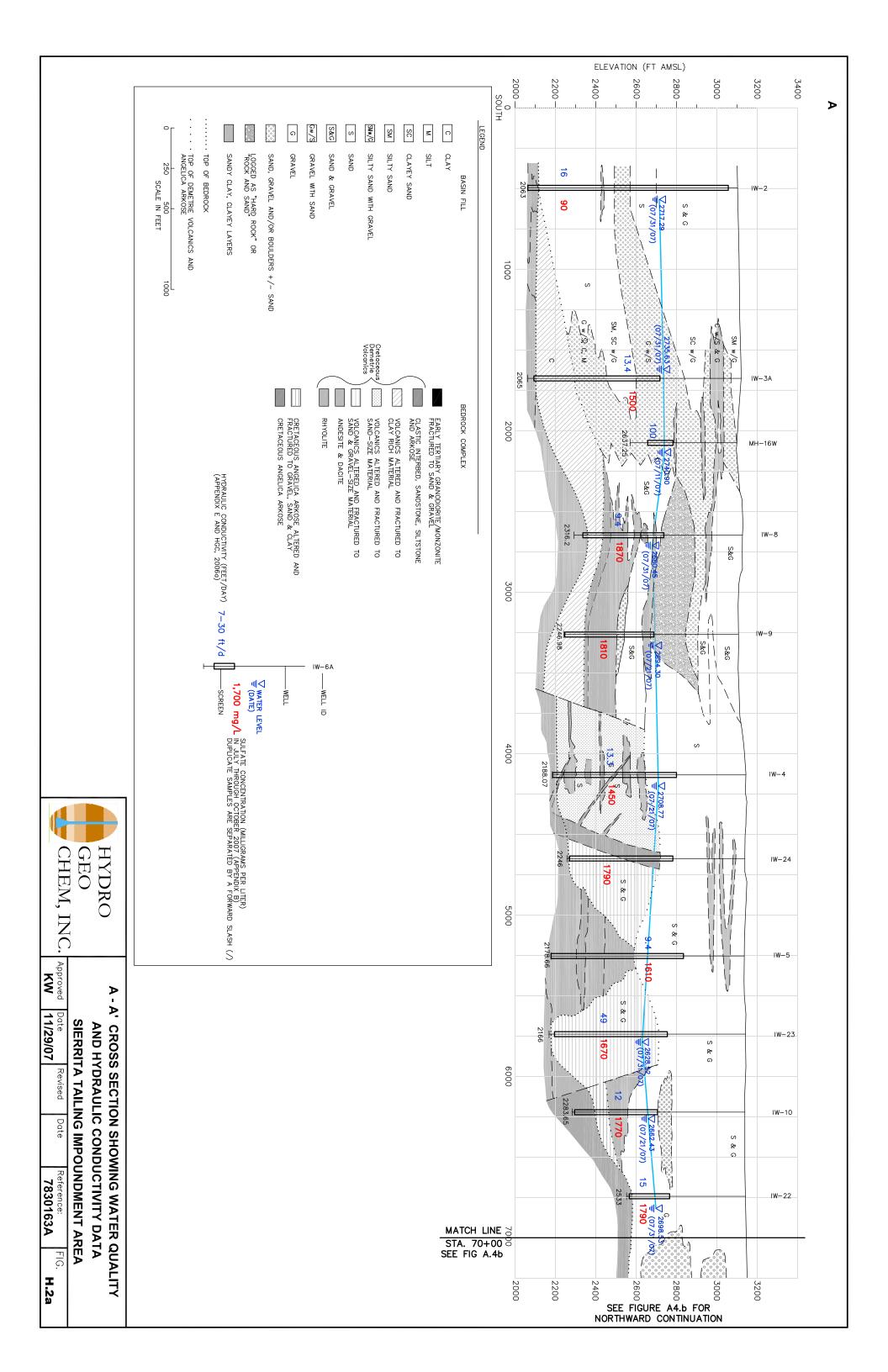


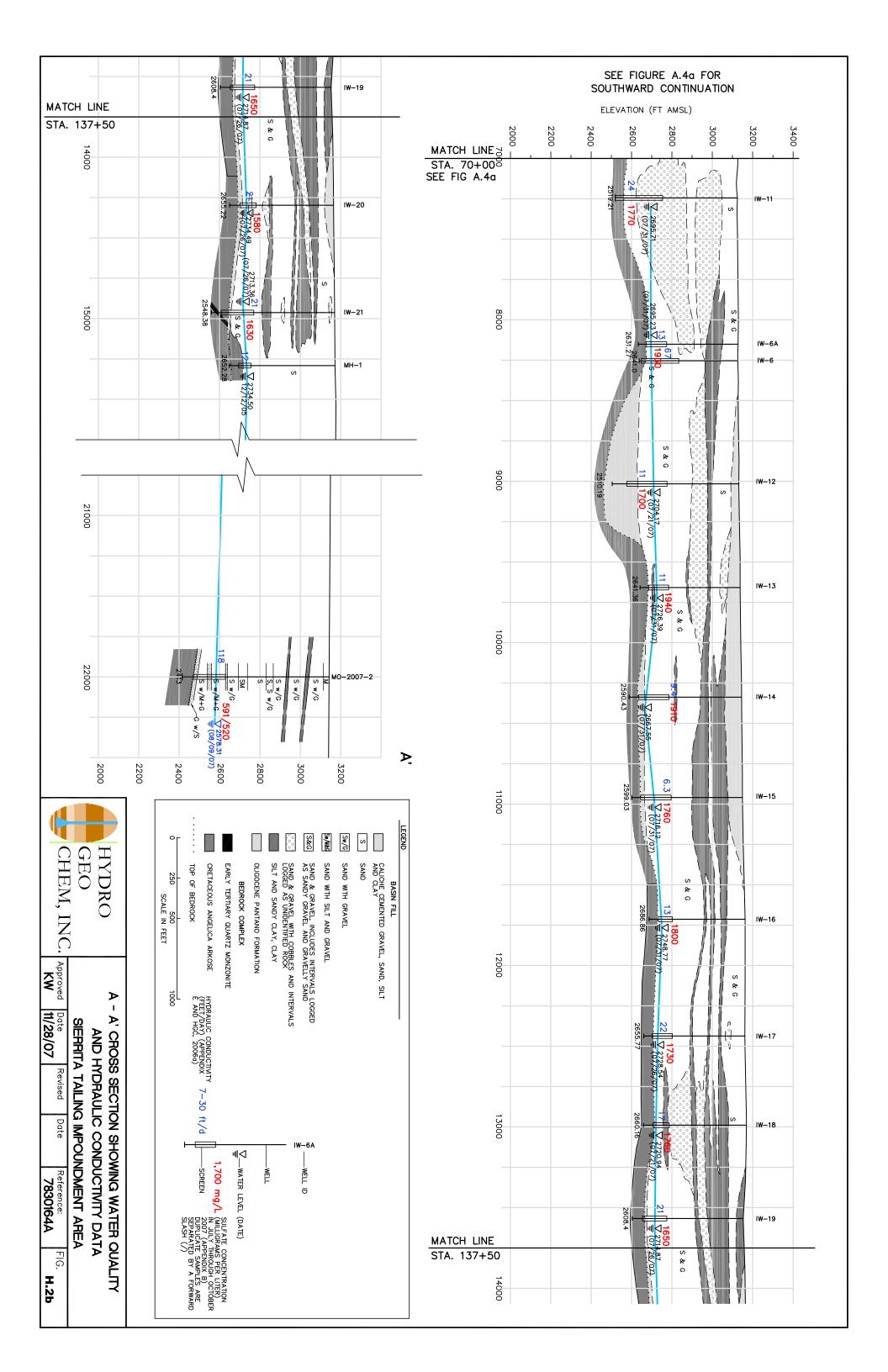
APPENDIX H

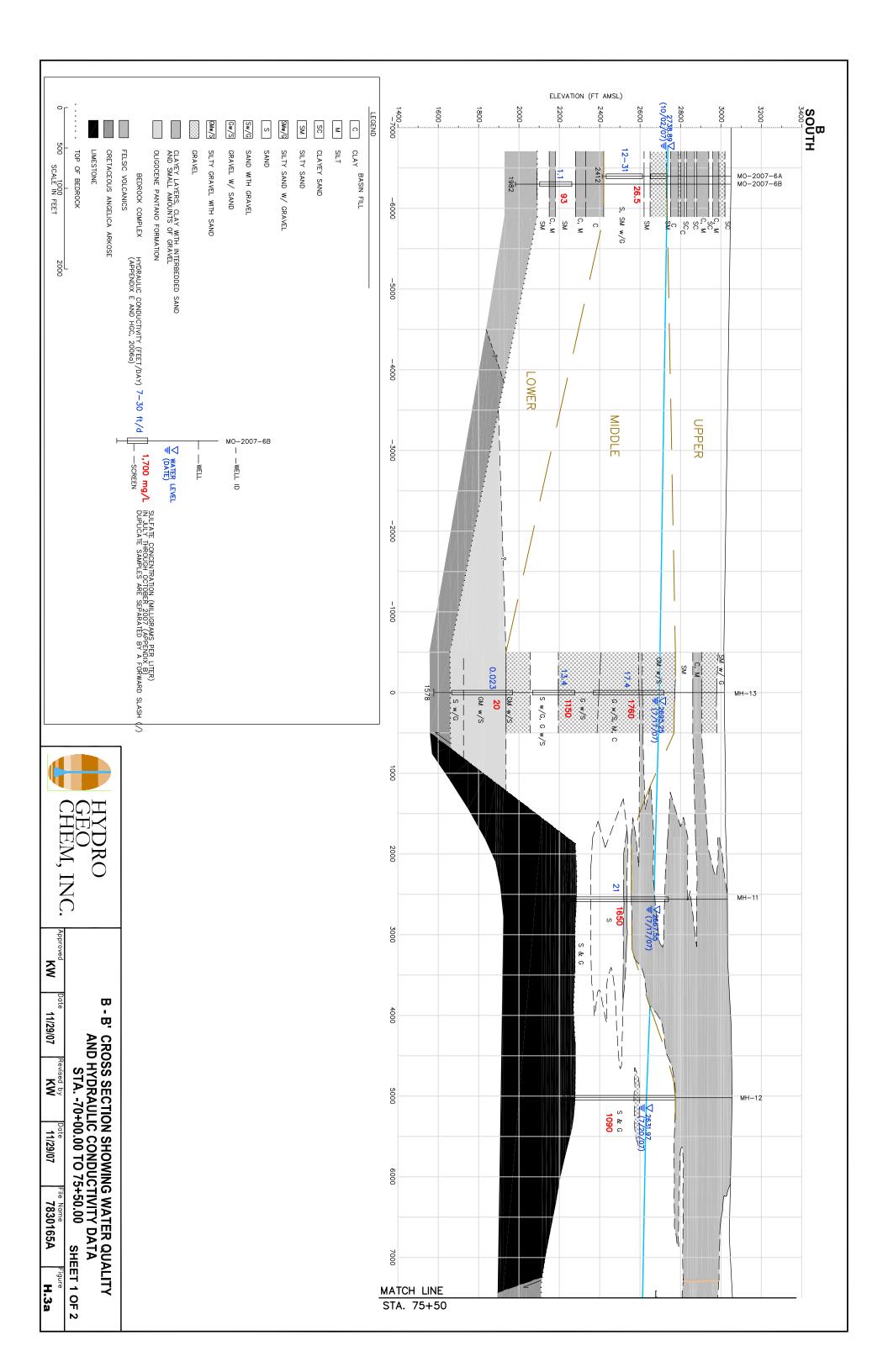

CROSS SECTIONS SHOWING WATER QUALITY AND HYDRAULIC CONDUCTIVITY DATA

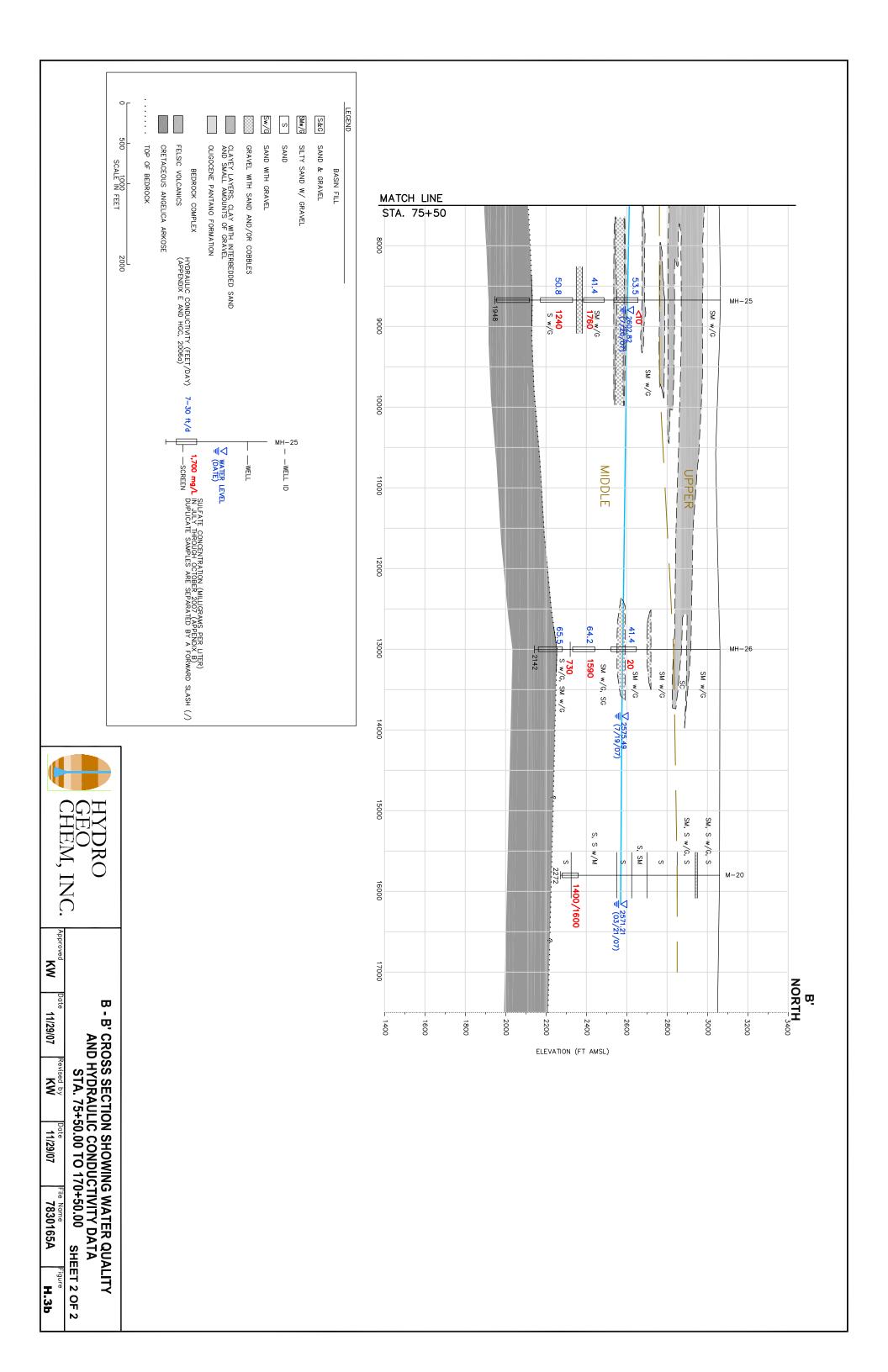

APPENDIX H

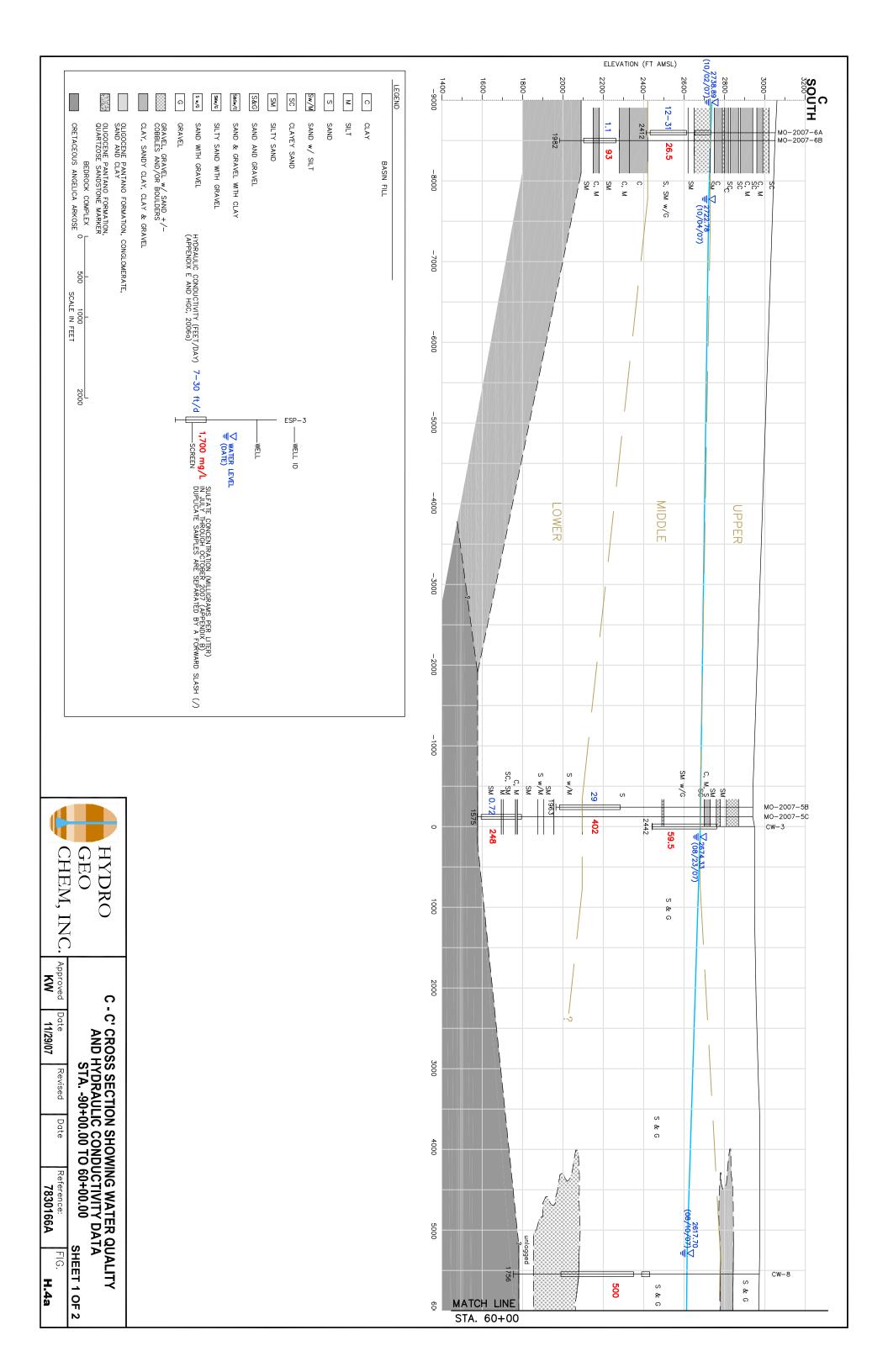

TABLE OF CONTENTS

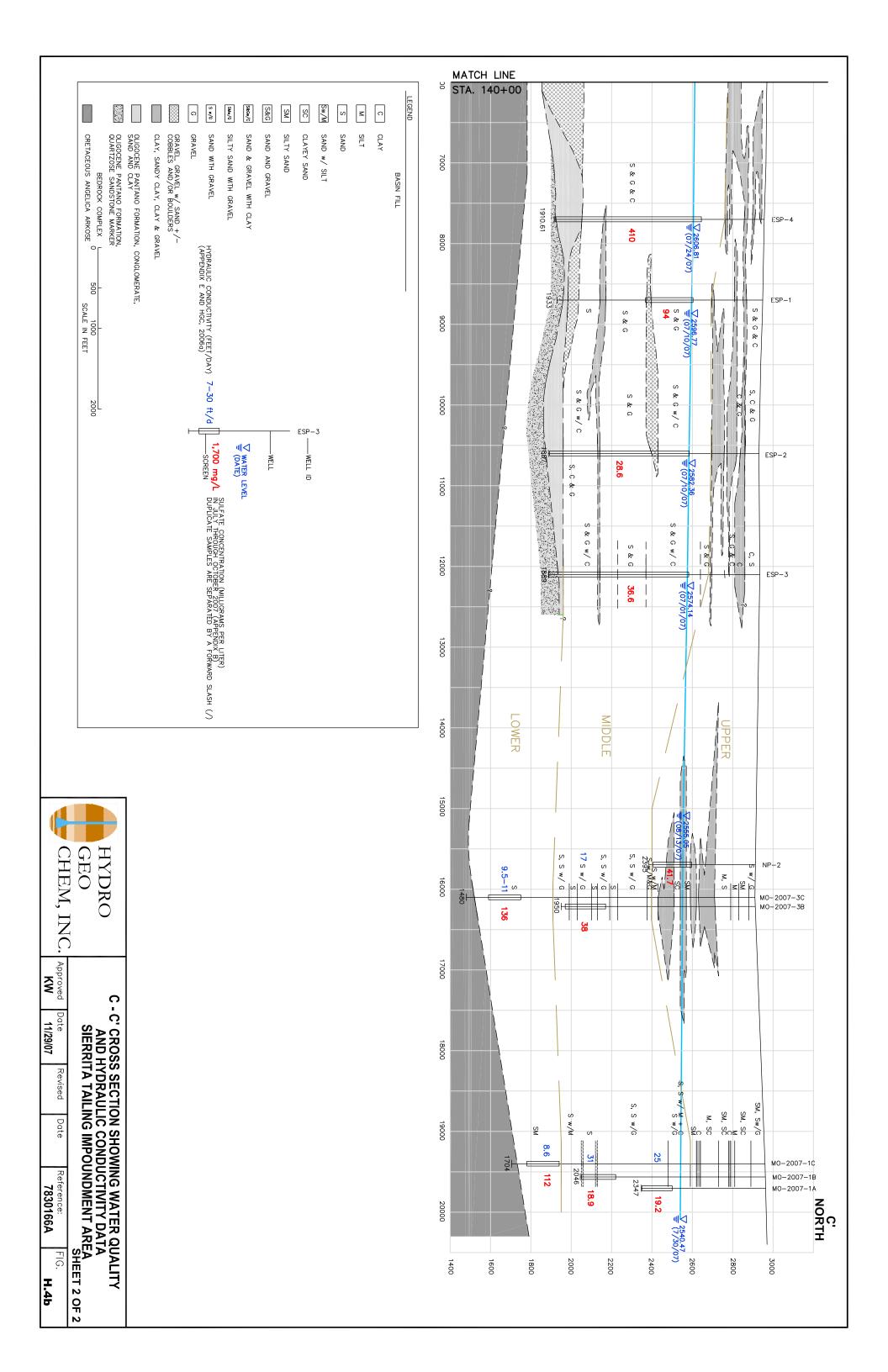

FIGURES

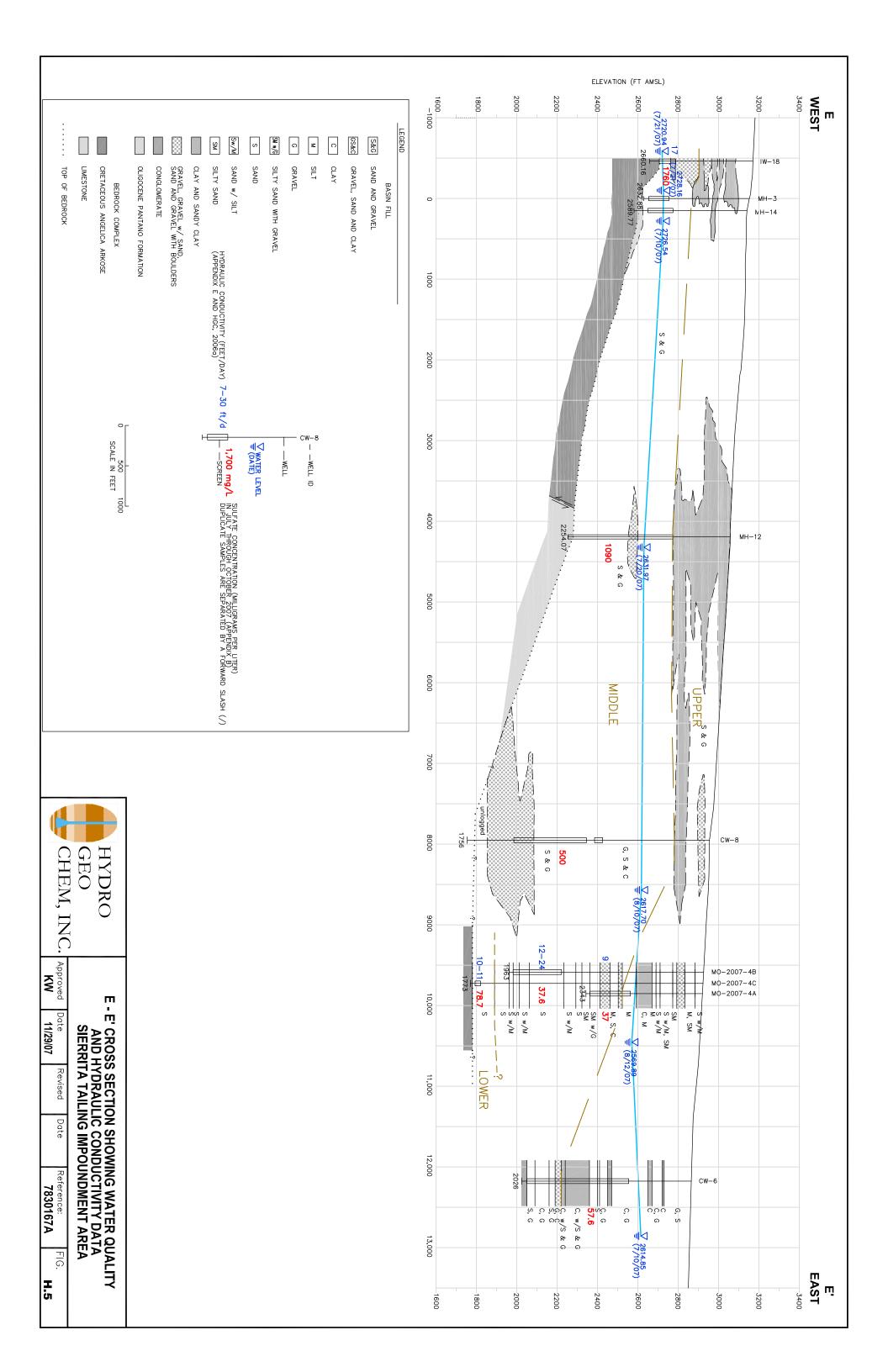

- H.1 Sierrita Tailings Impoundment Area, Cross Section Location Map
- H.2a A-A' Cross Sections Showing Water Quality and Hydraulic Conductivity Data Sheet 1 of 2 Sierrita Tailing Impoundment Area
- H.2b A-A' Cross Sections Showing Water Quality and Hydraulic Conductivity Data Sheet 2 of 2 Sierrita Tailing Impoundment Area
- H.3a B-B' Cross Sections Showing Water Quality and Hydraulic Conductivity Data Sierrita Tailing Impoundment Area Sta. -70+00.00 to 75+50.00
- H.3b B-B' Cross Sections Showing Water Quality and Hydraulic Conductivity Data Sierrita Tailing Impoundment Area Sta. -70+50.00 to 170+50.00
- H.4a C-C' Cross Sections Showing Water Quality and Hydraulic Conductivity Data Sierrita Tailing Impoundment Area Sta. -90+00.00 to 60+00.00
- H.4b C-C' Cross Sections Showing Water Quality and Hydraulic Conductivity Data Sierrita Tailing Impoundment Area
- H.5 E-E' Cross Sections Showing Water Quality and Hydraulic Conductivity Data Sierrita Tailing Impoundment Area
- H.6 F-F' Cross Sections Showing Water Quality and Hydraulic Conductivity Data Sierrita Tailing Impoundment Area
- H.7 H-H' Cross Sections Showing Water Quality and Hydraulic Conductivity Data Sierrita Tailing Impoundment Area
- H.8a I-I' Cross Sections Showing Water Quality and Hydraulic Conductivity Data Sierrita Tailing Impoundment Area Sta. -90+00.00 to 50+50.00
- H.8b I-I' Cross Sections Showing Water Quality and Hydraulic Conductivity Data Sierrita Tailing Impoundment Area Sta. 50+50.00 to 205+00.00
- H.9 J-J' Cross Sections Showing Water Quality and Hydraulic Conductivity Data Sierrita Tailing Impoundment Area
- H.10 K-K' Cross Sections Showing Water Quality and Hydraulic Conductivity Data Sierrita Tailing Impoundment Area

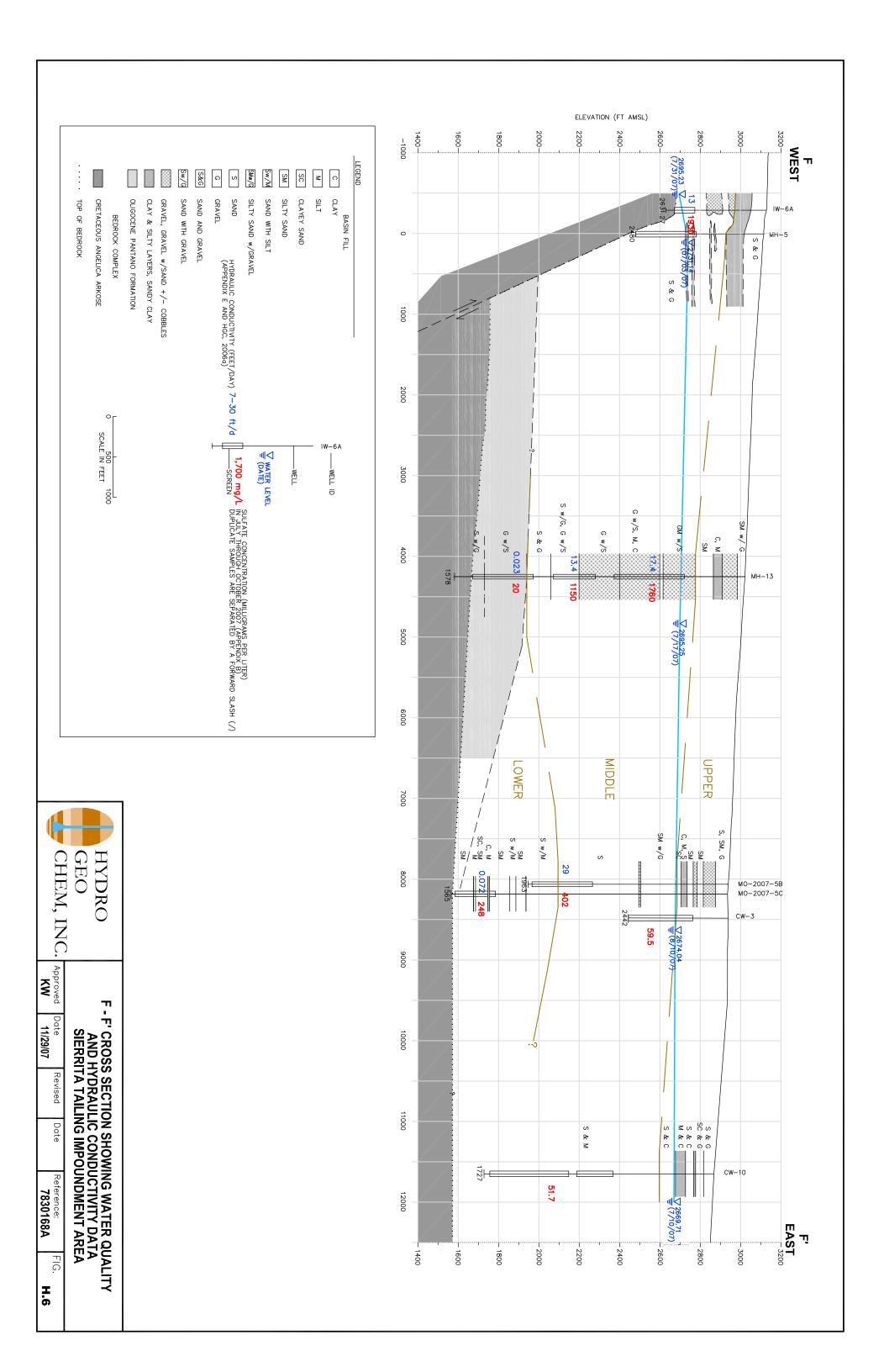


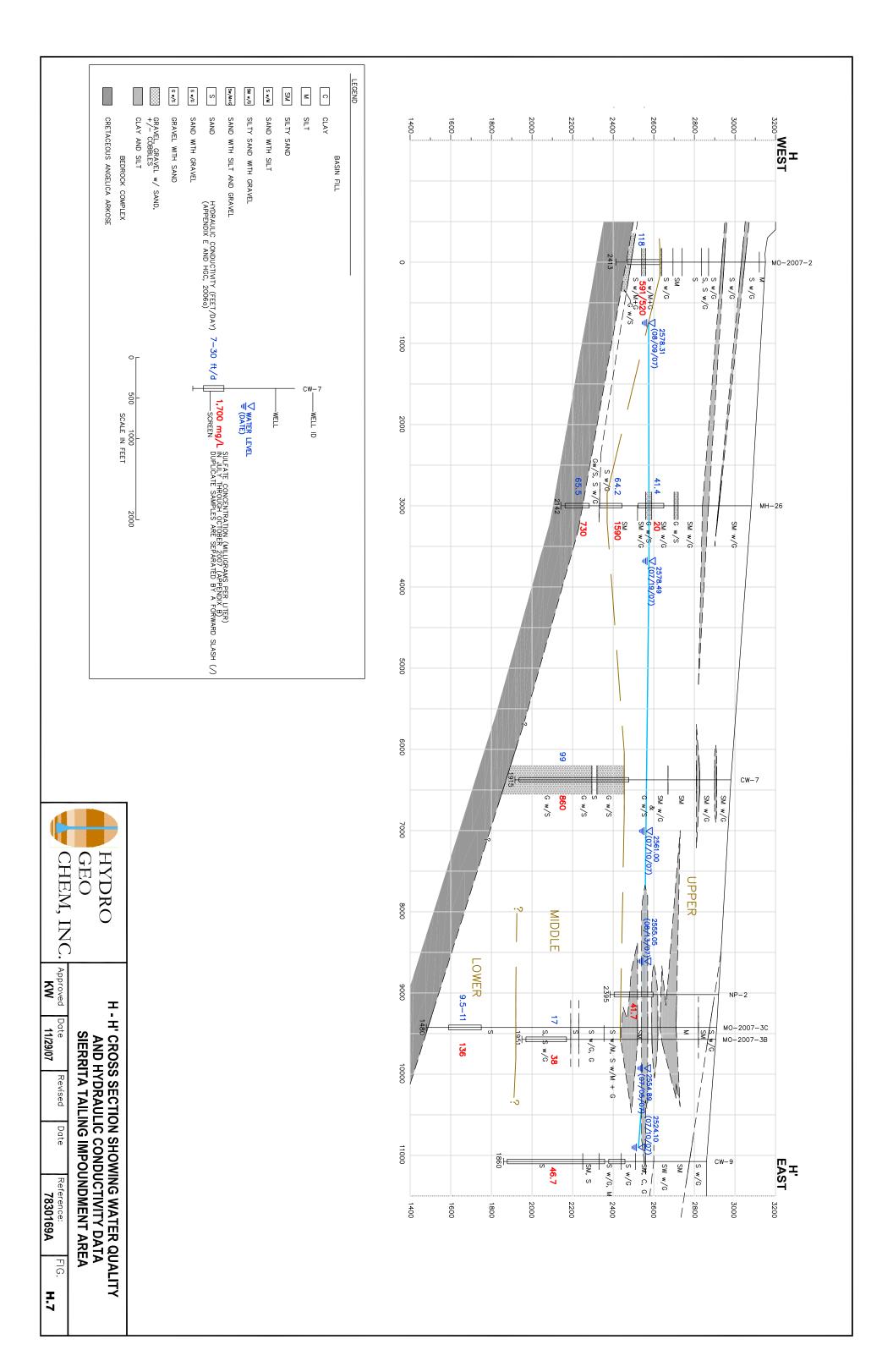


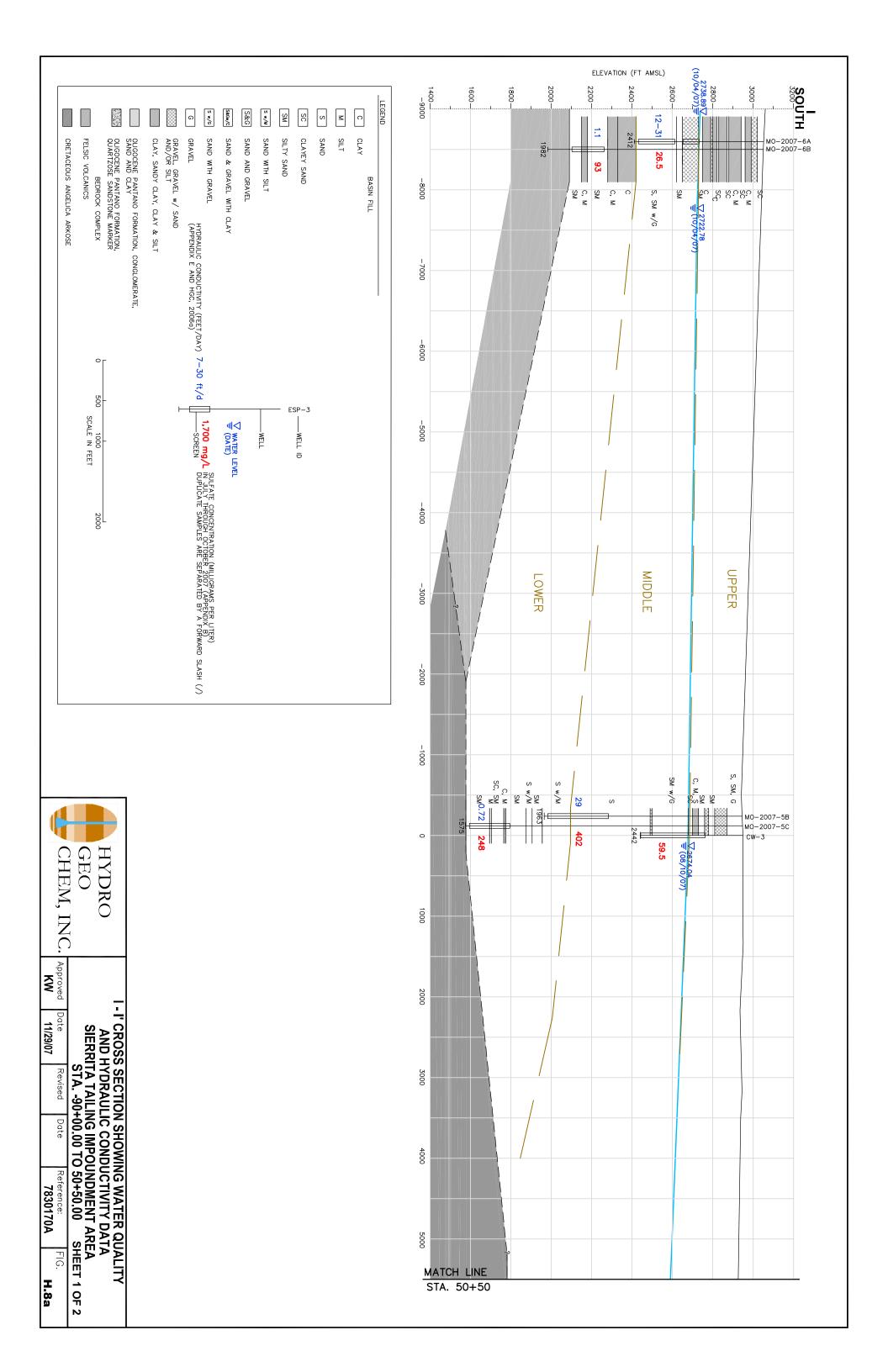


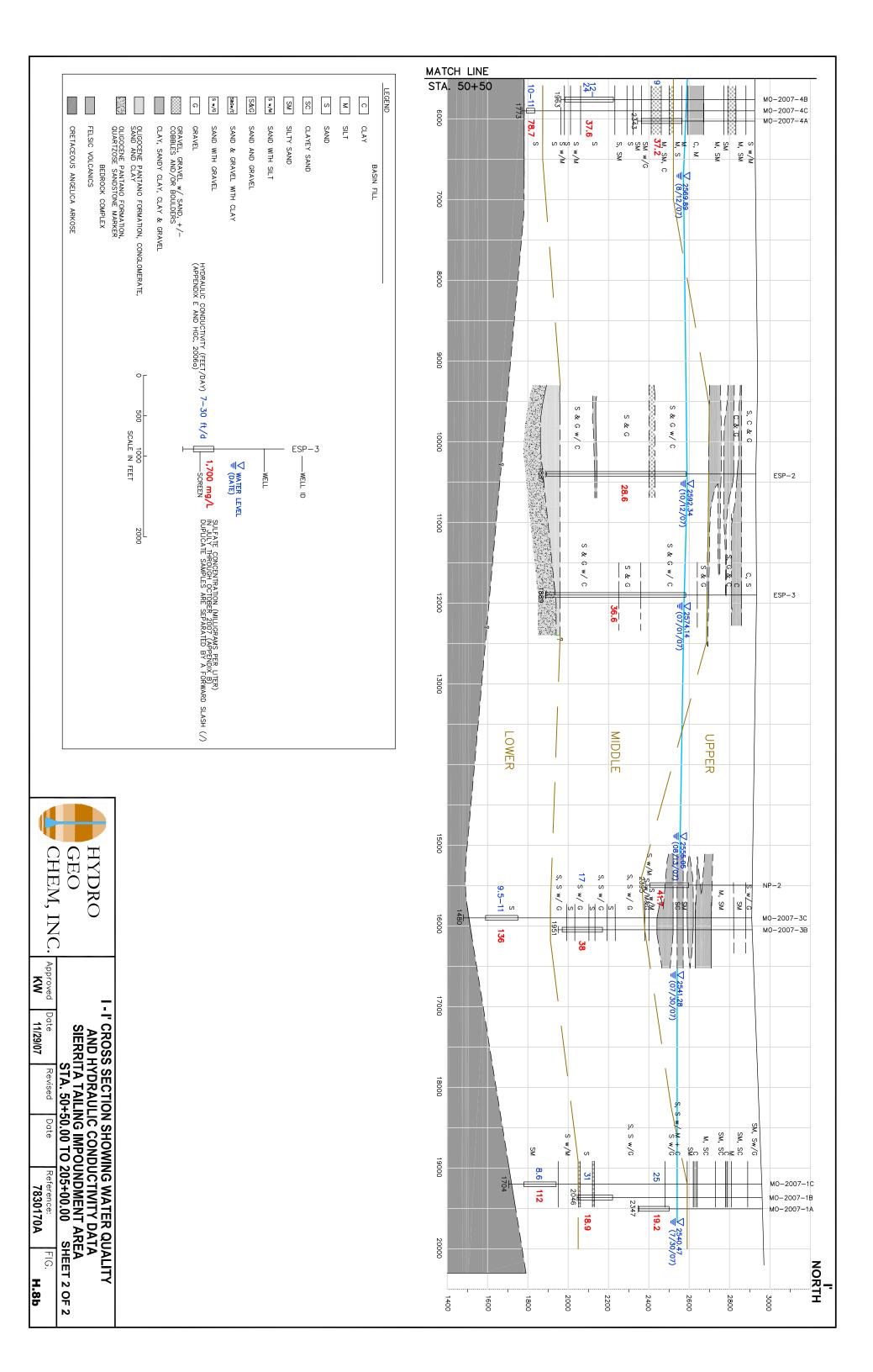


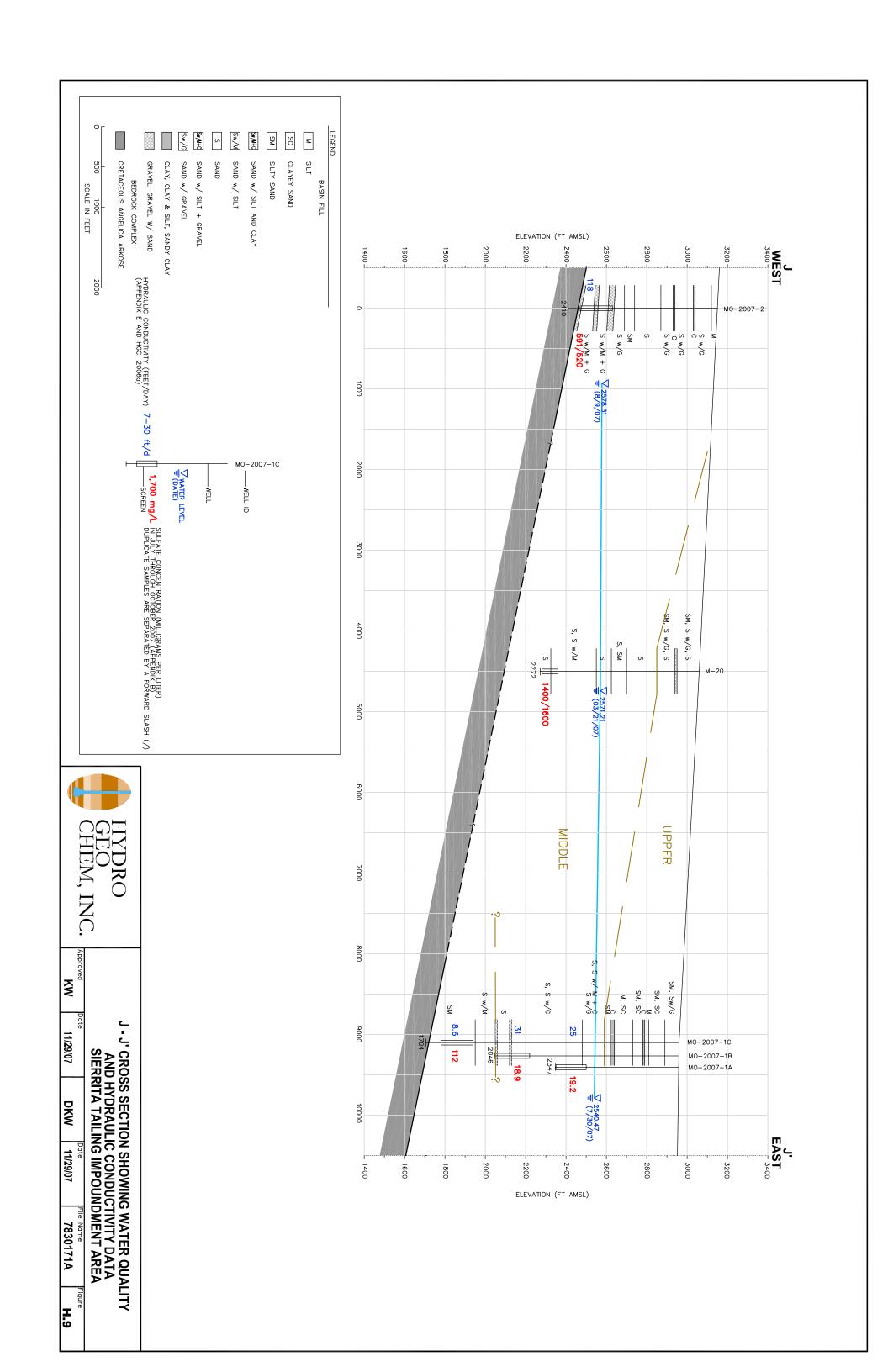












WEST WEST Company Co			ELEVATION (FT AMSL)																		
1900 100											1800	2000		2200	2400	0	>500 	2800	3000	3200	≶ ∭⊼
1000 14 15 15 15 15 15 15 15			G w/S	S w/G	SMw/G	MS	SC	<	0	LEGEND											TS
20 20 20 20 20 20 20 20 20 20 20 20 20 2		CLAY A CEMENT	GRAVEL GRAVEL	SAND V	SILTY S	SILTY S	CLAYEY	SILT	BA CLAY		0	2065				150	-				Α
1000 2000 XXXX 1000 XXXX 1		ND SILT ED CONGI	WITH SAI	/ITH GRAV	AND WITH	AND	SAND		SIN FILL			-/	C		၈	×.	G w/	Z 777	0	S S	
11-3 25-4-1-3 25-5 25-5 25-5 25-5 25-5 25-5 25-5 25		OMERATE		Ę	GRAVEL						1000			S	Ç	3C w/G	31/07) S	C w/G	. ଓ ୧୯	/6	
MIDDLE 12-32 28-5 5 5 94 % 70 2000 2000 2000 2000 2000 2000 2000		LCANICS	NDIX E AN												1						
WO-2007-6-8 WO-2007-6 WO-2007-6			ОИСПИТҮ В НGC, 2								22							 - 			
Description of the part of the		٥٢	(FEET/DA)06a)								000										
WO-2007-6-8 WO-2007-6 WO-2007-6		500	Y) 7-30														(10/02,	973			
1. LL D 1.						MO-20	07–6R				3000					12	/07) 				
SC. W SC. W SC. W SC. W SC. W SC. W C.	N FEET		VWATER (DATE)								1982		$\Rightarrow \vdash \mid$	2412					MO-2007 MO-2007	-6A '-6B	
W. UPPER V 2727 19 9 9 10			mg/L IN	LEVEL	Г						400										
7000 8000 8000		2000	ULFATE CO 1 JULY TH UPLICATE								00		×	Σ A		MS			≤ ≤ ∅		
7000 8000 8000			ONCENTRA ROUGH OC SAMPLES												.20		/04/07)	7			
7000 8000 8000			TION (MILL TOBER 20 ARE SEPA								5000		 - -				.,2				
7000 8000 8000 8000			IGRAMS PI 07 (APPEI RATED BY											LOWE		MIDDI		UPPE			
7000 8000 8000			ER LITER) NDIX B) A FORWA								6000			70		<u></u>		77			
7000 8000 8000			RD SLASH																		
000 C C C C C C C C C C C C C C C C C C			Ŝ								70				•-0						
000											000							30.02			
0 0 0 0 0 0 0 0 0															2380				GV-:	2	
											8000				C, s	્રી ડુડ ડુડ ડુડ	, , , ,	ç,			
EAST EAST PRO PEO PEO PEO PEO PEO PEO PEO PEO PEO PE	H															· · · · · · · · · · · · · · · · · · ·	0 0	С			
	YD.														N)				6.1		EAS.
											800	000	i	, , , ,	400	Ċ	, , ,	800	000	200	7
)																				
	ス - ス																				
ス - - 	CROS																				
SERRE	SS SE																				
K-K' CROSS SECOND HYDR. SIERRITA T.	CTION AULIC																				
K - K' CROSS SECTION AND HYDRAULIO SIERRITA TAILING	1 SHO																				
K - K' CROSS SECTION SHOWN SIERRITA TAILING IMPO	WING																				
K - K' CROSS SECTION SHOWING AND HYDRAULIC CONDUCT SIERRITA TAILING IMPOUND	MENT WATE																				
K - K' CROSS SECTION SHOWING WATE AND HYDRAULIC CONDUCTIVITY SIERRITA TAILING IMPOUNDMENT	ER QU DATA																				
K - K' CROSS SECTION SHOWING WATER QUALITY AND HYDRAULIC CONDUCTIVITY DATA SIERRITA TAILING IMPOUNDMENT AREA	^																				