

Freeport-McMoRan Sierrita Inc. 6200 W. Duval Mine Rd. PO Box 527 Green Valley, Arizona 85622-0527

December 19, 2008

Via Certified Mail #7007 3020 0001 8578 1920 Return Receipt Requested

Ms. Cynthia S. Campbell Arizona Department of Environmental Quality Water Quality Enforcement Unit 1110 West Washington Street Phoenix, Arizona 85007-2935

Re:

Groundwater Monitoring Report,

Fourth Quarter 2008, Mitigation Order on Consent, Docket No. P-50-06

Dear Ms. Campbell:

Freeport-McMoRan Sierrita Inc. ("Sierrita") submits three copies of the attached Quarterly Groundwater Monitoring Report that provides the results of groundwater monitoring conducted during the fourth quarter of 2008 in the vicinity of the Sierrita Tailing Impoundment. This document was prepared by Hydro Geo Chem, Inc. as described in the Work Plan for Mitigation Order on Consent, Docket No. P-50-06.

Please do not hesitate to contact Mr. Stuart Brown at (503) 675-5252 or myself at (520) 648-8857 if you have any question regarding this submittal.

Sincerely,

E. L. (Ned) Hall

Chief Environmental Engineer

ELH:ms 20081219-001 Attachment

XC:

John Broderick, Sierrita Operations Chad Fretz, Sierrita Operations Manager, Water Quality Programs, Freeport-McMoRan Copper & Gold Inc. Stuart Brown, Bridgewater Group, Inc.

FOURTH QUARTER 2008 GROUNDWATER MONITORING REPORT TASK 2.2 OF AQUIFER CHARACTERIZATION PLAN MITIGATION ORDER ON CONSENT DOCKET NO. P-50-06 PIMA COUNTY, ARIZONA

Prepared for:

FREEPORT-MCMORAN SIERRITA INC.

6200 West Duval Mine Road Green Valley, Arizona 85614

Prepared by:

HYDRO GEO CHEM, INC.

51 West Wetmore Road, Suite 101 Tucson, Arizona 85705 (520) 293-1500

December 18, 2008

HYDRO GEO CHEM, INC.

Environmental Science & Technology

FOURTH QUARTER 2008 GROUNDWATER MONITORING REPORT TASK 2.2 OF AQUIFER CHARACTERIZATION PLAN MITIGATION ORDER ON CONSENT DOCKET NO. P-50-06 PIMA COUNTY, ARIZONA

Prepared for:

FREEPORT-MCMORAN SIERRITA INC.

6200 West Duval Mine Road Green Valley, Arizona 85614

Approved by:

James R. Norris

James R. Norris
Arizona Registered Geofoglst No. 30842

Prepared by:

Daniel R. Simpson

Senior Hydrogeologist

December 18, 2008

TABLE OF CONTENTS

1.	INTRODUCTION
	1.1 Scope of Groundwater Monitoring
	1.1.1 Groundwater Monitoring for Task 2.2
2.	GROUNDWATER MONITORING RESULTS5
	2.1 Results of Monitoring for Task 2.2
	2.2 Quality Assurance/Quality Control Review
3.	DISCUSSION
	3.1 Sulfate Distribution
	3.2 Groundwater Elevation
	3.3 Time Series Graphs of Sulfate Concentration and Groundwater Elevation 9
4.	REFERENCES
	TABLES
1	Summary of Groundwater Monitoring for Mitigation Order Docket No. P-50-06 for
	Fourth Quarter 2008
2	Analytical Results for Fourth Quarter 2008 Groundwater Monitoring
3	Groundwater Elevation Data for Water Levels Collected in Fourth Quarter 2008
	FIGURES
1	Sulfate Consequentians in Consequence Founds Over the 2000
1 2	Sulfate Concentrations in Groundwater Fourth Quarter 2008 Groundwater Elevations Fourth Quarter 2008
	APPENDICES
A	Fourth Quarter 2008 Data Verification Report for Groundwater Samples Collected
-	By Freeport-McMoRan Sierrita Inc. and Hydro Geo Chem, Inc.
В	Analytical Data Reports from ACZ Laboratories, Inc.
C	Hydro Geo Chem, Inc. Groundwater Sampling Forms
D	Time Series Graphs of Sulfate Concentration and Groundwater Elevation

1. INTRODUCTION

This data report was prepared for Freeport-McMoRan Sierrita Inc. (Sierrita), and

provides the results of groundwater monitoring conducted in the fourth quarter of 2008 in the

vicinity of the Sierrita Tailing Impoundment (STI). Groundwater monitoring was conducted by

Sierrita pursuant to Task 2.2 of the Work Plan (Hydro Geo Chem, Inc. [HGC], 2006) to

characterize sulfate in the vicinity of the STI. The Work Plan was submitted to and approved by

Arizona Department of Environmental Quality (ADEQ) pursuant to the Mitigation Order on

Consent Docket No. P-50-06. HGC prepared this groundwater monitoring report on behalf of

Sierrita.

1.1 **Scope of Groundwater Monitoring**

The scope of the groundwater monitoring program is described in Sections 3.3.2 and

Appendix G of the Work Plan (HGC, 2006). Groundwater monitoring for Task 2.2 consists of

water elevation measurement and collection of groundwater samples from wells in the vicinity of

the STI.

1.1.1 Groundwater Monitoring for Task 2.2

The Work Plan identifies two purposes for the groundwater monitoring program required

in Task 2.2: plume monitoring and regional monitoring. Plume monitoring is conducted

quarterly at wells that are proximal to the sulfate plume in order to track the plume's location in

Q4 08 Sierrita Groundwater Report.doc

the aquifer. Regional monitoring to characterize regional hydrologic conditions using wells that

are outside the area of the sulfate plume was completed in the third quarter of 2007

(HGC, 2007). This report presents the results of plume monitoring conducted during the fourth

quarter of 2008. Pursuant to the Work Plan, the only constituent of interest for quarterly plume

monitoring is sulfate.

Table 1 lists wells identified in the Work Plan for quarterly monitoring, their availability

for sampling in the fourth quarter of 2008, and their sampling status. As discussed in the Work

Plan, Table 1 consists of wells that are under the control of Sierrita and others that are not.

Sierrita agreed to contact owners of private wells and wells owned by water companies identified

in the Work Plan for sampling in order to obtain access for sampling. The Work Plan

acknowledged that access to some wells may not be permitted by well owners and that some

wells may be inappropriate for sampling due to their construction characteristics. Table 1 also

includes a list of alternate wells identified by the Work Plan for sampling that have been used in

place of wells that were unable to be sampled.

Analytical data for plume monitoring during the fourth quarter of 2008 were obtained

from two sources: Sierrita and HGC. Sierrita collected groundwater samples at wells under its

control and HGC collected groundwater samples at wells not under the control of Sierrita during

October 2008.

Q4 08 Sierrita Groundwater Report.doc

Groundwater sampling and analysis methods used by Sierrita and HGC are described in the Quality Assurance Project Plan (QAPP) contained in Appendix E of the Work Plan (HGC, 2006). Results of groundwater monitoring for Task 2.2 are presented in Section 2.1.

GROUNDWATER MONITORING RESULTS

2.1 **Results of Monitoring for Task 2.2**

Analytical results and groundwater elevation data for the fourth quarter of 2008 are

tabulated in Table 2 and Table 3, respectively. Figure 1 shows the concentrations of dissolved

sulfate in the wells sampled in the fourth quarter 2008. Comparison of dissolved and total

sulfate concentrations in Table 2 indicates negligible difference between the two measurements.

The highest sulfate concentration measured at co-located wells was used for concentration

contouring. Figure 2 shows groundwater elevations in the fourth quarter 2008. Groundwater

elevations were calculated using the depth to water measurements made under static (non-

pumping) conditions for all wells shown. Water level data for the IW-series wells were not used

to estimate groundwater elevation contours for Figure 2 because the depth to water was

measured while the wells were pumping.

2.2 **Quality Assurance/Quality Control Review**

Pursuant to Section 6.4 of the QAPP, a data verification report was prepared for quality

assurance and quality control purposes. The data verification report reviews groundwater data

collected by Sierrita and HGC during the fourth quarter of 2008, and is included in Appendix A.

Q4 08 Sierrita Groundwater Report.doc

Analytical laboratory reports for samples collected by Sierrita and HGC in the fourth

quarter of 2008 are provided in portable document format on the compact disc in Appendix B.

Copies of groundwater sampling forms for samples collected by HGC are in Appendix C.

As determined by the analytical data verification review, all data for samples collected in

the fourth quarter of 2008 by HGC and Sierrita are of acceptable quality for use in the aquifer

characterization being conducted pursuant to the Work Plan.

3. DISCUSSION

This data report provides the results of groundwater monitoring conducted in the vicinity

of the STI for the fourth quarter of 2008. As presented in Table 1, during this monitoring period

76 wells were identified for quarterly quality sampling and 69 wells were identified for water

level monitoring. Groundwater samples were collected from 70 plume area wells and depths to

water measurements were collected at 85 wells.

Groundwater samples and water level measurements were not collected from all the wells

identified in the Work Plan for a variety of reasons, including owner limitations on access,

unsuitable well construction, inability to contact the owner, obstruction in well, or a well no

longer existing. The specific reason(s) for not sampling these wells are provided in Table 1. In

some cases, alternate wells were identified and sampled as described in Table 1. Overall,

groundwater monitoring conducted during the fourth quarter of 2008 is deemed to have met the

objective of identifying the location of the sulfate plume from STI.

3.1 **Sulfate Distribution**

Figure 1 shows the distribution of sulfate concentrations. The concentration contours

shown in Figure 1 are inferred assuming that sulfate concentrations in the aquifer are spatially

correlated, although a strict linear interpolation was not applied. Sulfate concentration contours

of 50, 100, 250, 500, 1000, and 1500 milligrams per liter (mg/L) are shown as requested by

Q4 08 Sierrita Groundwater Report.doc

ADEQ (2006). The contours are based on the highest sulfate concentration measured in

co-located wells.

Based on the sulfate concentration data on Figure 1, the sulfate plume from the STI (as

defined by the 250 mg/L sulfate concentration contour) extends northeast from the southeastern

corner of the tailing impoundment to the vicinity of co-located wells CW-3/MO-2007-5. The

plume then extends north from wells CW-3/MO-2007-5 to the west of wells NP-2/MO-2007-3

and to Duval Mine Road, just south of the MO-2007-1 wells.

3.2 **Groundwater Elevation**

Groundwater elevations are shown on Figure 2. Groundwater elevations decrease from

west to east in the immediate vicinity of STI, and from south to north across the central portion

of the study area near Green Valley. Comparison of the fourth quarter 2008 water elevations

with those observed in previous quarters indicates no substantive difference in groundwater

elevations and consequent flow directions. The overall pattern of groundwater flow indicated by

groundwater elevations is consistent with expected regional groundwater flow patterns in the

southern portion of the Tucson groundwater basin (e.g., Mason and Liciniu, 2006; Pima

Association of Governments, 1983a and 1983b).

The water elevations in co-located wells screened at different depths vary by less than

four feet in the north part of the study area. In the south half of the study area, the deepest

screened interval at co-located wells at MH-13, MO-2007-5, and MO-2007-6 have lower water

Q4 08 Sierrita Groundwater Report.doc

elevations than the more shallow wells. The vertical water level differences as calculated

between the shallowest and deepest screened intervals at the MH-13, MO-2007-5, and

MO-2007-6 wells range from 7.70 to 12.31 feet.

3.3 Time Series Graphs of Sulfate Concentration and Groundwater Elevation

Time series graphs of sulfate concentration and groundwater elevation for ESP-, CW-,

MO-, and GVDWID wells in the vicinity of the edge of the plume, and wells MH-28 and MH-29

near the interceptor wellfield are presented in Appendix D. Because of variability in the sulfate

and water elevation data, assessment of trends is somewhat subjective and should be considered

provisional subject to additional verification. Inspection of the time series graphs of wells at the

edge of the plume indicates that sulfate concentration trends appear to increase gradually over

time in CW-7, ESP-4, MO-2007-1B, and MO-2007-1C and decrease in GV-02-GVDWID, MO-

2007-2, MO-2007-3C, MO-2007-6A, and MO-2007-6B.

Groundwater elevations are also variable over time, making interpretation of seasonal or

long-term trends difficult. In general, water level elevation data for active production wells show

the largest range of variation over time (up to approximately 26 feet in CW-10), whereas the

range of groundwater elevation change over time in monitoring wells tends to be approximately

3 feet or less. Sulfate concentration and groundwater elevation data for the time series graphs is

presented in Table D.1.

Q4 08 Sierrita Groundwater Report.doc

Q4 08 Sierrita Groundwater Report.doc

H:\PDF WorkStation\783000\081217-4th Qtr GW Sierrita\Q4 08 Sierrita Groundwater Report.doc

4. REFERENCES

- Arizona Department of Environmental Quality. 2006. Correspondence from Robert Casey to John Brack, Regarding: Mitigation Order on Consent, Docket P-50-06-Work Plan Response. September 22, 2006.
- Hydro Geo Chem, Inc. (HGC). 2006. Work Plan to Characterize and Mitigate Sulfate with Respect to Drinking Water Supplies in the Vicinity of the Phelps Dodge Sierrita Tailing Impoundment, Pima County, Arizona. August 11, 2006, revised October 31, 2006.
- HGC. 2007. Third Quarter 2007. Groundwater Monitoring Report, Tasks 2.2, 2.3, and 2.4 of Aquifer Characterization Plan, Mitigation Order on Consent Docket No. P-50-06. September 26, 2007.
- Mason, Dale E. and Bata Liciniu. 2006. Regional Groundwater Flow Model of the Tucson Active Management Area; Tucson, Arizona. Simulation and Application Modeling Report No. 13. Arizona Department of Water Resources.
- Pima Association of Governments (PAG). 1983a. Region Wide Groundwater Quality in the Upper Santa Cruz Basin Mines Task Force Area. September 1983.
- PAG. 1983b. Ground-Water Monitoring in the Tucson Copper Mining District. September 1983.

TABLES

TABLE 1
Summary of Groundwater Monitoring for Mitigation Order Docket No. P-50-06 for Fourth Quarter 2008

					Work Plan S	specification	Q4-2008	Monitoring		
Well Name	ADWR 55 Well Registry Number	Owner	Purpose	Casing or Well Depth (feet)	Water Level Measurement	Water Quality Sampling	Water Level Measured?	Water Quality Sample Collected?	Status	Substitute Well
<u>.</u>				WELLS I	FOR QUARTERLY	PLUME] MONITOR	ING CONTROLI	LED BY SIERRITA	4	
ESP-1	623102	Sierrita	Plume Monitoring	1020	Q	Q	YES	YES	Water quality sample collected in October 2008	
ESP-2	623103	Sierrita	Plume Monitoring	1044	Q	Q	YES	YES	Water quality sample collected in October 2008	
ESP-3	623104	Sierrita	Plume Monitoring	1043	ď	Q	YES	YES	Water quality sample collected in October 2008	
ESP-4	623105	Sierrita	Plume Monitoring	1045	Q	Q	YES	YES	Water quality sample collected in October 2008	
ESP-5	623106	Sierrita	Plume Monitoring	950	Q	-	YES	NO	Well identified for water level measurement only	55-515867
IW-1	623129	Sierrita	Plume Monitoring	855	-	Q	YES	YES	Water quality sample collected in October 2008	
IW-2	623130	Sierrita	Plume Monitoring	1035	q	Q	NO	NO	Well abandonment planned	
IW-2A	216464	Sierrita	Plume Monitoring	1041	Q	Q	NO	YES	Water quality sample collected October in 2008; no access to well casing to collect water level measurement	
IW-3A	623131	Sierrita	Plume Monitoring	1047		Q	YES	YES	Water quality sample collected in October 2008	
IW-4	623132	Sierrita	Plume Monitoring	946		Q	YES	YES	Water quality sample collected in October 2008	
IW-5	623133	Sierrita	Plume Monitoring	956	-	Q	NO	YES	Water quality sample collected in October 2008; obstruction in well prevented water level measurement	
IW-6A	545565	Sierrita	Plume Monitoring	492	-	Q	YES	YES	Water quality sample collected in October 2008	
IW-8	508236	Sierrita	Plume Monitoring	783	-	Q	YES	YES	Water quality sample collected in October 2008	
IW-9	508238	Sierrita	Plume Monitoring	853	-	Q	YES	YES	Water quality sample collected in October 2008	
IW-10	508237	Sierrita	Plume Monitoring	831	-	Q	YES	YES	Water quality sample collected in October 2008	
IW-11	508235	Sierrita	Plume Monitoring	605	-	Q	YES	YES	Water quality sample collected in October 2008	
IW-12	545555	Sierrita	Plume Monitoring	625	-	Q	YES	YES	Water quality sample collected in October 2008	
IW-13	545556	Sierrita	Plume Monitoring	495	-	Q	YES	YES	Water quality sample collected in October 2008	
IW-14	545557	Sierrita	Plume Monitoring	550	-	Q	YES	YES	Water quality sample collected in October 2008	
IW-15	545558	Sierrita	Plume Monitoring	548	-	Q	YES	YES	Water quality sample collected in October 2008	
IW-16	545559	Sierrita	Plume Monitoring	470	-	Q	YES	YES	Water quality sample collected in October 2008	
IW-17	545560	Sierrita	Plume Monitoring	502	-	Q	YES	YES	Water quality sample collected in October 2008	
IW-18	545561	Sierrita	Plume Monitoring	508	-	Q	YES	YES	Water quality sample collected in October 2008	
IW-19	545562	Sierrita	Plume Monitoring	544		Q	YES	YES	Water quality sample collected in October 2008	
IW-20	545563	Sierrita	Plume Monitoring	506	-	Q	YES	YES	Water quality sample collected in October 2008	
IW-21	545564	Sierrita	Plume Monitoring	620		Q	YES	YES	Water quality sample collected in October 2008	
IW-22	200554	Sierrita	Plume Monitoring	590		Q	YES	YES	Water quality sample collected in October 2008	
IW-23	200555	Sierrita	Plume Monitoring	964	-	Q	NO	YES	Water quality sample collected in October 2008; obstruction in well prevented water level measurement	
IW-24	200556	Sierrita	Plume Monitoring	880	-	Q	YES	YES	Water quality sample collected in October 2008	
MH-1	803629	Sierrita	Plume Monitoring	520	q	-	YES	NO	Well identified for water level measurement only	
MH-3	803630	Sierrita	Plume Monitoring	535	q	-	YES	NO	Well identified for water level measurement only	
MH-4	803631	Sierrita	Plume Monitoring	540	Q	-	NO	NO	Obstruction in well prevented water level measurement	
MH-5	803632	Sierrita	Plume Monitoring	640	q	-	YES	NO	Well identified for water level measurement only	
MH-6	803633	Sierrita	Plume Monitoring	960	Q	-	YES	NO	Well identified for water level measurement only	
MH-7	803634	Sierrita	Plume Monitoring	1100	Q	-	YES	NO	Well identified for water level measurement only	
MH-9	803635	Sierrita	Plume Monitoring	1400	Q	-	YES	NO	Well identified for water level measurement only	
MH-10	803636	Sierrita	Plume Monitoring	600	Q	Q	YES	YES	Water quality sample collected in November 2008	

TABLE 1
Summary of Groundwater Monitoring for Mitigation Order Docket No. P-50-06 for Fourth Quarter 2008

					Work Plan S	pecification	Q4-2008	Monitoring		
Well Name	ADWR 55 Well Registry Number	Owner	Purpose	Casing or Well Depth (feet)	Water Level Measurement	Water Quality Sampling	Water Level Measured?	Water Quality Sample Collected?	Status	Substitute Well
MH-11	803637	Sierrita	Plume Monitoring	820	Q	Q ¹	YES	YES	Water quality sample collected in November 2008	
MH-12	803638	Sierrita	Plume Monitoring	800	Q	Q ¹	YES	NO	Casing appears to be collapsed at about 415 ft bgs; water level measurement collected in November 2008	
MH-13A	904071	Sierrita	Plume Monitoring	660	Q	Q	YES	YES	Water quality sample collected in October 2008	
MH-13B	904072	Sierrita	Plume Monitoring	960	Q	Q	YES	YES	Water quality sample collected in October 2008	
MH-13C	904073	Sierrita	Plume Monitoring	1360	Q	Q	YES	YES	Water quality sample collected in October 2008	
MH-14	528098	Sierrita	Plume Monitoring	561	Q	-	YES	NO	Well identified for water level measurement only	
MH-15E	528094	Sierrita	Plume Monitoring	467	Q	-	YES	NO	Well identified for water level measurement only	
MH-15W	528093	Sierrita	Plume Monitoring	466	Q	-	YES	NO	Well identified for water level measurement only	
MH-16E	528100	Sierrita	Plume Monitoring	460	Q	-	YES	NO	Well identified for water level measurement only	
MH-16W	528099	Sierrita	Plume Monitoring	460	Q	-	YES	NO	Well identified for water level measurement only	
MH-24	563799	Sierrita	Plume Monitoring	468	Q	-	YES	NO	Well identified for water level measurement only	
MH-25A	201528	Sierrita	Plume Monitoring	530	q	Q	YES	YES	Water quality sample collected in October 2008	
MH-25B	208429	Sierrita	Plume Monitoring	680	q	Q	YES	YES	Water quality sample collected in October 2008	
MH-25C	208426	Sierrita	Plume Monitoring	1101	q	Q	YES	YES	Water quality sample collected in October 2008	
MH-26A	201527	Sierrita	Plume Monitoring	538	q	Q	YES	YES	Water quality sample collected in October 2008	
MH-26B	208427	Sierrita	Plume Monitoring	735	q	Q	YES	YES	Water quality sample collected in October 2008	
MH-26C	208428	Sierrita	Plume Monitoring	910	q	Q	YES	NO	Pump Failure; water level measurement collected in October 2008	
MH-28	903648	Sierrita	Plume Monitoring	490	Q	Q	YES	YES	Water quality sample collected in October 2008	
MH-29	903649	Sierrita	Plume Monitoring	475	Q	Q	YES	YES	Water quality sample collected in October 2008	
MH-30	903884	Sierrita	Plume Monitoring	920	q	Q	YES	YES	Water quality sample collected in October 2008	
MO-2007-1A	907342	Sierrita	Plume Monitoring	610	Q	Q	YES	YES	Water quality sample collected in October 2008	
MO-2007-1B	907210	Sierrita	Plume Monitoring	910	q	Q	YES	YES	Water quality sample collected in October 2008	
MO-2007-1C	907209	Sierrita	Plume Monitoring	1190	Q	Q	YES	YES	Water quality sample collected in October 2008	
MO-2007-2	906765	Sierrita	Plume Monitoring	685	q	Q	YES	NO	Pump Failure; water level measurement collected in October 2008	
MO-2007-3B	906816	Sierrita	Plume Monitoring	950	Q	Q	YES	YES	Water quality sample collected in October 2008	
MO-2007-3C	906817	Sierrita	Plume Monitoring	1330	Q	Q	YES	YES	Water quality sample collected in October 2008	
MO-2007-4A	907213	Sierrita	Plume Monitoring	570	q	Q	YES	YES	Water quality sample collected in October 2008	
MO-2007-4B	907212	Sierrita	Plume Monitoring	950	Q	Q	YES	YES	Water quality sample collected in October 2008	
MO-2007-4C	907211	Sierrita	Plume Monitoring	1140	Q	Q	YES	YES	Water quality sample collected in October 2008	
MO-2007-5B	907456	Sierrita	Plume Monitoring	970	Q	Q	YES	YES	Water quality sample collected in October 2008	
MO-2007-5C	907457	Sierrita	Plume Monitoring	1360	Q	Q	YES	YES	Water quality sample collected in October 2008	
MO-2007-6A	907607	Sierrita	Plume Monitoring	620	Q	Q	YES	YES	Water quality sample collected in October 2008	
MO-2007-6B	907606	Sierrita	Plume Monitoring	950	Q	Q	YES	YES	Water quality sample collected in October 2008	
PZ-7	561870	Sierrita	Plume Monitoring	155	Q	Q	YES	YES	Water quality sample collected in October 2008	
PZ-8	561866	Sierrita	Plume Monitoring	280	Q	Q	YES	YES	Water quality sample collected in October 2008	
PZ-9	561859	Sierrita	Plume Monitoring	230	Q	Q	NO	NO	Piezometer is Dry	
				WELLS FO	R QUARTERLY [PL	UME] MONITORIN	G NOT CONTRO	OLLED BY SIERRI	TA	ı
1350	ND	TBPI	Plume Monitoring	ND	Q	-	YES	NO	Well identified for water level measurement only	

TABLE 1
Summary of Groundwater Monitoring for Mitigation Order Docket No. P-50-06 for Fourth Quarter 2008

					Work Plan S	pecification	Q4-2008	Monitoring		
Well Name	ADWR 55 Well Registry Number	Owner	Purpose	Casing or Well Depth (feet)	Water Level Measurement	Water Quality Sampling	Water Level Measured?	Water Quality Sample Collected?	Status	Substitute Well
CC OF GV	501760	CC of GV	Plume Monitoring	955	Q	Q	YES	YES	Water quality sample collected in October 2008	55-640274
CW-3	627483	cwc	Plume Monitoring	501	Q	Q	YES	YES	Water quality sample collected in October 2008	
CW-6	627485	cwc	Plume Monitoring	840	ď	Q	YES	YES	Water quality sample collected in October 2008	
CW-7	502546	cwc	Plume Monitoring	1065	Q	Q	YES	NO	Well has been disconnected; water level only	
CW-8	543600	cwc	Plume Monitoring	1200	Q	Q	YES	NO	Well has been disconnected; water level only	
CW-9	588121	cwc	Plume Monitoring	1000	Q	Q	YES	YES	Water quality sample collected in October 2008	
CW-10	207982	cwc	Plume Monitoring	1140	q	Q	YES	YES	Water quality sample collected in October 2008	
GV-01-GVDWID	603428	GVDWID	Plume Monitoring	645	Q	Q	YES	YES	Water quality sample collected in October 2008	
GV-02-GVDWID	603429	GVDWID	Plume Monitoring	560	q	Q	YES	YES	Water quality sample collected in October 2008	
GV-SI-GVDWID	208825	GVDWID	Plume Monitoring	650	q	Q	YES	YES	Water quality sample collected in October 2008	
HAVEN GOLF	515867	Haven Golf	Plume Monitoring	500	Q	Q	NO	YES	Water quality sample collected in October 2008; obstruction in well prevented water level measurement	55-623106
I-9	608526	TBPI	Plume Monitoring	900	ď	Q	NO	NO	Well abandonment completed October 2007	None
I-10	608525	ТВРІ	Plume Monitoring	932	q	Q	YES	YES	Water quality sample collected in October 2008	
M-6	87388	ТВРІ	Plume Monitoring	660	q	Q	NO	NO	Water quality sample collected in October 2008	M-9, 55-501652
M-8	87390	ТВРІ	Plume Monitoring	660	q	Q	YES	YES	Water quality sample collected in October 2008	
M-9	501652	ТВРІ	Plume Monitoring	440	q	Q	YES	YES	Water quality sample collected in October 2008	55-87388
M-10	501653	ТВРІ	Plume Monitoring	1050	q	Q	YES	YES	Water quality sample collected in October 2008	
M-20	906595	ТВРІ	Plume Monitoring	780	Q	Q ¹	YES	YES	Water quality sample collected in October 2008	
NP-2	605898	cwc	Plume Monitoring	515	q	Q	YES	YES	Water quality sample collected in October 2008	
SCHNEIKER	611220	Schneiker	Plume Monitoring	495	Q	Q	NO	NO	Owner did not respond to access request	
TMM-1 ²	616156	Pima County	Plume Monitoring	500	ď	Q	YES	YES	Water quality sample collected in October 2008	None

¹ MH-11, MH-12 and M-20 added to sampling list after Work Plan approved

Sierrita = Freeport-McMoRan Sierrita Inc.

Q = Quarterly

TBPI = Twin Buttes Properties, Inc.

CC OF GV = Country Club of Green Valley

CWC = Community Water Company of Green Valley

GVDWID = Green Valley Domestic Water Improvement District

ND = No Data

² Formally listed as Davis-Monthan (55-804995) and PC Parks (55-616156) wells; determined to be the same well located at the Titan Missile Museum (TMM) ADWR = Arizona Department of Water Resources

TABLE 2
Analytical Results for Fourth Quarter 2008 Groundwater Monitoring

Well Name	ADWR 55 Well Registry Number	Sample Date	pH (SU)	Specific Conductance (µS/cm)	Temperature (°C)	Sulfate, dissolved (mg/L)	Sulfate, total (mg/L)
	I I	WELLS FOR QUAR	TERLY [PLUME] MONIT	ORING CONTROLLED BY S	ERRITA		
ESP-1	623102	10/30/08	7.55	576	26.9	121	NA
ESP-2	623103	10/30/08	7.22	374	27.5	30.1	NA
ESP-2 DUP	623103	10/30/08	7.22	374	27.5	30.0	NA
ESP-3	623104	10/30/08	7.58	375	27.8	36.8	NA
ESP-4	623105	10/30/08	7.23	962	25.9	489	NA
IW-1	623129	10/24/08	7.01	1201	30.9	700	NA
IW-2A	216464	10/24/08	7.43	473	30.3	60	NA
IW-3A	623131	10/27/08	6.97	1679	28.7	1450	NA
IW-4	623132	10/24/08	6.92	1924	27.9	1630	NA
IW-5	623133	10/27/08	6.57	1886	26.8	1720	NA
IW-6A	545565	10/24/08	6.61	1999	25.5	1930	NA
IW-8	508236	10/24/08	6.85	1976	27.4	1890	NA
IW-9	508238	10/24/08	6.88	1981	28.6	1720	NA
IW-9 DUP	508238	10/24/08	6.88	1981	28.6	1720	NA
IW-10	508237	10/24/08	6.77	1969	27.0	1730	NA
IW-11	508235	10/24/08	6.89	1958	26.3	2260	NA
IW-12	545555	10/24/08	6.81	1879	26.5	1520	NA
IW-13	545556	10/24/08	6.70	1999	26.1	1930	NA
IW-14	545557	10/24/08	6.51	1929	26.4	1840	NA
IW-15	545558	10/24/08	6.60	1892	26.0	1850	NA
IW-16	545559	10/24/08	6.35	1879	25.7	1850	NA
IW-17	545560	10/24/08	6.70	1864	27.0	1720	NA
IW-18	545561	10/24/08	6.34	1883	27.1	1680	NA NA
IW-19	545562	10/24/08	6.60	1685	28.7	1710	NA NA
IW-20	545563	10/24/08	6.81	1779	28.6	1600	NA NA
IW-21	545564	10/24/08	6.91	1833	29.7	1640	NA NA
IW-22	200554	10/24/08	6.89	1929	26.4	1720	NA NA
IW-23	200555	10/24/08	6.81	1966	27.9	1780	NA NA
IW-24	200556	10/24/08	6.71	1058	28.1	1640	NA NA
MH-10	803636	11/04/08	7.02	1856	26.0	1450	NA NA
MH-11	803637	11/07/08	7.02	1350	27.1	1560	NA NA
MH-13A	904071	10/20/08	7.01	1984	27.7	1800	NA NA
						1080	NA NA
MH-13B MH-13C	904072 904073	10/20/08 10/20/08	7.34	1627 380	29.6		NA NA
			8.90		32.8	60	
MH-25A MH-25B	201528	10/17/08	7.84	333	27.5	50	NA NA
	208429	10/17/08	7.74	1768	28.8	1660	NA NA
MH-25C	208426	10/17/08	7.17	1624	30.4	1270	NA NA
MH-26A	201527	10/17/08	7.70	327	27.4	20	NA NA
MH-26B	208427	10720/08	7.16	1760	29.2	1650	NA NA
MH-28	903548	10/06/08	6.97	3500	26.7	1910	NA
MH-29	903649	10/06/08	6.95	3300	26.9	1740	NA
MH-30	903884	10/06/08	6.95	3900	29.8	1810	NA
MO-2007-1A	907342	10/17/08	7.46	357	27.7	17.9	NA
MO-2007-1B	907210	10/17/08	7.56	423	28.1	54.3	NA
MO-2007-1C	907209	10/21/08	7.80	573	29.8	146	NA
MO-2007-3B	906816	10/22/08	7.69	379	28.1	42.4	NA

TABLE 2
Analytical Results for Fourth Quarter 2008 Groundwater Monitoring

Well Name	ADWR 55 Well Registry Number	Sample Date	pH (SU)	Specific Conductance (µS/cm)	Temperature (°C)	Sulfate, dissolved (mg/L)	Sulfate, total (mg/L)
MO-2007-3C	906817	10/21/08	8.07	519	32.9	103	NA
MO-2007-4A	907213	10/22/08	7.58	420	26.9	40.1	NA
MO-2007-4B	907212	10/22/08	7.73	407	30.8	34.7	NA
MO-2007-4C	907211	10/22/08	8.45	467	31.8	85.9	NA
MO-2007-5B	907456	10/23/08	7.87	1086	26.8	412	NA
MO-2007-5C	907457	10/23/08	9.11	728	30.2	257	NA
MO-2007-6A	907607	10/23/08	7.49	388	25.8	18.6	NA
MO-2007-6B	907606	10/23/08	8.01	446	28.9	63.2	NA
PZ-7	561870	10/14/08	8.31	1300	25.0	420	NA
PZ-8	561866	10/08/08	7.22	1400	28.2	460	NA
		WELLS FOR QUARTE	RLY [PLUME] MONITOR	ING NOT CONTROLLED BY	SIERRITA		
CC of GV	501760	10/09/08	7.26	476	24.8	72.4	68
CW-3	627483	10/06/08	7.50	430	25.3	56.2	60.1
CW-6	627485	10/07/08	7.52	431	26.6	51.5	54.6
CW-6 DUP	627485	10/07/08	7.52	431	26.6	51.5	54.7
CW-9	588121	10/07/08	7.50	395	27.7	43.5	46
CW-10	207982	10/07/08	7.59	380	30.5	48.3	50.3
GV-01-GVDWID	603428	10/09/08	7.25	414	26.6	39	36
GV-02-GVDWID	603429	10/09/08	7.18	599	24.2	93.5	90
GV-SI-GVDWID	208825	10/09/08	7.44	352	26.7	5.4	6
HAVEN GOLF	515867	10/07/08	7.31	588	27.8	92.3	99
I-10	608525	10/28/08	7.18	1034	29.7	526	NA
M-8	087390	10/28/08	7.67	406	27.8	26.3	NA
M-8 DUP	087390	10/28/08	7.67	406	27.8	26.2	NA
M-9	501652	10/28/08	7.66	503	30.3	74.8	NA
M-10	501653	10/28/08	8.08	521	28.1	97.1	NA
M-20	906595	10/28/08	7.03	1688	28.2	1660	NA
NP-2	605898	10/06/08	7.57	405	25.1	39.7	42.1
TMM-1	616156	10/09/08	8.14	281	29.7	<0.5	<1

SU = Standard Units µS/cm = microsiemens per centimeter °C = degrees Celsius NA = Not Analyzed mg/L = milligrams per liter DUP = Duplicate sample

TABLE 3
Groundwater Elevation Data for Water Levels Collected in Fourth Quarter 2008

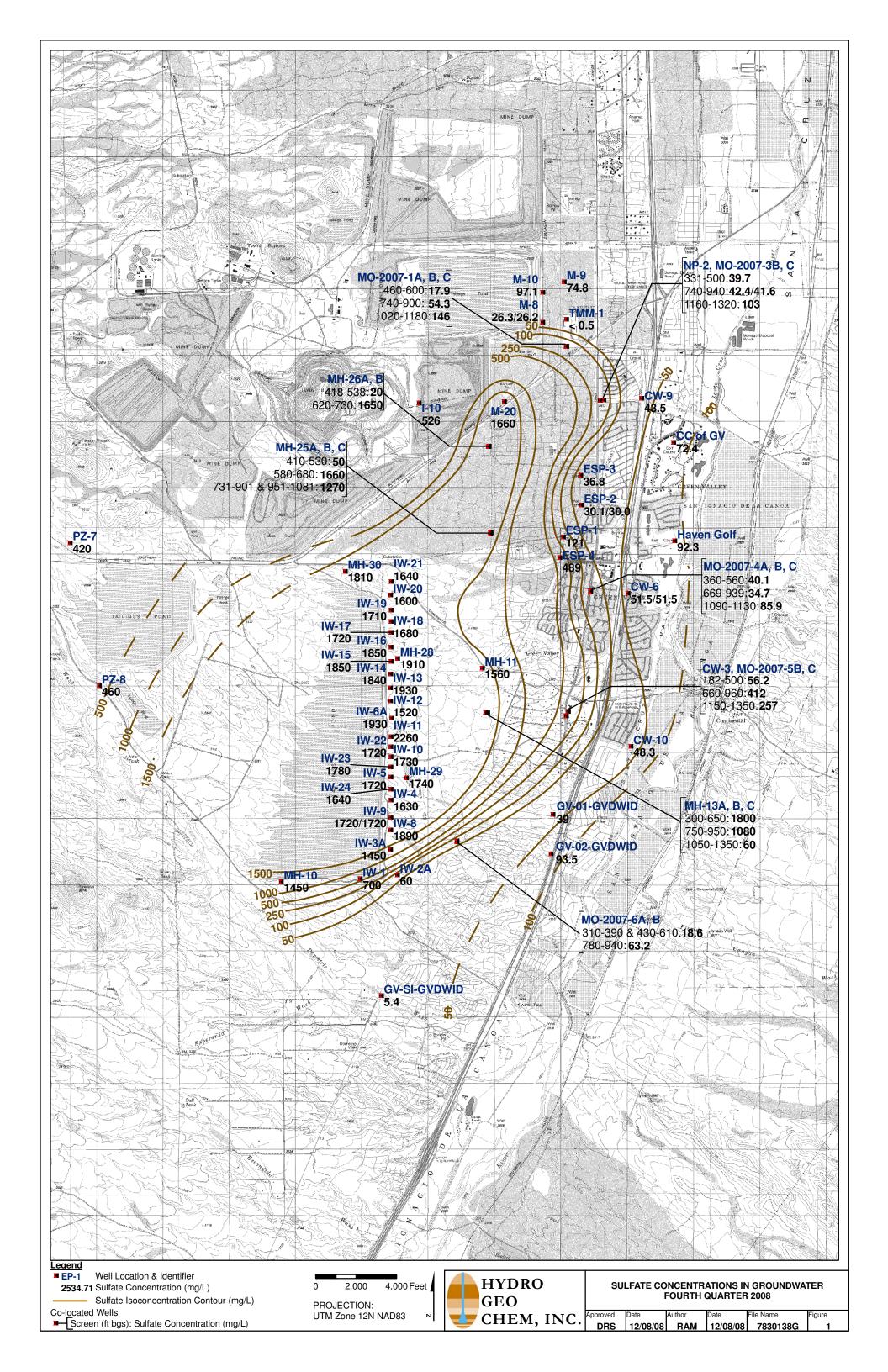
Well Name	ADWR 55 Well Registry Number	Survey Source	UTM North	UTM East	Measuring Point Elevation (ft amsl)	Date	Depth to Water (feet)	Groundwater Elevation (ft amsl)
		V	WELLS FOR QUARTERLY	[PLUME] MONITORING (CONTROLLED BY SIERRIT	A		
ESP-1	623102	Sierrita	3526448.677	499969.682	2954.27	10/30/08	355.47	2598.80
ESP-2	623103	Sierrita	3526924.656	500241.637	2934.60	10/30/08	344.82	2589.78
ESP-3	623104	Sierrita	3527377.239	500234.067	2935.18	10/30/08	361.12	2574.06
ESP-4	623105	Sierrita	3526132.758	499916.830	2958.60	10/30/08	355.42	2603.18
ESP-5	623106	Sierrita	3527082.232	502007.895	2820.00	11/03/08	228.92	2591.08
IW-1	623129	Sierrita	3521277.779	496905.892	3144.69	10/24/08 ¹	404.80	2739.89
IW-3A	623131	Sierrita	3521722.640	497366.220	3121.45	10/24/08 ¹	141.50	2979.95
IW-4	623132	Sierrita	3522465.879	497371.700	3137.06	10/24/08 ¹	452.10	2684.96
IW-6A	545565	Sierrita	3523708.756	497381.226	3132.26	10/24/08 ¹	419.33	2712.93
IW-8	508236	Sierrita	3522020.520	497368.253	3122.19	10/24/08 ¹	436.92	2685.27
IW-9	508238	Sierrita	3522207.639	497369.791	3102.94	10/24/08 ¹	475.03	2627.91
IW-10	508237	Sierrita	3523122.199	497370.367	3129.64	10/24/08 ¹	468.33	2661.31
IW-11	508235	Sierrita	3523428.954	497371.414	3127.20	10/24/08 ¹	433.01	2694.19
IW-12	803638	Sierrita	3523969.869	497364.911	3138.18	10/24/08 ¹	425.90	2712.28
IW-13	545556	Sierrita	3524166.673	497363.820	3143.35	10/24/08 ¹	410.95	2732.40
IW-14	545557	Sierrita	3524373.122	497367.126	3146.42	10/24/08 ¹	467.07	2679.35
IW-15	545558	Sierrita	3524567.261	497372.873	3152.02	10/24/08 ¹	430.49	2721.53
IW-16	545559	Sierrita	3524782.868	497370.651	3162.85	10/24/08 ¹	408.29	2754.56
IW-17	545560	Sierrita	3525002.869	497373.717	3160.76	10/24/08 ¹	428.45	2732.31
IW-18	545561	Sierrita	3525169.771	497374.056	3171.15	10/24/08 ¹	446.30	2724.85
IW-19	545562	Sierrita	3525343.392	497373.630	3155.39	10/24/08 ¹	451.08	2704.31
IW-20	545563	Sierrita	3525568.770	497364.739	3164.21	10/24/08 ¹	424.14	2740.07
IW-21	545564	Sierrita	3525773.266	497374.585	3171.37	10/24/08 ¹	443.08	2728.29
IW-22	200554	Sierrita	3523273.592	497369.590	3128.25	10/24/08 ¹	455.89	2672.36
IW-24	200556	Sierrita	3522633.594	497371.670	3113.29	10/24/08 ¹	466.99	2646.30
MH-1	803629	Sierrita	3525872.911	497372.392	3179.27	11/14/08	441.45	2737.82
MH-3	803630	Sierrita	3525270.181	497472.430	3155.87	10/24/08	426.10	2729.77
MH-5	803632	Sierrita	3523725.339	497477.352	3123.47	11/14/08	391.98	2731.49
MH-6	803633	Sierrita	3522770.451	497436.646	3133.97	11/14/08	379.50	2754.47
MH-7	803634	Sierrita	3522016.471	497502.475	3111.23	11/14/08	373.20	2738.03
MH-9	803635	Sierrita	3521252.607	496438.181	3162.57	11/14/08	371.70	2790.87

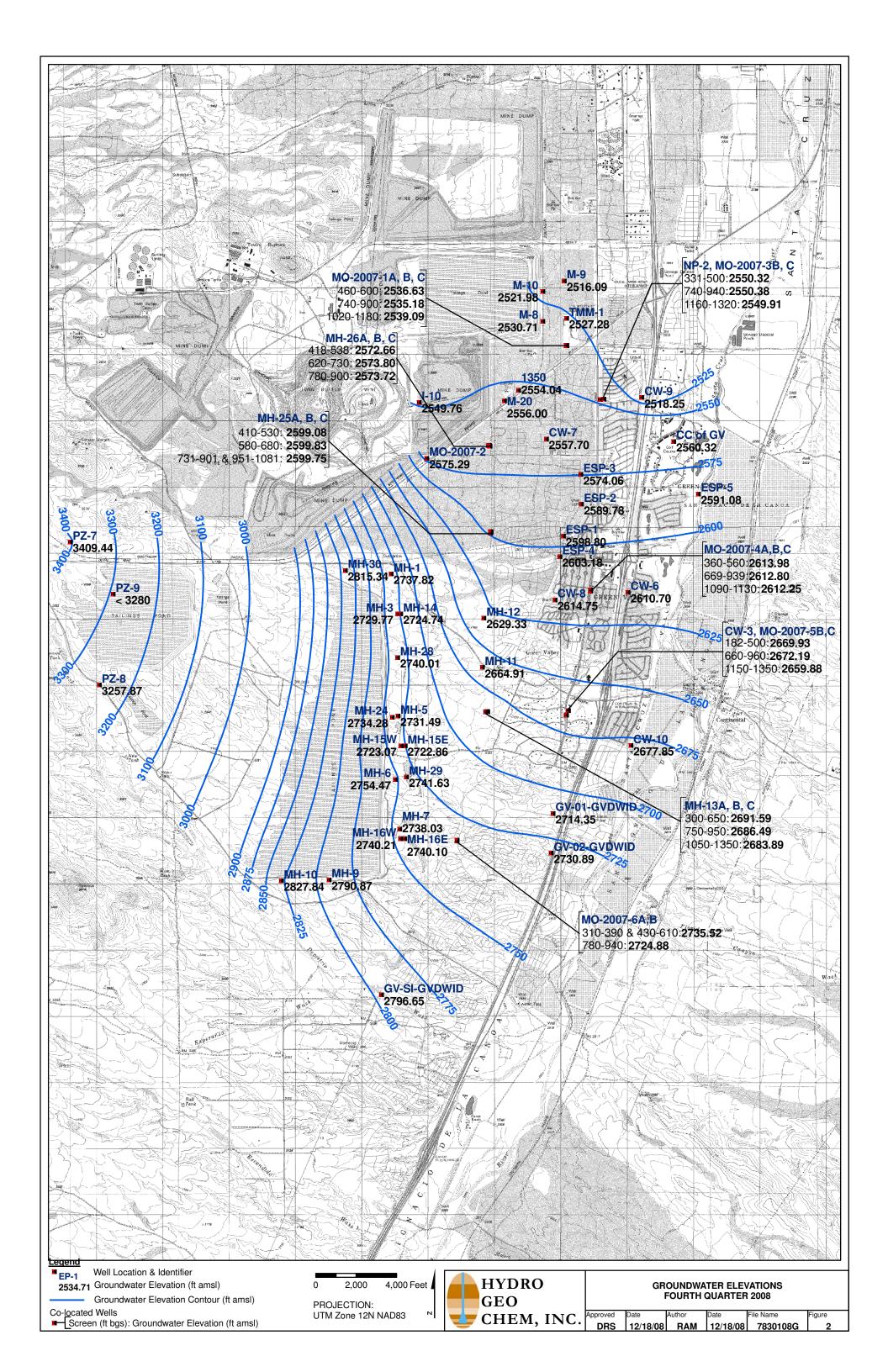
TABLE 3
Groundwater Elevation Data for Water Levels Collected in Fourth Quarter 2008

Well Name	ADWR 55 Well Registry Number	Survey Source	UTM North	UTM East	Measuring Point Elevation (ft amsl)	Date	Depth to Water (feet)	Groundwater Elevation (ft amsl)
MH-10	803636	Sierrita	3521236.861	495717.770	3187.84	11/04/08	360.00	2827.84
MH-11	803637	Sierrita	3524463.648	498749.381	3041.76	11/07/08	376.85	2664.91
MH-12	803638	Sierrita	3525207.002	498772.161	3055.08	11/10/08	425.75	2629.33
MH-13A	904071	Sierrita	3523793.443	498823.857	3026.23	10/20/08	334.64	2691.59
MH-13B	904072	Sierrita	3523787.358	498829.881	3025.63	10/20/08	339.14	2686.49
MH-13C	904073	Sierrita	3523793.032	498797.461	3028.46	10/20/08	344.57	2683.89
MH-14	528098	Sierrita	3525269.340	497517.626	3150.77	10/06/08	426.03	2724.74
MH-15E	528094	Sierrita	3523274.327	497584.800	3111.37	10/24/08	388.51	2722.86
MH-15W	528093	Sierrita	3523275.003	497524.067	3117.07	10/06/08	394.00	2723.07
MH-16E	528100	Sierrita	3521870.233	497576.673	3097.72	10/24/08	357.62	2740.10
MH-16W	528099	Sierrita	3521870.818	497516.074	3100.24	10/08/08	360.03	2740.21
MH-24	563799	Sierrita	3523709.046	497390.515	3131.16	11/14/08	396.88	2734.28
MH-25A	201528	Sierrita	3526510.175	498880.349	3056.57	10/17/08	457.49	2599.08
MH-25B	208429	Sierrita	3526515.244	498870.343	3058.22	10/17/08	458.39	2599.83
MH-25C	208426	Sierrita	3526491.132	498874.666	3057.24	10/17/08	457.49	2599.75
MH-26A	201527	Sierrita	3527818.233	498852.692	3070.89	10/17/08	498.23	2572.66
MH-26B	208427	Sierrita	3527814.016	498839.900	3069.11	10/20/08	495.31	2573.80
MH-26C	208428	Sierrita	3527806.770	498865.240	3070.50	10/20/08	496.78	2573.72
MH-28	903548	Sierrita	3524609.980	497471.427	3142.18	10/06/08	402.17	2740.01
MH-29	903649	Sierrita	3522805.518	497604.326	3123.15	10/07/08	381.52	2741.63
MH-30	903884	Sierrita	3525926.812	496682.307	3232.45	10/06/08	417.11	2815.34
MO-2007-1A	907342	Sierrita	3529331.380	500016.947	2967.65	10/17/08	431.02	2536.63
MO-2007-1B	907210	Sierrita	3529325.119	500021.574	2966.82	10/17/08	431.64	2535.18
MO-2007-1C	907209	Sierrita	3529328.959	500013.405	2968.58	10/21/08	429.49	2539.09
MO-2007-2	906765	Sierrita	3527621.102	497912.410	3153.83	10/17/08	578.54	2575.29
MO-2007-3B	906816	Sierrita	3528508.801	500522.491	2912.15	10/22/08	361.77	2550.38
MO-2007-3C	906817	Sierrita	3528508.743	500529.713	2911.90	10/21/08	361.99	2549.91
MO-2007-4A	907213	Sierrita	3525634.956	500383.682	2923.63	10/22/08	309.65	2613.98
MO-2007-4B	907212	Sierrita	3525613.952	500380.947	2923.57	10/22/08	310.77	2612.80
MO-2007-4C	907211	Sierrita	3525624.484	500382.217	2923.66	10/22/08	311.41	2612.25
MO-2007-5B	907456	Sierrita	3523743.376	500013.850	2944.35	10/23/08	272.16	2672.19
MO-2007-5C	907457	Sierrita	3523736.459	500014.152	2944.91	10/23/08	285.03	2659.88

TABLE 3
Groundwater Elevation Data for Water Levels Collected in Fourth Quarter 2008

Well Name	ADWR 55 Well Registry Number	Survey Source	UTM North	UTM East	Measuring Point Elevation (ft amsl)	Date	Depth to Water (feet)	Groundwater Elevation (ft amsl)
MO-2007-6A	907607	Sierrita	3521842.050	498367.161	3043.37	10/23/08	307.85	2735.52
MO-2007-6B	907606	Sierrita	3521849.495	498367.887	3043.05	10/23/08	318.17	2724.88
PZ-7	561870	Sierrita	3526357.485	492533.171	3549.17	10/14/08	139.73	3409.44
PZ-8	561866	Sierrita	3524196.243	492972.681	3480.36	10/08/08	222.49	3257.87
PZ-9	561859	Sierrita	3525568.717	493180.504	3508.07	11/14/08	Dry	<3280
		WE	LLS FOR QUARTERLY [P	LUME] MONITORING NOT	CONTROLLED BY SIERF	RITA		
1350	ND	ТВРІ	3528452.906	499357.609	3033.25	11/05/08	479.21	2554.04
CC OF GV	501760	HGC	3527876.220	501635.382	2823.45	11/14/08	263.13	2560.32
CW-3	627483	HGC	3523809.985	500047.663	2941.71	10/06/08	271.78	2669.93
CW-6	627485	cwc	3525794.239	500891.072	2867.00	10/07/08	256.30	2610.70
CW-7	502546	cwc	3528094.155	499659.842	2987.50	10/07/08	429.80	2557.70
CW-8	543600	cwc	3525661.191	499798.520	2957.50	10/07/08	342.75	2614.75
CW-9	588121	cwc	3528740.784	501072.040	2834.30	10/07/08	316.05	2518.25
CW-10	207982	cwc	3523455.502	500913.364	2868.50	10/07/08	190.65	2677.85
GV-01-GVDWID	603428	HGC	3522254.157	499812.869	2942.35	11/25/08	228.00	2714.35
GV-02-GVDWID	603429	HGC	3521654.457	499786.207	2930.47	11/25/08	199.58	2730.89
GV-SI-GVDWID	208825	HGC	3519509.930	497227.175	3042.65	11/06/08	246.00	2796.65
I-10	608525	Sierrita	3528469.536	497797.957	3210.58	10/24/08	660.82	2549.76
M-8	87390	Sierrita	3529692.237	499658.916	2999.53	10/28/08	468.82	2530.71
M-9	501652	Sierrita	3530303.954	499984.173	2973.81	10/28/08	457.72	2516.09
M-10	501653	Sierrita	3530143.114	499659.027	3005.68	10/28/08	483.70	2521.98
M-20	906595	ТВРІ	3528491.771	499082.070	3054.00	10/28/08	498.00	2556.00
NP-2	605898	HGC	3528517.116	500582.904	2906.56	10/09/08	356.24	2550.32
TMM-1	616156	HGC	3529736.231	500018.323	2967.08	10/09/08	439.80	2527.28


UTM = Universal Transverse Mercator, Zone 12 Band S


ft amsl = feet above mean sea level

¹Water level measurement was collected under dynamic conditions and not used for contouring

HGC = Hydro Geo Chem, Inc.

FIGURES

APPENDIX A

FOURTH QUARTER 2008 DATA VERIFICATION REPORT FOR GROUNDWATER SAMPLES COLLECTED BY FREEPORT-MCMORAN SIERRITA INC. AND HYDRO GEO CHEM, INC.

APPENDIX A

FOURTH QUARTER 2008 DATA VERIFICATION REPORT FOR GROUNDWATER SAMPLES COLLECTED BY FREEPORT-MCMORAN SIERRITA INC. AND HYDRO GEO CHEM, INC.

Prepared for:

FREEPORT-MCMORAN SIERRITA INC.

6200 West Duval Mine Road Green Valley, Arizona 85614

Prepared by:

HYDRO GEO CHEM, INC.

51 West Wetmore Road Tucson, Arizona 85705 (520) 293-1500

December 18, 2008

TABLE OF CONTENTS

1.	INTR	ODUC	TION	2
2.	HGC	FIELD	OPERATIONS	3
	2.1		Level Monitoring	
	2.2		dwater Sampling	
		2.2.1	Pre-Sampling Field Activities	
		2.2.2	Well Purging, Field Measurements, and Sample Collection	
		2.2.3	Post-Sampling Field Activities	
3.	SAM	PLE HA	NDLING	7
4.	LAB	ORATO:	RY QUALITY CONTROL	9
	4.1		sure	
	4.2		tical Methods	
	4.3	Metho	od Detection Limits (MDLs) and Practical Quantification Limits (PQL	s) 10
	4.4	Timeli	iness	10
	4.5	Qualit	y Control Measurements	11
		4.5.1	1 '	
		4.5.2	Standards Analytical Spikes and Analytical Spike Duplicates	
		4.5.2	Laboratory Control Samples	
		4.5.4	Laboratory Duplicate Samples	
		4.5.4	Field Blank Samples	
			-	
5.			LITY INDICATORS	
	5.1		ion	
	5.2			
	5.3		acy	
	5.4	-	sentativeness	
	5.5	_	arability	
	5.6		leteness	
	5.7	Sensit	ivity	18
6.	REFE	ERENCE	ES	19

TABLE

A.1 ACZ Project ID and Associated Wells

1. INTRODUCTION

This report summarizes the data verification review of groundwater samples collected

and analyzed during the fourth quarter 2008 (Q4-2008) by Freeport-McMoRan Sierrita Inc.

(Sierrita), and Hydro Geo Chem, Inc. (HGC) pursuant to Mitigation Order on Consent Docket

No. P-50-06 (MO). Sierrita conducted groundwater sampling and analysis at wells under its

control with the exception of Twin Buttes Properties, Inc. (TBPI) wells I-10, M-8, M-9, M-10

and M-20 which where sampled by Sierrita with the permission of TBPI. HGC collected

groundwater samples from wells outside the control of Sierrita. All analytical results for

groundwater samples collected for this project during the fourth quarter of 2008 were provided to

HGC by ACZ Laboratories, Inc. (ACZ) for preparation of the Q4-2008 Groundwater Monitoring

Report.

Quality assurance (QA) and quality control (QC) procedures are specified in the *Quality*

Assurance Project Plan for Aquifer Characterization Plan (QAPP) (Appendix E of HGC, 2006)

for field sampling, chain-of-custody (COC) documentation, laboratory analysis, and reporting.

This report does not review field sampling or sample handling for samples collected by Sierrita

since this information is evaluated following the provisions of the Quality Assurance/Quality

Control Plan for Water Monitoring, Phelps Dodge Sierrita, Inc. (PDSI, 2005). This report does

review field sampling for samples collected by HGC. Additionally, sample handling and

laboratory QA/QC data are evaluated according to the data quality indicators (DQIs) given in the

QAPP.

Q4 08 Sierrita Appendix A DV Report.doc H:\78300\REPORTS\Q4 08 Sierrita Appendix A DV Report.doc December 18, 2008 A-ii

Appendix C of the main text of this report contains laboratory reports for Q4-2008

samples collected by Sierrita and HGC including COC forms, laboratory correspondence, QC

summaries, data qualifiers, and any case narratives. The Q4-2008 analytical results for all

79 samples collected by Sierrita and HGC and are contained in 18 reports having the ACZ

Project numbers identified in Table A.1.

The results of the internal QA/QC tests performed by ACZ are presented with the

laboratory reports included in Appendix C. Based on the results of surrogate spike recoveries,

matrix spike/recovery and matrix spike duplicate tests, ACZ did not advise HGC of any

modifications that should be made regarding the usability and data validation status of the

laboratory test results.

Q4 08 Sierrita Appendix A DV Report.doc H:\78300\REPORTS\Q4 08 Sierrita Appendix A DV Report.doc December 18, 2008

2. HGC FIELD OPERATIONS

Field operations for this project consisted of the following for all monitoring wells

sampled by HGC:

Static water level measurement,

• Well purging,

• Collection of water quality field parameters (pH, specific conductance [SC] in

microsiemens per centimeter [µS/cm], and temperature in degrees Celsius [°C]),

Collection of groundwater samples for water quality analysis,

Collection of groundwater quality assurance and quality control samples, and

Equipment decontamination.

All documentation of field activities was evaluated for quality assurance and has been

deemed to have met the documentation requirements stated in the QAPP.

2.1 **Water Level Monitoring**

Static water level measurements were collected by HGC at 11 wells during the fourth

quarter of 2008. To accommodate Green Valley Domestic Water Improvement District's

(GVDWID) pumping schedule it is not always possible to collect static water levels because

certain wells cannot be shutdown. Water level measurements from wells GV-SI-GVDWID and

GV-01-GVDWID and GV-02-GVDWID were collected on November 6, 2008 and November

25, 2008, respectively by GVDWID personnel and provided to HGC. In all cases, the wells were

allowed to come to static conditions before collecting the water level measurement. Before

A-3

Q4 08 Sierrita Appendix A DV Report.doc H:\78300\REPORTS\Q4 08 Sierrita Appendix A DV Report.doc measuring the static water level at each well, the battery on the water level indicator was checked

and the sensitivity level was adjusted, if necessary. Each measurement was collected and

verified by measuring the depth to water multiple times in order to obtain a consistent reading

and accurate measurement.

2.2 **Groundwater Sampling**

During this monitoring period groundwater samples were collected from wells designated

for sampling in the quarterly monitoring schedule of the Work Plan. More detailed information

regarding the wells sampled for water quality and water level measurements is listed in Table 1

of the main text.

2.2.1 Pre-Sampling Field Activities

On each day of sampling, the pH¹ and SC² probe was calibrated. In addition, the water

level indicator was checked for a signal, which indicates a working meter and battery strength.

On each day where sampling extended for more than half a day, a mid-day calibration check was

performed on the pH and SC probe to ensure accurate measurement.

In addition to calibrating the instruments each day, measures were taken to 1) properly

decontaminate field equipment, 2) ensure the appropriate storage and transport temperature

¹ Field pH meter was calibrated using a two point calibration and pH buffers 4 and 7

² Field SC meter was calibrated using a standard stock solution of 1413 μS/cm

O4 08 Sierrita Appendix A DV Report.doc H:\78300\REPORTS\Q4 08 Sierrita Appendix A DV Report.doc

of the samples, and 3) document activities related to the collection of groundwater samples as

part of this project. These objectives were met by 1) replenishing or obtaining supplies of

deionized water and ice daily, 2) use of the proper preservative and sample collection containers,

3) properly packing the samples on ice during field activities, 4) using deionized water to

properly decontaminate field equipment prior to the start of sampling each day and after

sampling at each well, and 5) obtaining the appropriate field notebook in order to document field

activities related to the groundwater monitoring program.

2.2.2 Well Purging, Field Measurements, and Sample Collection

Ideally, three wetted casing volumes were purged from each well prior to sampling.

However, when three casing volumes could not be purged, this information was noted on the

groundwater sampling form (Appendix C) of each well for which this was the case. In cases

where purging was necessary prior to sample collection the purge water was discharged to the

ground surface.

Field measurements were collected at varying intervals during well purging at each well

where a water quality sample was collected. Field parameters were monitored until a consistent

measurement was obtained.

During this monitoring period, filtered and unfiltered groundwater samples were

collected for analysis from 11 plume monitoring wells not under the control of Sierrita. Filtered

and unfiltered groundwater samples were collected concurrently by using a single container to

A-5

Q4 08 Sierrita Appendix A DV Report.doc H:\78300\REPORTS\Q4 08 Sierrita Appendix A DV Report.doc

December 18, 2008

collect an initial sample for separation into bottles for filtered and unfiltered analyses. After

collecting the initial sample, the unfiltered sample was collected by pouring a 500-milliliter

aliquot of the initial sample into a non-preserved bottle for sulfate analysis. Then each filtered

sample was collected by filtering the remaining portion of the initial sample using a clean

filtration apparatus and one unused, disposable 0.45-micron filter. All bottles were provided by

ACZ. Bottles were checked for the correct preservative and maintained in a clean and secure

work area, until used in the field.

2.2.3 <u>Post-Sampling Field Activities</u>

Post sampling field activities consisted of equipment decontamination, sample storage,

and sample shipping. Field equipment that comes into contact with the sample was

decontaminated using a small amount of Alconox® detergent and deionized water. After

washing, the equipment was rinsed thoroughly with deionized water.

After sample collection, samples from each well were placed into a plastic bag and stored

on ice until they could be packed securely for shipping to ACZ. In addition, each set of samples

collected from each well was individually bagged (without ice) to prevent the label from getting

soaked with water and rubbing off or becoming illegible.

Q4 08 Sierrita Appendix A DV Report.doc H:\78300\REPORTS\Q4 08 Sierrita Appendix A DV Report.doc December 18, 2008

3. SAMPLE HANDLING

All samples collected by Sierrita and HGC were shipped to ACZ for analysis. COC documentation accompanied all samples submitted and included the sample name, collection date and time. COCs contained in laboratory reports included the date and time the samples were received by ACZ. As noted on the analytical data reports from ACZ, all of the sample bottles were received intact, properly preserved, and in good condition.

The temperatures of the following six shipping containers (identified by their laboratory login numbers) exceeded 4 °C upon receipt at the laboratory.

ACZ Project ID	Sample Collection Date	Sample Relinquished Date	Sample Received Date by ACZ	Temperature Upon Receipt (°C)
L72336	10/06/08, 10/07/08	10/08/08	10/09/08	12
L72383	10/08/08	10/09/08	10/10/08	4.8
L72606	10/21/08	10/21/08	10/22/08	4.2
L72612	10/20/08	10/21/08	10/22/08	4.2
L72698	10/24/08	10/27/08	10/28/08	5.3
L72758	10/27/08	10/29/08	10/30/08	4.6

As noted in the above table, the samples were shipped within three days of sample collection, and the time between sample collection and receipt of samples by ACZ ranged from one to four days. This temperature exceedance is not considered to have a significant impact on the analytical results pertaining to the sulfate analysis for these samples.

4. LABORATORY QUALITY CONTROL

As specified in the QAPP, laboratory QC was maintained for all analysis through proper

licensure, the use of approved analytical methods, QC measurements, appropriate

turn-around-time for analysis (timeliness), method detection limits (MDLs), and practical

quantitation limits (PQLs). Each of these controls is discussed in the following subsections.

The review of laboratory QC included a review to identify any qualified data and an

assessment to determine their significance. Additionally, the laboratory QC summaries were

reviewed to verify that results met QA criteria.

4.1 Licensure

ACZ is licensed with the Arizona Department of Health Services (license

number AZ0102) and is accredited in accordance with the National Environmental Laboratory

Accreditation Conference.

4.2 Analytical Methods

The following list identifies the methods used for sulfate analysis during this monitoring

period:

Q4 08 Sierrita Appendix A DV Report.doc H:\78300\REPORTS\Q4 08 Sierrita Appendix A DV Report.doc December 18, 2008

• SM4500 SO4-D (Gravimetric)

• U.S. Environmental Protection Agency (EPA) 300.0 (Ion-Chromatography)

• EPA 375.4 (Turbidimetric)

4.3 Method Detection Limits (MDLs) and Practical Quantification Limits (PQLs)

The MDLs and PQLs of the analytical methods used by ACZ are shown in the following table. The MDLs for analyses of samples were equal to or less than the target MDLs identified in the QAPP.

Method	MDL (mg/L)	PQL (mg/L)	Target MDL ¹ (mg/L)
EPA 300.0	0.5	3	10
EPA 375.4	1	5	10
SM4500 SO4-D	10	50	10

mg/L = milligrams per liter

4.4 Timeliness

Holding time was derived from the EPA methods utilized and were calculated beginning from the time of sample collection. Samples collected on October 9, 2008 (CCOFGV, TMM-1, GV-01-GVDWID, GV-02-GVDWID, and GV-SI-GVDWID) were qualified with a "C4" flag, indicating that confirmatory analysis was past holding time. In addition, samples collected on October 6 and 7, 2008 for total sulfate (CW-3, NP-2, CW-6, DUP100708, CW-10, CW-9,

¹ Target MDL from Table E.2 of QAPP

HAVEN GOLF, and FB100708) were qualified with a "H1" flag, indicating that sample analysis

was performed past holding time.

4.5 Quality Control Measurements

The following QC samples were prepared and analyzed:

• Preparation blanks, calibration blanks, and calibration verification standards

• Analytical spikes and analytical spike duplicates

• Laboratory control samples

• Laboratory duplicate samples

• Field blank samples

4.5.1 Preparation Blanks, Calibration Blanks, and Calibration Verification Standards

Preparation blanks were run with each group of samples submitted for sulfate analyses

using the gravimetric method (SM4500 SO4-D). All preparation blanks were prepared from

analyte-free water and treated as routine samples. Analytical results of all of the preparation

blanks showed that no target analytes were detected at the indicated MDL.

Results from the analyses of the initial calibration blanks and initial calibration

verification standards conducted by EPA Methods 300.0 and 375.4 also were reviewed. The

results of each initial calibration blank analyzed showed no detections of the target analyte. All

Q4 08 Sierrita Appendix A DV Report.doc H:\78300\REPORTS\Q4 08 Sierrita Appendix A DV Report.doc analytical results for the initial calibration verification standards and laboratory fortified blanks

that were analyzed showed percent recoveries that were within the acceptance criteria specified

by the ACZ QA plan and the QAPP.

4.5.2 Analytical Spikes and Analytical Spike Duplicates

Analytical spike and spike duplicate samples were analyzed for all sulfate samples that

were analyzed using EPA Method 300.0. Spike recoveries for most analyses were between 90

and 110 percent. Instances in which analytical spike recoveries were high or low were qualified

with an "M1" or "M2" flag, respectively. However, in each case the method control sample

recoveries were acceptable.

4.5.3 Laboratory Control Samples

Laboratory control samples were run for each group of samples submitted for sulfate

analysis using the gravimetric method of analysis. Recoveries for all laboratory control samples

were within the acceptance criteria specified by ACZ.

4.5.4 Laboratory Duplicate Samples

Analyses of laboratory duplicate samples were also reviewed as part of this quality data

verification report. Field duplicate samples are discussed in Section 5.1. The relative percent

difference (RPDs) for most laboratory duplicate samples were within 20 percent, which is the

A-12

Q4 08 Sierrita Appendix A DV Report.doc H:\78300\REPORTS\Q4 08 Sierrita Appendix A DV Report.doc

December 18, 2008

tolerance range set by the laboratory. In some instances, the data were qualified with an "RA"

flag indicating that the RPD was not used for data validation because the sample concentration

was less than ten times the MDL, which is too low for accurate evaluation according to ACZ. In

all cases where the RPD could be calculated, the results met QA criteria and demonstrate an

appropriate level of precision in laboratory analysis of these samples.

4.5.5 Field Blank Samples

During the fourth quarter of 2008, a total of four field blank samples were collected.

Three of these were field and equipment blank samples containing filtered deionized water

(TB111008, EQB100708, and EQB111008), and one field blank sample collected using

unfiltered deionized water (FB100708). All of these samples were collected in the field and

were submitted along with other samples to evaluate the potential for contaminant introduction

under field conditions. As required by Section 4.2.1.5 of the QAPP, a minimum of one field

blank sample was collected every time an equipment blank sample was collected at a rate of one

in every twenty samples. Analytical results from equipment blank EQB100708 and field blank

TB111008 showed no detections. However, sulfate was detected in field blank FB100708 and

equipment blank EQB111008 at concentrations of 2.2 mg/L and 10 mg/L, respectively. These

low levels of sulfate are not considered significant given the concentration of sulfate in the

samples.

Q4 08 Sierrita Appendix A DV Report.doc H:\78300\REPORTS\Q4 08 Sierrita Appendix A DV Report.doc

5. DATA QUALITY INDICATORS

The QAPP provides several DQIs for assessing the overall quality of the data. These

DQIs include the following:

Precision

Bias

Accuracy

Representativeness

Comparability

Completeness

Sensitivity

Each of these DQIs is discussed below in relation to the Q4-2008 groundwater sampling

and analysis conducted by Sierrita.

5.1 Precision

Precision indicates how well a measurement can be reproduced. Precision is quantified

by calculating the RPD between duplicate samples. For the purposes of QA/QC, precision was

quantified by calculating the RPDs between duplicates among the following groups of duplicate

samples:

Q4 08 Sierrita Appendix A DV Report.doc H:\78300\REPORTS\Q4 08 Sierrita Appendix A DV Report.doc December 18, 2008

Laboratory duplicate samples

• Field duplicate samples

As discussed in Sections 4.5.2 and 4.5.4, there were no exceedances of RPD QA criteria

for any laboratory duplicates. During this monitoring period, a total of five field duplicate

samples were collected. Four of these (DUP102208A, DUP102408A, DUP102808A, and

DUP103008A) were collected by Sierrita for filtered analysis, whereas DUP100708 was

collected by HGC for filtered and unfiltered sulfate analysis. The collection of five field

duplicate samples exceeds the QA/QC goal of collecting one duplicate sample for every twenty

groundwater samples collected, as stated in Section 4.2.1.5 of the QAPP.

Results for the five field duplicate samples collected are provided in the table below. The

range of RPD values was between zero and 1.90 percent, all within the 20 percent acceptance

criteria for field duplicates, as stated in Section 3.3.1 of the QAPP. Overall, the DQI for

precision is deemed to be met.

RPD **Duplicate** Sulfate **Sulfate Duplicate** Well ID **ACZ Project ID** Sample ID (mg/L) (mg/L) (%) CW-6 L72335 51.5 0 DUP100708 51.5 MO-2007-3B DUP102208A L72783 42.4 41.6 1.90 **IW-9** DUP102408A L72697 1720 0 1720 M-8 DUP102808A L72783 26.3 26.2 0.38 DUP103008A ESP-2 L72783 30.1 30.0 0.33

mg/L = milligrams per liter

RPD = Relative Percent Difference

5.2 Bias

Bias is a systematic distortion of measurements causing consistent errors in one direction.

Bias is managed in this data set by the consistent application of standardized sample collection

and analysis procedures.

5.3 Accuracy

Accuracy is a measure of the agreement of a measurement to a known value and is

measured using the recoveries from laboratory control samples. As discussed in Sections 4.5.1,

4.5.2, and 4.5.3 respectively, there were no significant exceedances of the recovery QA criteria

for any of the calibration standards, analytical spikes, or laboratory control standards. Based on

this information, the overall accuracy of the data is judged sufficient for the purpose of aquifer

characterization.

5.4 Representativeness

All samples were taken from locations specified in the Work Plan (HGC, 2006) using

sampling procedures specified in the QAPP. Therefore, the samples are judged to provide a

good representation of groundwater quality at the locations. The analytical data are judged to be

representative of groundwater conditions because the analyses used standard procedures and

methods that met QA/QC guidelines of the QAPP.

Q4 08 Sierrita Appendix A DV Report.doc H:\78300\REPORTS\Q4 08 Sierrita Appendix A DV Report.doc 5.5 Comparability

All samples were collected using standardized procedures (HGC, 2006 and PDSI, 2005)

and were analyzed by ACZ using standardized methods. Insofar as standardized sample

collection and analytical methods are adhered to, the sample results should be comparable.

5.6 Completeness

All samples collected by Sierrita and HGC were subsequently analyzed and reported by

ACZ. All samples collected and analyzed by ACZ are judged to satisfy the QA/QC criteria for

this project and are deemed usable for aquifer characterization. Thus, the completeness of

analytical results is 100 percent.

5.7 Sensitivity

The analytical methods used to analyze the samples meet the MDL requirements

specified in Table E.2 of the QAPP. Therefore, the analytical sensitivity is considered

acceptable for use in aquifer characterization.

Q4 08 Sierrita Appendix A DV Report.doc H:\78300\REPORTS\Q4 08 Sierrita Appendix A DV Report.doc December 18, 2008

6. REFERENCES

Hydro Geo Chem, Inc. 2006. Work Plan to Characterize and Mitigate Sulfate with Respect to Drinking Water Supplies in the Vicinity of the Phelps Dodge Sierrita Tailing Impoundment, Pima County, Arizona. August 11, 2006, revised October 31, 2006.

Phelps Dodge Sierrita, Inc. 2005. Quality Assurance/Quality Control Plan for Water Monitoring, Phelps Dodge Sierrita, Inc. June 2005.

TABLE

TABLE A.1 ACZ Project ID and Associated Wells

ACZ Project ID	Wells Reported						
Number of du	ells sampled by Sierrita ¹ : 59 plicate samples collected: 4 ank samples collected: 2 (1 field blank and 1 equipment blank)						
L72336	MH-28, MH-29						
L72338	MH-30						
L72383	PZ-8						
L72507	PZ-7						
L72578	MH-25A, MH-25B, MH-25C, MH-26						
L72586	MO-2007-1A, MO-2007-1B						
L72606	MO-2007-1C, MO-2007-3C						
L72612	MH-13A, MH-13B, MH-13C, MH-26B, IW-19						
L72697	IW-18, IW-20, IW-21, IW-22, IW-23, IW-24, DUP102408A						
L72698	IW-11, IW-12, IW-13, IW-14, IW-15, IW-16, IW-17						
L72699	IW-1, IW-2A, IW-4, IW-6A, IW-8, IW-9, IW-10						
L72758	IW-3A, IW-5						
L72783	MO-2007-3B, -4A, -4B, -4C, -5B, -5C, -6A, -6B, DUP102208A, I-10, M-8, M-9, M-10, M-20, DUP102808A, ESP-1, ESP-2, ESP-3, ESP-4, DUP103008A						
L72925	MH-10						
L72957	MH-11, EQB111008, TB111008						
Number of du	ells sampled by HGC ² : 11 plicate samples collected: 1 ank samples collected: 2 (1 unfiltered field blank and 1 filtered equipment blank)						
L72335 ³	CW-3, NP-2, CW-6, CW-9, CW-10, HAVEN GOLF, DUP100708, EQB100708, FB100708						
L72393	CCOFGV, TMM-1, GV-01-GVDWID, GV-02-GVDWID, GV-SI-GVDWID						

CW-3, NP-2, CW-6, CW-9, CW-10, HAVEN GOLF, DUP100708, FB100708

L73166 ⁴

¹ Samples collected by Sierrita were filtered in the field using a disposable 0.45-micron filter.

² Samples collected by HGC were both filtered and unfiltered.

³ Samples analyzed for dissolved sulfate

⁴ Samples analyzed for total sulfate

APPENDIX B ANALYTICAL DATA REPORTS FROM ACZ LABORATORIES, INC.

Revised Analytical Report

November 05, 2008

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Dan Simpson Hydro Geo Chem, Inc. 51 West Wetmore Rd. Suite 101 Tucson, AZ 85705

Cc: Jim Norris, Bill Dorris, Ned Hall

Project ID: OJ06DZ ACZ Project ID: L72335

Dan Simpson:

Enclosed are revised analytical reports for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on October 09, 2008 and reported on October 23, 2008. Refer to the case narrative for an explanation of the changes. This project was assigned to ACZ's project number, L72335. Please reference this number in all future inquiries.

All analyses were performed according to ACZ's Quality Assurance Plan, version 12.0. The enclosed results relate only to the samples received under L72335. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all the requirements of NELAC.

This report should be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after November 23, 2008. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years. Please notify your Project Manager if you have other needs.

If you have any questions, please contact your Project Manager or Customer Service Representative.

Scott Habermehl has reviewed

and approved this report.

S. Halermehl

Case Narrative

FMI Gold Copper - Sierrita

November 06, 2008

Project ID: OJ06DZ ACZ Project ID: L72335

Sample Receipt

ACZ Laboratories, Inc. (ACZ) received 9 ground water samples from FMI Gold & Copper - Sierrita on October 9, 2008. The samples were received in good condition. Upon receipt, the sample custodian removed the samples from the cooler, inspected the contents, and logged the samples into ACZ's computerized Laboratory Information Management System (LIMS). The samples were assigned ACZ LIMS project number L72335. The custodian verified the sample information entered into the computer against the chain of custody (COC) forms and sample bottle labels.

Holding Times

All analyses were performed within EPA recommended holding times.

Sample Analysis

Thes@samples were analyzed for inorganic parameters. The individual methods are referenced on both, the ACZ invoice and the analytical reports. The extended qualifier reports may contain footnotes qualifying specific elements due to QC failures. In addition the following has been noted with this specific project:

This project has been regenerated to change the billing instructions.

REPAD.03.06.05.01 Page 2 of 18

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: CW-3 ACZ Sample ID: L72335-01

Date Sampled: 10/06/08 12:25 Date Received: 10/09/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	56.2	*	mg/L	0.5	3	10/18/08 21:32	aml

FMI Gold & Copper - SierritaProject ID: OJ06DZ
Sample ID: NP-2

ACZ Sample ID: **L72335-02**Date Sampled: 10/06/08 14:25
Date Received: 10/09/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	39.7	*	mg/L	0.5	3	10/18/08 21:50	aml

FMI Gold & Copper - SierritaProject ID: OJ06DZ
Sample ID: CW-6

ACZ Sample ID: **L72335-03**Date Sampled: 10/07/08 09:10
Date Received: 10/09/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	51.5	*	mg/L	0.5	3	10/18/08 22:08	aml

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: DUP100708 ACZ Sample ID: L72335-04

Date Sampled: 10/07/08 00:00

Date Received: 10/09/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	51.5	*	ma/L	0.5	3	10/18/08 22:27	aml

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: CW-10 ACZ Sample ID: **L72335-05**

Date Sampled: 10/07/08 10:45

Date Received: 10/09/08
Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	48.3	*	ma/L	0.5	3	10/18/08 22:45	aml

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: CW-9 ACZ Sample ID: **L72335-06**

Date Sampled: 10/07/08 11:50

Date Received: 10/09/08
Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	43.5	*	mg/L	0.5	3	10/18/08 23:39	aml

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: HAVEN GOLF ACZ Sample ID: L72335-07

Date Sampled: 10/07/08 13:02

Date Received: 10/09/08
Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	92.3	*	ma/L	0.5	3	10/18/08 23:57	aml

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: EQB100708 ACZ Sample ID: **L72335-08**

Date Sampled: 10/07/08 12:55 Date Received: 10/09/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography		U *	ma/L	0.5	3	10/19/08 0:15	aml

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: FB100708 ACZ Sample ID: **L72335-09**

Date Sampled: 10/07/08 12:55

Date Received: 10/09/08
Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	2.2	В	ma/L	0.5	3	10/22/08 3:00	aml

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report Header Explanations

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest Limit Upper limit for RPD, in %.

Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit, typically 5 times the MDL.

QC True Value of the Control Sample or the amount added to the Spike

Rec Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

QC Sample Types	DC S	Sami	ple i	Тур	es
-----------------	------	------	-------	-----	----

AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calibration Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution

QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method or calibration procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method. Spikes/Fortified Matrix Determines sample matrix interferences, if any.

Standard Verifies the validity of the calibration.

ACZ Qualifiers (Qual)

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity.
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time.
- U The material was analyzed for, but was not detected above the level of the associated value.

The associated value is either the sample quantitation limit or the sample detection limit.

Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (5) EPA SW-846. Test Methods for Evaluating Solid Waste, Third Edition with Update III, December 1996.
- (6) Standard Methods for the Examination of Water and Wastewater, 19th edition, 1995.

Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Sulfate			300.0 - I or	Chroma	tography								
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253987													
WG253987ICV	ICV	10/14/08 13:25	WI081007-1	50		50.62	mg/L	101.2	90	110			
WG253987ICB	ICB	10/14/08 13:43				U	mg/L		-1.5	1.5			
WG253987ICV1	ICV	10/18/08 19:25	WI081007-1	50		51.7	mg/L	103.4	90	110			
WG253987ICB1	ICB	10/18/08 19:44				U	mg/L		-1.5	1.5			
WG253987LFB	LFB	10/18/08 20:02	WI081007-3	30		31.5	mg/L	105	90	110			
WG253987ICV2	ICV	10/19/08 13:27	WI081007-1	50		51.38	mg/L	102.8	90	110			
WG253987ICB2	ICB	10/19/08 13:45				U	mg/L		- 1.5	1.5			
L72214-01AS	AS	10/19/08 14:21	WI081007-3	1500	170	1440	mg/L	84.7	90	110			M2
L72214-01DUP	DUP	10/19/08 14:39			170	174	mg/L				2.3	20	RA
WG254269													
WG254269ICV	ICV	10/14/08 13:25	WI081007-1	50		50.62	mg/L	101.2	90	110			
WG254269ICB	ICB	10/14/08 13:43				U	mg/L		-1.5	1.5			
WG254269ICV1	ICV	10/22/08 0:17	WI081007-1	50		52.21	mg/L	104.4	90	110			
WG254269ICB1	ICB	10/22/08 0:35				U	mg/L		- 1.5	1.5			
WG254269LFB	LFB	10/22/08 0:53	WI081007-3	30		32.16	mg/L	107.2	90	110			
WG254269ICV2	ICV	10/22/08 20:32	WI081007-1	50		51.58	mg/L	103.2	90	110			
WG254269ICB2	ICB	10/22/08 20:50				U	mg/L		-1.5	1.5			
L72096-07DUP	DUP	10/22/08 21:26			41	41.6	mg/L				1.5	20	
L72247-01AS	AS	10/22/08 22:02	WI081007-3	600	710	1270	mg/L	93.3	90	110			

Inorganic Extended Qualifier Report

FMI Gold & Copper - Sierrita

ACZ Project ID: L72335

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L72335-01	WG253987	Sulfate	300.0 - Ion Chromatography	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
L72335-02	WG253987	Sulfate	300.0 - Ion Chromatography	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
L72335-03	WG253987	Sulfate	300.0 - Ion Chromatography	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
L72335-04	WG253987	Sulfate	300.0 - Ion Chromatography	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
L72335-05	WG253987	Sulfate	300.0 - Ion Chromatography	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< $10x$ MDL).
L72335-06	WG253987	Sulfate	300.0 - Ion Chromatography	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
L72335-07	WG253987	Sulfate	300.0 - Ion Chromatography	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
L72335-08	WG253987	Sulfate	300.0 - Ion Chromatography	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).

Certification Qualifiers

FMI Gold & Copper - Sierrita

ACZ Project ID: L72335

No certification qualifiers associated with this analysis

Sample Receipt

FMI Gold & Copper - Sierrita

OJ06DZ

ACZ Project ID: Date Received: L72335 10/9/2008

Received By:

gac

Date Printed: 11/5/2008

Receipt Verification

- 1) Does this project require special handling procedures such as CLP protocol?
- 2) Are the custody seals on the cooler intact?
- 3) Are the custody seals on the sample containers intact?
- 4) Is there a Chain of Custody or other directive shipping papers present?
- 5) Is the Chain of Custody complete?
- 6) Is the Chain of Custody in agreement with the samples received?
- 7) Is there enough sample for all requested analyses?
- 8) Are all samples within holding times for requested analyses?
- 9) Were all sample containers received intact?
- 10) Are the temperature blanks present?
- 11) Are the trip blanks (VOA and/or Cyanide) present?
- 12) Are samples requiring no headspace, headspace free?
- 13) Do the samples that require a Foreign Soils Permit have one?

YES	NO	NA
		Х
Χ		
		Х
Χ		
Χ		
Χ		
Χ		
Χ		
Х		
		Х
		X
		Х
		X

Exceptions: If you answered no to any of the above questions, please describe

N/A

Contact (For any discrepancies, the client must be contacted)

N/A

Shipping Containers

Cooler Id	Temp (°C)	Rad (µR/hr)
NA7107	2.7	15

Client must contact ACZ Project Manager if analysis should not proceed for samples received outside of thermal preservation acceptance criteria.

Notes

Sample Receipt

FMI Gold & Copper - Sierrita

OJ06DZ

ACZ Project ID: Date Received: L72335 10/9/2008

Received By:

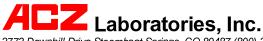
Sample Container Preservation

SAMPLE	CLIENT ID	R < 2	G < 2	BK < 2	Y<2	YG<2	B<2	0<2	T >12	N/A	RAD	ID
L72335-01	CW-3									X		
L72335-02	NP-2									Х		
L72335-03	CW-6									Х		
L72335-04	DUP100708									Х		
L72335-05	CW-10									Х		
L72335-06	CW-9									Χ		
L72335-07	HAVEN GOLF									Χ		
L72335-08	EQB100708									Х		
L72335-09	FB100708									Χ		

Sample Container Preservation Legend

Abbreviation	Description	Container Type	Preservative/Limits
R	Raw/Nitric	RED	pH must be < 2
В	Filtered/Sulfuric	BLUE	pH must be < 2
BK	Filtered/Nitric	BLACK	pH must be < 2
G	Filtered/Nitric	GREEN	pH must be < 2
0	Raw/Sulfuric	ORANGE	pH must be < 2
Р	Raw/NaOH	PURPLE	pH must be > 12 *
T	Raw/NaOH Zinc Acetate	TAN	pH must be > 12
Υ	Raw/Sulfuric	YELLOW	pH must be < 2
YG	Raw/Sulfuric	YELLOW GLASS	pH must be < 2
N/A	No preservative needed	Not applicable	
RAD	Gamma/Beta dose rate	Not applicable	must be < 250 μR/hr

^{*} pH check performed by analyst prior to sample preparation


ACZ Laboratories, Inc.

CUSTODY 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493 Report to: Address: 51 W Wetmore Rd Dan Simpson Name: Company: Hydro Geo Chem, Inc Tucson, AZ 85705 Telephone: 520-293-1500 x133 dans@hgcinc.com E-mail: Copy of Report to: jimn@hgcinc.com, billy_dorris@fmi.com Jim Norris, Ned Hall, Bill Dorris Name: E-mail: HGC / FMI 520-293-1500 x112, 520-648-8873 Telephone: Company: Invoice to: 6200 Duval Mine Road Ned Hall Address: Name: PO Box 527, Green Valley, AZ 85622 Company: FMI ned_hall@fmi.com 520-648-8873 Telephone: E-mail: if sample(s) received past holding time (HT), or if insufficient HT remains to complete analysis before expiration, shall ACZ proceed with requested short HT analyses? NO If "NO" then ACZ will contact client for further instruction. If neither "YES" nor "NO" is indicated, ACZ will proceed with the requested analyses, even if HT is expired, and data will be qualified. PROJECT INFORMATION ANALYSES REQUESTED (attach list or use quote number) Sierrita Sulfate Quote #: of Containers Project/PO #: OJ0325 Reporting state for compliance testing: AZ SO4 Sampler's Name: John Villinski Are any samples NRC licensable material? No SAMPLE IDENTIFICATION DATE:TIME Matrix CW-3 10-6-08/12:25 GW NP-7 2 х 2 х GW 2 х DUP100708 10-7-08 CW-10 2 х х CW-9 GW HAVEN GOLF GW 2 Х х GW **20**6100708 GU SW (Surface Water) · GW (Ground Water) · WW (Waste Water) · DW (Drinking Water) · SL (Sludge) · SO (Soil) · OL (Oil) · Other (Specify) REMARKS Please refer to ACZ's terms & conditions located on the reverse side of this COC. RECEIVED BY: DATE:TIME **RELINQUISHED BY:** DATE:TIME 10/8/08-14.30

FRMAD050.03.05.02

White - Return with sample.

Yellow - Retain for your records.

Analytical Report

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

October 23, 2008

Bill Dorris Phelps Dodge Sierrita P.O. Box 527 6200 West Duval Mine Road Green Valley, AZ 85622-0527

Cc: Dan Simpson

Project ID: OJ06DZ

ACZ Project ID: L72336- SULFATE ONLY

Bill Dorris:

Enclosed are analytical reports for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on October 09, 2008. This project was assigned to ACZ's project number, L72336. Please reference this number in all future inquiries.

At the request of Phelps Dodge Sierrita, Inc. (PDSI), this laboratory report has been prepared to contain only information specific to samples and analytes identified by PDSI as evaluated pursuant to Mitigation Order No. P-500-06 with Arizona Department of Environmental Quality. Samples and analytes unrelated to the Mitigation Order, but which may be identified on the chain of custody and sample receipt, have been reported to PDSI in a separate report.

All analyses were performed according to ACZ's Quality Assurance Plan, version 12.0. The enclosed results relate only to the samples received under L72336. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute. Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all the requirements of NELAC.

This report should be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

ACZ disposes of samples and sub-samples thirty days after the analytical results are reported to the client. That time frame has elapsed for this project. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years. Please notify your Project Manager if you have other needs. If you have any questions, please contact your Project Manager or Customer Service Representative.

Scott Habermehl has reviewed and approved this report.

S. Havermehl

Case Narrative

FMI Gold Copper - Sierrita

October 22, 2008

Project ID: OJ06DZ ACZ Project ID: L72336

Sample Receipt

ACZ Qaboratories, Inc. (ACZ) received 2 ground water samples from FMI Gold & Copper - Sierrita on October 9, 2008. The samples were received in good condition. Upon receipt, the sample custodian removed the samples from the cooler, inspected the contents, and logged the samples into ACZ's computerized Laboratory Information Management System (LIMS). The samples were assigned ACZ LIMS project number L72336. The custodian verified the sample information entered into the computer against the chain of custody (COC) forms and sample bottle labels.

Samples were received outside the EPA recommended temperature of 0-6 degrees C.

Holding Times

Any analyses not performed within EPA recommended holding times have been qualified with an "H" flag.

Sample Analysis

These samples were analyzed for inorganic parameters. The individual methods are referenced on both, the ACZ invoice and the analytical reports. The extended qualifier reports may contain footnotes qualifying specific elements due to QC failures.

REPAD.03.06.05.01 Page 2 of 17

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: MH-28 ACZ Sample ID: L72336-01

Date Sampled: 10/06/08 12:45

Date Received: 10/09/08
Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	SM4500 SO4-D	1910		mg/L	1 0	50	10/15/08 9:36	gkj

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: MH-29 ACZ Sample ID: **L72336-02**

Date Sampled: 10/07/08 13:40

Date Received: 10/09/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	SM4500 SO4-D	1740		mg/L	10	50	10/15/08 9:41	gkį

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report Header Explanations

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest Limit Upper limit for RPD, in %.

Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit, typically 5 times the MDL.

QC True Value of the Control Sample or the amount added to the Spike

Rec Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calibration Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution

QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method or calibration procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method. Spikes/Fortified Matrix Determines sample matrix interferences, if any.

Standard Verifies the validity of the calibration.

ACZ Qualifiers (Qual)

- B Analyte concentration detected at a value between MDL and PQL.
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time.
- U The material was analyzed for, but was not detected above the level of the associated value.

The associated value is either the sample quantitation limit or the sample detection limit.

Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (5) EPA SW-846. Test Methods for Evaluating Solid Waste, Third Edition with Update III, December 1996.
- (6) Standard Methods for the Examination of Water and Wastewater, 19th edition, 1995.

Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Alkalinity as CaC	О3		SM2320B	- Titration									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254010													
WG254010PBW1	PBW	10/17/08 17:37				U	mg/L		-20	20			
WG254010LCSW2	LCSW	10/17/08 17:50	WC081008-2	820.0001		811.5	mg/L	99	90	110			
WG254010PBW2	PBW	10/17/08 20:09				U	mg/L		-20	20			
WG254010LCSW5	LCSW	10/17/08 20:21	WC081008-2	820.0001		810.7	mg/L	98.9	90	110			
L72336-02DUP	DUP	10/17/08 22:57			156	151.5	mg/L				2.9	20	
WG254010PBW3	PBW	10/17/08 23:03				U	mg/L		-20	20			
WG254010LCSW8	LCSW	10/17/08 23:15	WC081008-2	820.0001		803.4	mg/L	98	90	110			
WG254010PBW4	PBW	10/18/08 2:17				U	mg/L		-20	20			
WG254010LCSW11		10/18/08 2:29	WC081008-2	820.0001		809.6	mg/L	98.7	90	110			
WG254010LCSW14	LCSW	10/18/08 6:08	WC081008-2	820.0001		824.5	mg/L	100.5	90	110			
Aluminum, disso	lved		M200.7 IC	CP CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253886													
WG253886ICV	ICV	10/16/08 22:27	11080818-1	2		2.009	mg/L	100.5	95	105			
WG253886ICB	ICB	10/16/08 22:30				U	mg/L		-0.09	0.09			
WG253886LFB	LFB	10/16/08 22:44	11081016-2	1		1.07	mg/L	107	85	115			
L72330-10AS	AS	10/16/08 23:34	11081016-2	1	U	1.043	mg/L	104.3	85	115			
L72330-10ASD	ASD	10/16/08 23:38	11081016-2	1	U	1.043	mg/L	104.3	85	115	0	20	
Antimony, dissol	ved		M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253695													
WG253695ICV	ICV	10/15/08 0:19	MS081003-4	.02		.02059	mg/L	103	90	110			
WG253695ICB	ICB	10/15/08 0:24				U	mg/L		-0.0012	0.0012			
WG253695LFB	LFB	10/15/08 0:34	MS081003-7	.01		.00995	mg/L	99.5	85	115			
L72313-02AS	AS	10/15/08 1:57	MS081003-7	.01	U	.00983	mg/L	98.3	70	130			
L72313-02ASD	ASD	10/15/08 2:02	MS081003-7	.01	U	.01008	mg/L	100.8	70	130	2.51	20	
Arsenic, dissolve	ed		M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253695													
WG253695ICV	ICV	10/15/08 0:19	MS081003-4	.05		.0498	mg/L	99.6	90	110			
WG253695ICB	ICB	10/15/08 0:24				U	mg/L		-0.0015	0.0015			
WG253695LFB	LFB	10/15/08 0:34	MS081003-7	.05		.0481	mg/L	96.2	85	115			
L72313-02AS	AS	10/15/08 1:57	MS081003-7	.05	U	.05111	mg/L	102.2	70	130			
L72313-02ASD	ASD	10/15/08 2:02	MS081003-7	.05	U	.05145	mg/L	102.9	70	130	0.66	20	
Barium, dissolve	d		M200.7 IC	CP CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253658													
WG253658ICV	ICV	10/15/08 20:05	11080818-1	2		2.0111	mg/L	100.6	95	105			
WG253658ICB	ICB	10/15/08 20:09				U	mg/L		-0.009	0.009			
WG253658LFB	LFB	10/15/08 20:21	11081013-2	.5		.5028	mg/L	100.6	85	115			
L72330-04AS	AS	10/15/08 21:12	11081013-2	.5	.089	.598	mg/L	101.8	85	115			
L72330-04ASD	ASD	10/15/08 21:15	11081013-2	.5	.089	.6	mg/L	102.2	85	115	0.33	20	

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Beryllium, disso	olved		M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253695													
WG253695ICV	ICV	10/15/08 0:19	MS081003-4	.05		.04879	mg/L	97.6	90	110			
WG253695ICB	ICB	10/15/08 0:24				U	mg/L		-0.0003	0.0003			
WG253695LFB	LFB	10/15/08 0:34	MS081003-7	.05005		.04705	mg/L	94	85	115			
L72313-02AS	AS	10/15/08 1:57	MS081003-7	.05005	U	.04745	mg/L	94.8	70	130			
L72313-02ASD	ASD	10/15/08 2:02	MS081003-7	.05005	U	.04882	mg/L	97.5	70	130	2.85	20	
Cadmium, disso	olved		M200.8 IC	CP - MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253695													
WG253695ICV	ICV	10/15/08 0:19	MS081003-4	.05		.04871	mg/L	97.4	90	110			
WG253695ICB	ICB	10/15/08 0:24				U	mg/L		-0.0003	0.0003			
WG253695LFB	LFB	10/15/08 0:34	MS081003-7	.05		.04774	mg/L	95.5	85	115			
L72313-02AS	AS	10/15/08 1:57	MS081003-7	.05	U	.04911	mg/L	98.2	70	130			
L72313-02ASD	ASD	10/15/08 2:02	MS081003-7	.05	U	.04941	mg/L	98.8	70	130	0.61	20	
Calcium, dissol	ved		M200.7 IC	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253886													
WG253886ICV	ICV	10/16/08 22:27	11080818-1	100		96.57	mg/L	96.6	95	105			
WG253886ICB	ICB	10/16/08 22:30				U	mg/L		-0.6	0.6			
WG253886LFB	LFB	10/16/08 22:44	11081016-2	67.97008		71.49	mg/L	105.2	85	115			
L72330-10AS	AS	10/16/08 23:34	11081016-2	67.97008	83.4	150.26	mg/L	98.4	85	115			
L72330-10ASD	ASD	10/16/08 23:38	11081016-2	67.97008	83.4	150.04	mg/L	98	85	115	0.15	20	
Chloride			SM45000	ŀΕ									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253724													
WG253724ICB	ICB	10/14/08 8:37				U	mg/L		-3	3			
WG253724ICV	ICV	10/14/08 8:37	WI080808-1	54.945		56.1	mg/L	102.1	90	110			
WG253724LFB1	LFB	10/14/08 13:34	WI080818-2	30		32.3	mg/L	107.7	90	110			
WG253724LFB2	LFB	10/14/08 13:38	WI080818-2	30		32.3	mg/L	107.7	90	110			
L72330-09AS	AS	10/14/08 13:38	WI080818-2	30	8	39.5	mg/L	105	90	110			
L72330-10DUP	DUP	10/14/08 13:38			6	6.1	mg/L				1.7	20	RA
Chromium, diss	solved		M200.7 IC	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253658													
WG253658ICV	ICV	10/15/08 20:05	11080818-1	2		1.991	mg/L	99.6	95	105			
WG253658ICB	ICB	10/15/08 20:09				U	mg/L		-0.03	0.03			
WG253658LFB	LFB	10/15/08 20:21	11081013-2	. 5		. 501	mg/L	100.2	85	115			
L72330-04AS	AS	10/15/08 21:12	11081013-2	.5	U	.538	mg/L	107.6	85	115			
L72330-04ASD	ASD	10/15/08 21:15	11081013-2	.5	U	.535	mg/L	107	85	115	0.56	20	

REPIN.01.06.05.01 Page 7 of 17

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Cobalt, dissolved			M200.7 IC	P									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253658													
WG253658ICV	ICV	10/15/08 20:05	11080818-1	2.002		1.994	mg/L	99.6	95	105			
	ICB	10/15/08 20:09				U	mg/L		-0.03	0.03			
WG253658LFB	LFB	10/15/08 20:21	11081013-2	.5		.517	mg/L	103.4	85	115			
L72330-04AS	AS	10/15/08 21:12	II081013-2	.5	U	.525	mg/L	105	85	115			
L72330-04ASD	ASD	10/15/08 21:15	11081013-2	.5	U	.529	mg/L	105.8	85	115	0.76	20	
Conductivity @25	iC .		SM2510B										
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254010													
WG254010LCSW1	LCSW	10/17/08 17:39	PCN30288	1408.8		1403	umhos/arr	99.6	90	110			
WG254010LCSW4	LCSW	10/17/08 20:10	PCN30288	1408.8		1398	umhos/arr	99.2	90	110			
L72336-02DUP	DUP	10/17/08 22:57			3220	3250	umhos/arr				0.9	20	
WG254010LCSW7	LCSW	10/17/08 23:05	PCN30288	1408.8		1387	umhos/arr	98.5	90	110			
WG254010LCSW10	LCSW	10/18/08 2:19	PCN30288	1408.8		1370	umhos/arr	97.2	90	110			
WG254010LCSW13	LCSW	10/18/08 5:58	PCN30288	1408.8		1377	.mhos/cm	97.7	90	110			
Copper, dissolved	d		M200.7 IC	P									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253658													
WG253658ICV	ICV	10/15/08 20:05	11080818-1	2		1.959	mg/L	98	95	105			
	ICB	10/15/08 20:09		_		U	mg/L	-	-0.03	0.03			
	LFB	10/15/08 20:21	II081013-2	.5		.484	mg/L	96.8	85	115			
	AS	10/15/08 21:12	11081013-2	.5	U	.532	mg/L	106.4	85	115			
L72330-04ASD	ASD	10/15/08 21:15	11081013-2	.5	U	.523	mg/L	104.6	85	115	1.71	20	
Cyanide, total			M335.4 - 0	Colorimetr	ic w/ distill	ation							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254069													
WG254069ICV	ICV	10/18/08 21:53	WI081010-5	.3		.283	mg/L	94.3	90	110			
	ICB	10/18/08 21:54				U	mg/L		-0.015	0.015			
	LRB	10/18/08 21:56				U	mg/L		-0.015	0.015			
WG253871LFB	LFB	10/18/08 21:56	WI081010-9	.2		.1982	mg/L	99.1	90	110			
L72329-01LFM	LFM	10/18/08 21:59	WI081010-9	.2	U	. 1848	mg/L	92.4	90	110			
L72329-03DUP	DUP	10/18/08 22:01			U	U	mg/L				0	20	RA
L72339-04DUP	DUP	10/18/08 22:10			U	U	mg/L				0	20	RA
L72366-02LFM	LFM	10/18/08 22:12	WI081010-9	.2	U	. 1878	mg/L	93.9	90	110			
Fluoride			SM4500F	-С									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253976													
	ICV	10/17/08 9:47	WC081014-1	2		2	mg/L	100	90	110			
	ICB	10/17/08 9:54	. 555.61.	-		Ū	mg/L		-0.3	0.3			
	LFB	10/17/08 9:59	WC080912-3	5		5.4	mg/L	108	90	110			
				-			J. –	-		• •			
L72320-03DUP	DUP	10/17/08 11:06			U	U	mg/L				0	20	RA

Page 8 of 17 REPIN.01.06.05.01

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Iron, dissolved			M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253658													
WG253658ICV	ICV	10/15/08 20:05	11080818-1	2		1.948	mg/L	97.4	95	105			
WG253658ICB	ICB	10/15/08 20:09				U	mg/L		-0.06	0.06			
WG253658LFB	LFB	10/15/08 20:21	11081013-2	1		1.009	mg/L	100.9	85	115			
_72330-04AS	AS	10/15/08 21:12	11081013-2	1	U	1.041	mg/L	104.1	85	115			
_72330-04ASD	ASD	10/15/08 21:15	11081013-2	1	U	1.044	mg/L	104.4	85	115	0.29	20	
Lead, dissolved			M200.8 I	CP - MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253695													
WG253695ICV	ICV	10/15/08 0:19	MS081003-4	.05		.04843	mg/L	96.9	90	110			
WG253695ICB	ICB	10/15/08 0:24				U	mg/L		-0.0003	0.0003			
WG253695LFB	LFB	10/15/08 0:34	MS081003-7	.05		.04542	mg/L	90.8	85	115			
L72313-02AS	AS	10/15/08 1:57	MS081003-7	.05	U	.04721	mg/L	94.4	70	130			
L 7 2313-02ASD	ASD	10/15/08 2:02	MS081003-7	.05	Ü	.04766	mg/L	95.3	70	130	0.95	20	
Magnesium, diss	olved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253886													
WG253886ICV	ICV	10/16/08 22:27	11080818-1	100		98.46	ma/l	98.5	95	105			
	ICB	10/16/08 22:30	11000010-1	100		96,46 U	mg/L	90.3	-0.6	0.6			
WG253886ICB			11004040 0	40,00000			mg/L	40F.C					
NG253886LFB	LFB	10/16/08 22:44	11081016-2	49.96908	C4 E	52.76	mg/L	105.6	85 85	115			
L72330-10AS L72330-10ASD	AS ASD	10/16/08 23:34 10/16/08 23:38	II081016-2 II081016-2	49.96908 49.96908	61.5 61.5	112.62 112.35	mg/L mg/L	102.3 101.8	85 85	115 115	0.24	20	
		10/10/00 25:50	M200.7 I		01.0	112.00	119/2	101.0		110	0.24	20	
Manganese, diss ACZID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
	1,750	Analyzou	1 GR/GGR	Q.O	Campic	Todria	Omio	1100	Lower	Оррог	I II D		Qual
WG253886							_						
WG253886ICV	ICV	10/16/08 22:27	11080818-1	2		1.9425	mg/L	97.1	95	105			
WG253886ICB	ICB	10/16/08 22:30				U	mg/L		-0.015	0.015			
WG253886LFB	LFB	10/16/08 22:44	11081016-2	.5		. 5319	mg/L	106.4	85	115			
L 7 2330-10AS	AS	10/16/08 23:34	11081016-2	.5	U	. 5437	mg/L	108.7	85	115			
L72330-10ASD	ASD	10/16/08 23:38	11081016-2	.5	U	.5451	mg/L	109	85	115	0.26	20	
Mercury, dissolv	ed		M245.1 C										
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253573													
WG2535731CV	ICV	10/20/08 12:08	11080916-2	.005		.00502	mg/L	100.4	95	105			
WG253573ICB	ICB	10/20/08 12:10				U	mg/L		-0.0002	0.0002			
WG253950													
WG253950LRB	LRB	10/20/08 17:39				U	mg/L		-0.00044	0.00044			
WG253950LFB	LFB	10/20/08 17:42	11080924-2	.002		.00186	mg/L	93	85	115			
L72287-02LFM	LFM	10/20/08 18:18	11080924-2	.002	U	.00178	mg/L	89	85	115			
L72287-02LFMD	LFMD	10/20/08 18:20	11080924-2	.002	U	.00188	mg/L	94	85	115	5.46	20	

Page 9 of 17 REPIN.01.06.05.01

FMI Gold & Copper - Sierrita ACZ Project ID: L72336

Project ID: OJ06DZ

Molybdenum, dis	solved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253658													
WG253658ICV	ICV	10/15/08 20:05	11080818-1	2		1.981	mg/L	99.1	95	105			
WG253658ICB	ICB	10/15/08 20:09	11000010-1	_		U	mg/L	55.1	-0.03	0.03			
WG253658LFB	LFB	10/15/08 20:21	11081013-2	.5		.51	mg/L	102	85	115			
L72330-04AS	AS	10/15/08 21:12	11081013-2	.5	U	.525	mg/L	105	85	115			
L72330-04ASD	ASD	10/15/08 21:15	11081013-2	.5	U	.528	mg/L	105.6	85	115	0.57	20	
Nickel, dissolved			M200.7 I	CP									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253658													
WG253658ICV	ICV	10/15/08 20:05	11080818-1	2.004		1.961	mg/L	97.9	95	105			
WG253658ICB	ICB	10/15/08 20:09				U	mg/L		-0.03	0.03			
WG253658LFB	LFB	10/15/08 20:21	11081013-2	.4985		.51	mg/L	102.3	85	115			
L72330-04AS	AS	10/15/08 21:12	11081013-2	.4985	U	.558	mg/L	111.9	85	115			
L72330-04ASD	ASD	10/15/08 21:15	11081013-2	.4985	U	.561	mg/L	112.5	85	115	0.54	20	
Nitrate/Nitrite as	N		M353.2 -	H2SO4 pre	eserved								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253945													
WG253945ICV	ICV	10/16/08 19:37	WI080916-5	2,416		2.419	mg/L	100.1	90	110			
WG253945ICB	ICB	10/16/08 19:38				U	mg/L		-0.06	0.06			
WG253954													
WG253954ICV	ICV	10/16/08 21:24	WI080916-5	2.416		2.434	mg/L	100.7	90	110			
WG253954ICB	ICB	10/16/08 21:25				U	mg/L		-0.06	0.06			
WG253954LFB	LFB	10/16/08 21:27	WI080913-4	2		2.128	mg/L	106.4	90	110			
L72279-02AS	AS	10/16/08 21:48	WI080913-4	2	1.56	3.668	mg/L	105.4	90	110			
L72336-01DUP	DUP	10/16/08 21:51			1.62	1.619	mg/L				0.1	20	
pH (lab)			M150.1 -	Electrome	tric								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254010													
WG254010LCSW3	LCSW	10/17/08 17:52	PCN29627	6		6.07	units	101.2	90	110			
WG254010LCSW6	LCSW	10/17/08 20:24	PCN29627	6		6.08	units	101.3	90	110			
L72336-02DUP	DUP	10/17/08 22:57			8	7.98	units				0.3	20	
WG254010LCSW9	LCSW	10/17/08 23:17	PCN29627	6		6.08	units	101.3	90	110			
WG254010LCSW12	LCSW	10/18/08 2:31	PCN29627	6		6.05	units	100.8	90	110			
WG254010LCSW15	LCSW	10/18/08 6:10	PCN29627	6		6.12	units	102	90	110			
Potassium, disso	lved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253886													
WG253886ICV	ICV	10/16/08 22:27	11080818-1	20		19.96	mg/L	99.8	95	105			
WG253886ICB	ICB	10/16/08 22:30				U	mg/L		-0.9	0.9			
WG253886LFB	LFB	10/16/08 22:44	11081016-2	99.76186		106.82	mg/L	107.1	85	115			
L72330-10AS	AS	10/16/08 23:34	11081016-2	99.76186	2.7	109.39	mg/L	106.9	85	115			
L72330-10ASD	ASD	10/16/08 23:38	11081016-2	99.76186	2.7	108 . 34	mg/L	105.9	85	115	0.96	20	
.1233U-1UASD	ASD	10/16/08 23:38	11081016-2	99.76786	2.1	108.34	rng/L	105.9	გ ე	175	0.96	20	

Inorganic QC Summary

ACZ Project ID: L72336

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Residue, Filteral	ole (TDS) @180C	SM25400										
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253627													
WG253627PBW	PBW	10/13/08 11:00				U	mg/L		-20	20			
WG253627LCSW	LCSW	10/13/08 11:01	PCN29987	260		272	mg/L	104.6	80	120			
L72337-01DUP	DUP	10/13/08 11:13			2820	2832	mg/L				0.4	20	
Selenium, disso	lved		M200.8 IC	CP-MS									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253695													
WG253695ICV	ICV	10/15/08 0:19	MS081003-4	.05		.04969	mg/L	99.4	90	110			
WG253695ICB	ICB	10/15/08 0:24				U	mg/L		-0.0003	0.0003			
WG253695LFB	LFB	10/15/08 0:34	MS081003-7	.05		.04666	mg/L	93.3	85	115			
L72313-02AS	AS	10/15/08 1:57	MS081003-7	.05	.0009	.04487	mg/L	87.9	70	130			
L72313-02ASD	ASD	10/15/08 2:02	MS081003-7	.05	.0009	.04626	mg/L	90.7	70	130	3.05	20	
Sodium, dissolv	ed		M200.7 IC	CP									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253886													
WG253886ICV	ICV	10/16/08 22:27	11080818-1	100		100.92	mg/L	100.9	95	105			
WG253886ICB	ICB	10/16/08 22:30				U	mg/L		-0.9	0.9			
WG253886LFB	LFB	10/16/08 22:44	11081016-2	98.21624		106.49	mg/L	108.4	85	115			
L72330-10AS	AS	10/16/08 23:34	11081016-2	98.21624	51.2	156.32	mg/L	107	85	115			
L72330-10ASD	ASD	10/16/08 23:38	11081016-2	98.21624	51.2	155.13	mg/L	105.8	85	115	0.76	20	
Sulfate			SM4500	SO4-D									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253772													
WG253772PBW	PBW	10/15/08 8:50				U	mg/L		-30	30			
WG253772LCSW	LCSW	10/15/08 8:55	WC080910-2	100		105	mg/L	105	80	120			
L72337-01DUP	DUP	10/15/08 9:52			1630	1619	mg/L				0.7	20	
Thallium, dissol	ved		M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253695													
WG253695ICV	ICV	10/15/08 0:19	MS081003-4	.05		.04944	mg/L	98.9	90	110			
WG253695ICB	ICB	10/15/08 0:24				U	mg/L		-0.0003	0.0003			
WG253695LFB	LFB	10/15/08 0:34	MS081003-7	.0501		.04648	mg/L	92.8	85	115			
L72313-02AS	AS	10/15/08 1:57	MS081003-7	.0501	U	.04885	mg/L	97.5	70	1 30			
L72313-02ASD	ASD	10/15/08 2:02	MS081003-7	.0501	U	.0491	mg/L	98	70	130	0.51	20	
Uranium, dissolv	ved		M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253695													
WG253695ICV	ICV	10/15/08 0:19	MS081003-4	.05		.04747	mg/L	94.9	90	110			
WG253695ICB	ICB	10/15/08 0:24				U	mg/L		-0.0003	0.0003			
	LFB	10/15/08 0:34	MS081003-7	.05		.0456	mg/L	91.2	85	115			
WG253695LFB	LFD	10/10/00 0:01					J. –						
WG253695LFB L72313-02AS	AS	10/15/08 1:57	MS081003-7	.05	.0002 .0002	.04967	mg/L	98.9	70	130			

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Zinc, dissolved			M200.7 IC	P									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253658													
WG253658ICV	ICV	10/15/08 20:05	11080818-1	2		1.939	mg/L	97	95	105			
WG253658ICB	ICB	10/15/08 20:09				U	mg/L		-0.03	0.03			
WG253658LFB	LFB	10/15/08 20:21	11081013-2	.5		.534	mg/L	106.8	85	115			
L72330-04AS	AS	10/15/08 21:12	11081013-2	.5	.03	.607	mg/L	115.4	85	115			
L72330-04ASD	ASD	10/15/08 21:15	11081013-2	.5	.03	.583	mg/L	110.6	85	115	4.03	20	

REPIN.01.06.05.01 Page 12 of 17

Inorganic Extended Qualifier Report

FMI Gold & Copper - Sierrita

ACZ Project ID: L72336

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L72336-01	WG253724	Chloride	SM4500CI-E	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254069	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG253976	Fluoride	SM4500F-C	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
L72336-02	WG253724	Chloride	SM4500CI-E	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254069	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG253976	Fluoride	SM4500F-C	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).

FMI Gold & Copper - Sierrita

ACZ Project ID: L72336

No certification qualifiers associated with this analysis

Sample Receipt

FMI Gold & Copper - Sierrita

OJ06DZ

ACZ Project ID: Date Received:

L72336

10/9/2008

Received By:

Date Printed: 10/9/2008

Receipt Verification

- 1) Does this project require special handling procedures such as CLP protocol?
- 2) Are the custody seals on the cooler intact?
- 3) Are the custody seals on the sample containers intact?
- 4) Is there a Chain of Custody or other directive shipping papers present?
- 5) Is the Chain of Custody complete?
- 6) Is the Chain of Custody in agreement with the samples received?
- 7) Is there enough sample for all requested analyses?
- 8) Are all samples within holding times for requested analyses?
- 9) Were all sample containers received intact?
- 10) Are the temperature blanks present?
- 11) Is the trip blank for Cyanide present?
- 12) Is the trip blank for VOA present?
- 13) Are samples requiring no headspace, headspace free?
- 14) Do the samples that require a Foreign Soils Permit have one?

YES	NO	NA
		Х
Х		
		Х
Х		
Х		
Х		
Х		
Х		
Х		
		Х
	Х	
		Х
		Х
		Х

Exceptions: If you answered no to any of the above questions, please describe

N/A

Contact (For any discrepancies, the client must be contacted)

The client was not contacted.

Shipping Containers

Cooler Id	Temp (°C)	Rad (μR/hr)
2144	12	13

Client must contact ACZ Project Manager if analysis should not proceed for samples received outside of thermal preservation acceptance criteria.

Notes

Sample Receipt

FMI Gold & Copper - Sierrita

OJ06DZ

ACZ Project ID: Date Received:

L72336 10/9/2008

Received By:

Sample Container Preservation

SAMPLE	CLIENT ID	R < 2	G < 2	BK < 2	Y<2	YG<2	B< 2	0<2	T >12	N/A	RAD	I D
L72336-01	MH-28		Υ		Υ							
L72336-02	MH-29		Υ		Υ							

Sample Container Preservation Legend

Abbreviation	Description	Container Type	Preservative/Limits
R	Raw/Nitric	RED	pH must be < 2
В	Filtered/Sulfuric	BLUE	pH must be < 2
BK	Filtered/Nitric	BLACK	pH must be < 2
G	Filtered/Nitric	GREEN	pH must be < 2
0	Raw/Sulfuric	ORANGE	pH must be < 2
Р	Raw/NaOH	PURPLE	pH must be $> 12 *$
Т	Raw/NaOH Zinc Acetate	TAN	pH must be > 12
Υ	Raw/Sulfuric	YELLOW	pH must be < 2
YG	Raw/Sulfuric	YELLOW GLASS	pH must be < 2
N/A	No preservative needed	Not applicable	
RAD	Gamma/Beta dose rate	Not applicable	must be < 250 μR/hr

^{*} pH check performed by analyst prior to sample preparation

Sample IDs Reviewed By:		

if insufficient requestorstruction.	ent HT	Addre Telep E-mai Telep Addre	hone: hone:	6200 W 6/ley, 1 520-64 205@hg 520-29	AZ 8: 18-88 inc.co	5614 73 m			
if insufficion requestonstruction.	ent HT	E-mai Telep Addre	hone: hone:	<i>lalley</i> , , 520-65 ans@hg	AZ 8: 18-88 inc.co	5614 73 m			
if insufficion requestonstruction.	ent HT	E-mai Telep Addre	hone: hone:	<i>lalley</i> , , 520-65 ans@hg	AZ 8: 18-88 inc.co	5614 73 m			
if insufficion requestonstruction.	ent HT	Telep E-mai Telep Addre	hone: hone:	520-64	18-88 inc.co	73 m		33	
h requestonstruction.	ent HT	E-mai Telep Addre	l: da hone: ess:	insehg	inc.co):/N	×+1:	33	
h requestonstruction.	ent HT	Telep Addre	hone: ess:				×+1:	33	
h requestonstruction.	ent HT	Telep Addre	hone: ess:				×+, 1;	33	
h requestonstruction.		Addre Telep	ess:	520-2	13-150	ο <u>ε</u>	× +, 1;	<u>32</u>	
h requestonstruction.		Telep							
h requestonstruction.		Telep							
h requestonstruction.			hone:						
h requestonstruction.			hone:						
h requestonstruction.		in							Γ
struction.							YES NO		
									I
l analyses,		f HT is	expired	d, and data			السيونات		
		ANA	LYSES	REQUESTEL) (attach	list or L	ise quo	te nun	nber
		S	8	🕺					
		aine	1 .	<u> </u>	1				
		onta	1	ا تر کا					
		of Co	316	12 72					
	V iliania	*	1/1/1	2 4 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1					
									\vdash
				1					
12.40	GW	כ	_		-	-			
					_				
						\vdash			
									
					_				
					_				
	2:45 13:40 · ww (wa	2:45 GW 13:40 GW . WW (Waste Wate Contains	2:45 GW 5 13:40 GW 5 . WW (Waste Water) . DV	ME Matrix # # # # # # # # # # # # # # # # # # #	ME Matrix # # 2:45 Gw 5 X X 13:40 Gw 5 X X 13:40 Gw 5 X X Contains only "504" result from the contains on the contains of the conta	ME Matrix 2:45 Gw 5 X X 13:40 Gw 5 X X - WW (Waste Water) · DW (Drinking Water) · SL (Sludge Contains only "50" results will	ME Matrix 2:45 Gw 5 X X 13:40 Gw 5 X X - WW (Waste Water) · DW (Drinking Water) · SL (Sludge) · SO (ME Matrix # W S X X S S S S S S S S S S S S S S S S	ME Matrix 2:45 Gw 5 X X 13:40 Gw 5 X X - WW (Waste Water) · DW (Drinking Water) · SL (Sludge) · SO (Soil) · OL (Oil) Contains only "SOu" results with QC Summa

Analytical Report

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

October 29, 2008

Bill Dorris Phelps Dodge Sierrita P.O. Box 527 6200 West Duval Mine Road Green Valley, AZ 85622-0527

Cc: Dan Simpson

Project ID: OJ06DZ

ACZ Project ID: L72338- SULFATE ONLY

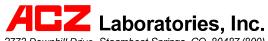
Bill Dorris:

Enclosed are analytical reports for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on October 09, 2008. This project was assigned to ACZ's project number, L72338. Please reference this number in all future inquiries.

At the request of Phelps Dodge Sierrita, Inc. (PDSI), this laboratory report has been prepared to contain only information specific to samples and analytes identified by PDSI as evaluated pursuant to Mitigation Order No. P-500-06 with Arizona Department of Environmental Quality. Samples and analytes unrelated to the Mitigation Order, but which may be identified on the chain of custody and sample receipt, have been reported to PDSI in a separate report.

All analyses were performed according to ACZ's Quality Assurance Plan, version 12.0. The enclosed results relate only to the samples received under L72338. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute. Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all the requirements of NELAC.

This report should be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.


ACZ disposes of samples and sub-samples thirty days after the analytical results are reported to the client. That time frame has elapsed for this project. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years. Please notify your Project Manager if you have other needs. If you have any questions, please contact your Project Manager or Customer Service Representative.

Scott Habermehl has reviewed and approved this report.

S. Halermehl

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: MH-30 ACZ Sample ID: **L72338-01**

Date Sampled: 10/06/08 09:45

Date Received: 10/09/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result Qua	al XQ	Units	MDL	PQL	Date	Analyst
Sulfate	SM4500 SO4-D	1810		mg/L	20	100	10/24/08 12:16	gkj

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report Header Explanations

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest Limit Upper limit for RPD, in %.

Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit, typically 5 times the MDL.

QC True Value of the Control Sample or the amount added to the Spike

Rec Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

QC Sample Types	QC	Sam	ple i	Тур	es
-----------------	----	-----	-------	-----	----

AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calibration Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution

QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method or calibration procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method. Spikes/Fortified Matrix Determines sample matrix interferences, if any.

Standard Verifies the validity of the calibration.

ACZ Qualifiers (Qual)

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity.
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time.
- U The material was analyzed for, but was not detected above the level of the associated value.

The associated value is either the sample quantitation limit or the sample detection limit.

Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (5) EPA SW-846. Test Methods for Evaluating Solid Waste, Third Edition with Update III, December 1996.
- (6) Standard Methods for the Examination of Water and Wastewater, 19th edition, 1995.

Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Alkalinity as CaC	:03		SM2320B	- Titration									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254010													
WG254010PBW1	PBW	10/17/08 17:37				U	mg/L		-20	20			
WG254010LCSW2	LCSW	10/17/08 17:50	WC081008-2	820.0001		811.5	mg/L	99	90	110			
WG254010PBW2	PBW	10/17/08 20:09				U	mg/L		-20	20			
WG254010LCSW5	LCSW	10/17/08 20:21	WC081008-2	820.0001		810.7	mg/L	98.9	90	110			
WG254010PBW3	PBW	10/17/08 23:03				U	mg/L		-20	20			
WG254010LCSW8	LCSW	10/17/08 23:15	WC081008-2	820.0001	0.07	803.4	mg/L	98	90	110	0.0	00	
L72361-02DUP WG254010PBW4	DUP PBW	10/18/08 0:41 10/18/08 2:17			367	363.9 U	mg/L mg/L		-20	20	8.0	20	
WG254010LCSW11		10/18/08 2:17	WC081008-2	820.0001		809.6	mg/L	98.7	90	110			
WG254010LCSW14		10/18/08 6:08	WC081008-2			824.5	mg/L	100.5	90	110			
Aluminum, disso	lved		M200.7 IC	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253994													
WG253994ICV	ICV	10/17/08 16:28	11080818-1	2		1.973	mg/L	98.7	95	105			
WG253994ICB	ICB	10/17/08 16:32	110000101	_		U	mg/L	55.7	-0.09	0.09			
WG253994LFB	LFB	10/17/08 16:45	11081016-2	1		.992	mg/L	99.2	85	115			
L72215-01AS	AS	10/17/08 16:55	11081016-2	1	U	1.052	mg/L	105.2	85	115			
L72215-01ASD	ASD	10/17/08 16:58	11081016-2	1	U	1.026	mg/L	102.6	85	115	2.5	20	
Antimony, dissol	ved		M200.8 IC	CP-MS									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253695													
WG253695ICV	ICV	10/15/08 0:19	MS081003-4	.02		.02059	mg/L	103	90	110			
WG253695ICB	ICB	10/15/08 0:24				U	mg/L		-0.0012	0.0012			
WG253695LFB	LFB	10/15/08 0:34	MS081003-7	.01		.00995	mg/L	99.5	85	115			
L72313-02AS	AS	10/15/08 1:57	MS081003-7	.01	U	.00983	mg/L	98.3	70	130			
L72313-02ASD	ASD	10/15/08 2:02	MS081003-7	.01	U	.01008	mg/L	100.8	70	130	2.51	20	
Arsenic, dissolve	ed		M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253695													
WG253695ICV	ICV	10/15/08 0:19	MS081003-4	.05		.0498	mg/L	99.6	90	110			
WG253695ICB	ICB	10/15/08 0:24				U	mg/L		-0.0015	0.0015			
WG253695LFB	LFB	10/15/08 0:34	MS081003-7	.05		.0481	mg/L	96.2	85	115			
L72313-02AS	AS	10/15/08 1:57	MS081003-7	.05	U	.05111	mg/L	102.2	70	1 30			
L72313-02ASD	ASD	10/15/08 2:02	MS081003-7	.05	U	.05145	mg/L	102.9	70	130	0.66	20	
Barium, dissolve	d		M200.7 IC	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253741													
WG253741ICV	ICV	10/16/08 15:26	11080818-1	2		1.9918	mg/L	99.6	95	105			
WG253741ICB	ICB	10/16/08 15:30				U	mg/L		- 0.18	0.18			
WG253741LFB	LFB	10/16/08 15:42	11081013-2	.5		.4979	mg/L	99.6	85	115			
L72215-01AS	AS	10/16/08 15:51	11081013-2	.5	.019	.5313	mg/L	102.5	85	115	0.00	0.0	
L72215-01ASD	ASD	10/16/08 15:55	11081013-2	.5	.019	.5278	mg/L	101.8	85	115	0.66	20	

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Beryllium, disso	olved		M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253695													
WG253695ICV	ICV	10/15/08 0:19	MS081003-4	.05		.04879	mg/L	97.6	90	110			
WG253695ICB	ICB	10/15/08 0:24				U	mg/L		-0.0003	0.0003			
WG253695LFB	LFB	10/15/08 0:34	MS081003-7	.05005		.04705	mg/L	94	85	115			
L72313-02AS	AS	10/15/08 1:57	MS081003-7	.05005	U	.04745	mg/L	94.8	70	130			
L72313-02ASD	ASD	10/15/08 2:02	MS081003-7	.05005	U	.04882	mg/L	97.5	70	130	2.85	20	
Cadmium, disso	olved		M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253695													
WG253695ICV	ICV	10/15/08 0:19	MS081003-4	.05		.04871	mg/L	97.4	90	110			
WG253695ICB	ICB	10/15/08 0:24				U	mg/L		-0.0003	0.0003			
WG253695LFB	LFB	10/15/08 0:34	MS081003-7	.05		.04774	mg/L	95.5	85	115			
L72313-02AS	AS	10/15/08 1:57	MS081003-7	.05	U	.04911	mg/L	98.2	70	130			
L72313-02ASD	ASD	10/15/08 2:02	MS081003-7	.05	U	.04941	mg/L	98.8	70	130	0.61	20	
Calcium, dissol	ved		M200.7 IC	CP CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253741													
WG253741ICV	ICV	10/16/08 15:26	H080818-1	100		99.51	mg/L	99.5	95	105			
WG253741ICB	ICB	10/16/08 15:30				U	mg/L		-12	12			
WG253741LFB	LFB	10/16/08 15:42	II081013-2	67.97008		74.12	mg/L	109	85	115			
L72215-01AS	AS	10/16/08 15:51	II081013-2	67.97008	184	246.26	mg/L	91.6	85	115			
L72215-01ASD	ASD	10/16/08 15:55	11081013-2	67.97008	184	246.5	mg/L	92	85	115	0.1	20	
Chloride			SM4500C	ŀΕ									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253724													
WG253724ICB	ICB	10/14/08 8:37				U	mg/L		-3	3			
WG253724ICV	ICV	10/14/08 8:37	WI080808-1	54.945		56.1	mg/L	102.1	90	110			
WG253724LFB1	LFB	10/14/08 13:34	WI080818-2	30		32.3	mg/L	107.7	90	110			
WG253724LFB2	LFB	10/14/08 13:38	WI080818-2	30		32.3	mg/L	107.7	90	110			
L72337-04AS	AS	10/14/08 16:31	10XCL	30	160	190	mg/L	100	90	110			
L72338-01DUP	DUP	10/14/08 16:31			1 40	144	mg/L				2.8	20	
Chromium, diss	olved		M200.7 IC	CP CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253741													
WG253741ICV	ICV	10/16/08 15:26	11080818-1	2		2.01	mg/L	100.5	95	105			
WG253741ICB	ICB	10/16/08 15:30				U	mg/L		-0.6	0.6			
WG253741LFB	LFB	10/16/08 15:42	11081013-2	.5		. 518	mg/L	103.6	85	115			
L72215-01AS	AS	10/16/08 15:51	11081013-2	.5	U	.524	mg/L	104.8	85	115			
L72215-01ASD	ASD	10/16/08 15:55	11081013-2	.5	U	.534	mg/L	106.8	85	115	1.89	20	

REPIN.01.06.05.01 Page 5 of 15

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

W6253741 W6253741 W6253741 W6263741 W6263741 CV	Cobalt, dissolved	t		M200.7 IC	P									
WG253741 CV	ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253741LFB LFB 10/16/08 15:42 1081013-2 5 U .521 mg/L 104.2 85 115 15 L7215-01ASD ASD 10/16/08 15:55 1081013-2 5 U .522 mg/L 104.2 85 115 15 L7215-01ASD ASD 10/16/08 15:55 1081013-2 5 U .521 mg/L 104.2 85 115 152 20 L7215-01ASD ASD 10/16/08 15:55 1081013-2 5 U .521 mg/L 104.2 85 115 152 20 L7215-01ASD ASD 10/16/08 15:55 1081013-2 5 U .521 mg/L 104.2 85 115 152 20 L7215-01ASD ASD 10/16/08 15:55 M2510B SW2510B SW25	WG253741													
McG253741LF8	WG253741ICV	ICV	10/16/08 15:26	11080818-1	2.002		2.025	mg/L	101.1	95	105			
WG25474LPB	WG253741ICB	ICB	10/16/08 15:30				U	_		-0.6	0.6			
Conductivity @25C	WG253741LFB	LFB	10/16/08 15:42	11081013-2	.5		.521	mg/L	104.2	85	115			
Conductivity @25C	L72215-01AS	AS	10/16/08 15:51	11081013-2	.5	U	.529	mg/L	105.8	85	115			
MG254010	L72215-01ASD	ASD	10/16/08 15:55	11081013-2	.5	U	.521	mg/L	104.2	85	115	1.52	20	
WG254010	Conductivity @25	5C		SM2510B										
WG254010LCSW1	ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254010LCSW4	WG254010													
WG254010LCSW7	WG254010LCSW1	LCSW	10/17/08 17:39	PCN30288	1408.8		1403	umhos/cm	99.6	90	110			
L72361-02DUP DUP 10/18/08 0:41	WG254010LCSW4	LCSW	10/17/08 20:10	PCN30288	1408.8		1398	umhos/cm	99.2	90	110			
WG254010LCSW10 LCSW 10/18/08 5:58 PCN30288 1408.8 1370 m/ncs/crt 97.2 90 110 110 VC254010LCSW13 LCSW 10/18/08 5:58 PCN30288 1408.8 1377 m/ncs/crt 97.7 90 110 VC254010LCSW13 LCSW 10/18/08 5:58 PCN30288 1408.8 1377 m/ncs/crt 97.7 90 110 VC254010LCSW13 LCSW 10/18/08 5:58 PCN30288 1408.8 1370 m/ncs/crt 97.7 90 110 VC253741	WG254010LCSW7	LCSW	10/17/08 23:05	PCN30288	1408.8		1387	umhos/cm	98.5	90	110			
WG254010LCSW13 LCSW 10/18/08 558 PCN30288 1408.8 1377 mincs/cr 97.7 90 110	L72361-02DUP	DUP	10/18/08 0:41			7340	7320	umhos/cm				0.3	20	
Copper, dissolved M200.7 ICP	WG254010LCSW10	LCSW	10/18/08 2:19	PCN30288	1408.8		1370	umhos/cm	97.2	90	110			
No. Color Type Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit QR	WG254010LCSW13	LCSW	10/18/08 5:58	PCN30288	1408.8		1377	umhos/cm	97.7	90	110			
WG253741	Copper, dissolve	ed		M200.7 IC	P									
WG253741 CV	ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253741 CV	WG253741													
WG253741 CB ICB 10/16/08 15:30 U mg/L -0.6 0.6		ICV	10/16/08 15:26	II080818-1	2		1 947	ma/l	974	95	105			
WG253741LFB				110000101	_			-	57. -					
L72215-01AS AS 10/16/08 15:51 II081013-2 .5 U .514 mg/L 102.8 85 115 0.97 20 Cyanide, total				II081013-2	.5			•	100.2					
L72215-01ASD						U		•						
MG253781 WG253781 WG253781 CV	L72215-01ASD	ASD	10/16/08 15:55	11081013-2	.5	U	.519	•	103.8	85	115	0.97	20	
ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit Qr WG253781 WG253781ICV ICV 10/15/08 11:04 WI081010-5 .3 .2835 mg/L 94.5 90 110	Cyanide, total			M335.4 - 0	Colorimeti	ic w/ distil	lation							
WG253781ICV ICV 10/15/08 11:04 WI081010-5 .3 .2835 mg/L 94.5 90 110 WG253781ICB ICB 10/15/08 11:05 U mg/L -0.015 0.015 WG253700LRB LRB 10/15/08 11:06 WI081010-9 2 .2 mg/L 100 90 110 L72323-01DUP DUP 10/15/08 11:20 U U mg/L 95.9 90 110 Fluoride SM4500F-C ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit Qc WG253976 ICV 10/17/08 9:47 WC081014-1 2 2 mg/L 100 90 110 WG253976ICB ICB 10/17/08 9:54 WC081014-1 2 2 mg/L 100 90 110		Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253781ICV ICV 10/15/08 11:04 WI081010-5 .3 .2835 mg/L 94.5 90 110 WG253781ICB ICB 10/15/08 11:05 U mg/L -0.015 0.015 WG253700LRB LRB 10/15/08 11:06 WI081010-9 2 .2 mg/L 100 90 110 L72323-01DUP DUP 10/15/08 11:20 U U mg/L 95.9 90 110 Fluoride SM4500F-C ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit Qc WG253976 ICV 10/17/08 9:47 WC081014-1 2 2 mg/L 100 90 110 WG253976ICB ICB 10/17/08 9:54 WC081014-1 2 2 mg/L 100 90 110	WG253781													
WG253781ICB ICB 10/15/08 11:05 U mg/L -0.015 0.015 WG253700LRB LRB 10/15/08 11:06 U mg/L -0.015 0.015 WG253700LFB LFB 10/15/08 11:06 WI081010-9 2 .2 mg/L 100 90 110 L72323-01DUP DUP 10/15/08 11:20 U U mg/L 95.9 90 110 Fluoride SM4500F-C ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit Q WG253976ICV ICV 10/17/08 9:47 WC081014-1 2 2 mg/L 100 90 110 WG253976ICB ICB 10/17/08 9:54 U mg/L -0.3 0.3		10\/	10/15/00 11:04	WI004040 E	0		2025	mage //	04.5	00	110			
WG253700LRB LRB 10/15/08 11:06 U mg/L -0.015 0.015 WG253700LFB LFB 10/15/08 11:06 WI081010-9 2 .2 mg/L 100 90 110 L72323-01DUP DUP 10/15/08 11:20 U U mg/L 0 20 20 L72323-02LFM LFM 10/15/08 11:22 WI081010-9 .2 U .1917 mg/L 95.9 90 110 Fluoride SM4500F-C ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit Q WG253976 WG253976ICV ICV 10/17/08 9:47 WC081014-1 2 2 mg/L 100 90 110 WG253976ICB ICB 10/17/08 9:54 U mg/L -0.3 0.3				W108 10 10-5	.3				94.5					
WG253700LFB LFB 10/15/08 11:06 WI081010-9 2 .2 mg/L 100 90 110 L72323-01DUP DUP 10/15/08 11:20 U U U mg/L 95.9 90 110 Fluoride SM4500F-C ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit Q WG253976 WG253976ICB ICB 10/17/08 9:47 WC081014-1 2 2 mg/L 100 90 110 WG253976ICB ICB 10/17/08 9:54 WC081014-1 2 2 mg/L 100 90 110								-						
L72323-01DUP DUP 10/15/08 11:20				WI081010-9	2				100					
L72323-02LFM LFM 10/15/08 11:22 W1081010-9 2 U .1917 mg/L 95.9 90 110 Fluoride SM4500F-C ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit QC WG253976 WG253976 WG253976ICV ICV 10/17/08 9:47 WC081014-1 2 2 mg/L 100 90 110 WG253976ICB ICB 10/17/08 9:54 U mg/L -0.3 0.3				***************************************		U		-	100	50	110	0	20	RA
ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit QC WG253976 WG253976 CV 10/17/08 9:47 WC081014-1 2 2 mg/L 100 90 110 1				WI081010-9	.2			-	95.9	90	110			
WG253976 WG253976ICV ICV 10/17/08 9:47 WC081014-1 2 2 mg/L 100 90 110 WG253976ICB ICB 10/17/08 9:54 U mg/L -0.3 0.3	Fluoride			SM4500F	-C									
WG253976ICV ICV 10/17/08 9:47 WC081014-1 2 2 mg/L 100 90 110 WG253976ICB ICB 10/17/08 9:54 U mg/L -0.3 0.3		Туре	Analyzed			Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253976ICV ICV 10/17/08 9:47 WC081014-1 2 2 mg/L 100 90 110 WG253976ICB ICB 10/17/08 9:54 U mg/L -0.3 0.3	WG253076													
WG253976ICB ICB 10/17/08 9:54 U mg/L -0.3 0.3		10) (40/47/00 0 47	14/0001011	_		0		400	60	440			
				vvCU81014-1	2			•	100					
				14/00000010 0	-			-	400					
WG253976LFB1 LFB 10/17/08 9:59 WC080912-3 5 5.4 mg/L 108 90 110								_						
L72172-02AS AS 10/17/08 10:16 WC080912-3 5 U 5.36 mg/L 107.2 90 110 L72320-03DUP DUP 10/17/08 11:06 U U mg/L 0 20				vvC080912-3	5			_	107.2	90	110	0	20	D.4
L72320-03DUP DUP 10/17/08 11:06 U U mg/L 0 20 WG253976LFB2 LFB 10/17/08 11:54 WC080912-3 5 5.02 mg/L 100.4 90 110				///CU80043 3	E	U		-	100.4	00	110	U	20	RA

REPIN.01.06.05.01 Page 6 of 15

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Iron, dissolved			M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253741													
WG253741ICV	ICV	10/16/08 15:26	11080818-1	2		1.951	mg/L	97.6	95	105			
WG253741ICB	ICB	10/16/08 15:30				U	mg/L		-1.2	1.2			
WG253741LFB	LFB	10/16/08 15:42	11081013-2	1		1.041	mg/L	104.1	85	115			
L72215-01AS	AS	10/16/08 15:51	11081013-2	1	.52	1.54	mg/L	102	85	115			
L72215-01ASD	ASD	10/16/08 15:55	11081013-2	1	.52	1.524	mg/L	100.4	85	115	1.04	20	
Lead, dissolved			M200.8 I	CP - MS									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253695													
WG253695ICV	ICV	10/15/08 0:19	MS081003-4	.05		.04843	mg/L	96.9	90	110			
WG253695ICB	ICB	10/15/08 0:24				U	mg/L		-0.0003	0.0003			
WG253695LFB	LFB	10/15/08 0:34	MS081003-7	.05		.04542	mg/L	90.8	85	115			
L72313-02AS	AS	10/15/08 1:57	MS081003-7	.05	U	.04721	mg/L	94.4	70	130			
L 7 2313-02ASD	ASD	10/15/08 2:02	MS081003-7	.05	U	.04766	mg/L	95.3	70	130	0.95	20	
Magnesium, dis	solved		M200.7 I	CP									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253741													
WG253741ICV	ICV	10/16/08 15:26	11080818-1	100		100.01	mg/L	100	95	105			
WG253741ICB	ICB	10/16/08 15:30				U	mg/L		-12	12			
WG253741LFB	LFB	10/16/08 15:42	11081013-2	49.96908		53.96	mg/L	108	85	115			
L72215-01AS	AS	10/16/08 15:51	11081013-2	49.96908	33	85.77	mg/L	105.6	85	115			
L72215-01ASD	ASD	10/16/08 15:55	11081013-2	49.96908	33	85.26	mg/L	104.6	85	115	0.6	20	
Manganese, dis	solved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253741													
WG253741ICV	ICV	10/16/08 15:26	11080818-1	2		2.0083	mg/L	100.4	95	105			
WG253741ICB	ICB	10/16/08 15:30				U	mg/L		-0.3	0.3			
WG253741LFB	LFB	10/16/08 15:42	11081013-2	.5		.5474	mg/L	109.5	85	115			
L72215-01AS	AS	10/16/08 15:51	11081013-2	.5	.109	.6677	mg/L	111.7	85	115			
L72215-01ASD	ASD	10/16/08 15:55	11081013-2	.5	.109	.6648	mg/L	111.2	85	115	0.44	20	
Mercury, dissol	ved		M245.1 C	VAA									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253573													
WG253573ICV	ICV	10/20/08 12:08	11080916-2	.005		.00502	mg/L	100.4	95	105			
WG253573ICB	ICB	10/20/08 12:10	_			U	mg/L	•	-0.0002	0.0002			
WG253950													
WG253950LRB	LRB	10/20/08 17:39				U	mg/L		-0.00044	0.00044			
WG253950LFB	LFB	10/20/08 17:42	11080924-2	.002		.00186	mg/L	93	85	115			
L72287-02LFM	LFM	10/20/08 18:18	11080924-2	.002	U	.00178	mg/L	89	85	115			
L72287-02LFMD	LFMD	10/20/08 18:20	11080924-2	.002	U	.00188	mg/L	94	85	115	5.46	20	

REPIN.01.06.05.01 Page 7 of 15

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Molybdenum, dis	solved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253994													
WG253994ICV	ICV	10/17/08 16:28	11080818-1	2		2.006	mg/L	100.3	95	105			
WG253994ICB	ICB	10/17/08 16:32				U	mg/L		-0.03	0.03			
WG253994LFB	LFB	10/17/08 16:45	11081016-2	.5		.505	mg/L	101	85	115			
L72215-01AS	AS	10/17/08 16:55	11081016-2	.5	.07	.577	mg/L	101.4	85	115			
L72215-01ASD	ASD	10/17/08 16:58	11081016-2	.5	.07	.571	mg/L	100.2	85	115	1.05	20	
Nickel, dissolved			M200.7 I	CP									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253741													
WG253741ICV	ICV	10/16/08 15:26	11080818-1	2.004		1.996	mg/L	99.6	95	105			
WG253741ICB	ICB	10/16/08 15:30				U	mg/L		-0.6	0.6			
WG253741LFB	LFB	10/16/08 15:42	11081013-2	.4985		.527	mg/L	105.7	85	115			
L72215-01AS	AS	10/16/08 15:51	11081013-2	.4985	U	.547	mg/L	109.7	85	115			
L72215-01ASD	ASD	10/16/08 15:55	11081013-2	.4985	U	.532	mg/L	106.7	85	115	2.78	20	
Nitrate/Nitrite as	N		M353.2 -	H2SO4 pre	eserved								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253945													
WG253945ICV	ICV	10/16/08 19:37	WI080916-5	2.416		2.419	mg/L	100.1	90	110			
WG253945ICB	ICB	10/16/08 19:38	***************************************	2.110		U	mg/L	100.1	- 0.06	0.06			
WG253954							· ·						
WG253954ICV	ICV	10/16/08 21:24	WI080916-5	2.416		2.434	mg/L	100.7	90	110			
WG253954ICB	ICB	10/16/08 21:25				U	mg/L		-0.06	0.06			
WG253954LFB	LFB	10/16/08 21:27	WI080913-4	2		2.128	mg/L	106.4	90	110			
L72279-02AS	AS	10/16/08 21:48	WI080913-4	2	1.56	3.668	mg/L	105.4	90	110			
L72336-01DUP	DUP	10/16/08 21:51			1.62	1.619	mg/L				0.1	20	
pH (lab)			M150.1 -	Electrome	tric								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254010													
WG254010LCSW3	LCSW	10/17/08 17:52	PCN29627	6		6.07	units	101.2	90	110			
WG254010LCSW6	LCSW	10/17/08 20:24	PCN29627	6		6.08	units	101.3	90	110			
WG254010LCSW9	LCSW	10/17/08 23:17	PCN29627	6		6.08	units	101.3	90	110			
L72361-02DUP	DUP	10/18/08 0:41			8.2	8.16	units				0.5	20	
WG254010LCSW12	LCSW	10/18/08 2:31	PCN29627	6		6.05	units	100.8	90	110			
WG254010LCSW15	LCSW	10/18/08 6:10	PCN29627	6		6.12	units	102	90	110			
Potassium, disso	lved		M200.7 I	CP									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253994													
WG253994ICV	ICV	10/17/08 16:28	11080818-1	20		19.71	mg/L	98.6	95	105			
WG253994ICB	ICB	10/17/08 16:32		_0		U	mg/L	00.0	-0.9	0.9			
WG253994LFB	LFB	10/17/08 16:45	11081016-2	99.76186		99.18	mg/L	99.4	85	115			
L72215-01AS	AS	10/17/08 16:55	11081016-2	99.76186	3.2	105.71	mg/L	102.8	85	115			
L72215-01ASD	ASD	10/17/08 16:58	11081016-2	99.76186	3.2	105.71	mg/L	102.8	85	115	0	20	

Inorganic QC Summary

ACZ Project ID: L72338

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Residue, Filteral	ole (TDS) @180C	SM25400										
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253627													
WG253627PBW	PBW	10/13/08 11:00				U	mg/L		-20	20			
WG253627LCSW	LCSW	10/13/08 11:01	PCN29987	260		272	mg/L	104.6	80	1 20			
L72372-04DUP	DUP	10/13/08 11:24			1630	1606	mg/L				1.5	20	
Selenium, disso	lved		M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253695													
WG253695ICV	ICV	10/15/08 0:19	MS081003-4	.05		.04969	mg/L	99.4	90	110			
WG253695ICB	ICB	10/15/08 0:24				U	mg/L		-0.0003	0.0003			
WG253695LFB	LFB	10/15/08 0:34	MS081003-7	.05		.04666	mg/L	93.3	85	115			
L72313-02AS	AS	10/15/08 1:57	MS081003-7	.05	.0009	.04487	mg/L	87.9	70	1 30			
L72313-02ASD	ASD	10/15/08 2:02	MS081003-7	.05	.0009	.04626	mg/L	90.7	70	130	3.05	20	
Sodium, dissolve	ed		M200.7 IC	CP									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253994													
WG253994ICV	ICV	10/17/08 16:28	11080818-1	100		99.86	mg/L	99.9	95	105			
WG253994ICB	ICB	10/17/08 16:32				U	mg/L		-0.9	0.9			
WG253994LFB	LFB	10/17/08 16:45	11081016-2	98.21624		97.6	mg/L	99.4	85	115			
L72215-01AS	AS	10/17/08 16:55	II081016-2	98.21624	24.3	121.41	mg/L	98.9	85	115			
L72215-01ASD	ASD	10/17/08 16:58	11081016-2	98.21624	24.3	120.58	mg/L	98	85	115	0.69	20	
Sulfate			SM4500	SO4-D									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254501													
WG254501PBW	PBW	10/24/08 12:10				U	mg/L		-30	30			
WG254501LCSW	LCSW	10/24/08 12:13	WC080910-2	100		110	mg/L	110	80	120			
L72544-06DUP	DUP	10/24/08 12:48			410	384	mg/L				6.5	20	
Thallium, dissolv	ved		M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253695													
WG253695ICV	ICV	10/15/08 0:19	MS081003-4	.05		.04944	mg/L	98.9	90	110			
WG253695ICB	ICB	10/15/08 0:24				U	mg/L		-0.0003	0.0003			
WG253695LFB	LFB	10/15/08 0:34	MS081003-7	.0501		.04648	mg/L	92.8	85	115			
L72313-02AS	AS	10/15/08 1:57	MS081003-7	.0501	U	.04885	mg/L	97.5	70	1 30			
L72313-02ASD	ASD	10/15/08 2:02	MS081003-7	.0501	U	.0491	mg/L	98	70	1 30	0.51	20	
Uranium, dissolv	ved		M200.8 IC	CP-MS									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253695													
WG2536951CV	ICV	10/15/08 0:19	MS081003-4	.05		.04747	mg/L	94.9	90	110			
WG2536951CB	ICB	10/15/08 0:24				U	mg/L		-0.0003	0.0003			
VV 023003310D		10/15/00 0 0 1	MC004000 7	OF		0456	ma/l	91.2	85	115			
WG2536951CB WG253695LFB	LFB	10/15/08 0:34	MS081003-7	.05		.0456	mg/L	31.2	00	110			
	LFB AS	10/15/08 0:34 10/15/08 1:57	MS081003-7 MS081003-7	.05	.0002	.04967	mg/L	98.9	70	130			

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Zinc, dissolved			M200.7 IC	;P									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253741													
WG253741ICV	ICV	10/16/08 15:26	11080818-1	2		1.982	mg/L	99.1	95	105			
WG253741ICB	ICB	10/16/08 15:30				U	mg/L		-0.6	0.6			
WG253741LFB	LFB	10/16/08 15:42	11081013-2	.5		.546	mg/L	109.2	85	115			
L72215-01AS	AS	10/16/08 15:51	11081013-2	.5	U	.557	mg/L	111.4	85	115			
L72215-01ASD	ASD	10/16/08 15:55	11081013-2	.5	U	.552	mg/L	110.4	85	115	0.9	20	

REPIN.01.06.05.01 Page 10 of 15

Inorganic Extended Qualifier Report

ACZ Project ID: L72338

FMI Gold & Copper - Sierrita

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L72338-01	WG253781	Cyanide, total	M335.4 - Colorimetric w/ distillation		Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG253976	Fluoride	SM4500F-C		Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).

Certification Qualifiers

FMI Gold & Copper - Sierrita

ACZ Project ID: L72338

No certification qualifiers associated with this analysis

Sample Receipt

FMI Gold & Copper - Sierrita

OJ06DZ

ACZ Project ID: Date Received: L72338 10/9/2008

Received By:

Date Printed: 10/9/2008

Receipt Verification

- 1) Does this project require special handling procedures such as CLP protocol?
- 2) Are the custody seals on the cooler intact?
- 3) Are the custody seals on the sample containers intact?
- 4) Is there a Chain of Custody or other directive shipping papers present?
- 5) Is the Chain of Custody complete?
- 6) Is the Chain of Custody in agreement with the samples received?
- 7) Is there enough sample for all requested analyses?
- 8) Are all samples within holding times for requested analyses?
- 9) Were all sample containers received intact?
- 10) Are the temperature blanks present?
- 11) Is the trip blank for Cyanide present?
- 12) Is the trip blank for VOA present?
- 13) Are samples requiring no headspace, headspace free?
- 14) Do the samples that require a Foreign Soils Permit have one?

YES	NO	NA
		Х
Х		
		Х
Х		
Х		
Х		
Х		
Χ		
Х		
		Х
	Х	
		Х
		Х
		Х

Exceptions: If you answered no to any of the above questions, please describe

N/A

Contact (For any discrepancies, the client must be contacted)

The client was not contacted.

Shipping Containers

Cooler Id	Temp (°C)	Rad (μR/hr)
2144	1.2	13

Client must contact ACZ Project Manager if analysis should not proceed for samples received outside of thermal preservation acceptance criteria.

Notes

Sample Receipt

FMI Gold & Copper - Sierrita

OJ06DZ

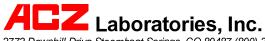
ACZ Project ID: Date Received:

L72338 10/9/2008

Received By:

Samp	le Con	tainer	Preserv	ation
			1 10001	CLUCIL

SAMPLE	CLIENT ID	R < 2	G < 2	BK < 2	Y<2	YG<2	B< 2	0<2	T >12	N/A	RAD	I D
L72338-01	MH-30		Υ		Υ							


Sample Container Preservation Legend

Abbreviation	Description	Container Type	Preservative/Limits
R	Raw/Nitric	RED	pH must be < 2
В	Filtered/Sulfuric	BLUE	pH must be < 2
BK	Filtered/Nitric	BLACK	pH must be < 2
G	Filtered/Nitric	GREEN	pH must be < 2
0	Raw/Sulfuric	ORANGE	pH must be < 2
Р	Raw/NaOH	PURPLE	pH must be > 12 *
T	Raw/NaOH Zinc Acetate	TAN	pH must be > 12
Υ	Raw/Sulfuric	YELLOW	pH must be < 2
YG	Raw/Sulfuric	YELLOW GLASS	pH must be < 2
N/A	No preservative needed	Not applicable	
RAD	Gamma/Beta dose rate	Not applicable	must be < 250 μR/hr

^{*} pH check performed by analyst prior to sample preparation

Sample IDs Reviewed By	:	

<i>A</i> CZ	Laboratorie			Z	338	СНА	IN of C	USTODY
	e Steamboat Springs, C	:O 80487 (800)	334-5493	}				
Report to:	Description				/ 3	. ^	1	0.1
Name: Billy		<u></u>	i		6200 W			e KO
Company: Preep	port McMo Ran	Siernia			Valley,			
	dorris@ Fmire	0,79	[i eie	onone:	520 6	88 6 PC	13	
Copy of Report to						4 1 2 -		
Name: Rick					ck_5m			p. com
Company: しん	.5		Tele	ohone:	520-4	107-Z8	23	
Invoice to:								
Name:			Addr	ess:				
Company:								
E-mail:			Tele	hone:				
	ed past holding time (HT						YES	<u> </u>
	iration, shall ACZ procee ill contact client for furt						NO	
	Il proceed with the requ					will be qual	ified.	
PROJECT INFORMA								iote number)
Quote #:				8	pa			
Project/PO #: (586 DZ		of Containers	1 7	550 1000			
	or compliance testing	ı:	ntail	7	2 3			
Sampler's Name:			ਤੋ	E	13.1			
Are any samples l	NRC licensable materi	ial?		1811	120			
SAMPLE IDENTII	FICATION DAT	TE:TIME Ma	atrix	1)	26			
MH-30	10-6-08	19:45 6	w 5	×	×			
ļ								
				ļ				
			- 					
		_			ļ ļ.	1		
				ļ				
CIN (Confe	CW (Coronal V	Martine 18/18/ (18/2010	Netonal D	MAL (Desire)	(in a Matau)	Cl (Cludes)	CO (Cail)	
,	ace Water) · GW (Ground V	vater) - www (waste	: water) · D	¥V (DUU⊩	ung water) ·	∍∟ (Sluage)	· 20 (20II) ·	OL (Oil) - Other
REMARKS/ SAMPL	rt to Rick Sm	with control	ns the	" 10	0.60178	" resu	H5 wi4	-h
00 S. 1000	v/							
Please gener	rate a sea third y and send to	report t	hat co	itain <u>:</u>	s only	504" re	150+5 L	JAK PAGE
QC Summer	y and send to	Dan Simps	on of h	€C.	danse l	iginc. a	mio	of
	KING # 12 8 ease refer to ACZ's t							
RELINQU	JISHED BY:	DATE:TIME			RECEIVED	BY:		ATE:TIME
Stilly 7.	Jours	10-8-08/15:	00		M		10-	7-08 9:74
					<u>-</u>			
				_		. 5	15 3	

Revised Analytical Report

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Bill Dorris FMI Gold & Copper - Sierrita P.O. Box 527 6200 W. Duval Mine Road Green Valley, AZ 85622-0527 November 20, 2008

Project ID: OJ0325 ACZ Project ID: L72393

Bill Dorris:

Enclosed are revised analytical reports for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on October 10, 2008 and reported on October 23, 2008. Refer to the case narrative for an explanation of the changes. This project was assigned to ACZ's project number, L72393. Please reference this number in all future inquiries.

All analyses were performed according to ACZ's Quality Assurance Plan, version 12.0. The enclosed results relate only to the samples received under L72393. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all the requirements of NELAC.

This report should be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after November 23, 2008. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years. Please notify your Project Manager if you have other needs.

If you have any questions, please contact your Project Manager or Customer Service Representative.

Scott Habermehl has reviewed and approved this report.

S. Habermehl

Case Narrative

FMI Gold Copper - Sierrita

November 20, 2008

Project ID: OJ0325 ACZ Project ID: L72393

Sample Receipt

ACZ Laboratories, Inc. (ACZ) received 5 ground water samples from FMI Gold & Copper - Sierrita on October 10, 2008. The samples were received in good condition. Upon receipt, the sample custodian removed the samples from the cooler, inspected the contents, and logged the samples into ACZ's computerized Laboratory Information Management System (LIMS). The samples were assigned ACZ LIMS project number L72393. The custodian verified the sample information entered into the computer against the chain of custody (COC) forms and sample bottle labels.

Holding Times

Any analyses not performed within EPA recommended holding times have been qualified with an "H" flag.

Sample Analysis

Thes@samples were analyzed for inorganic parameters. The individual methods are referenced on both, the ACZ invoice and the analytical reports. The extended qualifier reports may contain footnotes qualifying specific elements due to QC failures. In addition the following has been noted with this specific project:

1. This project has been revised to include an analysis for Sulfate from the unfiltered sample (total). This analysis was done via the turbidimetric method EPA 375.4.

REPAD.03.06.05.01 Page 2 of 14

FMI Gold & Copper - Sierrita

Project ID: OJ0325 Sample ID: CC OF GV ACZ Sample ID: L72393-01

Date Sampled: 10/09/08 08:25

Date Received: 10/10/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	375.4 - Turbidimetric	68	H *	mg/L	5	30	11/19/08 13:54	lbn
Sulfate	300.0 - Ion Chromatography	72.4		mg/L	0.5	3	10/22/08 3:18	am i

FMI Gold & Copper - Sierrita

Project ID: OJ0325 Sample ID: TMM-1 ACZ Sample ID: **L72393-02**

Date Sampled: 10/09/08 13:00

Date Received: 10/10/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	375.4 - Turbidimetric		UH *	mg/L	1	5	11/19/08 13:48	lbn
Sulfate	300.0 - Ion Chromatography		U	ma/L	0.5	3	10/22/08 3:36	aml

FMI Gold & Copper - Sierrita

Project ID: OJ0325

Sample ID: GV-01-GVDWID

ACZ Sample ID: L72393-03

Date Sampled: 10/09/08 13:50

Date Received: 10/10/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	375.4 - Turbidimetric	36	H *	mg/L	1	5	11/19/08 13:48	lbn
Sulfate	300.0 - Ion Chromatography	39.0		ma/L	0.5	3	10/22/08 4:30	aml

FMI Gold & Copper - Sierrita

Project ID: OJ0325

Sample ID: GV-02-GVDWID

ACZ Sample ID: L72393-04

Date Sampled: 10/09/08 14:05

Date Received: 10/10/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	375.4 - Turbidimetric	90	H *	mg/L	5	30	11/19/08 13:54	lbn
Sulfate	300.0 - Ion Chromatography	93.5		mg/L	0.5	3	10/22/08 4:48	aml

FMI Gold & Copper - Sierrita

Project ID: OJ0325

Sample ID: GV-SI-GVDWID

ACZ Sample ID: **L72393-05**

Date Sampled: 10/09/08 14:30

Date Received: 10/10/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	375.4 - Turbidimetric	6	H *	mg/L	1	5	11/19/08 13:48	lbn
Sulfate	300.0 - Ion Chromatography	5.4		mg/L	0.5	3	10/22/08 5:07	am i

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report Header Explanations

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest Limit Upper limit for RPD, in %.

Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit, typically 5 times the MDL.

QC True Value of the Control Sample or the amount added to the Spike

Rec Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

QC Sample Types	QC	Sam	ple i	Тур	es
-----------------	----	-----	-------	-----	----

AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calibration Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution

QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method or calibration procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method. Spikes/Fortified Matrix Determines sample matrix interferences, if any.

Standard Verifies the validity of the calibration.

ACZ Qualifiers (Qual)

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity.
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time.
- U The material was analyzed for, but was not detected above the level of the associated value.

The associated value is either the sample quantitation limit or the sample detection limit.

Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (5) EPA SW-846. Test Methods for Evaluating Solid Waste, Third Edition with Update III, December 1996.
- (6) Standard Methods for the Examination of Water and Wastewater, 19th edition, 1995.

Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.

FMI Gold & Copper - Sierrita

ACZ Project ID: L72393 Project ID: OJ0325

Sulfate			300.0 - Ior	Chroma	atography								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254269													
WG254269ICV	ICV	10/14/08 13:25	WI081007-1	50		50.62	mg/L	101.2	90	110			
WG254269ICB	ICB	10/14/08 13:43				U	mg/L		-1.5	1.5			
WG254269ICV1	ICV	10/22/08 0:17	WI081007-1	50		52.21	mg/L	104.4	90	110			
WG254269ICB1	ICB	10/22/08 0:35				U	mg/L		-1.5	1.5			
WG254269LFB	LFB	10/22/08 0:53	WI081007-3	30		32.16	mg/L	107.2	90	110			
WG254269ICV2	ICV	10/22/08 20:32	WI081007-1	50		51.58	mg/L	103.2	90	110			
WG254269ICB2	ICB	10/22/08 20:50				U	mg/L		-1.5	1.5			
L72096-07DUP	DUP	10/22/08 21:26			41	41.6	mg/L				1.5	20	
L72247-01AS	AS	10/22/08 22:02	WI081007-3	600	710	1270	mg/L	93.3	90	110			
Sulfate			375 . 4 - Tu	rbidimetr	ic								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255985													
WG255985ICB	ICB	11/19/08 10:21				U	mg/L		-3	3			
WG255985ICV	ICV	11/19/08 10:21	WI081111-1	20		20.3	mg/L	101.5	90	110			
WG255985LFB1	LFB	11/19/08 12:01	WI081015-3	10		9.2	mg/L	92	90	110			
WG255985LFB2	LFB	11/19/08 12:06	WI081015-3	10		10.3	mg/L	103	90	110			
L72393-02AS	AS	11/19/08 13:48	WI081015-3	10	U	8.9	mg/L	89	90	110			M2
L72393-01DUP	DUP	11/19/08 13:54			68	68.2	mg/L				0.3	20	

Page 9 of 14 REPIN.01.06.05.01

FMI Gold & Copper - Sierrita

ACZ Project ID: L72393

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L72393-01	WG255985	Sulfate	375.4 - Turbidimetric	C4	Confirmatory analysis was past holding time.
			375.4 - Turbidimetric	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			375.4 - Turbidimetric	N1	See Case Narrative.
L72393-02	WG255985	Sulfate	375.4 - Turbidimetric	C4	Confirmatory analysis was past holding time.
			375.4 - Turbidimetric	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			375.4 - Turbidimetric	N1	See Case Narrative.
L72393-03	WG255985	Sulfate	375.4 - Turbidimetric	C4	Confirmatory analysis was past holding time.
			375.4 - Turbidimetric	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			375.4 - Turbidimetric	N1	See Case Narrative.
L72393-04	WG255985	Sulfate	375.4 - Turbidimetric	C4	Confirmatory analysis was past holding time.
			375.4 - Turbidimetric	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			375.4 - Turbidimetric	N1	See Case Narrative.
L72393-05	WG255985	Sulfate	375.4 - Turbidimetric	C4	Confirmatory analysis was past holding time.
			375.4 - Turbidimetric	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			375.4 - Turbidimetric	N1	See Case Narrative.

Certification Qualifiers

FMI Gold & Copper - Sierrita

ACZ Project ID: L72393

Wet Chemistry

The following parameters are not offered for certification or are not covered by AZ certificate #AZ0102.

Sulfate

375.4 - Turbidimetric

Sample Receipt

FMI Gold & Copper - Sierrita

OJ0325

ACZ Project ID: L72393 Date Received: 10/10/2008

Received By: gac

Date Printed: 10/28/2008

Receipt Verification

- 1) Does this project require special handling procedures such as CLP protocol?
- 2) Are the custody seals on the cooler intact?
- 3) Are the custody seals on the sample containers intact?
- 4) Is there a Chain of Custody or other directive shipping papers present?
- 5) Is the Chain of Custody complete?
- 6) Is the Chain of Custody in agreement with the samples received?
- 7) Is there enough sample for all requested analyses?
- 8) Are all samples within holding times for requested analyses?
- 9) Were all sample containers received intact?
- 10) Are the temperature blanks present?
- 11) Are the trip blanks (VOA and/or Cyanide) present?
- 12) Are samples requiring no headspace, headspace free?
- 13) Do the samples that require a Foreign Soils Permit have one?

YES	NO	NA
		Χ
		Χ
		X
Х		
X		
Х		
Х		
Х		
Х		
		X
		Х
		Х
		Х

Exceptions: If you answered no to any of the above questions, please describe

N/A

Contact (For any discrepancies, the client must be contacted)

N/A

Shipping Containers

Cooler Id	Temp (°C)	Rad (µR/hr)
NA7131	0.9	14

Client must contact ACZ Project Manager if analysis should not proceed for samples received outside of thermal preservation acceptance criteria.

Notes

Sample Receipt

FMI Gold & Copper - Sierrita

OJ0325

ACZ Project ID: Date Received:

Received By:

L72393

10/10/2008

Sample Container Preservation

SAMPLE	CLIENT ID	R < 2	G < 2	BK < 2	Y<2	YG<2	B<2	0<2	T >12	N/A	RAD	ID
L72393-01	CC OF GV									Χ		
L72393-02	TMM-1									Х		
L72393-03	GV-01-GVDWID									Х		
L72393-04	GV-02-GVDWID									Х		
L72393-05	GV-SI-GVDWID									Χ		

Sample Container Preservation Legend

Abbreviation	Description	Container Type	Preservative/Limits
R	Raw/Nitric	RED	pH must be < 2
В	Filtered/Sulfuric	BLUE	pH must be < 2
ВК	Filtered/Nitric	BLACK	pH must be < 2
G	Filtered/Nitric	GREEN	pH must be < 2
0	Raw/Sulfuric	ORANGE	pH must be < 2
Р	Raw/NaOH	PURPLE	pH must be > 12 *
Т	Raw/NaOH Zinc Acetate	TAN	pH must be > 12
Υ	Raw/Sulfuric	YELLOW	pH must be < 2
YG	Raw/Sulfuric	YELLOW GLASS	pH must be < 2
N/A	No preservative needed	Not applicable	
RAD	Gamma/Beta dose rate	Not applicable	must be < 250 µR/hr

^{*} pH check performed by analyst prior to sample preparation

Sample IDs Reviewed By:	gac
-------------------------	-----

L=72393

Quote #: Sierrita Sulfate Project/PO #: OJ0325 Seporting state for compliance testing: AZ Sampler's Name: John Villinski Are any samples NRC licensable material? No SAMPLE IDENTIFICATION DATE:TIME Matrix GW CC OF G.V 10-9-08/18:25 GW 2 X Matrix South Sout	Report to: Name: Dan Simpson Company: Hydro Geo Chem, Inc E-mail: dans@hqcinc.com Copy of Report to: Name: Jim Norris, Ned Hall, Bill Dorris Company: HYGC /FMI Remail: jimn@hgcinc.com, billy_dorris@fml.com Telephone: 520-293-1500 x112, 520-448-8873 E-mail: jimn@hgcinc.com, billy_dorris@fml.com Telephone: 520-293-1500 x112, 520-448-8873 Remail: jimn@hgcinc.com, billy_dorris@fml.com Remail: jimn@hgcinc.com, billy_dorris@fml.co	ACZ Labor		0) 224 (5402		•				IAIN STO		
Name: Dan Simpson Company: Hydro Geo Chem, Inc E-mail: dans@Agcinc.com Copy of Report to: Name: Jim Norris, Ned Hall, Bill Dorris Company: HGC / FMI Invoice to: Name: Ned Hall Red Jal@fmi.com Femall: Jimn@hgcinc.com, billy_dorris@fmi.com Telephone: 520-293-1500 x112, 520-648-8673 Invoice to: Name: Ned Hall Company: FMI Femall: ned_hal@fmi.com Femall: PO Box 527, Green Valley, AZ 85622 Telephone: 520-293-1500 x112, 520-648-8673 Invoice to: Name: Ned Hall PO Box 527, Green Valley, AZ 85622 Telephone: 520-293-1500 x112, 520-648-8673 Invoice to: Name: Ned Hall PO Box 527, Green Valley, AZ 85622 Telephone: 520-293-1500 x112, 520-648-8673 Invoice to: Name: Ned Hall PO Box 527, Green Valley, AZ 85622 Telephone: 520-293-1500 x112, 520-648-8673 Invoice to: Name: Ned Hall PO Box 527, Green Valley, AZ 85622 Telephone: 520-293-1500 x112, 520-648-8673 Invoice to: Name: Ned Hall PO Box 527, Green Valley, AZ 85622 Telephone: 520-293-1500 x112, 520-648-8673 Invoice to: Name: Ned Hall PO Box 527, Green Valley, AZ 85622 Telephone: 520-293-1500 x112, 520-648-8673 Invoice to: Name: Ned Hall PO Box 527, Green Valley, AZ 85622 Telephone: 520-293-1500 x112, 520-648-8673 Invoice to: Name: Ned Hall PO Box 527, Green Valley, AZ 85622 Telephone: 520-293-1500 x112, 520-648-8673 Invoice to: Name: Ned Hall PO Box 527, Green Valley, AZ 85622 Telephone: 520-293-1500 x112, 520-648-8673 Invoice to: Name: Ned Hall PO Box 527, Green Valley, AZ 85622 Telephone: 520-293-1500 x112, 520-648-8673 Invoice to: Name: Ned Hall PO Box 527, Green Valley, AZ 85622 Telephone: 520-293-1500 x112, 520-648-8673 Invoice to: Name: Ned Hall PO Box 527, Green Valley, AZ 85622 Telephone: 520-293-1500 x112, 520-648-8673 Invoice to: Name: Ned Hall PO Box 527, Green Valley, AZ 85622 Telephone: 520-293-1500 x112, 520-648-8673 Invoice to: Name: Ned Hall PO Box 527, Green Valley, AZ 85622 Telephone: 520-293-1500 x112, 520-648-8673 Invoice to: Name: Ned Hall PO Box 527, Green Valley, AZ 85622 Telephone: 520-293-1500 x112,	Name: Dan Simpson Company: Hydro Geo Chem, Inc E-mail: dans@hgcinc.com Copy of Report to: Name: Jim Norris, Ned Hall, Bill Dorris Company: HGC / FMI Invoice to: Name: Ned Hall Company: FMI E-mail: jimm@hgcinc.com, billy_dorris@fml.com Telephone: 520-293-1500 x112, 520-548-8873 Invoice to: Name: Ned Hall Company: FMI Famil: ped_hal@fml.com Femal: jimm@hgcinc.com, billy_dorris@fml.com Telephone: 520-293-1500 x112, 520-548-8873 Invoice to: Name: Ned Hall Address: 6200 Duval Mine Road PO Box 527, Green Valley, AZ 86622 Telephone: 520-464-8873 If sample(s) received past holding time (HT), or if Insufficient HT remains to complete analysis before expiration, shall ACZ proceed with requested short HT analyses? If "NO" then ACZ will contact client for further instruction. If neither "YES" nor "NO" Is indicated, ACZ will proceed with the requested analyses, even if HT is expired, and data will be qualified. PROJECT INFORMATION ANALYSIS REQUESTED (attach list or use quote numbors) ANALYSIS REQUESTED (attach list or use quote numbors) Sampler Name: John Villinski Are any samples NRC (Icensable material? No SAMPLE IDENTIFICATION DATESTIME Matrix ANALYSIS REQUESTED (attach list or use quote numbors) By Analysis and the properties of the propertie		Springs, CO 80487 (80	<i>0)</i> 334 - 3	1483								
Company: Hydro Geo Chem. Inc E-mail: dane@hgeinc.com Copy of Report to: Name: Jim Norris, Ned Hall, Bill Dorris Company: HGC / FMI Invoice to: Name: Ned Hall Company: FMI E-mail: Jimn@hgeinc.com, billy_dorris@fml.com Telephone: 520-293-1500 x112, 520-648-8873 Invoice to: Name: Ned Hall Address: 6200 Duval Mine Road PO Box 527, Green Valley, AZ 85622 Telephone: 520-293-1500 x112, 520-648-8873 Invoice to: Name: Ned Hall Address: 6200 Duval Mine Road PO Box 527, Green Valley, AZ 85622 Telephone: 520-293-1500 x112, 520-648-8873 If sample(s) received past holding time (HT), or if insufficient HT remains to complete analysis before expiration, shall ACZ proceed with requested short HT analyses? If "NO" then ACZ will contact client for further instruction. If neither "YES" nor "NO" is indicated, ACZ will proceed with the requested analyses, even if HT is expired, and data will be qualified. PROJECT INFORMATION ANALYSES REQUESTED (attach list or use quote numb ANALYSES REQUESTED (attach list or	Company: Hydro Geo Chem. Inc E-mail: dane@hgcinc.com Copy of Report to: Name: Jim Norris, Ned Hall, Bill Dorris Company: MGC / FMI Invoice to: Name: Ned Hall Company: FMI Company: FMI Address: \$200 Duval Mine Road PO Box 527, Green Valley, AZ 85622 Telephone: \$20.48-8873 If sample(s) received past holding time (HT), or if insufficient HT remains to complete analysis before expiration, shall ACZ proceed with requested short HT analyses? If "NO" then ACZ will proceed with the requested analyses, even if HT1 is expired, and data will be qualified. PROJECT INFORMATION Quote #: Serrita Sulfate Project/PO #: 0.03325 Reporting state for compiliance testing: AZ Sampler's Name: John Villinski Are any samples NRC licensable material? No SAMPLE IDENTIFICATION DATE: TIME Matrix Matrix Matrix Matrix Matrix Matrix Matrix Matrix SW (Surface Water): GW (Ground Water): WW (Waste Water): DW (Chriking Water): St. (Sludge): SO (Soli): OL (Ol) Other (Specily)	B 0:			Addre	ss: 5	1 W Wet	more Rd					
Telephone: 520-293-1500 x133	Telephone: 520-293-1500 x133 Copy of Report to: Name: Jim Noris, Ned Hall, Bill Dorris Company: HGC / FMI Invoice to: Name: Ned Hall Company: FMI E-mail: Jimm@figcinc.com, billy_dorris@fml.com Telephone: 620-293-1500 x112, 520-648-8873 Invoice to: Name: Ned Hall Address: 6200 Duval Mine Road PO Box 527, Green Valley, AZ 86622 Telephone: 520-648-8873 If sample(s) received past holding time (HT), or if insufficient HT remains to complete analysis before expiration, shall ACZ proceed with requested short HT analyses? If "No" then ACZ will contact client for further instruction. If neither "YES" no" "No" is indicated, ACZ will proceed with the requested analyses, even if HT is expired, and data will be qualified. PROJECT INFORMATION. ANALYSES REQUESTED (attach list or use quote numb. ANALYSES REQUESTED (attach list or use quote numb. ARE any samples NRC licensable material? No SAMPLE IDENTIFICATION DATE:TIME Matrix Matrix SW (Surface Water) - GW (Ground Weter) - WW (Waste Water) - DW (Crinking Water) - SL (Sludge) - SO (Soil) - OL (Oil) - Other (Specity)	Under Con Observation		_	rtadio								
Copy of Report to: Name: Jim Noris, Ned Hall, Bill Dorris E-mail: Jimm@ngcinc.com, billy_dorris@fml.com Telephone: 520-293-1500 x112, 520-648-8873	Copy of Report to: Name: Jim Noris, Ned Hall, Bill Dorris Company: HGC / FMI Invoice to: Name: Ned Hall Company: FMI E-mail: Jimn@ftgcinc.com, billy_dorris@fml.com Telephone: 629-293-1500 x112, 520-648-8873 Invoice to: Name: Ned Hall Company: FMI E-mail: Jimn@ftgcinc.com, billy_dorris@fml.com Telephone: 629-293-1500 x112, 520-648-8873 Invoice to: Name: Ned Hall Address: 6200 Duval Mine Road PO Box 527, Green Valley, AZ 85622 Telephone: 520-648-8873 Telephone: 520-648-8873 Telephone: 520-648-8873 If sample(s) received past holding time (HT), or if insufficient HT remains to complete analysis before expiration, shall ACZ proceed with requested short HT analyses? If "NO" then ACZ will contact client for further instruction. If neither "YES" nor "NO" is indicated, ACZ will proceed with the requested analyses, even if HT is expired, and data will be qualified. PROJECT INFORMATION. ANALYSES REQUESTED (attach list or use quote numb. ANALYSES REQUESTED (attach list or use quote numb. ARE SEMILE SURFIGEDENTIFICATION DATE:TIME Wattik ARE SEMILE SURFIGEDENTIFICATION DATE:TIME Wattik ARE SEMILE SURFIGEDENTIFICATION DATE:TIME Wattik SW (Surface Water) - GW (Ground Weller) - WW (Wasse Water) - DW (Crinking Water) - SL (Sludge) - SO (Scil) - OL (Oil) - Other (Specily)	company.		1	Telep	hone:	520-293	-1500 x1	33				
Name: Jim Norris, Ned Hall, Bill Dorris Company: HGC / FMI Invoice to: Name: Ned Hall Company: FMI E-mail: jimn@rigcinc.com, billy_dorris@fml.com Telephone: 520-293-1500 x112, 520-648-8873 Address: 6200 Duval Mine Road PO Box 527, Green Vailey, AZ 85622 Telephone: 520-548-8873 If sample(s) received past holding time (HT), or if insufficient HT remains to complete analysis before expiration, shall ACZ proceed with requested short HT analyses? If "NO" then ACZ will proceed with the requested short HT analyses? If "NO" then ACZ will proceed with the requested analyses, even if HT is expired, and data will be qualified. PROJECT INFORMATION ANALYSES REQUESTED (attach list or use quote numb ANALYSES RE	Name: Jim Norris, Ned Hall, Bill Dorris Company: HGC / FMI Invoice to: Name: Ned Hall Company: FMI E-mail: jimn@hgcinc.com, billy_dorris@fml.com Telephone: 520-293-1500 x112, 520-648-8873 Address: 6200 Duval Mine Road PO Box 527, Green Valley, AZ 65622 Telephone: 520-648-8873 If sample(s) received past holding time (HT), or if insufficient HT remains to complete analysis before expiration, shall ACZ proceed with requested short HT analyses? If "NO" then ACZ will proceed with the requested analyses, even if HT is expired, and data will be qualified. PROJECT INFORMATION. ANALYSES REQUESTED (attach list or use quote number of the project/PO #: 0,10325 Reporting state for compliance testing: AZ Sampler's Name: John Villinski ARe any samples NRC licensable material? No samples NRC licensable materia				13.34	,,,,,,,,							
Telephone: 520-293-1500 x112, 520-848-8873 Telephone: 520-293-1500 x112, 520-848-8873 Telephone: 520-293-1500 x112, 520-848-8873 Telephone: 520-293-1500 x112, 520-848-8873 Telephone: 520-548-8873 Telephone:	Telephone: 520-293-1500 x112, 520-648-8873 Telephone: 520-293-1500 x112, 520-648-8873 Telephone: 520-293-1500 x112, 520-648-8873 Telephone: 520-293-1500 x112, 520-648-8873 Telephone: 520-648-873 Telephone: 520-648-8873 Telephone: 520-648-8873 Telephone: 520-648-873 Telephone: 520-648-873 Telephone: 520-648-873	Parklania Klad Hall Bill	Dorrie			ı.	iimn@	Dhacinc.c	om, billy	dorris@	ofmi.com		
Invoice to: Name: Ned Hall Company: FMI E-mail: ned_hall@fmi.com Telephone: 520-648-8873 Telephone: 520-648-8873 If sample(s) received past holding time (HT), or if insufficient HT remains to complete analysis before expiration, shall ACZ proceed with requested short HT analyses? If "NO" then ACZ will contact client for further instruction. If neither "YES" nor "NO" is indicated, ACZ will proceed with the requested analyses, even if HT is expired, and data will be qualified. PROJECT INFORMATION Quote #: Sierrits Sulfate Project/PO #: 040925 Reporting state for compliance testing: AZ Sampler's Name: John Villinski Are any samples NRC licensable material? No SAMPLE IDENTIFICATION DATE:TIME Matrix CC OF GV 10-9-08/13:59 GW 2 X TMM - 10-9-08/13:59 GW 2 X GW -01-GY DWID 10-9-08/13:59 GW 2 X GW -01-GY DWID 10-9-08/13:59 GW 2 X GW -01-GY DWID 10-9-08/13:59 GW 2 X GW -1 X-	Invoice to: Name: Ned Hall Company: FMI E-mail: ned_hall@fmi.com Telephone: 520-648-8873 Te	Ivaine.	Donis	1				-					
Name: Ned Hall Company: FMI E-mail: ned_hall@fmi.com Telephone: 520-648-8873 Telephone: 520-648-873 Telephone: 520-648-8873 Telephone: 520-648-877 Telephone: 520-648-8873 Telephone: 520-64	Name: Ned Hall Company: FMI E-mail: ned_hall@fml.com If sample(s) received past holding time (HT), or if insufficient HT remains to complete analysis before expiration, shall ACZ proceed with requested short HT analyses? If "NO" then ACZ will contact client for further instruction. If neither "YES" nor "NO" is indicated, ACZ will proceed with the requested analyses, even if HT is expired, and data will be qualified. PROJECT INFORMATION Quote #: Sierrite Sulfate Project/PO #: 0.0925 Reporting state for compliance testing: AZ Sampler's Name: John Villinski Are any samples NRC licensable material? No SAMPLE IDENTIFICATION DATE:TIME Matrix CC OF GV 10-9-08/13:59 GW 2 X TMM - 10-9-08/13:59 GW 2 X GW - 1 X - 10-9-08/13-59 GW 2 X GW - 1 X -				reiep	none:		.00 1000	-		-		
Company: FMI E-mail: ned_hall@fmi.com FO Box 527, Green Valley, AZ 85622 Telephone: 520-648-8873 If sample(s) received past holding time (HT), or if insufficient HT remains to complete analysis before expiration, shall ACZ proceed with requested short HT analyses? If "NO" then ACZ will contact client for further instruction. If neither "YES" nor "NO" is indicated, ACZ will proceed with the requested analyses, even if HT is expired, and data will be qualified. PROJECT INFORMATION ANALYSES REQUESTED (attach list or use quote numb Ouote #: Sierita Sulfate Project/PO #: 0.00325 Reporting state for compliance testing: AZ Sampler's Name: John Villinski Are any samples NRC licensable material? No SAMPLE IDENTIFICATION DATE:TIME Matrix Matrix SW (Surface Water) - GW (Ground Water) - WW (Waste Water) - DW (Drinking Water) - SL (Sludge) - SO (Soil) - OL (Oil) - Other (Specify)	Company: FMI E-mail: ned_hall@fmi.com FO Box 527, Green Valley, AZ 85622 Telephone: 520-648-8873 If sample(s) received past holding time (HT), or if insufficient HT remains to complete analysis before expiration, shall ACZ proceed with requested short HT analyses? If "NO" then ACZ will contact client for further instruction. If neither "YES" nor "NO" is indicated, ACZ will proceed with the requested analyses, even if HT is expired, and data will be qualified. PROJECT INFORMATION. ANALYSES REQUESTED (attach list or use quote number of the project/PO #: 0.10325 Reporting state for compliance testing: AZ Sampler's Name: John Villinski Are any samples NRC licensable material? No SAMPLE IDENTIFICATION DATE:TIME Matrix CC OF G V 10-9-08/13:59 GW 2 X TM M - 10-9-08/13:59 GW 2 X GN-01-GV DWT D 10-9-08/13:59 GW 2 X GN-01-GV DWT D 10-9-08/14:01 GW 2 X GW-01-GV DWT D 10-9-08/14:01 GW 2 X GW-1 X GW 1 X GW 2 X GW 1 X GW 1 X GW 1 X GW 2 X GW 1 X GW 1 X GW 1 X GW 1 X GW 2 X GW 1 X GW 1	Invoice to:							_				
E-mail: ned_hal@fmi.com E-mail: ned_hal@fmi.com Telephone: 520-648-8873 If sample(s) received past holding time (HT), or if insufficient HT remains to complete analysis before expiration, shall ACZ proceed with requested short HT analyses? NO	E-mail: ned_hal@fmi.com Telephone: 520-648-8873	INAITIO.		-	Addre	ess:							
## Institute Project/PO #: OJ0325 Reporting state for compliance testing: Az ampler's Name: John Villinski Are any samples NRC (Icensable material? No SAMPLE IDENTIFICATION DATE: TIME Matrix CC OF GV JO-9-08/13:59 GW 2 X GW -2 X GW -4 X	## If sample(s) received past holding time (HT), or if insufficient HT remains to complete analysis before expiration, shall ACZ proceed with requested short HT analyses? If "NO" then ACZ will contact client for further instruction. If neither "YES" nor "NO" is indicated, ACZ will proceed with the requested analyses, even if HT is expired, and data will be qualified. PROJECT INFORMATION ANALYSES REQUESTED (attach list or use quote numb) Quote #: Sierrita Sulfate Project/PO #: 0J0325 Reporting state for compliance testing: AZ Sampler's Name: John Villinski Are any samples NRC (Icensable material? No SAMPLE IDENTIFICATION DATE:TIME Matrix CC OF GV JOG-06/8:25 GW 2 X TM M - 1 10-9-08/13:50 GW 2 X GY-01-GVOWID 10-9-08/13:50 GW 2 X GY-02-GVOWID 10-9-08/13:50 GW 2 X GY-02-GVOWID 10-9-08/14:05 GW 2 X GW 1 X GW 2 X GW 1 X	Company: FMI		-				_		illey, AZ	85622		
analysis before expiration, shall ACZ proceed with requested short HT analyses? If "NO" then ACZ will contact client for further instruction. If neither "YES" nor "NO" is indicated, ACZ will proceed with the requested analyses, even if HT is expired, and data will be qualified. PROJECT INFORMATION. ANALYSES REQUESTED (attach fist or use quote numb or project/PO#: OJ0325 Reporting state for compliance testing: AZ Sampler's Name: John Villinski Are any samples NRC licensable material? No SAMPLE IDENTIFICATION DATE:TIME Matrix CC OF GV JO-9-08/13:50 GW 2 X TMM - 10-9-08/13:50 GW 2 X GV-01-GVDWID 10-9-08/14:05 GW 2 X GV-01-GVDWID 10-9-08/14:05 GW 2 X GW - 4 X GW - 4 X GW - 4 X GW - 1 X Matrix Matrix SW (Surface Water) - GW (Ground Water) - WW (Waste Water) - DW (Drinking Water) - SL (Sludge) - SO (Soil) - OL (Oil) - Other (Specily)	analysis before expiration, shall ACZ proceed with requested short HT analyses? If "NO" then ACZ will contact client for further instruction. If neither "YES" nor "NO" is indicated, ACZ will proceed with the requested analyses, even if HT is expired, and data will be qualified. PROJECT INFORMATION. ANALYSES REQUESTED (attach list or use quote number of the project/PO#; OJ0325 Reporting state for compliance testing: AZ Sampler's Name: John Villinski Are any samples NRC licensable material? No SAMPLE IDENTIFICATION DATE:TIME Matrix CC OF GV 10-9-08/13:50 GW 2 X TMM - 10-9-08/13:50 GW 2 X GV-OJ-GVDWID 10-9-08/13:50 GW 2 X GV-OJ-GVDWID 10-9-08/14:35 GW 2 X GW-J-WIDD 10-9-08/14:35 GW	L man.											
If "NO" then ACZ will contact client for further instruction. If neither "YES" nor "NO" is indicated, ACZ will proceed with the requested analyses, even if HT is expired, and data will be qualified. PROJECT INFORMATION. ANALYSES REQUESTED (attach list or use quote numb lis	If "NO" then ACZ will contact client for further instruction. If neither "YES" nor "NO" is indicated, ACZ will proceed with the requested analyses, even if HT is expired, and data will be qualified. PROJECT INFORMATION. ANALYSES REQUESTED (attach list or use quote number of the project/PO#*.00325 Reporting state for compliance testing: AZ Sampler's Name: John Villinski Are any samples NRC licensable material? No SAMPLE IDENTIFICATION DATE:TIME Matrix CC OF GV JO:G-05/8:25 GW 2 X TM M - 10-9-08/13:50 GW 2 X GV-01-GVDWID 10-9-08/13:50 GW 2 X GV-51-GVDWID 10-9-08/14:35 GW 2 X GV-51-GVDWID 10-9-08/14:35 GW 2 X GW 4 X Matrix SW (Surface Water) · GW (Ground Water) · WW (Waste Water) · DW (Drinking Water) · SL (Sludge) · SO (Soil) · OL (Oil) · Other (Specify)										1	×	_
Is Indicated, ACZ will proceed with the requested analyses, even if HT is expired, and data will be qualified. PROJECT INFORMATION Quote #: Sierrita Sulfate Project/PO #: 0.00325 Reporting state for compliance testing: AZ Sampler's Name: John Villinski Are any samples NRC licensable material? No SAMPLE IDENTIFICATION DATE: TIME CC OF GV 10-9-08/13:00 GW 2 X TM M - 10-9-08/13:50 GW 2 X GV-01-GV DWID 10-9-08/13:50 GW 2 X GV-01-GV DWID 10-9-08/13:50 GW 2 X GV-51-GV DWID 10-9-08/14-35 GW 2 X GW-1-X-	Is Indicated, ACZ will proceed with the requested analyses, even if HT is expired, and data will be qualified. PROJECT INFORMATION. ANALYSES REQUESTED (attach list or use quote number of the project/PO#, 0.00325 Reporting state for compliance testing: AZ Sampler's Name: John Villinski Are any samples NRC licensable material? No SAMPLE IDENTIFICATION DATE: TIME Matrix Matrix Matrix SW (Surface Water) · GW (Ground Water) · WW (Waste Water) · DW (Drinking Water) · SL (Sludge) · SO (Soil) · OL (Oil) · Other (Specify)										11027		Γ-
Quote #: Sierrita Sulfate Project/PO #: 0.J0325 Reporting state for compliance testing: AZ Sampler's Name: Sampler's Name: John Villinski Are any samples NRC licensable material? No SAMPLE IDENTIFICATION DATE:TIME Matrix Gw 2 TM M 10-9-08/12:50 Gw 2 GV-OI-GVDWID 10-9-08/13:50 Gw 2 X GY-O2-GVDWID 10-9-08/14:30 Gw 2 X GY-O3-GVDWID 10-9-08/14:30 Gw 2 X GW 1 X Gw	Quote #: Sierrita Sulfate Project/PO #: OJ0325 Reporting state for compliance testing: AZ Sampler's Name: John Villinski Are any samples NRC licensable material? No SAMPLE IDENTIFICATION DATE:TIME Matrix CC OF GV JO-9-08/8:25 GW 2 X TMM - 10-9-08/8:350 GW 2 X GV-01-GVDWID 10-9-08/13:50 GW 2 X GY-02-GVDWID 10-9-08/14:05 GW 2 X GY-02-GVDWID 10-9-08/14:05 GW 2 X GY-51-GVDWID 10-9-08/14:30 GW 2 X GW 1 X- GW 1								ta will	be qu	alified.		
Project/PO #: OJ0325 Reporting state for compliance testing: AZ Sampler's Name: John Villinski Are any samples NRC licensable material? No SAMPLE IDENTIFICATION ATE:TIME Matrix CC OF GV 10-9-08/13:00 GW 2 X TM M - 1 10-9-08/13:50 GW 2 X GY-01-GYDWID 10-9-08/13:50 GW 2 X GY-02-GYDWID 10-9-08/14:05 GW 2 X GY-02-GYDWID 10-9-08/14:05 GW 2 X GY-51-GVDWID 10-9-08/14:05 GW 2 X GW 1	## SW (Surface Water) · GW (Ground Water) · WW (Waste Water) · DW (Drinking Water) · SL (Sludge) · SO (Soil) · OL (Oil) · Other (Specify)	PROJECT INFORMATION			ANAL	YSES	REQUE	STED	attach	list or	use qu	iote ni	ımber
Are any samples NRC licensable material? No SAMPLE IDENTIFICATION DATE: TIME Matrix CC OF GV 10-9-08/8:25 GW 2 X TMM- 10-9-08/13:50 GW 2 X GN-01-GVDWID 10-9-08/13:50 GW 2 X GN-02-GVDWID 10-9-08/13:50 GW 2 X GN-02-GVDWID 10-9-08/14:05 GW 2 X GN-51-GVDWID 10-9-08/14:05 GW 2 X	Are any samples NRC licensable material? No SAMPLE IDENTIFICATION DATE: TIME Matrix CC OF GV 10-9-08/13:00 GW 2 X TMM- 10-9-08/13:50 GW 2 X GN-01-GVDWID 10-9-08/13:50 GW 2 X GN-02-GVDWID 10-9-08/14:05 GW 2 X GN-51-GVDWID 10-9-08/14:05 GW 2 X GW 2 X GW 2 X GW 2 X GW 1 X G	Quote #: Sierrita Sulfate			.,								
Are any samples NRC licensable material? No SAMPLE IDENTIFICATION DATE: TIME Matrix CC OF GV 10-9-08/13:00 GW 2 X TMM- 10-9-08/13:50 GW 2 X GV-01-GVDWID 10-9-08/13:50 GW 2 X GY-02-GVDWID 10-9-08/14:05 GW 2 X GY-51-GVDWID 10-9-08/14:05 GW 2 X G	Are any samples NRC licensable material? No SAMPLE IDENTIFICATION DATE: TIME Matrix CC OF GV 10.9-08/8:25 GW 2 X TMM- 10-9-08/13:50 GW 2 X GV-01-GVDWID 10-9-08/13:50 GW 2 X GY-02-GVDWID 10-9-08/14:05 GW 2 X GY-51-GVDWID 10-9-08/14:05 GW 2 X GW 2 X GW 2 X GW 2 X GW 1 X GW	Project/PO #: OJ0325		_	ner								
Are any samples NRC licensable material? No SAMPLE IDENTIFICATION DATE: TIME Matrix CC OF GV 10-9-08/13:00 GW 2 X TMM- 10-9-08/13:50 GW 2 X GV-01-GVDWID 10-9-08/13:50 GW 2 X GY-02-GVDWID 10-9-08/14:05 GW 2 X GY-51-GVDWID 10-9-08/14:05 GW 2 X G	Are any samples NRC licensable material? No SAMPLE IDENTIFICATION DATE: TIME Matrix CC OF GV 10.9-08/8:25 GW 2 X TMM- 10-9-08/13:50 GW 2 X GV-01-GVDWID 10-9-08/13:50 GW 2 X GY-02-GVDWID 10-9-08/14:05 GW 2 X GY-51-GVDWID 10-9-08/14:05 GW 2 X GW 2 X GW 2 X GW 2 X GW 1 X GW	Reporting state for compliance	testing: AZ]	ntai	804							
Are any samples NRC licensable material? IN SAMPLE IDENTIFICATION DATE: TIME Matrix CC OF GV 10-G-08/8:25 GW 2 X TMM- 10-G-08/13:50 GW 2 X GV-01-GVDWID 10-G-08/13:50 GW 2 X GY-02-GVDWID 10-G-08/14:05 GW 2 X GV-51-GVDWID 10-G-08/14:30 GW 2 X GW 1 X- GW 1 X-	SAMPLE DENTIFICATION DATE: TIME Matrix	Sampler's Name: John Villinski		ŀ	ပို								
CC OF GV 10-9-08/8:25 GW 2 X TMM- 10-9-08/13:00 GW 2 X GY-OI-GYDWID 10-9-08/13:50 GW 2 X GY-OZ-GY O WID 10-9-08/14:05 GW 2 X GY-SI-GVD WID 10-9-08/14:05 GW 2 X GW 2 X GW 1 X	CC OF GV 10-9-08/8:25 GW 2 X TMM- 10-9-08/8:350 GW 2 X GY-OI-GYDWD 10-9-08/13:50 GW 2 X GY-OZ-GY DWTD 10-9-08/14:05 GW 2 X GY-SI-GVD WTD 10-9-08/14:30 GW 2 X GW 1 X GW				i i								
TMM- 10-9-0K/3'00 GW 2 X	TMM- 10-9-08/13:50 GW 2 X	SAMPLE IDENTIFICATION	DATE:TIME	Matrix	<u> </u>								<u> </u>
GV-OI-GV DWID 10-9-08/13:50 GW 2 X GV-OZ-GV D WID 10-9-08/14:05 GW 2 X GV-SI-GV D WID 10-9-08/14:30 GW 2 X GW 1 X	GV-OI-GVDWID 10-9-08/13.50 GW 2 X GV-OZ-GVD WID 10-9-08/14:05 GW 2 X GV-SI-GVD WID 10-9-08/14:30 GW 2 X GW 2 X GW 1 X-	CCOFGV	10.9-08/8:25	GW	2	×							<u> </u>
GV-OI-GV DWID 10-9-08/13:50 GW 2 X GV-OZ-GV D WID 10-9-08/14:05 GW 2 X GV-SI-GV D WID 10-9-08/14:30 GW 2 X GW 1 X	GV-OI-GVDWID 10-9-08/13.50 GW 2 X GV-OZ-GVD WID 10-9-08/14:05 GW 2 X GV-SI-GVD WID 10-9-08/14:30 GW 2 X GW 2 X GW 1 X-	TMM-1	10-9-08/13:00	GW	2	х							_
GY-SI-GVD WID 10-9-08/14:05 GW 2 X GY-SI-GVD WID 10-9-08/14:30 GW 2 X GW 2 X GW 1 X- G	GY-SI-GVD WITD 10-9-08/14:05 GW 2 X GY-SI-GVD WITD 10-9-08/14:30 GW 2 X GW 2 X GW 1 X	GV-01-GVDWID		GW	2	х							<u> </u>
GV-S1-GV) WTD 10-9-88/9-30 GW 2 X GW 2 X GW 1 X GW 1 X GW 1 X Watrix SW (Surface Water) · GW (Ground Water) · WW (Waste Water) · DW (Drinking Water) · SL (Sludge) · SO (Soil) · OL (Oil) · Other (Specify)	SW (Surface Water) · GW (Ground Water) · WW (Waste Water) · DW (Drinking Water) · SL (Sludge) · SO (Soil) · OL (Dil) · Other (Specify)	GIV-02-GVOWID	10-9-08/14:05	GW	2	×							,
Matrix SW (Surface Water) · GW (Ground Water) · WW (Waste Water) · DW (Drinking Water) · SL (Sludge) · SO (Soil) · OL (Oil) · Other (Specify)	Matrix SW (Surface Water) · GW (Ground Water) · WW (Waste Water) · DW (Drinking Water) · SL (Sludge) · SO (Soil) · OL (Oil) · Other (Specify)	GV-SI-GVDWID	10-9-08/14:30	GW	2	×							
Matrix SW (Surface Water) · GW (Ground Water) · WW (Waste Water) · DW (Drinking Water) · SL (Sludge) · SO (Soil) · OL (Oil) · Other (Specify)	Matrix SW (Surface Water) · GW (Ground Water) · WW (Waste Water) · DW (Drinking Water) · SL (Sludge) · SO (Soil) · OL (Dil) · Other (Specify)			GW	2	- X-							
Matrix SW (Surface Water) · GW (Ground Water) · WW (Waste Water) · DW (Drinking Water) · SL (Sludge) · SO (Soil) · OL (Oil) · Other (Specify)	Matrix SW (Surface Water) · GW (Ground Water) · WW (Waste Water) · DW (Drinking Water) · SL (Sludge) · SO (Soil) · OL (Dil) · Other (Specify)			GW.	1	- X -							<u> </u>
				GW	1	*	ļ <u>. </u>						
				<u> </u>	ļ								<u> </u>
				J									L
	REMARKS	Matrix SW (Surface Water) · GW (3round Water) ⋅ WW (Waste Wate	er) · DW (D	rinking V	/ater) · SI	. (Sludge) · SO (So	il) · OL (C	Oil) · Othe	r (Specify)	
REMARKS		REMARKS											
		Please ref	er to ACZ's terms & con-	ditions I	ocated	on the	e rever	se side	of this	COC.			
Please refer to ACZ's terms & conditions located on the reverse side of this COC.	Please refer to ACZ's terms & conditions located on the reverse side of this COC.										DA	TE:TI	ME
Please refer to ACZ's terms & conditions located on the reverse side of this COC. RELINQUISHED BY: DATE:TIME RECEIVED BY: DATE:TIME		1111	> Idulak-	15.12		(4	2			Inal	5.7	8
		100	<u>/77</u> w	11-1	1		<u> </u>				10	$\frac{1}{2}$	\tilde{z}
		// 			 -						<u> </u>		

FRMAD050.03.05.02

White - Return with sample.

Yellow - Retain for your records.

Analytical Report

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

October 24, 2008

Bill Dorris Phelps Dodge Sierrita P.O. Box 527 6200 West Duval Mine Road Green Valley, AZ 85622-0527

Cc: Dan Simpson

Project ID: OJ06DZ

ACZ Project ID: L72383-SULFATE ONLY

Bill Dorris:

Enclosed are analytical reports for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on October 10, 2008. This project was assigned to ACZ's project number, L72383. Please reference this number in all future inquiries.

At the request of Phelps Dodge Sierrita, Inc. (PDSI), this laboratory report has been prepared to contain only information specific to samples and analytes identified by PDSI as evaluated pursuant to Mitigation Order No. P-500-06 with Arizona Department of Environmental Quality. Samples and analytes unrelated to the Mitigation Order, but which may be identified on the chain of custody and sample receipt, have been reported to PDSI in a separate report.

All analyses were performed according to ACZ's Quality Assurance Plan, version 12.0. The enclosed results relate only to the samples received under L72383. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute. Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all the requirements of NELAC.

This report should be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

ACZ disposes of samples and sub-samples thirty days after the analytical results are reported to the client. That time frame has elapsed for this project. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years. Please notify your Project Manager if you have other needs. If you have any questions, please contact your Project Manager or Customer Service Representative.

Scott Habermehl has reviewed and approved this report.

S. Halermehl

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: PZ-8 ACZ Sample ID: L72383-01

Date Sampled: 10/08/08 11:00

Date Received: 10/10/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result Qual	(Q Units	MDL	PQL	Date	Analyst
Sulfate	SM4500 SO4-D	460	mg/L	10	50	10/15/08 10:28	gkj

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report Header Explanations

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest Limit Upper limit for RPD, in %.

Lower Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit, typically 5 times the MDL.

QC True Value of the Control Sample or the amount added to the Spike

Rec Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

QC	Sar	nple	Types

AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calibration Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution

QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method or calibration procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method. Spikes/Fortified Matrix Determines sample matrix interferences, if any.

Standard Verifies the validity of the calibration.

ACZ Qualifiers (Qual)

- B Analyte concentration detected at a value between MDL and PQL.
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time.
- U The material was analyzed for, but was not detected above the level of the associated value.

The associated value is either the sample quantitation limit or the sample detection limit.

Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (5) EPA SW-846. Test Methods for Evaluating Solid Waste, Third Edition with Update III, December 1996.
- (6) Standard Methods for the Examination of Water and Wastewater, 19th edition, 1995.

Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Alkalinity as CaC	03		SM2320B	- Titration									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254213													
WG254213PBW1	PBW	10/21/08 11:28				U	mg/L		-20	20			
WG254213LCSW1	LCSW	10/21/08 11:38	WC081008-2	820.0001		743.2	mg/L	90.6	90	110			
L72049-01DUP	DUP	10/21/08 11:48			70	71.3	mg/L				1.8	20	
WG254213PBW2	PBW	10/21/08 16:42				U	mg/L		-20	20			
WG254213LCSW2	LCSW	10/21/08 16:53	WC081008-2	820.0001		764.3	mg/L	93.2	90	110			
WG254213LCSW3	LCSW	10/21/08 19:33	WC081008-2	820.0001		783.3	mg/L	95.5	90	110			
Aluminum, disso	olved		M200.7 IC	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253994													
WG253994ICV	ICV	10/17/08 16:28	11080818-1	2		1.973	mg/L	98.7	95	105			
WG253994ICB	ICB	10/17/08 16:32				U	mg/L		- 0.09	0.09			
WG253994LFB	LFB	10/17/08 16:45	11081016-2	1		.992	mg/L	99.2	85	115			
L72365-06AS	AS	10/17/08 17:31	11081016-2	1	U	1.042	mg/L	104.2	85	115			
L72365-06ASD	ASD	10/17/08 17:35	11081016-2	1	U	.979	mg/L	97.9	85	115	6.23	20	
Antimony, disso	lved		M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253702													
WG253702ICV	ICV	10/15/08 3:50	MS081003-4	.02		.02061	mg/L	103.1	90	110			
WG253702ICB	ICB	10/15/08 3:55				U	mg/L		-0.0012	0.0012			
WG253702LFB	LFB	10/15/08 4:05	MS081003-7	.01		.00985	mg/L	98.5	85	115			
L72365-04AS	AS	10/15/08 5:29	MS081003-7	.01	.0006	.0102	mg/L	96	70	130			
L72365-04ASD	ASD	10/15/08 5:34	MS081003-7	.01	.0006	.01049	mg/L	98.9	70	130	2.8	20	
Arsenic, dissolve	ed		M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253702													
WG253702ICV	ICV	10/15/08 3:50	MS081003-4	.05		.05029	mg/L	100.6	90	110			
WG253702ICB	ICB	10/15/08 3:55				U	mg/L		-0.0015	0.0015			
WG253702LFB	LFB	10/15/08 4:05	MS081003-7	.05		.04813	mg/L	96.3	85	115			
L72365-04AS	AS	10/15/08 5:29	MS081003-7	.05	U	.05061	mg/L	101.2	70	130			
L72365-04ASD	ASD	10/15/08 5:34	MS081003-7	.05	U	.05102	mg/L	102	70	130	0.81	20	
Barium, dissolve	ed		M200.7 IC	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253741													
WG253741ICV	ICV	10/16/08 15:26	11080818-1	2		1.9918	mg/L	99.6	95	105			
WG253741ICB	ICB	10/16/08 15:30				U	mg/L		- 0.18	0.18			
WG253741LFB	LFB	10/16/08 15:42	11081013-2	.5		.4979	mg/L	99.6	85	115			
L72365-06AS	AS	10/16/08 16:33	11081013-2	.5	U	.506	mg/L	101.2	85	115			
L72365-06ASD	ASD	10/16/08 16:37	11081013-2	.5	U	.5077	mg/L	101.5	85	115	0.34	20	

REPIN.01.06.05.01 Page 4 of 15

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Beryllium, diss	olved		M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253702													
WG253702ICV	ICV	10/15/08 3:50	MS081003-4	.05		.04846	mg/L	96.9	90	110			
WG253702ICB	ICB	10/15/08 3:55				U	mg/L		-0.0003	0.0003			
WG253702LFB	LFB	10/15/08 4:05	MS081003-7	.05005		.04695	mg/L	93.8	85	115			
L72365-04AS	AS	10/15/08 5:29	MS081003-7	.05005	U	.04679	mg/L	93.5	70	130			
L72365-04ASD	ASD	10/15/08 5:34	MS081003-7	.05005	U	.04691	mg/L	93.7	70	130	0.26	20	
Cadmium, diss	olved		M200.8 IC	CP - MS									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253702													
WG253702ICV	ICV	10/15/08 3:50	MS081003-4	.05		.04939	mg/L	98.8	90	110			
WG253702ICB	ICB	10/15/08 3:55				U	mg/L		-0.0003	0.0003			
WG253702LFB	LFB	10/15/08 4:05	MS081003-7	.05		.04832	mg/L	96.6	85	115			
L72365-04AS	AS	10/15/08 5:29	MS081003-7	.05	U	.04777	mg/L	95.5	70	130			
L72365-04ASD	ASD	10/15/08 5:34	MS081003-7	.05	U	.04824	mg/L	96.5	70	1 30	0.98	20	
Calcium, dissol	ved		M200.7 I	CP CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253741													
WG253741ICV	ICV	10/16/08 15:26	11080818-1	100		99.51	mg/L	99.5	95	105			
WG253741ICB	ICB	10/16/08 15:30				U	mg/L		-12	12			
WG253741LFB	LFB	10/16/08 15:42	11081013-2	67.97008		74.12	mg/L	109	85	115			
L72365-06AS	AS	10/16/08 16:33	11081013-2	67.97008	40.6	109.42	mg/L	101.3	85	115			
L72365-06ASD	ASD	10/16/08 16:37	11081013-2	67.97008	40.6	110.63	mg/L	103	85	115	1.1	20	
Chloride			SM45000)-E									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253824													
WG253824ICB	ICB	10/15/08 10:27				U	mg/L		-3	3			
WG253824ICV	ICV	10/15/08 10:27	WI080808-1	54.945		56.5	mg/L	102.8	90	110			
WG253824LFB1	LFB	10/15/08 14:10	WI080818-2	30		32.4	mg/L	108	90	110			
L72375-02AS	AS	10/15/08 14:12	WI080818-2	30	52	84.6	mg/L	108.7	90	110			
L72375-03DUP	DUP	10/15/08 14:13			70	73	mg/L				4.2	20	RA
WG253824LFB2	LFB	10/15/08 14:14	WI080818-2	30		32.8	mg/L	109.3	90	110			
Chromium, diss	solved		M200.7 IC	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253741													
WG253741ICV	ICV	10/16/08 15:26	11080818-1	2		2.01	mg/L	100.5	95	105			
WG253741ICB	ICB	10/16/08 15:30				U	mg/L		-0.6	0.6			
WG253741LFB	LFB	10/16/08 15:42	11081013-2	.5		.518	mg/L	103.6	85	115			
L72365-06AS	AS	10/16/08 16:33	11081013-2	.5	U	.523	mg/L	104.6	85	115			
L72365-06ASD	ASD	10/16/08 16:37	11081013-2	.5	U	.531	mg/L	106.2	85	115	1.52	20	

REPIN.01.06.05.01 Page 5 of 15

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Cobalt, dissolved	ł		M200.7 IC	P									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253741													
WG253741ICV	ICV	10/16/08 15:26	11080818-1	2.002		2.025	mg/L	101.1	95	105			
WG253741ICB	ICB	10/16/08 15:30				U	mg/L		-0.6	0.6			
WG253741LFB	LFB	10/16/08 15:42	11081013-2	.5		.521	mg/L	104.2	85	115			
L72365-06AS	AS	10/16/08 16:33	11081013-2	.5	.02	.543	mg/L	104.6	85	115			
L72365-06ASD	ASD	10/16/08 16:37	11081013-2	.5	.02	.551	mg/L	106.2	85	115	1.46	20	
Conductivity @2	5C		SM2510B										
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254059													
WG254059LCSW1	LCSW	10/18/08 13:52	PCN30288	1408.8		1410	umhos/cm	100.1	90	110			
WG254059LCSW4	LCSW	10/18/08 15:20	PCN30288	1408.8		1404	umhos/cm	99.7	90	110			
L72384-03DUP	DUP	10/18/08 17:55			2260	2280	umhos/cm				0.9	20	
WG254059LCSW7	LCSW	10/18/08 18:02	PCN30288	1408.8		1388	umhos/cm	98.5	90	110			
WG254059LCSW10		10/18/08 21:12	PCN30288	1408.8		1374	umhos/cm	97.5	90	110			
WG254059LCSW13		10/19/08 0:25	PCN30288	1408.8		1363	umhos/arr	96.7	90	110			
Copper, dissolve	d		M200.7 IC	P									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253741													
WG253741ICV	ICV	10/16/08 15:26	11080818-1	2		1.947	mg/L	97.4	95	105			
WG2537411CB	ICB	10/16/08 15:30	11000010-1	2		U.547	mg/L	37.4	-0.6	0.6			
WG253741LFB	LFB	10/16/08 15:42	11081013-2	.5		.501	mg/L	100.2	85	115			
L72365-06AS	AS	10/16/08 16:33	11081013-2	.5	U	.516	mg/L	103.2	85	115			
L72365-06ASD	ASD	10/16/08 16:37	11081013-2	.5	U	.51	mg/L	102	85	115	1.17	20	
Cyanide, total			M335.4 -	Colorimet	ric w/ distil	lation							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254069													
WG254069ICV	ICV	10/18/08 21:53	WI094040 E	.3		.283	ma/l	94.3	90	110			
WG254069ICB	ICB	10/18/08 21:54	WI081010-5	.3		.203 U	mg/L mg/L	94.5	-0.015	0.015			
WG253871LRB	LRB	10/18/08 21:56				U	•		-0.015	0.015			
WG253871LFB	LFB	10/18/08 21:56	WI094040 0	2		.1982	mg/L	00.1	-0.015 90	110			
	DUP		WI081010-9	.2	U	. 1962 U	mg/L	99.1	90	110	0	20	F
L72339-04DUP L72366-02LFM	LFM	10/18/08 22:10 10/18/08 22:12	WI081010-9	.2	U	.1878	mg/L mg/L	93.9	90	110	U	20	r
Fluoride			SM4500F										
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254074													
WG254074ICV	ICV	10/19/08 10:55	WC081014-1	2		2.04	ma/l	102	90	110			
			VVCU6 IU 14-1	2			mg/L	102					
WG2540741CB	ICB	10/19/08 11:02	WO000040 0	_		U	mg/L	400	-0.3	0.3			
WG254074LFB1	LFB	10/19/08 11:07	WC080912-3	5	-	5.4	mg/L	108	90	110	6.0	20	
L72371-03DUP	DUP	10/19/08 12:23	11/0000040	_	.5	.47	mg/L	110.0	00	440	6.2	20	1
L72371-04AS	AS	10/19/08 12:28	WC080912-3	5	.3	5.84	mg/L	110.8	90	110			ı
WG254074LFB2	LFB	10/19/08 13:04	WC080912-3	5		4.93	mg/L	98.6	90	110			

REPIN.01.06.05.01 Page 6 of 15

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Iron, dissolved			M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253741													
WG253741ICV	ICV	10/16/08 15:26	11080818-1	2		1.951	mg/L	97.6	95	105			
WG253741ICB	ICB	10/16/08 15:30				U	mg/L	0.10	-1.2	1.2			
WG253741LFB	LFB	10/16/08 15:42	11081013-2	1		1.041	mg/L	104.1	85	115			
L72365-06AS	AS	10/16/08 16:33	11081013-2	1	.09	1.144	mg/L	105.4	85	115			
L72365-06ASD	ASD	10/16/08 16:37	11081013-2	1	.09	1.157	mg/L	106.7	85	115	1.13	20	
Lead, dissolved			M200.8 I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253702													
WG253702ICV	ICV	10/15/08 3:50	MS081003-4	.05		.04748	mg/L	95	90	110			
WG253702ICB	ICB	10/15/08 3:55				.0001	mg/L		-0.0003	0.0003			
WG253702LFB	LFB	10/15/08 4:05	MS081003-7	.05		.04484	mg/L	89.7	85	115			
L72365-04AS	AS	10/15/08 5:29	MS081003-7	.05	U	.04474	mg/L	89.5	70	130			
L72365-04ASD	ASD	10/15/08 5:34	MS081003-7	.05	U	.04444	mg/L	88.9	70	130	0.67	20	
Magnesium, diss	solved		M200.7 IC	CP									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253741													
WG253741ICV	ICV	10/16/08 15:26	11080818-1	100		100.01	mg/L	100	95	105			
WG253741ICB	ICB	10/16/08 15:30	110000101	100		U	mg/L	100	-12	12			
WG253741LFB	LFB	10/16/08 15:42	11081013-2	49.96908		53.96	mg/L	108	85	115			
L72365-06AS	AS	10/16/08 16:33	II081013-2	49.96908	8.9	61.15	mg/L	104.6	85	115			
L72365-06ASD	ASD	10/16/08 16:37	11081013-2	49.96908	8.9	61.95	mg/L	106.2	85	115	1.3	20	
Manganese, diss	solved		M200.7 IC	DP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253741													
WG253741ICV	ICV	10/16/08 15:26	11080818-1	2		2.0083	mg/L	100.4	95	105			
WG253741ICB	ICB	10/16/08 15:30	11000010-1	2		U	mg/L	100	-0.3	0.3			
WG253741LFB	LFB	10/16/08 15:42	11081013-2	.5		.5474	mg/L	109.5	85	115			
L72365-06AS	AS	10/16/08 16:33	11081013-2	.5	U	.5653	mg/L	113.1	85	115			
L72365-06ASD	ASD	10/16/08 16:37	11081013-2	.5	Ū	.5709	mg/L	114.2	85	115	0.99	20	
Mercury, dissolv	red		M245.1 C	VAA									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254291													
WG254291ICV	ICV	10/22/08 17:29	11081015-2	.005		.00521	mg/L	104.2	95	105			
WG254291ICB	ICB	10/22/08 17:31				U	mg/L		-0.0002	0.0002			
WG254291LRB	LRB	10/22/08 17:36				U	mg/L		-0.00044	0.00044			
WG254291LFB	LFB	10/22/08 17:38	11080924-2	.002		.00196	mg/L	98	85	115			
L72247-01LFM	LFM	10/22/08 17:47	11080924-2	.002	U	.00198	mg/L	99	85	115			
L72247-01LFMD	LFMD	10/22/08 17:49	11080924-2	.002	U	.00197	mg/L	98.5	85	115	0.51	20	

REPIN.01.06.05.01 Page 7 of 15

Inorganic QC Summary

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

ACZ Project ID: L72383

Molybdenum, dis	ssolved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253994													
WG253994ICV	ICV	10/17/08 16:28	11080818-1	2		2.006	mg/L	100.3	95	105			
WG253994ICB	ICB	10/17/08 16:32				U	mg/L		-0.03	0.03			
WG253994LFB	LFB	10/17/08 16:45	11081016-2	.5		.505	mg/L	101	85	115			
L72365-06AS	AS	10/17/08 17:31	11081016-2	.5	U	.525	mg/L	105	85	115			
L72365-06ASD	ASD	10/17/08 17:35	11081016-2	.5	U	.508	mg/L	101.6	85	115	3.29	20	
Nickel, dissolved	l		M200.7 I	CP									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253741													
WG253741ICV	ICV	10/16/08 15:26	11080818-1	2.004		1.996	mg/L	99.6	95	105			
WG253741ICB	ICB	10/16/08 15:30				U	mg/L		-0.6	0.6			
WG253741LFB	LFB	10/16/08 15:42	11081013-2	.4985		.527	mg/L	105.7	85	115			
L72365-06AS	AS	10/16/08 16:33	11081013-2	.4985	U	.529	mg/L	106.1	85	115			
L72365-06ASD	ASD	10/16/08 16:37	11081013-2	.4985	U	.536	mg/L	107.5	85	115	1.31	20	
Nitrate/Nitrite as	N		M353.2 -	H2SO4 pre	eserved								
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254040													
WG254040ICV	ICV	10/17/08 18:31	WI080916-5	2.416		2.428	mg/L	100.5	90	110			
WG254040ICB	ICB	10/17/08 18:32				U	mg/L		- 0.06	0.06			
WG254044													
WG254044ICV	ICV	10/17/08 19:57	WI080916-5	2.416		2.53	mg/L	104.7	90	110			
WG254044ICB	ICB	10/17/08 19:58				U	mg/L		-0.06	0.06			
WG254044LFB1	LFB	10/17/08 20:00	WI080913-4	2		2.092	mg/L	104.6	90	110			
L72215-01AS	AS	10/17/08 20:02	WI080913-4	2	.37	2.576	mg/L	110.3	90	110			
L72277-01DUP	DUP	10/17/08 20:05			.33	.323	mg/L				2.1	20	
WG254044LFB2	LFB	10/17/08 20:39	WI080913-4	2		2.087	mg/L	104.4	90	110			
pH (lab)			M150.1 -	Electromet	tric								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254059													
WG254059LCSW3	LCSW	10/18/08 14:04	PCN29627	6		6.27	units	104.5	90	110			
WG254059LCSW6	LCSW	10/18/08 15:34	PCN29627	6		6.22	units	103.7	90	110			
L72384-03DUP	DUP	10/18/08 17:55			8.1	8.55	units				5.4	20	
WG254059LCSW9	LCSW	10/18/08 18:15	PCN29627	6		6.26	units	104.3	90	110			
WG254059LCSW12	LCSW	10/18/08 21:24	PCN29627	6		6.26	units	104.3	90	110			
WG254059LCSW15	LCSW	10/19/08 0:38	PCN29627	6		6.24	units	104	90	110			
Potassium, disso	lved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253994													
WG253994ICV	ICV	10/17/08 16:28	11080818-1	20		19.71	mg/L	98.6	95	105			
WG253994ICB	ICB	10/17/08 16:32				U	mg/L		-0.9	0.9			
WG253994LFB	LFB	10/17/08 16:45	11081016-2	99.76186		99.18	mg/L	99.4	85	115			
L72365-06AS	AS	10/17/08 17:31	11081016-2	99.76186	1.4	106.43	mg/L	105.3	85	115			
L72365-06ASD	ASD	10/17/08 17:35	11081016-2	99.76186	1.4	103.15	mg/L	102	85	115	3.13	20	

Inorganic QC Summary

ACZ Project ID: L72383

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Residue, Filteral	ole (TDS) @180C	SM25400	;									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253733													
WG253733PBW	PBW	10/14/08 15:20				U	mg/L		-20	20			
WG253733LCSW	LCSW	10/14/08 15:20	PCN29988	260		260	mg/L	100	80	120			
L72422-03DUP	DUP	10/14/08 15:39			50	50	mg/L				0	20	RA
Selenium, disso	lved		M200.8 I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253702													
WG253702ICV	ICV	10/15/08 3:50	MS081003-4	.05		.04971	mg/L	99.4	90	110			
WG253702ICB	ICB	10/15/08 3:55				U	mg/L		-0.0003	0.0003			
WG253702LFB	LFB	10/15/08 4:05	MS081003-7	.05		.04746	mg/L	94.9	85	115			
L72365-04AS	AS	10/15/08 5:29	MS081003-7	.05	.0011	.05097	mg/L	99.7	70	130			
L72365-04ASD	ASD	10/15/08 5:34	MS081003-7	.05	.0011	.05114	mg/L	100.1	70	130	0.33	20	
Sodium, dissolv	ed		M200.7 IC	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253994													
WG253994ICV	ICV	10/17/08 16:28	11080818-1	100		99.86	mg/L	99.9	95	105			
WG253994ICB	ICB	10/17/08 16:32				U	mg/L		-0.9	0.9			
WG253994LFB	LFB	10/17/08 16:45	11081016-2	98.21624		97.6	mg/L	99.4	85	115			
L72365-06AS	AS	10/17/08 17:31	11081016-2	98.21624	8.6	110.32	mg/L	103.6	85	115			
L72365-06ASD	ASD	10/17/08 17:35	11081016-2	98.21624	8.6	106.81	mg/L	100	85	115	3.23	20	
Sulfate			SM4500	SO4-D									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253772													
WG253772PBW	PBW	10/15/08 8:50				U	mg/L		-30	30			
WG253772LCSW	LCSW	10/15/08 8:55	WC080910-2	100		105	mg/L	105	80	120			
L72384-03DUP	DUP	10/15/08 10:48			1170	1163	mg/L				0.6	20	
Thallium, dissol	ved		M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253702													
WG253702ICV	ICV	10/15/08 3:50	MS081003-4	.05		.04892	mg/L	97.8	90	110			
WG253702ICB	ICB	10/15/08 3:55				U	mg/L		-0.0003	0.0003			
WG253702LFB	LFB	10/15/08 4:05	MS081003-7	.0501		.04614	mg/L	92.1	85	115			
L72365-04AS	AS	10/15/08 5:29	MS081003-7	.0501	U	.0463	mg/L	92.4	70	130			
L72365-04ASD	ASD	10/15/08 5:34	MS081003-7	.0501	U	.04637	mg/L	92.6	70	130	0.15	20	
Uranium, dissolv	ved		M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253702													
WG253702ICV	ICV	10/15/08 3:50	MS081003-4	.05		.04652	mg/L	93	90	110			
WG253702ICB	ICB	10/15/08 3:55				U	mg/L		-0.0003	0.0003			
WG253702LFB	LFB	10/15/08 4:05	MS081003-7	.05		.04509	mg/L	90.2	85	115			
L72365-04AS	AS	10/15/08 5:29	MS081003-7	.05	.0047	.05181	mg/L	94.2	70	130			

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Zinc, dissolved			M200.7 IC	P									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG253741													
WG253741ICV	ICV	10/16/08 15:26	11080818-1	2		1.982	mg/L	99.1	95	105			
WG253741ICB	ICB	10/16/08 15:30				U	mg/L		-0.6	0.6			
WG253741LFB	LFB	10/16/08 15:42	11081013-2	.5		.546	mg/L	109.2	85	115			
L72365-06AS	AS	10/16/08 16:33	11081013-2	.5	U	.532	mg/L	106.4	85	115			
L72365-06ASD	ASD	10/16/08 16:37	11081013-2	.5	U	.542	mg/L	108.4	85	115	1.86	20	

REPIN.01.06.05.01 Page 10 of 15

Inorganic Extended Qualifier Report

ACZ Project ID: L72383

FMI Gold & Copper - Sierrita

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L72383-01	WG253824	Chloride	SM4500CI-E	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254069	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254074	Fluoride	SM4500F-C	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
			SM4500F-C	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG253733	Residue, Filterable (TDS) @180C	SM2540C	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).

Certification Qualifiers

FMI Gold & Copper - Sierrita

ACZ Project ID: L72383

No certification qualifiers associated with this analysis

Sample Receipt

FMI Gold & Copper - Sierrita

OJ06DZ

ACZ Project ID: Date Received: L72383

10/10/2008

Received By:

Date Printed: 10/10/2008

Receipt Verification

- 1) Does this project require special handling procedures such as CLP protocol?
- 2) Are the custody seals on the cooler intact?
- 3) Are the custody seals on the sample containers intact?
- 4) Is there a Chain of Custody or other directive shipping papers present?
- 5) Is the Chain of Custody complete?
- 6) Is the Chain of Custody in agreement with the samples received?
- 7) Is there enough sample for all requested analyses?
- 8) Are all samples within holding times for requested analyses?
- 9) Were all sample containers received intact?
- 10) Are the temperature blanks present?
- 11) Is the trip blank for Cyanide present?
- 12) Is the trip blank for VOA present?
- 13) Are samples requiring no headspace, headspace free?
- 14) Do the samples that require a Foreign Soils Permit have one?

YES	NO	NA
		Х
Χ		
		Х
Χ		
Х		
Х		
Х		
X		
Х		
		Х
	Х	
		Х
		X
		Х

Exceptions: If you answered no to any of the above questions, please describe

N/A

Contact (For any discrepancies, the client must be contacted)

N/A

Shipping Containers

Cooler Id	Temp (°C)	Rad (μR/hr)
2040	4.8	15

Client must contact ACZ Project Manager if analysis should not proceed for samples received outside of thermal preservation acceptance criteria.

Notes

Sample Receipt

FMI Gold & Copper - Sierrita

OJ06DZ

ACZ Project ID: Date Received:

L72383 10/10/2008

Received By:

Sampl	le Coni	tainer F	Preserva	ation

SAMPLE	CLIENT ID	R < 2	G < 2	BK < 2	Y<2	YG<2	B< 2	0<2	T >12	N/A	RAD	ID
L72383-01	PZ-8		Υ		Υ							

Sample Container Preservation Legend

Abbreviation	Description	Container Type	Preservative/Limits
R	Raw/Nitric	RED	pH must be < 2
В	Filtered/Sulfuric	BLUE	pH must be < 2
BK	Filtered/Nitric	BLACK	pH must be < 2
G	Filtered/Nitric	GREEN	pH must be < 2
0	Raw/Sulfuric	ORANGE	pH must be < 2
Р	Raw/NaOH	PURPLE	pH must be > 12 *
T	Raw/NaOH Zinc Acetate	TAN	pH must be > 12
Υ	Raw/Sulfuric	YELLOW	pH must be < 2
YG	Raw/Sulfuric	YELLOW GLASS	pH must be < 2
N/A	No preservative needed	Not applicable	
RAD	Gamma/Beta dose rate	Not applicable	must be $< 250 \mu R/hr$

^{*} pH check performed by analyst prior to sample preparation

Sample IDs Reviewed By:		

ACZ Lab 2773 Downhill Drive Steam	oratories, Inc.		1-5493)E	35	СН	AIN (of CUS	TODY
Report to: Name: Billy Dorn Company: Freeport M. E-mail: billy -dorn's	s cMoRan Sierrita		Addre Gr	een	Valley	D. DUV , AZ -648-8	8561	line Ro)
Copy of Report to:			. 0.00	,,,,,,,					
			E-mai	براير ا	146 B)	hginc.	com	_	
Name: Dan Simpso Company: Hydro Geo			Talan	hone.	520°	293-15	00	Exet 1	33
<u>·</u>	5 Chern		reiep	nonc.	<u> </u>	-17 17		<u> </u>	
nvoice to:									
Name:		\dashv	Addre	ess:					
Company:		\dashv							
E-mail:	. 1 P At /1 PT		Telep					YES	$\dashv \dashv$
f sample(s) received past he analysis before expiration, sl f "NO" then ACZ will contac	nall ACZ proceed with reque t client for further instruction	sted sho on. If nei	rt HT ai ther "Y	nalyses ES" no	i? r "NO"			NO	
s indicated, ACZ will proceed	d with the requested analys	es, even				ta will be q ΓED <i>(attacl</i>			number)
PROJECT INFORMATION			ANA		1 % N=00=9	=	TISE U	use quote	nambar)
Quote #:		4	ည	7	1/0				
Project/PO#: OJ&G		\dashv	of Containers	1,	13.				
eporting state for comp	liance testing:	\dashv	out	15	1,3				
Sampler's Name:		_) }	18	12/2				
Are any samples NRC lice		Magnis	*	Je Je	20				
SAMPLE IDENTIFICATIO		Matrix			2		+		
PZ-8	10-8-08/ 11:00	Gω	5	X	<u> </u>				
					+ +		 		
		_							
					+		+	 	
		 			-				
			<u> </u>		 			<u> </u>	-
			<u> </u>				+	-	
					-				
			<u> </u>		 			 	
			<u> </u>	<u> </u>			<u> </u>		
) - GW (Ground Water) - WW (Waste Wa	ter) · D	W (Drini	king Water) • SL (Sluaç	je) · SO	(SOII) · OL ((Oil) • Otner
REMARKS/ SAMPLE DISCL	OSURES		- سراا		00 II	46	() C =	ו אינו אינו אינו אינו אינו	
copy of report to	Dan Simpson contain	ony botatan	"50 0111	4° 10	190115	0,11.	ر بادن المارين	ACS	mmary
please generate a	third report cont Smith, Rick_Si	mith a	V N.	C000	·com	230112	00.11	. 0 5.	PAGE
UNU DENU TO KICK		6	_ U 177	P	-				
	1 m m/7 mm/								of
UPS TRACKING #	12 867 7E4 23 fer to ACZ's terms & cor	/000 <i>(</i> Inditional	064	d on th	ne rever	sa side of	this CC	OC.	
Please re RELINQUISHED		TIME					tillo CC		:TIME
11 MD 7 ()	nis 10-9-08	-,	سينسج						
Dolly T. Do	20-4-08/	115:00	1—						
				10),			1. // /	
<u> </u>			<u> </u>	<u> </u>				10/00	10 10
	White Detum with on		Vallaur	Dotoi					-

Analytical Report

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

November 04, 2008

Bill Dorris Phelps Dodge Sierrita P.O. Box 527 6200 West Duval Mine Road Green Valley, AZ 85622-0527

Cc: Dan Simpson

Project ID: OJ06DZ

ACZ Project ID: L72507-SULFATE ONLY

Bill Dorris:

Enclosed are analytical reports for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on October 16, 2008. This project was assigned to ACZ's project number, L72507. Please reference this number in all future inquiries.

At the request of Phelps Dodge Sierrita, Inc. (PDSI), this laboratory report has been prepared to contain only information specific to samples and analytes identified by PDSI as evaluated pursuant to Mitigation Order No. P-500-06 with Arizona Department of Environmental Quality. Samples and analytes unrelated to the Mitigation Order, but which may be identified on the chain of custody and sample receipt, have been reported to PDSI in a separate report.

All analyses were performed according to ACZ's Quality Assurance Plan, version 12.0. The enclosed results relate only to the samples received under L72507. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute. Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all the requirements of NELAC.

This report should be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

ACZ disposes of samples and sub-samples thirty days after the analytical results are reported to the client. That time frame has elapsed for this project. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years. Please notify your Project Manager if you have other needs. If you have any questions, please contact your Project Manager or Customer Service Representative.

Scott Habermehl has reviewed and approved this report.

S. Havermehl

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: PZ-7 ACZ Sample ID: **L72507-01**Date Sampled: 10/14/08 12:00

Date Received: 10/16/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	SM4500 SO4-D	420		mg/L	10	50	10/22/08 12:58	kah

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report Header Explanations

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest Limit Upper limit for RPD, in %.

Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit, typically 5 times the MDL.

QC True Value of the Control Sample or the amount added to the Spike

Rec Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

QC Sample Types	QC	Sam	ple i	Тур	es
-----------------	----	-----	-------	-----	----

AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calibration Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution

QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method or calibration procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method. Spikes/Fortified Matrix Determines sample matrix interferences, if any.

Standard Verifies the validity of the calibration.

ACZ Qualifiers (Qual)

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity.
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time.
- U The material was analyzed for, but was not detected above the level of the associated value.

The associated value is either the sample quantitation limit or the sample detection limit.

Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (5) EPA SW-846. Test Methods for Evaluating Solid Waste, Third Edition with Update III, December 1996.
- (6) Standard Methods for the Examination of Water and Wastewater, 19th edition, 1995.

Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

SM2320B - Titration Type Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit Qual
WG254301 PBW
WG254301PBW1
WG254301LCSW2 LCSW 10/22/08 94.99 WC081008-2 820.0001 793.1 mg/L 96.7 90 110 Head of the control
WG254301PBW2
WG254301LCSW5 LCSW 10/22/08 13:21 WC081008-2 820.0001 773.2 mg/L 94.3 90 110 1 20 110 20 10/22/08 14:34 WC081008-2 820.0001 763.9 mg/L 93.2 90 110 1 20 110 20 110 20 110 20 110 20 110 20 2
L72509-01DUP DUP 10/22/08 14:34 WC081008-2 820.0001 T75 176.8 mg/L 93.2 90 110 T90 M20/24 M200.7 M2
MG254301LCSW8
ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit Qual WG254232 WG254232ICV ICV 10/21/08 23:47 II080818-1 2 1.999 mg/L 100 95 105 WG254232ICB ICB 10/21/08 23:50 U mg/L -0.09 0.09 WG254232LFB LFB 10/22/08 0:04 II081016-2 1 1.031 mg/L 103.1 85 115 L72370-01AS AS 10/22/08 0:10 II081016-2 1 U 1.029 mg/L 102.9 85 115 L72370-01ASD ASD 10/22/08 0:14 II081016-2 1 U 1.022 mg/L 102.2 85 115 ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit Qual WG254207 WG254207ICV ICV 10/21/08 23:21 MS081003-4 .02 .02067 mg/L 103.4 90 110 WG254207ICB ICB 10/21/08 23:21 MS081003-4 .02 .02067 mg/L 103.4 90 110 WG254207ICB ICB 10/21/08 23:27 U mg/L -0.0012 0.0012
ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit Qual WG254232 WG254232ICW ICV 10/21/08 23:47 II080818-1 2 1.999 mg/L 100 95 105 105 105 WG254232ICB ICB 10/21/08 23:50 U mg/L 100 95 105 105 105 WG254232ICB ICB 10/21/08 23:50 U U mg/L 103.1 85 115
WG254232 CV ICV 10/21/08 23:47 II080818-1 2 1.999 mg/L 100 95 105
WG254232ICV ICV 10/21/08 23:47 II080818-1 2 1.999 mg/L 100 95 105 WG254232ICB ICB 10/21/08 23:50 U mg/L -0.09 0.09 WG254232LFB LFB 10/22/08 0:04 II081016-2 1 1.031 mg/L 103.1 85 115 L72370-01AS AS 10/22/08 0:10 II081016-2 1 U 1.029 mg/L 102.9 85 115 L72370-01ASD ASD 10/22/08 0:14 II081016-2 1 U 1.022 mg/L 102.2 85 115 0.68 20 Antimony, dissolved M200.8 ICP-MS ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit Qual WG254207 WG254207ICB ICB 10/21/08 23:21 MS081003-4 .02 .02067 mg/L 103.4
WG254232ICB ICB 10/21/08 23:50 U mg/L -0.09 0.09 WG254232LFB LFB 10/22/08 0:04 II081016-2 1 1.031 mg/L 103.1 85 115 L72370-01AS AS 10/22/08 0:10 II081016-2 1 U 1.029 mg/L 102.9 85 115 L72370-01ASD ASD 10/22/08 0:14 II081016-2 1 U 1.022 mg/L 102.2 85 115 0.68 20 Antimony, dissolved M200.8 ICP-MS ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit Qual WG254207 WG254207ICV ICV 10/21/08 23:21 MS081003-4 .02 .02067 mg/L 103.4 90 110 WG254207ICB ICB 10/21/08 23:27 U mg/L 103.4 90 110
WG254232LFB LFB 10/22/08 0:04 II081016-2 1 1.031 mg/L 103.1 85 115 L72370-01AS AS 10/22/08 0:10 II081016-2 1 U 1.029 mg/L 102.9 85 115 L72370-01ASD ASD 10/22/08 0:14 II081016-2 1 U 1.022 mg/L 102.2 85 115 0.68 20 Antimony, dissolved M200.8 ICP-MS ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit Qual WG254207 WG254207ICV ICV 10/21/08 23:21 MS081003-4 .02 .02067 mg/L 103.4 90 110 WG254207ICB ICB 10/21/08 23:27 U mg/L -0.0012 0.0012
L72370-01AS AS 10/22/08 0:10 11081016-2 1 U 1.029 mg/L 102.9 85 115 L72370-01ASD ASD 10/22/08 0:14 11081016-2 1 U 1.022 mg/L 102.2 85 115 0.68 20 Antimony, dissolved M200.8 ICP-MS ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit Qual WG254207 WG254207ICV ICV 10/21/08 23:21 MS081003-4 .02 .02067 mg/L 103.4 90 110 WG254207ICB ICB 10/21/08 23:27 U mg/L -0.0012 0.0012
L72370-01ASD ASD 10/22/08 0:14 II081016-2 1 U 1.022 mg/L 102.2 85 115 0.68 20 Antimony, dissolved M200.8 ICP-MS ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit Qual WG254207 WG254207ICV ICV 10/21/08 23:21 MS081003-4 .02 .02067 mg/L 103.4 90 110 WG254207ICB ICB 10/21/08 23:27 U mg/L .0.0012 0.0012
Antimony, dissolved
ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit Qual WG254207 WG254207ICV ICV 10/21/08 23:21 MS081003-4 .02 .02067 mg/L 103.4 90 110 .001 .001 WG254207ICB ICB 10/21/08 23:27 .02 U mg/L .001/2
WG254207 WG254207ICV ICV 10/21/08 23:21 MS081003-4 .02 .02067 mg/L 103.4 90 110 WG254207ICB ICB 10/21/08 23:27 U mg/L -0.0012 0.0012
WG254207ICV ICV 10/21/08 23:21 MS081003-4 .02 .02067 mg/L 103.4 90 110 WG254207ICB ICB 10/21/08 23:27 U mg/L -0.0012 0.0012
WG254207ICV ICV 10/21/08 23:21 MS081003-4 .02 .02067 mg/L 103.4 90 110 WG254207ICB ICB 10/21/08 23:27 U mg/L -0.0012 0.0012
WG254207ICB ICB 10/21/08 23:27 U mg/L -0.0012 0.0012
· · · · · · · · · · · · · · · · · · ·
L72506-02AS AS 10/21/08 23:53 MS081003-7 .02 U .01811 mg/L 90.6 70 130
L72506-02ASD ASD 10/21/08 23:58 MS081003-7 .02 U .01919 mg/L 96 70 130 5.79 20
Arsenic, dissolved M200.8 ICP-MS
ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit Qual
WG254207
WG254207ICV ICV 10/21/08 23:21 MS081003-4 .05 .05202 mg/L 104 90 110
WG254207ICB ICB 10/21/08 23:27 U mg/L -0.0015 0.0015
WG254207LFB LFB 10/21/08 23:37 MS081003-7 .05 .05095 mg/L 101.9 85 115
L72506-02AS AS 10/21/08 23:53 MS081003-7 .1 .006 .1026 mg/L 96.6 70 130
L72506-02ASD ASD 10/21/08 23:58 MS081003-7 .1 .006 .1046 mg/L 98.6 70 130 1.93 20
Barium, dissolved M200.7 ICP
ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit Qual
WG254232
WG254232ICV ICV 10/21/08 23:47 II080818-1 2 2.0102 mg/L 100.5 95 105
WG254232ICB ICB 10/21/08 23:50 U mg/L -0.009 0.009
·
WG254232LFB LFB 10/22/08 0:04 II081016-2 .5 .4967 mg/L 99.3 85 115
WG254232LFB LFB 10/22/08 0:04 II081016-2 .5 .4967 mg/L 99.3 85 115 L72370-01AS AS 10/22/08 0:10 II081016-2 .5 .16 .6387 mg/L 95.7 85 115

REPIN.01.06.05.01 Page 4 of 15

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Beryllium, diss	olved		M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254207													
WG254207ICV	ICV	10/21/08 23:21	MS081003-4	.05		.04779	mg/L	95.6	90	110			
WG254207ICB	ICB	10/21/08 23:27				U	mg/L		-0.0003	0.0003			
WG254207LFB	LFB	10/21/08 23:37	MS081003-7	.05005		.04809	mg/L	96.1	85	115			
L72506-02AS	AS	10/21/08 23:53	MS081003-7	.1001	U	.09398	mg/L	93.9	70	130			
L72506-02ASD	ASD	10/21/08 23:58	MS081003-7	.1001	U	.09282	mg/L	92.7	70	130	1.24	20	
Cadmium, diss	olved		M200.8 IC	CP - MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254207													
WG254207ICV	ICV	10/21/08 23:21	MS081003-4	.05		.04964	mg/L	99.3	90	110			
WG254207ICB	ICB	10/21/08 23:27				U	mg/L		-0.0003	0.0003			
WG254207LFB	LFB	10/21/08 23:37	MS081003-7	.05		.04894	mg/L	97.9	85	115			
L72506-02AS	AS	10/21/08 23:53	MS081003-7	.1	.0003	.09168	mg/L	91.4	70	130			
L72506-02ASD	ASD	10/21/08 23:58	MS081003-7	.1	.0003	.0932	mg/L	92.9	70	130	1.64	20	
Calcium, dissol	ved		M200.7 IC	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254232													
WG254232ICV	ICV	10/21/08 23:47	11080818-1	100		96.04	mg/L	96	95	105			
WG254232ICB	ICB	10/21/08 23:50				U	mg/L		-0.6	0.6			
WG254232LFB	LFB	10/22/08 0:04	11081016-2	67.97008		68.17	mg/L	100.3	85	115			
_72370-01AS	AS	10/22/08 0:10	11081016-2	67.97008	5.2	73.44	mg/L	100.4	85	115			
_72370-01ASD	ASD	10/22/08 0:14	11081016-2	67.97008	5.2	72.97	mg/L	99.7	85	115	0.64	20	
Chloride			SM45000)-E									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254206													
WG254206ICB1	ICB	10/21/08 8:09				U	mg/L		-3	3			
WG254206ICB	ICB	10/21/08 8:09				Ū	mg/L		-3	3			
WG254206ICV1	ICV	10/21/08 8:09	WI080808-1	54.945		57	mg/L	103.7	90	110			
WG254206ICV	ICV	10/21/08 8:09	WI080808-1	54.945		57	mg/L	103.7	90	110			
L72506-01AS	AS	10/21/08 13:54	10XCL	30	450	465	mg/L	50	90	110			М
L72506-02DUP	DUP	10/21/08 13:55			910	906	mg/L				0.4	20	
WG254206LFB1	LFB	10/21/08 14:39	WI080818-2	30		31.2	mg/L	104	90	110			
WG254206LFB2	LFB	10/21/08 14:39	WI080818-2	30		31.1	mg/L	103.7	90	110			
Chromium, diss	solved		M200.7 IC	CP CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254232													
WG254232ICV	ICV	10/21/08 23:47	11080818-1	2		1.933	mg/L	96.7	95	105			
WG254232ICB	ICB	10/21/08 23:50				U	mg/L		- 0.03	0.03			
WG254232LFB	LFB	10/22/08 0:04	11081016-2	.5		.491	mg/L	98.2	85	115			
L72370-01AS	AS	10/22/08 0:10	11081016-2	.5	U	.488	mg/L	97.6	85	115			
	ASD	10/22/08 0:14	11081016-2	.5	U	.485	mg/L	97	85	115	0.62	20	

REPIN.01.06.05.01 Page 5 of 15

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Cobalt, dissolved	ł		M200.7 IC	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254232													
WG254232ICV	ICV	10/21/08 23:47	11080818-1	2.002		1.957	mg/L	97.8	95	105			
WG254232ICB	ICB	10/21/08 23:50				U	mg/L		-0.03	0.03			
WG254232LFB	LFB	10/22/08 0:04	II081016-2	.5		.493	mg/L	98.6	85	115			
L72370-01AS	AS	10/22/08 0:10	11081016-2	.5	U	.488	mg/L	97.6	85	115			
L72370-01ASD	ASD	10/22/08 0:14	11081016-2	.5	U	.489	mg/L	97.8	85	115	0.2	20	
Conductivity @2	5C		SM2510B	,									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254172													
WG254172LCSW1	LCSW	10/20/08 18:02	PCN30288	1408.8		1439	umhos/cm	102.1	90	110			
WG254172LCSW4	LCSW	10/20/08 20:59	PCN30288	1408.8		1414	umhos/cm	100.4	90	110			
WG254172LCSW7	LCSW	10/20/08 23:47	PCN30288	1408.8		1412	umhos/cm	100.2	90	110			
WG254172LCSW10	LCSW	10/21/08 3:02	PCN30288	1408.8		1407	umhos/cm	99.9	90	110			
L72509-01DUP	DUP	10/21/08 6:10			694	695	umhos/cm				0.1	20	
WG254172LCSW13	LCSW	10/21/08 6:11	PCN30288	1408.8		1402	.mhos/cm	99.5	90	110			
Copper, dissolve	d		M200.7 IC	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254321													
WG254321ICV	ICV	10/23/08 11:38	11080818-1	2		1.949	mg/L	97.5	95	105			
WG254321ICB	ICB	10/23/08 11:42				U	mg/L		-0.03	0.03			
WG254321LFB	LFB	10/23/08 11:54	11081016-2	.5		.48	mg/L	96	85	115			
L72370-01AS	AS	10/23/08 12:01	11081016-2	.5	U	.467	mg/L	93.4	85	115			
L72370-01ASD	ASD	10/23/08 12:04	11081016-2	.5	U	.467	mg/L	93.4	85	115	0	20	
Cyanide, total			M335.4 -	Colorimetr	ic w/ distil	ation							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254439													
WG254439ICV	ICV	10/23/08 17:15	WI081010-5	.3		. 2752	mg/L	91.7	90	110			
WG254439ICB	ICB	10/23/08 17:16				U	mg/L		-0.015	0.015			
WG254455													
WG254455ICV	ICV	10/23/08 18:29	WI081010-5	.3		.292	mg/L	97.3	90	110			
WG254455ICB	ICB	10/23/08 18:30				U	mg/L		-0.015	0.015			
WG254348LRB	LRB	10/23/08 18:31				U	mg/L		-0.015	0.015			
WG254348LFB	LFB	10/23/08 18:32	WI081010-9	.2		.2055	mg/L	102.8	90	110			
L72496-01DUP	DUP	10/23/08 18:34			U	U	mg/L				0	20	
L72506-01LFM	LFM	10/23/08 18:35	WI081010-9	.2	U	_2028	mg/L	101.4	90	110			
70500 00DLID	DUP	10/23/08 18:45			U	U	mg/L				0	20	
L72593-02DUP	201	10/20/00 10.10			U	U	mg/L				U	20	

REPIN.01.06.05.01 Page 6 of 15

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Fluoride			SM4500F	C									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254646													
WG254646ICV	ICV	10/29/08 10:37	WC081028-1	2		2.1	mg/L	105	95	105			
WG254646ICB	ICB	10/29/08 10:44				U	mg/L		-0.3	0.3			
WG254646LFB1	LFB	10/29/08 10:49	WC080912-3	5		5.07	mg/L	101.4	90	110			
L67329-21DUP	DUP	10/29/08 11:02		_	U	U	mg/L				0	20	R/
L72507-01AS	AS	10/29/08 11:35	WC080912-3	5	.3	3.46	mg/L	63.2	90	110			M2
WG254646LFB2	LFB	10/29/08 15:28	WC080912-3	5		4.98	mg/L	99.6	90	110			
Iron, dissolved	_		M200.7 K										
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254232													
WG254232ICV	ICV	10/21/08 23:47	11080818-1	2		1.945	mg/L	97.3	95	105			
WG254232ICB	ICB	10/21/08 23:50				U	mg/L		- 0.06	0.06			
WG254232LFB	LFB	10/22/08 0:04	11081016-2	1		1.011	mg/L	101.1	85	115			
L72370-01AS	AS	10/22/08 0:10	11081016-2	1	.04	1.037	mg/L	99.7	85	115			
L72370-01ASD	ASD	10/22/08 0:14	11081016-2	1	.04	1.035	mg/L	99.5	85	115	0.19	20	
Lead, dissolved			M200.8 I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254207													
WG254207ICV	ICV	10/21/08 23:21	MS081003-4	.05		.04721	mg/L	94.4	90	110			
WG254207ICB	ICB	10/21/08 23:27				.00018	mg/L		-0.0003	0.0003			
WG254207LFB	LFB	10/21/08 23:37	MS081003-7	.05		.04528	mg/L	90.6	85	115			
L72506-02AS	AS	10/21/08 23:53	MS081003-7	.1	U	.07986	mg/L	79.9	70	130			
L72506-02ASD	ASD	10/21/08 23:58	MS081003-7	.1	U	.0808	mg/L	80.8	70	130	1.17	20	
Magnesium, dis	solved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254232													
WG254232ICV	ICV	10/21/08 23:47	11080818-1	100		98.77	mg/L	98.8	95	105			
WG254232ICB	ICB	10/21/08 23:50				U	mg/L		-0.6	0.6			
WG254232LFB	LFB	10/22/08 0:04	11081016-2	49.96908		50.7	mg/L	101.5	85	115			
L72370-01AS	AS	10/22/08 0:10	11081016-2	49.96908	6.8	56.8	mg/L	100.1	85	115			
L72370-01ASD	ASD	10/22/08 0:14	11081016-2	49.96908	6.8	56.99	mg/L	100.4	85	115	0.33	20	
Manganese, diss	solved		M200.7 K	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254232													
WG254232ICV	ICV	10/21/08 23:47	11080818-1	2		1.9359	mg/L	96.8	95	105			
WG254232ICB	ICB	10/21/08 23:50				U	mg/L		-0.015	0.015			
WG254232LFB	LFB	10/22/08 0:04	11081016-2	.5		. 5212	mg/L	104.2	85	115			
L72370-01AS	AS	10/22/08 0:10	11081016-2	.5	U	.5208	mg/L	104.2	85	115			
L72370-01ASD	ASD	10/22/08 0:14	11081016-2	.5	U	.5217	mg/L	104.3	85	115	0.17	20	

REPIN.01.06.05.01 Page 7 of 15

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Mercury, dissol	ved		M245.1 C	VAA									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254766													
WG254766ICV	ICV	10/30/08 11:56	11081015-2	.005		.00499	mg/L	99.8	95	105			
WG254766ICB	ICB	10/30/08 11:58				U	mg/L		-0.0002	0.0002			
WG254766LRB	LRB	10/30/08 12:13				U	mg/L		- 0.00044	0.00044			
WG254766LFB	LFB	10/30/08 12:15	11081027-2	.002		.0021	mg/L	105	85	115			
L72498-06LFM	LFM	10/30/08 13:03	11081027-2	.002	U	.00204	mg/L	102	85	115			
L72498-06LFMD	LFMD	10/30/08 13:05	11081027-2	.002	U	.00203	mg/L	101.5	85	115	0.49	20	
Molybdenum, d	issolved		M200.7 IC	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254232													
WG254232ICV	ICV	10/21/08 23:47	11080818-1	2		1.945	mg/L	97.3	95	105			
WG254232ICB	ICB	10/21/08 23:50				U	mg/L		- 0.03	0.03			
WG254232LFB	LFB	10/22/08 0:04	11081016-2	.5		.518	mg/L	103.6	85	115			
L72370-01AS	AS	10/22/08 0:10	11081016-2	.5	.13	.628	mg/L	99.6	85	115			
L72370-01ASD	ASD	10/22/08 0:14	11081016-2	.5	.13	.628	mg/L	99.6	85	115	0	20	
Nickel, dissolve	ed		M200.7 IC	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254321													
WG254321ICV	ICV	10/23/08 11:38	11080818-1	2.004		1.961	mg/L	97.9	95	105			
WG254321ICB	ICB	10/23/08 11:42				U	mg/L		- 0.03	0.03			
WG254321LFB	LFB	10/23/08 11:54	11081016-2	.4985		.497	mg/L	99.7	85	115			
L72370-01AS	AS	10/23/08 12:01	II081016 - 2	.4985	U	.497	mg/L	99.7	85	115			
L72370-01ASD	ASD	10/23/08 12:04	11081016-2	.4985	U	.501	mg/L	100.5	85	115	8.0	20	
Nitrate/Nitrite as	s N		M353.2 -	H2SO4 pr	reserved								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254453													
WG2544531CV	ICV	10/23/08 18:14	WI080916-5	2.416		2.458	mg/L	101.7	90	110			
WG254453ICB	ICB	10/23/08 18:15				U	mg/L		- 0.06	0.06			
WG254457													
WG254457ICV	ICV	10/23/08 19:45	WI080916-5	2.416		2.227	mg/L	92.2	90	110			
WG254457ICB	ICB	10/23/08 19:46				U	mg/L		- 0.06	0.06			
WG254457LFB1	LFB	10/23/08 19:48	WI080913-4	2		1.868	mg/L	93.4	90	110			
L72370-01AS	AS	10/23/08 19:50	WI080913-4	2	U	1.934	mg/L	96.7	90	110			
											_	00	-
L72370-02DUP	DUP	10/23/08 19:53			U	U	mg/L				0	20	F

Page 8 of 15 REPIN.01.06.05.01

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

pH (lab)			M150.1 -	Electromet	ric								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254172													
WG254172LCSW3	LCSW	10/20/08 18:16	PCN29627	6		6.12	units	102	90	110			
WG254172LCSW6	LCSW	10/20/08 21:10	PCN29627	6		6.11	units	101.8	90	110			
WG254172LCSW9	LCSW	10/21/08 0:01	PCN29627	6		6.09	units	101.5	90	110			
WG254172LCSW12	LCSW	10/21/08 3:16	PCN29627	6		6.05	units	100.8	90	110			
L72509-01DUP	DUP	10/21/08 6:10			8.4	8.4	units				0	20	
WG254172LCSW15	LCSW	10/21/08 6:23	PCN29627	6		6.06	units	101	90	110			
Potassium, disso	lved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254232													
WG254232ICV	ICV	10/21/08 23:47	11080818-1	20		20.09	mg/L	100.5	95	105			
WG254232ICB	ICB	10/21/08 23:50				U	mg/L		-0.9	0.9			
WG254232LFB	LFB	10/22/08 0:04	11081016-2	99.76186		102.12	mg/L	102.4	85	115			
L72370-01AS	AS	10/22/08 0:10	11081016-2	99.76186	5	107.53	mg/L	102.8	85	115			
L72370-01ASD	ASD	10/22/08 0:14	11081016-2	99.76186	5	108.52	mg/L	103.8	85	115	0.92	20	
Residue, Filterab	le (TDS) @180C	SM25400	2									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254346													
WG254346PBW	PBW	10/22/08 14:40				U	mg/L		-20	20			
WG254346LCSW	LCSW	10/22/08 14:40	PCN29989	260		242	mg/L	93.1	80	120			
L72509-03DUP	DUP	10/22/08 14:59			260	258	mg/L				0.8	20	
Selenium, dissolv	ved .		M200.8 I	CP-MS									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254207													
WG254207ICV	ICV	10/21/08 23:21	MS081003-4	.05		.04925	mg/L	98.5	90	110			
WG254207ICB	ICB	10/21/08 23:27				U	mg/L		-0.0003	0.0003			
WG254207LFB	LFB	10/21/08 23:37	MS081003-7	.05		.04733	mg/L	94.7	85	115			
L72506-02AS	AS	10/21/08 23:53	MS081003-7	.1	.0002	.095	mg/L	94.8	70	130			
L72506-02ASD	ASD	10/21/08 23:58	MS081003-7	.1	.0002	.09542	mg/L	95.2	70	130	0.44	20	
Sodium, dissolve	ed		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254232													
WG254232ICV	ICV	10/21/08 23:47	11080818-1	100		100.3	mg/L	100.3	95	105			
WG254232ICV	ICV	10/21/08 23:47	11080818-1	100		101.15	mg/L	101.2	95	105			
WG254232ICB	ICB	10/21/08 23:50				U	mg/L		-0.9	0.9			
WG254232ICB	ICB	10/21/08 23:50				U	mg/L		- 6	6			
WG254232LFB	LFB	10/22/08 0:04	11081016-2	98.21624		1 01.4	mg/L	103.2	85	115			
WG254232LFB	LFB	10/22/08 0:04	11081016-2	98.21624		101.45	mg/L	103.3	85	115			
L72370-01AS	AS	10/22/08 0:10	11081016-2	98.21624	319	398.72	mg/L	81.2	85	115			N
L72370-01ASD	ASD	10/22/08 0:14	11081016-2	98.21624	319	404.23	mg/L	86.8	85	115	1.37	20	

REPIN.01.06.05.01 Page 9 of 15

FMI Gold & Copper - Sierrita

Sulfate			SM4500 S	04-D									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254222													
WG254222PBW	PBW	10/22/08 12:30				U	mg/L		-30	30			
WG254222LCSW	LCSW	10/22/08 12:33	WC080910-2	100		110	mg/L	110	80	1 20			
L72508-02DUP	DUP	10/22/08 13:07			3260	3149	mg/L				3.5	20	
Thallium, dissol	ved		M200.8 IC	P - MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qua
WG254207													
WG254207ICV	ICV	10/21/08 23:21	MS081003-4	.05		.04863	mg/L	97.3	90	110			
WG254207ICB	ICB	10/21/08 23:27				U	mg/L		-0.0003	0.0003			
WG254207LFB	LFB	10/21/08 23:37	MS081003-7	.0501		.04603	mg/L	91.9	85	115			
L72506-02AS	AS	10/21/08 23:53	MS081003-7	.1002	U	.09378	mg/L	93.6	70	1 30			
L72506-02ASD	ASD	10/21/08 23:58	MS081003-7	.1002	U	.09552	mg/L	95.3	70	130	1.84	20	
Uranium, dissol	ved		M200.8 IC	P - MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254207													
WG254207ICV	ICV	10/21/08 23:21	MS081003-4	.05		.04657	mg/L	93.1	90	110			
WG254207ICB	ICB	10/21/08 23:27				U	mg/L		-0.0003	0.0003			
WG254207LFB	LFB	10/21/08 23:37	MS081003-7	.05		.04495	mg/L	89.9	85	115			
L72506-02AS	AS	10/21/08 23:53	MS081003-7	.1	.0006	.09588	mg/L	95.3	70	1 30			
L72506-02ASD	ASD	10/21/08 23:58	MS081003-7	.1	.0006	.0975	mg/L	96.9	70	130	1.68	20	
Zinc, dissolved			M200.7 IC	Р									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254321													
WG254321ICV	ICV	10/23/08 11:38	II080818-1	2		1.94	mg/L	97	95	105			
WG254321ICB	ICB	10/23/08 11:42				U	mg/L		- 0.03	0.03			
WG254321LFB	LFB	10/23/08 11:54	11081016-2	.5		.481	mg/L	96.2	85	115			
L72370-01AS	AS	10/23/08 12:01	11081016-2	.5	U	.483	mg/L	96.6	85	115			
							J			_			

Inorganic Extended Qualifier Report

FMI Gold & Copper - Sierrita

ACZ Project ID: L72507

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L72507-01	WG254232	Sodium, dissolved	M200.7 ICP	MA	Recovery for either the spike or spike duplicate was outside of the acceptance limits; the RPD was within the acceptance limits.
	WG254206	Chloride	SM4500CI-E	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG254455	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254646	Fluoride	SM4500F-C	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			SM4500F-C	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254457	Nitrate/Nitrite as N	M353.2 - H2SO4 preserved	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254346	Residue, Filterable (TDS) @180C	SM2540C	HC	Initial analysis within holding time. Reanalysis was past holding time, which was required due to a QC failure during the initial analysis.

Certification Qualifiers

FMI Gold & Copper - Sierrita

ACZ Project ID: L72507

No certification qualifiers associated with this analysis

Sample Receipt

FMI Gold & Copper - Sierrita

OJ06DZ

ACZ Project ID: Date Received: L72507

10/16/2008

Received By:

Date Printed: 10/16/2008

Receipt Verification

- 1) Does this project require special handling procedures such as CLP protocol?
- 2) Are the custody seals on the cooler intact?
- 3) Are the custody seals on the sample containers intact?
- 4) Is there a Chain of Custody or other directive shipping papers present?
- 5) Is the Chain of Custody complete?
- 6) Is the Chain of Custody in agreement with the samples received?
- 7) Is there enough sample for all requested analyses?
- 8) Are all samples within holding times for requested analyses?
- 9) Were all sample containers received intact?
- 10) Are the temperature blanks present?
- 11) Is the trip blank for Cyanide present?
- 12) Is the trip blank for VOA present?
- 13) Are samples requiring no headspace, headspace free?
- 14) Do the samples that require a Foreign Soils Permit have one?

YES	NO	NA
		Х
Χ		
		Х
Х		
Х		
Χ		
Χ		
X		
Χ		
		Х
	Х	
		Х
		X
		Х

Exceptions: If you answered no to any of the above questions, please describe

N/A

Contact (For any discrepancies, the client must be contacted)

N/A

Shipping Containers

Cooler Id	Temp (°C)	Rad (µR/hr)
1172	1.8	13

Client must contact ACZ Project Manager if analysis should not proceed for samples received outside of thermal preservation acceptance criteria.

Notes

Sample Receipt

FMI Gold & Copper - Sierrita

OJ06DZ

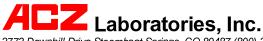
ACZ Project ID: Date Received:

L72507 10/16/2008

Received By:

Sample Co	ntainer	Preservati	on
-----------	---------	------------	----

SAMPLE	CLIENT ID	R < 2	G < 2	BK < 2	Y<2	YG<2	B< 2	0<2	T >12	N/A	RAD	ID
L72507-01	PZ-7		Υ		Υ							


Sample Container Preservation Legend

Abbreviation	Description	Container Type	Preservative/Limits
R	Raw/Nitric	RED	pH must be < 2
В	Filtered/Sulfuric	BLUE	pH must be < 2
BK	Filtered/Nitric	BLACK	pH must be < 2
G	Filtered/Nitric	GREEN	pH must be < 2
0	Raw/Sulfuric	ORANGE	pH must be < 2
Р	Raw/NaOH	PURPLE	pH must be > 12 *
T	Raw/NaOH Zinc Acetate	TAN	pH must be > 12
Υ	Raw/Sulfuric	YELLOW	pH must be < 2
YG	Raw/Sulfuric	YELLOW GLASS	pH must be < 2
N/A	No preservative needed	Not applicable	
RAD	Gamma/Beta dose rate	Not applicable	must be < 250 μR/hr

^{*} pH check performed by analyst prior to sample preparation

Sample IDs Reviewed By:		

ACZ		atorie	•		+0	D)H	CH	AIN	of Cl	UST	DDY
2773 Downhill Driv	re Steamboa	t Springs, CC	80487 (8	00) 334	-5 49 3		(
Report to:	^ _								- 4	00.1	0.1	
Name: Bill D		<u> </u>		-				<u>w. Du</u>			e Rd	
Company: Freep				-	1			1, AZ.			•	-
E-mail: billy-		FMI, COM	١		l elep	hone:	520	-648-	881:	3		
Copy of Report to												
Name: Dan	<u>Simpso</u>	^		1	E-mai	il: 👌	ans@	hgine), Cov	n		
Company: Hy	dro Geo	. Chem	1	j	Telep	hone:	520-	293-15	00	<u>Ext</u> ;	- 13	}
Invoice to:												
Name:					Addre	ess:						
Company:]								
E-mail:					Telep	hone:						
If sample(s) receive	ed past holdir	ng time (HT)	, or if insuffic	ient HT	remain	s to co	mplete			YES		
analysis before exp		•	-			-				NO		j
If "NO" then ACZ w is indicated, ACZ wi								a will be a	ualified			
PROJECT INFORM	·	ar aro roquo	otou <u>unuiyoo</u>	o, 010.11				ED (attacl		use que	ote nun	nber)
Quote #:						0	1/2			*		
Project/PO #:	0586	D7		1	Sers	12	100					
Reporting state f]	of Containers	1/2	52					
Sampler's Name:	<u>'</u>	<u> </u>		1	Š	8	2					
Are any samples	NRC licensa	ble materia	l?	1	# of	200	52					
SAMPLE IDENT			E:TIME	Matrix		A	2,6					
PZ-7		10-14-08	/12:00	6W	5	X	X					
				•								
	-			<u> </u>					_			
				<u> </u>								
				ļ								
				<u> </u>								
									_			
						ļ						
	ace Water) • G		ater) - WW (W	aste Wat	er) - D	W (Drink	ing W ater)	- SL (Sludg	ge) · SO	(Soil) •	OL (Oil)	· Other
REMARKS/ SAMP	LE DISCLOS	URES	ra andra i a a		1100	il co	- 46		A)C	<i>~</i>		
Copy of repor	T TO DEA	Simpson	L	+ 011/9	.504 	/ /E.	50 11 7 	U an I	<i></i>		100	
Please general Summary a	ite a th	to Rich	est con esmith	. Ri	ا" وا دلا_:	Smit	h@U	resun RsCorp	o, Con	n,	ريا د	PAGE
UPS TRACK	ING #	17 867	7E4 2	3 1000	56	90						of
	lease refer	to ACZ's te			ocated				this CC		A 371 1	VE
	UISHED BY:		DATE:T			100	RECEIVE) BYH		r:	ATE:TI	
Billy 7.	Jours		10-15-08/	15:00		U	2)			10.11	0081	0:30
		1										

Analytical Report

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

November 20, 2008

Bill Dorris Phelps Dodge Sierrita P.O. Box 527 6200 West Duval Mine Road Green Valley, AZ 85622-0527

Cc: Dan Simpson

Project ID: OJ06DZ

ACZ Project ID: L72578- SULFATE ONLY

Bill Dorris:

Enclosed are analytical reports for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on October 21, 2008. This project was assigned to ACZ's project number, L72578. Please reference this number in all future inquiries.

At the request of Phelps Dodge Sierrita, Inc. (PDSI), this laboratory report has been prepared to contain only information specific to samples and analytes identified by PDSI as evaluated pursuant to Mitigation Order No. P-500-06 with Arizona Department of Environmental Quality. Samples and analytes unrelated to the Mitigation Order, but which may be identified on the chain of custody and sample receipt, have been reported to PDSI in a separate report.

All analyses were performed according to ACZ's Quality Assurance Plan, version 12.0. The enclosed results relate only to the samples received under L72578. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute. Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all the requirements of NELAC.

This report should be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

ACZ disposes of samples and sub-samples thirty days after the analytical results are reported to the client. That time frame has elapsed for this project. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years. Please notify your Project Manager if you have other needs. If you have any questions, please contact your Project Manager or Customer Service Representative.

Scott Habermehl has reviewed and approved this report.

S. Habermehl

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: MH-25A ACZ Sample ID: L72578-01
Date Sampled: 10/17/08 13:26
Date Received: 10/21/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	SM4500 SO4-D	50		mg/L	10	50	10/24/08 15:58	kah

FMI Gold & Copper - SierritaProject ID: OJ06DZ
Sample ID: MH-25B

ACZ Sample ID: **L72578-02**Date Sampled: 10/17/08 13:59
Date Received: 10/21/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result Qual	(Q Units	MDL	PQL	Date	Analyst
Sulfate	SM4500 SO4-D	1660	mg/L	20	100	10/24/08 16:02	kah

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: MH-25C ACZ Sample ID: *L72578-03*

Date Sampled: 10/17/08 13:05

Date Received: 10/21/08
Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	SM4500 SO4-D	1270		ma/L	20	100	10/24/08 16:06	kah

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: MH-26A ACZ Sample ID: **L72578-04**

Date Sampled: 10/17/08 14:25
Date Received: 10/21/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Sulfate	SM4500 SO4-D	20	В	*	mg/L	10	50	10/29/08 10:15	kah

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report Header Explanations

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest Limit Upper limit for RPD, in %.

Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit, typically 5 times the MDL.

QC True Value of the Control Sample or the amount added to the Spike

Rec Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

QC Sam	nia I	wnas

AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calibration Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution

QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method or calibration procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method. Spikes/Fortified Matrix Determines sample matrix interferences, if any.

Standard Verifies the validity of the calibration.

ACZ Qualifiers (Qual)

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity.
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time.
- U The material was analyzed for, but was not detected above the level of the associated value.

The associated value is either the sample quantitation limit or the sample detection limit.

Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (5) EPA SW-846. Test Methods for Evaluating Solid Waste, Third Edition with Update III, December 1996.
- (6) Standard Methods for the Examination of Water and Wastewater, 19th edition, 1995.

Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.

FMI Gold & Copper - Sierrita

Alkalinity as CaC	:03		SM2320B	- Titration									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254528													
WG254528PBW1	PBW	10/24/08 17:43				U	mg/L		-20	20			
WG254528LCSW2	LCSW	10/24/08 17:55	WC081022-2	820.0001		795.4	mg/L	97	90	110			
WG254528PBW2	PBW	10/24/08 21:08				U	mg/L		-20	20			
WG254528LCSW5	LCSW	10/24/08 21:20	WC081022-2	820.0001		802.5	mg/L	97.9	90	110			
L72578-01DUP	DUP	10/24/08 23:01			160	153.8	mg/L				4	20	
L72585-01DUP	DUP	10/25/08 0:19			134	133.3	mg/L		20	20	0.5	20	
WG254528PBW3 WG254528LCSW8	PBW LCSW	10/25/08 0:25 10/25/08 0:36	WC081022-2	820.0001		U 809.5	mg/L mg/L	98.7	-20 90	20 110			
WG254528PBW4	PBW	10/25/08 0:30	VVC001022-2	020.0001		U	mg/L	90.7	-20	20			
WG254528LCSW11		10/25/08 3:52	WC081022-2	820.0001		805.9	mg/L	98.3	90	110			
Aluminum, disso	lved		M200.7 IC	CP CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254351													
WG254351ICV	ICV	10/28/08 22:11	11080818-1	2		1.998	mg/L	99.9	95	105			
WG254351ICB	ICB	10/28/08 22:14				U	mg/L		-0.09	0.09			
WG254351LFB	LFB	10/28/08 22:28	11081016-2	1		1.026	mg/L	102.6	85	115			
L72569-01AS	AS	10/28/08 23:22	11081016-2	1	.03	1.109	mg/L	107.9	85	115			
L72569-01ASD	ASD	10/28/08 23:26	11081016-2	1	.03	1.105	mg/L	107.5	85	115	0.36	20	
Antimony, disso	lved		M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254621													
WG254621ICV	ICV	10/28/08 8:11	MS081003-4	.02		.02111	mg/L	105.6	90	110			
WG254621ICB	ICB	10/28/08 8:17				U	mg/L		-0.00088	0.00088			
WG254621LFB	LFB	10/28/08 8:29	MS081003-7	.01		.00959	mg/L	95.9	85	115			
L72564-01AS	AS	10/28/08 10:25	MS081003-7	.01	U	.00888	mg/L	88.8	70	130			
L72564-01ASD	ASD	10/28/08 10:43	MS081003-7	.01	U	.0089	mg/L	89	70	130	0.22	20	
Arsenic, dissolve	ed		M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254621													
WG254621ICV	ICV	10/28/08 8:11	MS081003-4	.05		.05116	mg/L	102.3	90	110			
WG254621ICB	ICB	10/28/08 8:17				U	mg/L		-0.0011	0.0011			
WG254621LFB	LFB	10/28/08 8:29	MS081003-7	.05		.04995	mg/L	99.9	85	115			
L72564-01AS	AS	10/28/08 10:25	MS081003-7	.05	U	.05096	mg/L	101.9	70	1 30			
L72564-01ASD	ASD	10/28/08 10:43	MS081003-7	.05	U	.05153	mg/L	103.1	70	130	1.11	20	
Barium, dissolve	ed		M200.7 IC	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254351													
WG254351ICV	ICV	10/28/08 22:11	11080818-1	2		1.946	mg/L	97.3	95	105			
WG254351ICB	ICB	10/28/08 22:14				U	mg/L		-0.009	0.009			
WG254351LFB	LFB	10/28/08 22:28	11081016-2	.5		. 5028	mg/L	100.6	85	115			
L72569-01AS	AS	10/28/08 23:22	11081016-2	.5	.009	. 5423	mg/L	106.7	85	115			
L72569-01ASD	ASD	10/28/08 23:26	11081016-2	.5	.009	.5326	mg/L	104.7	85	115	1.8	20	

FMI Gold & Copper - Sierrita

Beryllium, disso	olved		M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254621													
WG254621ICV	ICV	10/28/08 8:11	MS081003-4	.05		.05016	mg/L	100.3	90	110			
WG254621ICB	ICB	10/28/08 8:17				.0001	mg/L		-0.00022	0.00022			
WG254621LFB	LFB	10/28/08 8:29	MS081003-7	.05005		.05102	mg/L	101.9	85	115			
L72564-01AS	AS	10/28/08 10:25	MS081003-7	.05005	U	.04651	mg/L	92.9	70	130			
L72564-01ASD	ASD	10/28/08 10:43	MS081003-7	.05005	U	.04755	mg/L	95	70	130	2.21	20	
Cadmium, disso	olved		M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254621													
WG254621ICV	ICV	10/28/08 8:11	MS081003-4	.05		.04918	mg/L	98.4	90	110			
WG254621ICB	ICB	10/28/08 8:17				U	mg/L		-0.00022	0.00022			
WG254621LFB	LFB	10/28/08 8:29	MS081003-7	.05		.04941	mg/L	98.8	85	115			
L72564-01AS	AS	10/28/08 10:25	MS081003-7	.05	U	.0464	mg/L	92.8	70	1 30			
L72564-01ASD	ASD	10/28/08 10:43	MS081003-7	.05	U	.04711	mg/L	94.2	70	130	1.52	20	
Calcium, dissol	ved		M200.7 IC	CP									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254351													
WG254351ICV	ICV	10/28/08 22:11	11080818-1	100		96.1	mg/L	96.1	95	105			
WG254351ICB	ICB	10/28/08 22:14				U	mg/L		-0.6	0.6			
WG254351LFB	LFB	10/28/08 22:28	11081016-2	67.97008		68.48	mg/L	100.8	85	115			
L72569-01AS	AS	10/28/08 23:22	11081016-2	67.97008	187	243.32	mg/L	82.9	85	115			M
L72569-01ASD	ASD	10/28/08 23:26	11081016-2	67.97008	187	243.61	mg/L	83.3	85	115	0.12	20	M
Chloride			SM4500C	:I-E									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254543													
WG254543ICB	ICB	10/25/08 12:52				U	mg/L		-3	3			
WG254543ICV	ICV	10/25/08 12:52	WI080808-1	54.945		57	mg/L	103.7	90	110			
L72563-03AS	AS	10/25/08 13:57	WI080818-2	30	10	42	mg/L	106.7	90	110			
L72563-04DUP	DUP	10/25/08 13:57			10	9.4	mg/L				6.2	20	
L72578-04AS	AS	10/25/08 14:03	WI080818-2	30	10	42.2	mg/L	107.3	90	110			
L72580-01DUP	DUP	10/25/08 14:05			6	5.6	mg/L				6.9	20	R/
WG254543LFB1	LFB	10/25/08 14:12	WI080818-2	30	-	32.8	mg/L	109.3	90	110			
WG254543LFB2	LFB	10/25/08 14:23	WI080818-2	30		32	mg/L	106.7	90	110			
Chromium, diss	olved		M200.7 IC	DP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254744													
WG254744ICV	ICV	10/29/08 11:41	11080818-1	2		1.997	mg/L	99.9	95	105			
WG254744ICB	ICB	10/29/08 11:44		_		U	mg/L	23.0	- 0.03	0.03			
WG254744LFB	LFB	10/29/08 11:55	11081023-4	.5		.527	mg/L	105.4	85	115			
		10/29/08 12:01	II081023-4	.5 .5	U	.534	mg/L	106.8	85	115			
								.00.0		110			
L72438-01AS	AS ASD				11		•	105.8	85	115	0 94	20	
	ASD AS	10/29/08 12:03 10/29/08 12:47	II081023-4 II081023-4	.5 1	U U	.529 1.045	mg/L mg/L	105.8 104.5	85 85	115 115	0.94	20	

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Cobalt, dissolved	ł		M200.7 IC	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254351													
WG254351ICV	ICV	10/28/08 22:11	11080818-1	2.002		1.914	mg/L	95.6	95	105			
WG254351ICB	ICB	10/28/08 22:14				U	mg/L		-0.03	0.03			
WG254351LFB	LFB	10/28/08 22:28	11081016-2	.5		.507	mg/L	101.4	85	115			
L72569-01AS	AS	10/28/08 23:22	11081016-2	.5	.18	.672	mg/L	98.4	85	115			
L72569-01ASD	ASD	10/28/08 23:26	11081016-2	.5	.18	.675	mg/L	99	85	115	0.45	20	
Conductivity @25	5C		SM2510B	1									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254528													
WG254528LCSW1	LCSW	10/24/08 17:44	PCN30288	1408.8		1449	umhos/cm	102.9	90	110			
WG254528LCSW4	LCSW	10/24/08 21:10	PCN30288	1408.8		1400	umhos/cm	99.4	90	110			
_72578-01DUP	DUP	10/24/08 23:01			339	339	umhos/cm				0	20	
_72585-01DUP	DUP	10/25/08 0:19			4730	4760	umhos/cm				0.6	20	
WG254528LCSW7	LCSW	10/25/08 0:26	PCN30288	1408.8		1403	umhos/cm	99.6	90	110			
NG254528LCSW10		10/25/08 3:41	PCN30288	1408.8		1407	umhos/cm	99.9	90	110			
WG254528LCSW13	LCSW	10/25/08 6:26	PCN30288	1408.8		1404	umhos/arr	99.7	90	110			
Copper, dissolve	d		M200.7 IC	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254744													
WG254744ICV	ICV	10/29/08 11:41	11080818-1	2		1.967	mg/L	98.4	95	105			
NG254744ICB	ICB	10/29/08 11:44				U	mg/L		-0.03	0.03			
NG254744LFB	LFB	10/29/08 11:55	11081023-4	.5		.516	mg/L	103.2	85	115			
_72438-01AS	AS	10/29/08 12:01	11081023-4	.5	U	.528	mg/L	105.6	85	115			
_72438-01ASD	ASD	10/29/08 12:03	11081023-4	.5	U	. 51	mg/L	102	85	115	3.47	20	
_72588-14AS	AS	10/29/08 12:47	11081023-4	1	U	1.036	mg/L 	103.6	85	115			
_72588-14ASD	ASD	10/29/08 12:50	11081023-4	1	U	1.041	mg/L	104.1	85	115	0.48	20	
Cyanide, total					ric w/ distil	lation							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254683													
VG254683ICV	ICV	10/28/08 14:54	WI081025-3	.3		. 2848	mg/L	94.9	90	110			
NG254683ICB	ICB	10/28/08 14:55				U	mg/L		-0.015	0.015			
WG254593LRB	LRB	10/28/08 14:55				U	mg/L		-0.015	0.015			
WG254593LFB	LFB	10/28/08 14:56	WI081025-7	.2		.1976	mg/L	98.8	90	110			
_72534-01DUP	DUP	10/28/08 14:58			U	U	mg/L				0	20	
_72546-01LFM	LFM	10/28/08 15:00	WI081025-7	.2	U	_2027	mg/L	101.4	90	110			
_72581-01DUP	DUP	10/28/08 15:10			.006	.0071	mg/L				16.8	20	
_72590-01LFM	LFM	10/28/08 15:11	WI081025-7	.2	U	.1972	mg/L	98.6	90	110			

REPIN.01.06.05.01 Page 9 of 19

FMI Gold & Copper - Sierrita

Fluoride			SM4500F	c									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254913													
WG254913ICV	ICV	10/31/08 10:37	WC081028-1	2		2.1	mg/L	105	95	105			
WG254913ICB	ICB	10/31/08 10:44				U	mg/L		-0.3	0.3			
WG254913LFB1	LFB	10/31/08 10:50	WC080912-3	5		4.75	mg/L	95	90	110			
L72541-01DUP	DUP	10/31/08 11:42			23.4	23.45	mg/L				0.2	20	
L72541-02AS	AS	10/31/08 11:47	WC080912-3	50	41	102.9	mg/L	123.8	90	110			M1
WG254913LFB2	LFB	10/31/08 12:23	WC080912-3	5		4.56	mg/L	91.2	90	110			
Iron, dissolved			M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254351													
WG254351ICV	ICV	10/28/08 22:11	11080818-1	2		1.933	mg/L	96.7	95	105			
WG254351ICB	ICB	10/28/08 22:14				U	mg/L		-0.06	0.06			
WG254351LFB	LFB	10/28/08 22:28	11081016-2	1		1.037	mg/L	103.7	85	115			
L72569-01AS	AS	10/28/08 23:22	11081016-2	1	.77	1.781	mg/L	101.1	85	115			
L72569-01ASD	ASD	10/28/08 23:26	11081016-2	1	.77	1.778	mg/L	100.8	85	115	0.17	20	
Lead, dissolved			M200.8 I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254621													
WG254621ICV	ICV	10/28/08 8:11	MS081003-4	.05		.04897	mg/L	97.9	90	110			
WG254621ICB	ICB	10/28/08 8:17				.00011	mg/L		-0.00022	0.00022			
WG254621LFB	LFB	10/28/08 8:29	MS081003-7	.05		.04682	mg/L	93.6	85	115			
L72564-01AS	AS	10/28/08 10:25	MS081003-7	.05	.0006	.04234	mg/L	83.5	70	130			
L72564-01ASD	ASD	10/28/08 10:43	MS081003-7	.05	.0006	.04246	mg/L	83.7	70	130	0.28	20	
Magnesium, diss	solved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254351													
WG254351ICV	ICV	10/28/08 22:11	11080818-1	100		98.16	mg/L	98.2	95	105			
WG254351ICB	ICB	10/28/08 22:14				U	mg/L		-0.6	0.6			
WG254351LFB	LFB	10/28/08 22:28	11081016-2	49.96908		50.91	mg/L	101.9	85	115			
L72569-01AS	AS	10/28/08 23:22	11081016-2	49.96908	70.5	120.12	mg/L	99.3	85	115			
L72569-01ASD	ASD	10/28/08 23:26	11081016-2	49.96908	70.5	118.91	mg/L	96.9	85	115	1.01	20	
Manganese, diss	solved		M200.7 K	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254351													
WG254351ICV	ICV	10/28/08 22:11	11080818-1	2		1.8897	mg/L	94.5	95	105			
WG254351ICB	ICB	10/28/08 22:14		_		U	mg/L		-0.015	0.015			
WG254351LFB	LFB	10/28/08 22:28	11081016-2	.5		. 5274	mg/L	105.5	85	115			
L72569-01AS	AS	10/28/08 23:22	II081016 - 2	.5	5.91	5.9685	mg/L	11.7	85	115			МЗ
L72569-01ASD	ASD	10/28/08 23:26	11081016-2	.5	5.91	5.9523	mg/L	8.5	85	115	0.27	20	МЗ

FMI Gold & Copper - Sierrita

Mercury, dissol	ved		M245.1 C	VAA									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254868													
WG254868ICV	ICV	10/31/08 10:19	11081015-2	.005		.00486	mg/L	97.2	95	105			
WG254868ICB	ICB	10/31/08 10:21				U	mg/L		-0.0002	0.0002			
WG254911													
WG254911LRB	LRB	10/31/08 19:18				U	mg/L		-0.00044	0.00044			
WG254911LFB	LFB	10/31/08 19:20	11081027-2	.002		.00185	mg/L	92.5	85	115			
L72564-01LFM	LFM	10/31/08 19:25	11081027-2	.002	U	.00184	mg/L	92	85	115			
L72564-01LFMD	LFMD	10/31/08 19:27	11081027-2	.002	U	.00186	mg/L	93	85	115	1.08	20	
Molybdenum, d	issolved		M200.7 IC	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254744													
WG254744ICV	ICV	10/29/08 11:41	11080818-1	2		1.992	mg/L	99.6	95	105			
WG254744ICB	ICB	10/29/08 11:44	11000010-1	2		U	mg/L	33.0	-0.03	0.03			
WG254744LFB	LFB	10/29/08 11:55	II081023 - 4	.5		.504	mg/L	100.8	85	115			
L72438-01AS	AS	10/29/08 12:01	II081023-4	.5	.04	.551	mg/L	102.2	85	115			
L72438-01ASD	ASD	10/29/08 12:03	11081023-4	.5	.04	.545	mg/L	101	85	115	1.09	20	
L72588-14AS	AS	10/29/08 12:47	11081023-4	1	U	1.025	mg/L	102.5	85	115		20	
L72588-14ASD	ASD	10/29/08 12:50	II081023 - 4	1	U	1.007	mg/L	100.7	85	115	1.77	20	
Nickel, dissolve	ed		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254744													
WG254744ICV	ICV	10/29/08 11:41	11080818-1	2.004		1.968	ma/l	98.2	95	105			
WG254744ICV WG254744ICB	ICB	10/29/08 11:44	11000010-1	2.004		1.966 U	mg/L mg/L	90.2	-0. 03	0.03			
WG254744LFB	LFB	10/29/08 11:55	11081023-4	.4985		.529	mg/L	106.1	-0.03 85	115			
L72438-01AS	AS	10/29/08 12:01	II081023-4	.4985	.01	.549	mg/L	108.1	85	115			
L72438-01ASD	ASD	10/29/08 12:03	11081023-4	.4985	.01	.541	mg/L	106.5	85	115	1.47	20	
L72588-14AS	AS	10/29/08 12:47	11081023-4	.997	U	1.061	mg/L	106.4	85	115			
L72588-14ASD	ASD	10/29/08 12:50	11081023-4	.997	U	1.049	mg/L	105.2	85	115	1.14	20	
Nitrate/Nitrite as	s N		M353.2 -	H2SO4 pr	reserved								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254546													
WG254546ICV	ICV	10/25/08 15:17	WI080916-5	2.416		2.283	mg/L	94.5	90	110			
WG254546ICB	ICB	10/25/08 15:17	111000310-3	Z.4 10		2.203 U	mg/L	J-1.J	- 0.06	0.06			
WG254547						-			2.00	2.00			
WG254547ICV	ICV	10/25/08 15:57	WI080916-5	2.416		2.288	mg/L	94.7	90	110			
WG254547ICV WG254547ICB	ICB	10/25/08 15:58	V V 10003 10-3	Z. 4 10		2.200 U	mg/L	J4.1	- 0.06	0.06			
WG2545471CB WG254547LFB	LFB	10/25/08 15:59	WI080913-4	2		1.943	mg/L	97.2	90	110			
	AS	10/25/08 16:02	WI080913-4 WI080913-4	2	04		-						
L72496-01AS				,	.61	2. 574	mg/L	98.2	90	110			

FMI Gold & Copper - Sierrita

pH (lab)			M150.1 -	· Electrome	tric								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254528													
WG254528LCSW3	LCSW	10/24/08 17:58	PCN29627	6		6.24	units	104	90	110			
WG254528LCSW6	LCSW	10/24/08 21:22	PCN29627	6		6.24	units	104	90	110			
L72578-01DUP	DUP	10/24/08 23:01			8.3	8.3	units				0	20	
L72585-01DUP	DUP	10/25/08 0:19			8.4	8.37	units				0.4	20	
WG254528LCSW9	LCSW	10/25/08 0:39	PCN29627	6		6.26	units	104.3	90	110			
WG254528LCSW12	LCSW	10/25/08 3:54	PCN29627	6		6.25	units	104.2	90	110			
Potassium, disso	olved		M200.7 I										
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254351													
WG254351ICV	ICV	10/28/08 22:11	11080818-1	20		19.96	mg/L	99.8	95	105			
WG254351ICB	ICB	10/28/08 22:14				U	mg/L		-0.9	0.9			
WG254351LFB	LFB	10/28/08 22:28	11081016-2	99.76186		102.92	mg/L	103.2	85	115			
L72569-01AS	AS	10/28/08 23:22	11081016-2	99.76186	1.1	113.06	mg/L	112.2	85	115			
L72569-01ASD	ASD	10/28/08 23:26	11081016-2	99.76186	1.1	111.2	mg/L	110.4	85	115	1.66	20	
Residue, Filterab	le (TDS) @180C	SM2540	С									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254311													
WG254311PBW	PBW	10/22/08 11:00				U	mg/L		-20	20			
WG254311LCSW	LCSW	10/22/08 11:00	PCN29988	260		272	mg/L	104.6	80	1 20			
L72589-01DUP	DUP	10/22/08 11:19			1290	1308	mg/L				1.4	20	
Selenium, dissol	ved		M200.8 I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254794													
WG254794ICV	ICV	10/31/08 19:48	MS081003-4	.05		.05368	mg/L	107.4	90	110			
WG254794ICB	ICB	10/31/08 19:53				U	mg/L		-0.00022	0.00022			
WG254794LFB	LFB	10/31/08 20:04	MS081003-7	.05		.04894	mg/L	97.9	85	115			
L72578-04AS	AS	10/31/08 22:19	MS081003-7	.05	.0004	.05984	mg/L	118.9	70	130			
L72578-04ASD	ASD	10/31/08 22:25	MS081003-7	.05	.0004	.05903	mg/L	117.3	70	130	1.36	20	
Sodium, dissolve	ed		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254351													
WG254351ICV	ICV	10/28/08 22:11	11080818-1	100		99.73	mg/L	99.7	95	105			
WG254351ICV	ICV	10/28/08 22:11	11080818-1	100		99	mg/L	99	95	105			
WG254351ICB	ICB	10/28/08 22:14				U	mg/L		- 6	6			
WG254351ICB	ICB	10/28/08 22:14				U	mg/L		-0.9	0.9			
WG254351LFB	LFB	10/28/08 22:28	11081016-2	98.21624		101	mg/L	102.8	85	115			
WG254351LFB	LFB	10/28/08 22:28	11081016-2	98.21624		101.75	mg/L	103.6	85	115			
L72569-01AS	AS	10/28/08 23:22	11081016-2	98.21624	5.8	115.22	mg/L	111.4	85	115			
L72569-01ASD	ASD	10/28/08 23:26	11081016-2	98.21624	5.8	113.56	mg/L	109.7	85	115	1.45	20	

FMI Gold & Copper - Sierrita

Sulfate			SM4500 S	04-D									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254514													
WG254514PBW	PBW	10/24/08 14:40				19	mg/L		-30	30			
WG254514LCSW	LCSW	10/24/08 14:43	WC080910-2	100		113	mg/L	113	80	1 20			
L72578-03DUP	DUP	10/24/08 16:10			1270	1258	mg/L				0.9	20	
WG254730													
WG254730PBW	PBW	10/29/08 10:00				16	mg/L		-30	30			
WG254730LCSW	LCSW	10/29/08 10:03	WC080910-2	100		109	mg/L	109	80	1 20			
L72587-04DUP	DUP	10/29/08 10:47			U	11	mg/L				200	20	R
Thallium, dissol	ved		M200.8 IC	P-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254621													
WG254621ICV	ICV	10/28/08 8:11	MS081003-4	.05		.04837	mg/L	96.7	90	110			
WG254621ICB	ICB	10/28/08 8:17				U	mg/L		-0.00022	0.00022			
WG254621LFB	LFB	10/28/08 8:29	MS081003-7	.0501		.04756	mg/L	94.9	85	115			
L72564-01AS	AS	10/28/08 10:25	MS081003-7	.0501	.0002	.04622	mg/L	91.9	70	1 30			
L72564-01ASD	ASD	10/28/08 10:43	MS081003-7	.0501	.0002	.04561	mg/L	90.6	70	130	1.33	20	
Uranium, dissol	ved		M200.8 IC	P-MS									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254621													
WG254621ICV	ICV	10/28/08 8:11	MS081003-4	.05		.04872	mg/L	97.4	90	110			
WG254621ICB	ICB	10/28/08 8:17				U	mg/L		-0.00022	0.00022			
WG254621LFB	LFB	10/28/08 8:29	MS081003-7	.05		.04836	mg/L	96.7	85	115			
L72564-01AS	AS	10/28/08 10:25	MS081003-7	.05	U	.0444	mg/L	88.8	70	1 30			
L72564-01ASD	ASD	10/28/08 10:43	MS081003-7	.05	U	.04442	mg/L	88.88	70	130	0.05	20	
Zinc, dissolved			M200.7 IC	:P									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254744													
WG254744ICV	ICV	10/29/08 11:41	11080818-1	2		1.958	mg/L	97.9	95	105			
WG254744ICB	ICB	10/29/08 11:44				U	mg/L		-0.03	0.03			
WG254744LFB	LFB	10/29/08 11:55	11081023-4	.5		.548	mg/L	109.6	85	115			
L72438-01AS	AS	10/29/08 12:01	11081023-4	.5	U	.519	mg/L	103.8	85	115			
L72438-01ASD	ASD	10/29/08 12:03	11081023-4	.5	U	.517	mg/L	103.4	85	115	0.39	20	
L72588-14AS	AS	10/29/08 12:47	11081023-4	1	U	1.045	mg/L	104.5	85	115			
	ASD	10/29/08 12:50	11081023-4	1	U			108.8				20	

Inorganic Extended Qualifier Report

FMI Gold & Copper - Sierrita

ACZ Project ID: L72578

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L72578-01	WG254351	Calcium, dissolved	M200.7 ICP	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
		Manganese, dissolved	M200.7 ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG254744	Molybdenum, dissolved	M200.7 ICP	N1	See Case Narrative.
	WG254683	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254913	Fluoride	SM4500F-C	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG254547	Nitrate/Nitrite as N	M353.2 - H2SO4 preserved	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
L72578-02	WG254351	Calcium, dissolved	M200.7 ICP	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
		Manganese, dissolved	M200.7 ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG254744	Molybdenum, dissolved	M200.7 ICP	N1	See Case Narrative.
	WG254683	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254913	Fluoride	SM4500F-C	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG254547	Nitrate/Nitrite as N	M353.2 - H2SO4 preserved	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
L72578-03	WG254351	Calcium, dissolved	M200.7 ICP	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
		Manganese, dissolved	M200.7 ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG254744	Molybdenum, dissolved	M200.7 ICP	N1	See Case Narrative.
	WG254683	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254913	Fluoride	SM4500F-C	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG254547	Nitrate/Nitrite as N	M353.2 - H2SO4 preserved	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).

Inorganic Extended Qualifier Report

FMI Gold & Copper - Sierrita

ACZ Project ID: L72578

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L72578-04	WG254351	Calcium, dissolved	M200.7 ICP	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
		Manganese, dissolved	M200.7 ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG254744	Molybdenum, dissolved	M200.7 ICP	N1	See Case Narrative.
	WG254543	Chloride	SM4500CI-E	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254683	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254913	Fluoride	SM4500F-C	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG254547	Nitrate/Nitrite as N	M353.2 - H2SO4 preserved	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254730	Sulfate	SM4500 SO4-D	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).

FMI Gold & Copper - Sierrita

ACZ Project ID: L72578

No certification qualifiers associated with this analysis

Sample Receipt

FMI Gold & Copper - Sierrita

OJ06DZ

ACZ Project ID:

L72578 10/21/2008

Date Received:

Received By:

Date Printed: 10/21/2008

Receipt Verification

- 1) Does this project require special handling procedures such as CLP protocol?
- 2) Are the custody seals on the cooler intact?
- 3) Are the custody seals on the sample containers intact?
- 4) Is there a Chain of Custody or other directive shipping papers present?
- 5) Is the Chain of Custody complete?
- 6) Is the Chain of Custody in agreement with the samples received?
- 7) Is there enough sample for all requested analyses?
- 8) Are all samples within holding times for requested analyses?
- 9) Were all sample containers received intact?
- 10) Are the temperature blanks present?
- 11) Is the trip blank for Cyanide present?
- 12) Is the trip blank for VOA present?
- 13) Are samples requiring no headspace, headspace free?
- 14) Do the samples that require a Foreign Soils Permit have one?

YES	NO	NA
		Х
Χ		
		Х
Χ		
Χ		
Χ		
Х		
Χ		
Х		
		Х
	Х	
		Х
		X
		Х

Exceptions: If you answered no to any of the above questions, please describe

N/A

Contact (For any discrepancies, the client must be contacted)

N/A

Shipping Containers

Cooler Id	Temp (°C)	Rad (µR/hr)
2116	2.4	15

Client must contact ACZ Project Manager if analysis should not proceed for samples received outside of thermal preservation acceptance criteria.

Notes

Sample Receipt

FMI Gold & Copper - Sierrita

OJ06DZ

ACZ Project ID: Date Received: Received By: L72578 10/21/2008

1

Sample Container Preservation

SAMPLE	CLIENT ID	R < 2	G < 2	BK < 2	Y<2	YG<2	B< 2	0<2	T >12	N/A	RAD	ID
L72578-01	MH-25A		Υ		Υ							
L72578-02	MH - 25B		Υ		Υ							
L72578-03	MH-25C		Υ		Υ							
L72578-04	MH-26A		Υ		Υ							

Sample Container Preservation Legend

Description	Container Type	Preservative/Limits
Raw/Nitric	RED	pH must be < 2
Filtered/Sulfuric	BLUE	pH must be < 2
Filtered/Nitric	BLACK	pH must be < 2
Filtered/Nitric	GREEN	pH must be < 2
Raw/Sulfuric	ORANGE	pH must be < 2
Raw/NaOH	PURPLE	pH must be > 12 *
Raw/NaOH Zinc Acetate	TAN	pH must be > 12
Raw/Sulfuric	YELLOW	pH must be < 2
Raw/Sulfuric	YELLOW GLASS	pH must be < 2
No preservative needed	Not applicable	
Gamma/Beta dose rate	Not applicable	must be $< 250 \mu\text{R/hr}$
	Raw/Nitric Filtered/Sulfuric Filtered/Nitric Filtered/Nitric Raw/Sulfuric Raw/NaOH Raw/NaOH Zinc Acetate Raw/Sulfuric Raw/Sulfuric No preservative needed	Filtered/Sulfuric BLUE Filtered/Nitric BLACK Filtered/Nitric GREEN Raw/Sulfuric ORANGE Raw/NaOH PURPLE Raw/NaOH Zinc Acetate TAN Raw/Sulfuric YELLOW Raw/Sulfuric YELLOW GLASS No preservative needed Not applicable

^{*} pH check performed by analyst prior to sample preparation

Sample IDs Reviewed By:	
-------------------------	--

Analytical Report

November 04, 2008

Report to:

Bill Dorris

FMI Gold & Copper - Sierrita

P.O. Box 527

Green Valley, AZ 85622-0527

cc: Dan Simpson

Bill to:

Accounts Payable

FMI Gold & Copper - Sierrita

P.O. Box 2671

Phoenix, AZ 85002-2671

Project ID: OJ069R ACZ Project ID: L72586

Bill Dorris:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on October 21, 2008. This project has been assigned to ACZ's project number, L72586. Please reference this number in all future inquiries.

All analyses were performed according to ACZ's Quality Assurance Plan, version 12.0. The enclosed results relate only to the samples received under L72586. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after December 04, 2008. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years.

If you have any questions or other needs, please contact your Project Manager.

Scott Habermehl has reviewed and approved this report.

S. Habermehl

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: MO-2007-1A ACZ Sample ID: **L72586-01**

Date Sampled: 10/17/08 11:19

Date Received: 10/21/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	17.9	*	mg/L	0.5	3	10/31/08 17:33	aml

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: MO-2007-1B ACZ Sample ID: **L72586-02**

Date Sampled: 10/17/08 10:35

Date Received: 10/21/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	54.3	*	mg/L	0.5	3	10/31/08 17:52	aml

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report Header Explanations

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest Limit Upper limit for RPD, in %.

Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit, typically 5 times the MDL.

QC True Value of the Control Sample or the amount added to the Spike

Rec Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

QC Sample Types	QC	Sam	ple i	Тур	es
-----------------	----	-----	-------	-----	----

AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calibration Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution

QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method or calibration procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method. Spikes/Fortified Matrix Determines sample matrix interferences, if any.

Standard Verifies the validity of the calibration.

ACZ Qualifiers (Qual)

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity.
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time.
- U The material was analyzed for, but was not detected above the level of the associated value.

The associated value is either the sample quantitation limit or the sample detection limit.

Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (5) EPA SW-846. Test Methods for Evaluating Solid Waste, Third Edition with Update III, December 1996.
- (6) Standard Methods for the Examination of Water and Wastewater, 19th edition, 1995.

Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.

FMI Gold & Copper - Sierrita ACZ Project ID: L72586

Project ID: OJ069R

Sulfate			300.0 - Ion	Chroma	tography								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254713													
WG254713ICV	ICV	10/28/08 19:48	WI081007-1	50		50.85	mg/L	101.7	90	110			
WG254713ICB	ICB	10/28/08 20:06				U	mg/L		-1.5	1.5			
WG254713ICV1	ICV	10/31/08 15:09	WI081031-2	50		52.4	mg/L	104.8	90	110			
WG254713ICB1	ICB	10/31/08 15:27				U	mg/L		-1.5	1.5			
WG254713LFB	LFB	10/31/08 15:45	WI081007-3	30		32.54	mg/L	108.5	90	110			
L72496-01AS	AS	10/31/08 16:21	WI081007-3	300	444	789.9	mg/L	115.3	90	110			M1
L72496-01DUP	DUP	10/31/08 16:39			444	488.9	mg/L				9.6	20	

REPIN.01.06.05.01 Page 5 of 10

Inorganic Extended Qualifier Report

ACZ Project ID: L72586

FMI Gold & Copper - Sierrita

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L72586-01	WG254713	Sulfate	300.0 - Ion Chromatography		Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
L72586-02	WG254713	Sulfate	300.0 - Ion Chromatography	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.

Certification Qualifiers

FMI Gold & Copper - Sierrita

ACZ Project ID: L72586

No certification qualifiers associated with this analysis

Sample Receipt

FMI Gold & Copper - Sierrita

OJ069R

ACZ Project ID:

L72586

Date Received:

10/21/2008

Received By:

Date Printed: 10/21/2008

Receipt Verification

- 1) Does this project require special handling procedures such as CLP protocol?
- 2) Are the custody seals on the cooler intact?
- 3) Are the custody seals on the sample containers intact?
- 4) Is there a Chain of Custody or other directive shipping papers present?
- 5) Is the Chain of Custody complete?
- 6) Is the Chain of Custody in agreement with the samples received?
- 7) Is there enough sample for all requested analyses?
- 8) Are all samples within holding times for requested analyses?
- 9) Were all sample containers received intact?
- 10) Are the temperature blanks present?
- 11) Is the trip blank for Cyanide present?
- 12) Is the trip blank for VOA present?
- 13) Are samples requiring no headspace, headspace free?
- 14) Do the samples that require a Foreign Soils Permit have one?

YES	NO	NA
		Х
Х		
		Х
Х		
Χ		
Х		
Х		
Х		
Х		
		Х
		Х
		Х
		Х
		Х

Exceptions: If you answered no to any of the above questions, please describe

N/A

Contact (For any discrepancies, the client must be contacted)

N/A

Shipping Containers

Cooler Id	Temp (°C)	Rad (μR/hr)
2116	2.4	15

Client must contact ACZ Project Manager if analysis should not proceed for samples received outside of thermal preservation acceptance criteria.

Notes

Sample Receipt

FMI Gold & Copper - Sierrita

OJ069R

ACZ Project ID: Date Received:

L72586

10/21/2008

Received By:

Sample Container Preservation

SAMPLE	CLIENT ID	R < 2	G < 2	BK < 2	Y<2	YG<2	B< 2	0<2	T >12	N/A	RAD	ID
L72586-01	MO-2007-1A									Х		
L72586-02	MO-2007-1B									Х		

Sample Container Preservation Legend

Abbreviation	Description	Container Type	Preservative/Limits
R	Raw/Nitric	RED	pH must be < 2
В	Filtered/Sulfuric	BLUE	pH must be < 2
ВК	Filtered/Nitric	BLACK	pH must be < 2
G	Filtered/Nitric	GREEN	pH must be < 2
0	Raw/Sulfuric	ORANGE	pH must be < 2
Р	Raw/NaOH	PURPLE	pH must be $> 12*$
Т	Raw/NaOH Zinc Acetate	TAN	pH must be > 12
Υ	Raw/Sulfuric	YELLOW	pH must be < 2
YG	Raw/Sulfuric	YELLOW GLASS	pH must be < 2
N/A	No preservative needed	Not applicable	
RAD	Gamma/Beta dose rate	Not applicable	must be $< 250 \mu R/hr$

^{*} pH check performed by analyst prior to sample preparation

Sample IDs Reviewed Bv:	

	oratories, Inc.		t	45	34)	CHA	AIN o	of Cl	JST	DDY
2773 Downhill Drive Steamb	oat Springs, CO 80487 (80	<i>00) 334-</i>	-54 9 3	-	,						
Report to:			Al.al.a.a	/	200			/ 4	4.	01	
Name: Bill Dorris		-							line	1201	
Company: Freeport /	A Mai Com					ley. 0-6					
-mail: billy dorris	of-MI, COM	J .	relep	none.	20	0-0	70-	001	· · · · · · · · · · · · · · · · · · ·		
Copy of Report to:				1					_		
Name: Dan Simps	<u>0Λ</u>		E-mai	l: da	15Q	hgin	C, C	<u> </u>	<i></i>		
Company: Hydro Geo	Chem] [Telep	hone:	520	-29	3-15	υ <u>υ</u>	4×3	<u>~ 13</u>	3
nvoice to:											
Name:			Addre	ess:							
Company:											
E-mail:		-	Telep								
If sample(s) received past ho									YES NO		
analysis before expiration, sha f "NO" then ACZ will contact									NO		1
s indicated, ACZ will proceed			f HT is	expired	d, and c						
PROJECT INFORMATION			ANA	LYSES	REQUE	STED (attach	list or	use quo	te nun	nber)
Quote #:	-		ý								
Project/PO#: 🖠 O丁	Ø69 R	_	iner								
Reporting state for compli	ance testing:	_	of Containers								
Sampler's Name:			Š								
Are any samples NRC licen			#							:	
SAMPLE IDENTIFICATION	,	Matrix	1		- I		. 1.		C 0.0	7.	
MO-2007-1A	10-17-08/11:19	6W	<u> </u>	<u> </u>	<u> </u>	fate		4	$\epsilon \rho A$	30	ī
MO-2007-1B	10-17-08/10:35	6W) <u>/</u>	٤	PA	37,	15
				<u> </u>		-					
		-		-							
				 	-						
				<u> </u>							
				-						-	
<u> </u>											
Matrix SW (Surface Water)	· GW (Ground Water) - WW (W	aste Wate	er) · D\	V (Drink	ing Wat	er) · SL	(Sludge	e) · SO	(Soil) • (OL (Oil)	· Othe
REMARKS/ SAMPLE DISCL	OSURES										
		0	•					•		,	,
											PAGE
											of
	12 867 7E4 .										
	er to ACZ's terms & cond		ocated			erse sid /ED BY		this CC		ATE:TI	ME
RELINQUISHED E					/ /	/12/12/11 //	•				
12 My t. Don	10-20-01	0/15:00			4				1021-	<u>08 1</u>	0.0
·····	<u> </u>										

Analytical Report

November 13, 2008

Report to:

Bill Dorris

FMI Gold & Copper - Sierrita

P.O. Box 527

Green Valley, AZ 85622-0527

cc: Dan Simpson

Project ID: OJ069R

ACZ Project ID: L72606

Bill Dorris:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on October 22, 2008. This project has been assigned to ACZ's project number, L72606. Please reference this number in all future inquiries.

Bill to:

Accounts Payable

P.O. Box 2671

FMI Gold & Copper - Sierrita

Phoenix, AZ 85002-2671

All analyses were performed according to ACZ's Quality Assurance Plan, version 12.0. The enclosed results relate only to the samples received under L72606. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after December 13, 2008. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years.

If you have any questions or other needs, please contact your Project Manager.

Scott Habermehl has reviewed and approved this report.

S. Havermehl

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: MO-2007-1C ACZ Sample ID: **L72606-01**

Date Sampled: 10/21/08 12:24
Date Received: 10/22/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	146	*	mg/L	3	10	11/11/08 2:12	aml

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: MO-2007-3C ACZ Sample ID: *L72606-02*

Date Sampled: 10/21/08 11:27

Date Received: 10/22/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	103	*	mg/L	3	10	11/11/08 2:30	aml

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report Header Explanations

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest Limit Upper limit for RPD, in %.

Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit, typically 5 times the MDL.

QC True Value of the Control Sample or the amount added to the Spike

Rec Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

QC Sample Types	QC	Sam	ple i	Тур	es
-----------------	----	-----	-------	-----	----

AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calibration Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution

QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method or calibration procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method. Spikes/Fortified Matrix Determines sample matrix interferences, if any.

Standard Verifies the validity of the calibration.

ACZ Qualifiers (Qual)

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity.
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time.
- U The material was analyzed for, but was not detected above the level of the associated value.

The associated value is either the sample quantitation limit or the sample detection limit.

Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (5) EPA SW-846. Test Methods for Evaluating Solid Waste, Third Edition with Update III, December 1996.
- (6) Standard Methods for the Examination of Water and Wastewater, 19th edition, 1995.

Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.

FMI Gold & Copper - Sierrita ACZ Project ID: L72606

Project ID: OJ069R

Sulfate			300.0 - Ion	Chroma	atography								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255184													
WG255184ICV	ICV	10/28/08 19:48	WI081031-2	50		50.85	mg/L	101.7	90	110			
WG255184ICB	ICB	10/28/08 20:06				U	mg/L		-1.5	1.5			
WG255184ICV1	ICV	11/06/08 15:09	WI081031-2	50		52.46	mg/L	104.9	90	110			
WG255184ICB1	ICB	11/06/08 15:27				U	mg/L		-1.5	1.5			
WG255184LFB	LFB	11/06/08 15:45	WI081007-3	30		32.31	mg/L	107.7	90	110			
L72668-05AS	AS	11/06/08 19:40	WI081007-3	30	U	34.43	mg/L	114.8	90	110			M1
L72668-05DUP	DUP	11/06/08 19:59			U	U	mg/L				0	20	RA
WG255184ICV2	ICV	11/10/08 12:04	WI081031-2	50		50.89	mg/L	101.8	90	110			
WG255184ICB2	ICB	11/10/08 12:22				U	mg/L		-1.5	1.5			
WG255184ICV3	ICV	11/11/08 1:18	WI081031-2	50		50.38	mg/L	100.8	90	110			
WG255184ICB3	ICB	11/11/08 1:36				U	mg/L		-1.5	1.5			

REPIN.01.06.05.01 Page 5 of 10

Inorganic Extended
Qualifier Report

ACZ Project ID: L72606

FMI Gold & Copper - Sierrita

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L72606-01	WG255184	Sulfate	300.0 - Ion Chromatography	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
			300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
L72606-02	WG255184	Sulfate	300.0 - Ion Chromatography	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
			300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).

Certification Qualifiers

FMI Gold & Copper - Sierrita

ACZ Project ID: L72606

No certification qualifiers associated with this analysis

Sample Receipt

FMI Gold & Copper - Sierrita

OJ069R

ACZ Project ID:

L72606

Date Received:

10/22/2008

Received By:

Date Printed: 10/22/2008

Receipt Verification

- 1) Does this project require special handling procedures such as CLP protocol?
- 2) Are the custody seals on the cooler intact?
- 3) Are the custody seals on the sample containers intact?
- 4) Is there a Chain of Custody or other directive shipping papers present?
- 5) Is the Chain of Custody complete?
- 6) Is the Chain of Custody in agreement with the samples received?
- 7) Is there enough sample for all requested analyses?
- 8) Are all samples within holding times for requested analyses?
- 9) Were all sample containers received intact?
- 10) Are the temperature blanks present?
- 11) Is the trip blank for Cyanide present?
- 12) Is the trip blank for VOA present?
- 13) Are samples requiring no headspace, headspace free?
- 14) Do the samples that require a Foreign Soils Permit have one?

YES	NO	NA
		Х
Х		
		Х
Х		
Χ		
Х		
Х		
Х		
Х		
		Х
		Х
		Х
		Х
		Х

Exceptions: If you answered no to any of the above questions, please describe

N/A

Contact (For any discrepancies, the client must be contacted)

N/A

Shipping Containers

Cooler Id	Temp (°C)	Rad (µR/hr)
1713	4.2	15

Client must contact ACZ Project Manager if analysis should not proceed for samples received outside of thermal preservation acceptance criteria.

Notes

Sample Receipt

FMI Gold & Copper - Sierrita

OJ069R

ACZ Project ID: Date Received:

Received By:

L72606

10/22/2008

Sample Container Preservation

SAMPLE	CLIENT ID	R < 2	G < 2	BK < 2	Y<2	YG<2	B< 2	0<2	T >12	N/A	RAD	ID
L72606-01	MO-2007-1C									Х		
L72606-02	MO-2007-3C									Х		

Sample Container Preservation Legend

Abbreviation	Description	Container Type	Preservative/Limits
R	Raw/Nitric	RED	pH must be < 2
В	Filtered/Sulfuric	BLUE	pH must be < 2
BK	Filtered/Nitric	BLACK	pH must be < 2
G	Filtered/Nitric	GREEN	pH must be < 2
0	Raw/Sulfuric	ORANGE	pH must be < 2
Р	Raw/NaOH	PURPLE	pH must be > 12 *
T	Raw/NaOH Zinc Acetate	TAN	pH must be > 12
Υ	Raw/Sulfuric	YELLOW	pH must be < 2
YG	Raw/Sulfuric	YELLOW GLASS	pH must be < 2
N/A	No preservative needed	Not applicable	
RAD	Gamma/Beta dose rate	Not applicable	must be < 250 μR/hr

^{*} pH check performed by analyst prior to sample preparation

Sample IDs Reviewed By:		
Sallible IDS neviewed by.		

<i>A</i> CZ		atories	,	5	to	QC	Xρ)	CHA	AIN o	of Cl	JST(DDY
2773 Downhill Drive	e Steamboat	t Springs, CO	80487 (80	00) 334	-5493		1						
Report to:	7				A .1.1.		<i>('3</i>	. 1		1 N	1 '	0.1	
Name: Billy	DOM	M Q	6 4	-	Addre	ess: a	0200	<u></u>	Duro	951	11/18	KO	
Company: Freep E-mail: billy-c	ort //c	MORGA	DIETTITA		1			-	92 <u> </u>		017		
		FMI, CC	<u>بر، (</u>	J .	l elep	none:	94	0-05	18-88	5/5			
Copy of Report to):			r									
Name: Dan	Simps	01		-					nc.co				
Company: Hyd.	10 Geo C	Chem		J	Telep	hone:	<u>52</u>	0-2	93-15	600	Ext	<u>13</u>	3
Invoice to:													
Name:]	Addre	ess:							
Company:		···]									
E-mail:		<u>.</u>		_	Telep	hone:							
If sample(s) receive								;			YES		
analysis before expi											NO	<u> </u>	I
is indicated, ACZ wil								data w	ill be qu	alified.			
PROJECT INFORM				-, -					(attach		use que	ote nun	nber)
Ouote #:					[<u>"</u>								
Project/PO #: (DJ 1869	R			ners								
Reporting state for					Containers								
Sampler's Name:					ଓ								
Are any samples I	NRC licensa	ble materia	1?		# of								
SAMPLE IDENTI			E:TIME	Matrix					1				
MO-2007.			8/12:24		1		58	} <u>+</u>	by	عے ۔	PA	300	<u> </u>
MO-2007	- 3C	10-21-08	/ 11:27	GW	/		ļ <u> </u>	ļ <u>.</u>			07	7	
						-	<u> </u>	ļ		ع_	PA	37	ל_
					ļ <u> </u>		ļ	<u> </u>	-		<u> </u>	1	├
<u></u> -			····	 			<u> </u>	<u> </u>	-				
				ļ	ļ	-	ļ	-	-		<u> </u>		
				ļ <u> </u>	<u> </u>		<u> </u>	ļ	-				
				ļ	-	-	-	-	-				
	 .	ļ		-			 	 					
		1 1111	ater) · WW (W	1 19/24	 	M (Daim)	daa Ma	<u> </u>	T (Sludge) 50	(Soil)	OL (Oil)	Otho
			ater) · www (w	raste wa	tei) · D	AA (DIIII	King wa	iei) · s	st (Sludge	.) • 30	(301) -	OL (OII)	· Otrici
REMARKS/ SAMPI	TE DISCEOS	UKES											
:													
													PAGE
													of
1105 -04	CKINK =	# 17	867 7	E4 a	<i>23</i> ,	1000	57	25					
UPS TRA			rms & conc	itions	ocate	d on th	ne rev	erse s	ide of t	his CC	C.		
	UISHED BY:		DATE:T	IME			RECEI	∕ED B	Y:		D	ATE:TI	
13illy 7. 8	Jonis		10-21-68/	15,00			/41/C				102	08	7:57
l													

Analytical Report

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

November 06, 2008

Bill Dorris Phelps Dodge Sierrita P.O. Box 527 6200 West Duval Mine Road Green Valley, AZ 85622-0527

Cc: Dan Simpson

Project ID: OJ06DZ

ACZ Project ID: L72612- SULFATE ONLY

Bill Dorris:

Enclosed are analytical reports for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on October 22, 2008. This project was assigned to ACZ's project number, L72612. Please reference this number in all future inquiries.

At the request of Phelps Dodge Sierrita, Inc. (PDSI), this laboratory report has been prepared to contain only information specific to samples and analytes identified by PDSI as evaluated pursuant to Mitigation Order No. P-500-06 with Arizona Department of Environmental Quality. Samples and analytes unrelated to the Mitigation Order, but which may be identified on the chain of custody and sample receipt, have been reported to PDSI in a separate report.

All analyses were performed according to ACZ's Quality Assurance Plan, version 12.0. The enclosed results relate only to the samples received under L72612. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute. Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all the requirements of NELAC.

This report should be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

ACZ disposes of samples and sub-samples thirty days after the analytical results are reported to the client. That time frame has elapsed for this project. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years. Please notify your Project Manager if you have other needs. If you have any questions, please contact your Project Manager or Customer Service Representative.

Scott Habermehl has reviewed and approved this report.

S. Halermehl

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: MH-13A ACZ Sample ID: **L72612-01**Date Sampled: 10/20/08 12:06

Date Received: 10/22/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result Qual X	(Q Units	MDL	PQL	Date	Analyst
Sulfate	SM4500 SO4-D	1800	mg/L	20	100	10/29/08 11:14	kah

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: MH-13B ACZ Sample ID: **L72612-02**

Date Sampled: 10/20/08 11:33
Date Received: 10/22/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	SM4500 SO4-D	1080		ma/L	20	100	10/29/08 11:17	kah

FMI Gold & Copper - SierritaProject ID: OJ06DZ
Sample ID: MH-13C

ACZ Sample ID: **L72612-03**Date Sampled: 10/20/08 10:31

Date Received: 10/22/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result Qual >	(Q Units	MDL	PQL	Date	Analyst
Sulfate	SM4500 SO4-D	60	mg/L	10	50	10/29/08 11:19	kah

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: MH-26-B ACZ Sample ID: **L72612-04**

Date Sampled: 10/20/08 12:55

Sample Matrix: Ground Water

Date Received: 10/22/08

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	SM4500 SO4-D	1650		ma/L	50	250	10/29/08 11:22	kah

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: IW-19 ACZ Sample ID: **L72612-05**

Date Sampled: 10/20/08 14:00

Date Received: 10/22/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	SM4500 SO4-D	1710		mg/L	50	250	10/29/08 11:24	kah

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report Header Explanations

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest Limit Upper limit for RPD, in %.

Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit, typically 5 times the MDL.

QC True Value of the Control Sample or the amount added to the Spike

Rec Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

QC Sample Types	QC	Sam	ple i	Тур	es
-----------------	----	-----	-------	-----	----

AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calibration Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution

QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method or calibration procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method. Spikes/Fortified Matrix Determines sample matrix interferences, if any.

Standard Verifies the validity of the calibration.

ACZ Qualifiers (Qual)

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity.
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time.
- U The material was analyzed for, but was not detected above the level of the associated value.

The associated value is either the sample quantitation limit or the sample detection limit.

Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (5) EPA SW-846. Test Methods for Evaluating Solid Waste, Third Edition with Update III, December 1996.
- (6) Standard Methods for the Examination of Water and Wastewater, 19th edition, 1995.

Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Alkalinity as CaC	:О3		SM2320B	- Titration									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254837													
WG254837PBW1	PBW	10/30/08 13:26				U	mg/L		-20	20			
WG254837LCSW2	LCSW	10/30/08 13:36	WC081022-2	820.0001		782.5	mg/L	95.4	90	110			
L68011-34DUP	DUP	10/30/08 15:06			6	5.7	mg/L				5.1	20	RA
WG254837PBW2	PBW	10/30/08 16:23				U	mg/L		-20	20			
WG254837LCSW5	LCSW	10/30/08 16:34	WC081022-2	820.0001		789.3	mg/L	96.3	90	110			
WG254837PBW3	PBW	10/30/08 19:35				U	mg/L		-20	20			
WG254837LCSW8	LCSW	10/30/08 19:46	WC081022-2	820.0001		792.6	mg/L	96.7	90	110			
WG254837PBW4	PBW	10/30/08 22:58				U	mg/L		-20	20			
WG254837LCSW11	LCSW	10/30/08 23:09	WC081022-2	820.0001		802.3	mg/L	97.8	90	110			
WG254837LCSW14	LCSW	10/31/08 2:19	WC081022-2	820.0001		808.5	mg/L	98.6	90	110			
Aluminum, disso	lved		M200.7 IC	P									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254737													
WG254737ICV	ICV	10/29/08 21:51	11080818-1	2		1.936	mg/L	96.8	95	105			
WG254737ICB	ICB	10/29/08 21:55				U	mg/L		-0.09	0.09			
WG254737LFB	LFB	10/29/08 22:08	11081023-4	1		.963	mg/L	96.3	85	115			
L72605-10AS	AS	10/29/08 23:03	II081023-4	1	U	.965	mg/L	96.5	85	115			
L72605-10ASD	ASD	10/29/08 23:06	11081023-4	1	U	.947	mg/L	94.7	85	115	1.88	20	
Antimony, dissol	ved		M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254782													
WG254782ICV	ICV	10/31/08 3:23	MS081003-4	.02		.02102	mg/L	105.1	90	110			
WG254782ICB	ICB	10/31/08 3:28				U	mg/L		-0.00088	0.00088			
WG254782LFB	LFB	10/31/08 3:39	MS081003-7	.01		.00988	mg/L	98.8	85	115			
L72603-06AS	AS	10/31/08 5:02	MS081003-7	.1	U	.1122	mg/L	112.2	70	130			
L72603-06ASD	ASD	10/31/08 5:07	MS081003-7	.1	U	.1 044	mg/L	104.4	70	130	7.2	20	
Arsenic, dissolve	ed		M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254782													
WG254782ICV	ICV	10/31/08 3:23	MS081003-4	.05		.05052	mg/L	101	90	110			
WG254782ICB	ICB	10/31/08 3:28				U	mg/L		-0,0011	0.0011			
WG254782LFB	LFB	10/31/08 3:39	MS081003-7	.05		.04606	mg/L	92.1	85	115			
L72603-06AS	AS	10/31/08 5:02	MS081003-7	.5	.007	. 5319	mg/L	105	70	1 30			
L72603-06ASD	ASD	10/31/08 5:07	MS081003-7	.5	.007	. 4944	mg/L	97.5	70	130	7.31	20	
Barium, dissolve	d		M200.7 IC	CP CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254521													
WG254521ICV	ICV	10/28/08 18:37	11080818-1	2		2.0125	mg/L	100.6	95	105			
WG254521ICB	ICB	10/28/08 18:41		-		U	mg/L	.50.0	-0.009	0.009			
WG254521LFB	LFB	10/28/08 18:51	11081023-4	.5		. 5124	mg/L	102.5	85	115			
L72605-10AS	AS	10/28/08 19:38	11081023-4	.5 .5	.009	.515	mg/L	101.2	85	115			
L72605-10ASD	ASD	10/28/08 19:41	11081023-4	.5	.009	. 5162	mg/L	101.4	85	115	0.23	20	

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Beryllium, diss	olved		M200.8 I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254782													
WG254782ICV	ICV	10/31/08 3:23	MS081003-4	.05		.0508	mg/L	101.6	90	110			
WG254782ICB	ICB	10/31/08 3:28				U	mg/L		-0.00022	0.00022			
WG254782LFB	LFB	10/31/08 3:39	MS081003-7	.05005		.04642	mg/L	92.7	85	115			
L72603-06AS	AS	10/31/08 5:02	MS081003-7	.5005	U	.5473	mg/L	109.4	70	130			
L72603-06ASD	ASD	10/31/08 5:07	MS081003-7	.5005	U	. 5119	mg/L	102.3	70	130	6.68	20	
Cadmium, diss	olved		M200.8 I	CP - MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254782													
WG254782ICV	ICV	10/31/08 3:23	MS081003-4	.05		.05075	mg/L	101.5	90	110			
WG254782ICB	ICB	10/31/08 3:28				U	mg/L		-0.00022	0.00022			
WG254782LFB	LFB	10/31/08 3:39	MS081003-7	.05		.04702	mg/L	94	85	115			
L72603-06AS	AS	10/31/08 5:02	MS081003-7	.5	U	.5272	mg/L	105.4	70	1 30			
L72603-06ASD	ASD	10/31/08 5:07	MS081003-7	.5	U	.4862	mg/L	97.2	70	130	8.09	20	
Calcium, dissol	ved		M200.7 I	CP									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254521													
WG254521ICV	ICV	10/28/08 18:37	11080818-1	100		99.77	mg/L	99.8	95	105			
WG254521ICB	ICB	10/28/08 18:41				U	mg/L		-0.6	0.6			
WG254521LFB	LFB	10/28/08 18:51	11081023-4	67.97008		69.78	mg/L	102.7	85	115			
L72605-10AS	AS	10/28/08 19:38	11081023-4	67.97008	261	312.59	mg/L	75.9	85	115			M
L72605-10ASD	ASD	10/28/08 19:41	11081023-4	67.97008	261	309.18	mg/L	70.9	85	115	1.1	20	M
Chloride			SM45000)-E									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254738													
WG254738ICB	ICB	10/29/08 9:28				U	mg/L		-3	3			
WG254738ICV	ICV	10/29/08 9:28	WI080808-1	54.945		57.4	mg/L	104.5	90	110			
L72605-06DUP	DUP	10/29/08 10:11			54	54	mg/L				0	20	
L72615-01DUP	DUP	10/29/08 10:13			U	U	mg/L				0	20	R/
L72612-05AS	AS	10/29/08 10:29	10XCL	30	150	178	mg/L	93.3	90	110			
WG254738LFB1	LFB	10/29/08 10:37	WI080818-2	30		31.5	mg/L	105	90	110			
WG254738LFB2	LFB	10/29/08 10:37	WI080818-2	30		31.4	mg/L	104.7	90	110			
L72605-05AS	AS	10/29/08 10:48	10XCL	30	92	119	mg/L	90	90	110			
Chromium, diss	solved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254521													
WG254521ICV	ICV	10/28/08 18:37	11080818-1	2		1.999	mg/L	100	95	105			
WG254521ICB	ICB	10/28/08 18:41		-		U	mg/L		-0.03	0.03			
WG254521LFB	LFB	10/28/08 18:51	11081023-4	.5		.507	mg/L	101.4	85	115			
L72605-10AS	AS	10/28/08 19:38	11081023-4	.5	U	.499	mg/L	99.8	85	115			
L72605-10ASD	ASD	10/28/08 19:41	11081023-4	.5	U	.511	mg/L	102.2	85	115	2.38	20	

REPIN.01.06.05.01 Page 9 of 20

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Cobalt, dissolved			M200.7 IC	CP									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254521													
WG254521ICV	ICV	10/28/08 18:37	11080818-1	2.002		2.002	mg/L	100	95	105			
WG254521ICB	ICB	10/28/08 18:41				U	mg/L		-0.03	0.03			
WG254521LFB	LFB	10/28/08 18:51	11081023-4	.5		.515	mg/L	103	85	115			
L72605-10AS	AS	10/28/08 19:38	11081023-4	.5	U	.517	mg/L	103.4	85	115			
L72605-10ASD	ASD	10/28/08 19:41	11081023-4	.5	U	.518	mg/L	103.6	85	115	0.19	20	
Conductivity @25	5C		SM2510B										
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254837													
WG254837LCSW1	LCSW	10/30/08 13:27	PCN30288	1408.8		1419	umhos/cm	100.7	90	110			
L68011-34DUP	DUP	10/30/08 15:06			43	41.3	umhos/cm				4	20	
WG254837LCSW4	LCSW	10/30/08 16:24	PCN30288	1408.8		1386	umhos/cm	98.4	90	110			
WG254837LCSW7	LCSW	10/30/08 19:37	PCN30288	1408.8		1388	umhos/cm	98.5	90	110			
WG254837LCSW10	LCSW	10/30/08 22:59	PCN30288	1408.8		1384	umhos/cm	98.2	90	110			
WG254837LCSW13	LCSW	10/31/08 2:09	PCN30288	1408.8		1391	umhos/arr	98.7	90	110			
Copper, dissolve	d		M200.7 IC	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254521													
WG254521ICV	ICV	10/28/08 18:37	11080818-1	2		1.961	mg/L	98.1	95	105			
WG254521ICB	ICB	10/28/08 18:41				U	mg/L		- 0.03	0.03			
WG254521LFB	LFB	10/28/08 18:51	11081023-4	.5		.499	mg/L	99.8	85	115			
L72605-10AS	AS	10/28/08 19:38	11081023-4	.5	U	.492	mg/L	98.4	85	115			
L72605-10ASD	ASD	10/28/08 19:41	11081023-4	.5	U	.507	mg/L	101.4	85	115	3	20	
Cyanide, total			M335.4 -	Colorimetr	ric w/ distil	lation							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254683													
WG254683ICV	ICV	10/28/08 14:54	WI081025-3	.3		-2848	mg/L	94.9	90	110			
WG254683ICB	ICB	10/28/08 14:55				U	mg/L		-0.015	0.015			
WG254593LRB	LRB	10/28/08 14:55				Ū	mg/L		-0.015	0.015			
WG254593LFB	LFB	10/28/08 14:56	WI081025-7	.2		.1976	mg/L	98.8	90	110			
L72534-01DUP	DUP	10/28/08 14:58		-	U	U	mg/L	00.0			0	20	
L72546-01LFM	LFM	10/28/08 15:00	WI081025-7	.2	Ū	.2027	mg/L	101.4	90	110			
L72581-01DUP	DUP	10/28/08 15:10		-	.006	.0071	mg/L		•		16.8	20	
_72590-01LFM	LFM	10/28/08 15:11	WI081025-7	.2	U	.1972	mg/L	98.6	90	110			
WG254898													
WG254898ICV	ICV	10/30/08 21:53	WI081025-3	.3		-2835	mg/L	94.5	90	110			
WG254898ICB	ICB	10/30/08 21:53		-		U	mg/L		-0.015	0.015			
WG254750LRB	LRB	10/30/08 21:54				U	mg/L		-0.015	0.015			
WG254750LFB	LFB	10/30/08 21:55	WI081025-7	.2		.1901	mg/L	95.1	90	110			
L72612-04DUP	DUP	10/30/08 21:59		-	.009	.0096	mg/L		30		6.5	20	
		.0,00,00 21.00			.500	.0000	9/ -				0.0	_5	l.

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Fluoride			SM4500F	:-C									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254913													
WG254913ICV	ICV	10/31/08 10:37	WC081028-1	2		2.1	mg/L	105	95	105			
WG254913ICB	ICB	10/31/08 10:44				U	mg/L		-0.3	0.3			
WG254913LFB1	LFB	10/31/08 10:50	WC080912-3	5		4.75	mg/L	95	90	110			
WG254913LFB2	LFB	10/31/08 12:23	WC080912-3	5		4.56	mg/L	91.2	90	110			
L72595-05DUP	DUP	10/31/08 13:30			.4	.36	mg/L				10.5	20	RA
L72595-06AS	AS	10/31/08 13:35	WC080912-3	5	2.2	6.89	mg/L	93.8	90	110			
WG255003													
WG255003ICV	ICV	11/03/08 10:19	WC081029-9	2		2.1	mg/L	105	95	105			
WG255003ICB	ICB	11/03/08 10:26				U	mg/L		-0.3	0.3			
WG255003LFB1	LFB	11/03/08 10:30	WC080912-3	5		5.09	mg/L	101.8	90	110			
L72497-01DUP	DUP	11/03/08 10:35			.6	.56	mg/L				6.9	20	RA
L72502-02AS	AS	11/03/08 10:40	WC080912-3	5	.9	6.3	mg/L	108	90	110			
WG255003LFB2	LFB	11/03/08 12:00	WC080912-3	5		4.77	mg/L	95.4	90	110			
Iron, dissolved			M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254521													
WG254521ICV	ICV	10/28/08 18:37	11080818-1	2		1.932	mg/L	96.6	95	105			
WG254521ICB	ICB	10/28/08 18:41	110000101	_		U	mg/L	50.0	-0.06	0.06			
WG254521LFB	LFB	10/28/08 18:51	11081023-4	1		1.017	mg/L	101.7	85	115			
L72605-10AS	AS	10/28/08 19:38	11081023-4	1	1.56	2.491	mg/L	93.1	85	115			
L72605-10ASD	ASD	10/28/08 19:41	11081023-4	1	1.56	2.507	mg/L	94.7	85	115	0.64	20	
Lead, dissolved			M200.8 I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
	.,,,,,	7 many 20 a	1 0.11/0 0.11	40	Campio	, cana	Omio			орро.	1112		G, oich
WG254782							_						
WG254782ICV	ICV	10/31/08 3:23	MS081003-4	.05		.04853	mg/L	97.1	90	110			
WG254782ICB	ICB	10/31/08 3:28	110001000 7	05		.0001	mg/L	00.0	-0.00022	0.00022			
WG254782LFB	LFB	10/31/08 3:39	MS081003-7	.05		.04342	mg/L	86.8	85 70	115			
L72603-06AS L72603-06ASD	AS ASD	10/31/08 5:02 10/31/08 5:07	MS081003-7 MS081003-7	.5 .5	U	.4907 .455	mg/L mg/L	98.1 91	70 70	130 130	7.55	20	
	ASD	10/3 1/06 3.07	IVI300 1003-7			.400	mg/L	91	70	130	7.55	20	
Magnesium, diss			M200.7 I										
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254521													
WG254521ICV	ICV	10/28/08 18:37	11080818-1	100		99.99	mg/L	100	95	105			
WG254521ICB	ICB	10/28/08 18:41				U	mg/L		-0.6	0.6			
WG254521LFB	LFB	10/28/08 18:51	11081023-4	49.96908		50.47	mg/L	101	85	115			
L72605-10AS	AS	10/28/08 19:38	11081023-4	49.96908	17.7	68.54	mg/L	101.7	85	115			
L72605-10ASD	ASD	10/28/08 19:41	11081023-4	49.96908	17.7	66.51	mg/L	97.7	85	115	3.01	20	

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Manganosa dia	solvod		M200 7	CD									
Manganese, dis	Type	Analyzed	M200.7 I	QC	Sample	Found	linits	Rec	Lower	Upper	RPD	Limit	Qual
	— туре	Analyzeu	T CN/SCN	- QC	Sample	-r ound	-onits	Nec	Lowei	орреі	-KFD		Guai
WG254521													
WG254521ICV	ICV	10/28/08 18:37	11080818-1	2		1.9938	mg/L	99.7	95	105			
WG254521ICB	ICB	10/28/08 18:41				U	mg/L		-0.015	0.015			
WG254521LFB	LFB	10/28/08 18:51	11081023-4	.5		. 5438	mg/L	108.8	85	115			
L72605-10AS	AS	10/28/08 19:38	11081023-4	.5	.327	.8552	mg/L	105.6	85	115			
L72605-10ASD	ASD	10/28/08 19:41	11081023-4	.5	.327	.8555	mg/L	105.7	85	115	0.04	20	
Mercury, dissol	ved		M245.1 (CVAA									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254935													
WG254935ICV	ICV	11/01/08 11:10	11081015-2	.005		.00507	mg/L	101.4	95	105			
WG254935ICB	ICB	11/01/08 11:13				U	mg/L		-0.0002	0.0002			
WG254935LRB	LRB	11/01/08 11:17				U	mg/L		-0.00044	0.00044			
WG254935LFB	LFB	11/01/08 11:19	11081027-2	.002		.00194	mg/L	97	85	115			
L72468-01LFM	LFM	11/01/08 11:25	11081027-2	.002	U	.00189	mg/L	94.5	85	115			
L72468-01LFMD	LFMD	11/01/08 11:27	11081027-2	.002	U	.00186	mg/L	93	85	115	1.6	20	
L72612-02LFM	LFM	11/01/08 11:57	11081027-2	.002	U	.00192	mg/L	96	85	115			
L72612-02LFMD	LFMD	11/01/08 11:59	11081027-2	.002	U	.00191	mg/L	95.5	85	115	0.52	20	
Molybdenum, d	issolved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254521													
WG254521ICV	ICV	10/28/08 18:37	11080818-1	2		1.996	mg/L	99.8	95	105			
WG254521ICB	ICB	10/28/08 18:41				U	mg/L		-0.03	0.03			
WG254521LFB	LFB	10/28/08 18:51	11081023-4	.5		.509	mg/L	101.8	85	115			
L72605-10AS	AS	10/28/08 19:38	11081023-4	.5	.06	.555	mg/L	99	85	115			
L72605-10ASD	ASD	10/28/08 19:41	11081023-4	.5	.06	.553	mg/L	98.6	85	115	0.36	20	
Nickel, dissolve	ed		M200.7 I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254521													
WG254521ICV	ICV	10/28/08 18:37	11080818-1	2.004		1.968	mg/L	98.2	95	105			
WG254521ICB	ICB	10/28/08 18:41				U	mg/L		-0.03	0.03			
WG254521LFB	LFB	10/28/08 18:51	11081023-4	.4985		.512	mg/L	102.7	85	115			
L72605-10AS	AS	10/28/08 19:38	11081023-4	.4985	.01	.52	mg/L	102.3	85	115			
L72605-10ASD	ASD	10/28/08 19:41	11081023-4	.4985	.01	.533	mg/L	104.9	85	115	2.47	20	

REPIN.01.06.05.01 Page 12 of 20

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Nitrate/Nitrite as		Analyzad	M353.2 -	H2SO4 pre		Found	Unito	Pag	Lower	Hanar	BBB	Limit	Qual
	Туре	Analyzed	PCN/SCN	QC .	Sample	rouna	Units	Rec	Lower	Upper	KPD	LIIIIII	Qual
WG254717													
WG254717ICV	ICV	10/28/08 18:28	WI080916-5	2.416		2.395	mg/L	99.1	90	110			
WG254717ICB	ICB	10/28/08 18:29				U	mg/L		-0.06	0.06			
WG254721													
WG254721ICV	ICV	10/28/08 20:15	WI080916-5	2.416		2.281	mg/L	94.4	90	110			
WG254721ICB	ICB	10/28/08 20:17				U	mg/L		-0.06	0.06			
WG254721LFB1	LFB	10/28/08 20:18	WI080913-4	2		1.934	mg/L	96.7	90	110			
L72542-09AS	AS	10/28/08 20:39	WI080913-4	2	.15	2.18	mg/L	101.5	90	110			
L72542-10DUP	DUP	10/28/08 20:42			1.52	1.502	mg/L				1.2	20	
WG254721LFB2	LFB	10/28/08 20:57	WI080913-4	2		1.897	mg/L	94.9	90	110			
pH (lab)			M150.1 -	Electromet	ric								
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254837													
WG254837LCSW3	LCSW	10/30/08 13:40	PCN29627	6		6.13	units	102.2	90	110			
L68011-34DUP	DUP	10/30/08 15:06		·	7.2	7.3	units				1.4	20	
WG254837LCSW6	LCSW	10/30/08 16:37	PCN29627	6		6.17	units	102.8	90	110			
WG254837LCSW9	LCSW	10/30/08 19:50	PCN29627	6		6.14	units	102.3	90	110			
WG254837LCSW12	LCSW	10/30/08 23:12	PCN29627	6		6.06	units	101	90	110			
WG254837LCSW15	LCSW	10/31/08 2:23	PCN29627	6		6.17	units	102.8	90	110			
Potassium, disso	lved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254737													
WG2547371CV	ICV	10/29/08 21:51	II080818 - 1	20		19 93	ma/L	99 7	95	105			
WG254737ICV WG254737ICB	ICV ICB	10/29/08 21:51 10/29/08 21:55	11080818-1	20		19.93 U	mg/L ma/L	99.7	95 -0.9	105 0.9			
WG254737ICV WG254737ICB WG254737LFB	ICV ICB LFB	10/29/08 21:51 10/29/08 21:55 10/29/08 22:08	11080818 -1	20 99. 7 6186		19.93 U 99.3	mg/L	99.7 99.5	95 -0.9 85	105 0.9 115			
WG254737ICB WG254737LFB	ICB	10/29/08 21:55			5.2	U	•		-0.9	0.9			
WG254737ICB WG254737LFB L72605-10AS	ICB LFB	10/29/08 21:55 10/29/08 22:08	II081023 - 4	99.76186	5.2 5.2	U 99.3	mg/L mg/L	99.5	-0.9 85	0.9 115	1.22	20	
WG254737ICB WG254737LFB L72605-10AS L72605-10ASD	ICB LFB AS ASD	10/29/08 21:55 10/29/08 22:08 10/29/08 23:03 10/29/08 23:06	II081023 - 4 II081023 - 4	99.76186 99.76186 99.76186		U 99.3 106.7	mg/L mg/L mg/L	99.5 101 . 7	-0.9 85 85	0.9 115 115	1.22	20	
WG254737ICB WG254737LFB L72605-10AS L72605-10ASD Residue, Filterab	ICB LFB AS ASD	10/29/08 21:55 10/29/08 22:08 10/29/08 23:03 10/29/08 23:06	II081023-4 II081023-4 II081023-4	99.76186 99.76186 99.76186		U 99.3 106.7	mg/L mg/L mg/L mg/L	99.5 101 . 7	-0.9 85 85	0.9 115 115	1.22 RPD	20 Limit	Qual
WG254737ICB WG254737LFB L72605-10AS L72605-10ASD Residue, Filterab ACZ ID	ICB LFB AS ASD Ie (TDS	10/29/08 21:55 10/29/08 22:08 10/29/08 23:03 10/29/08 23:06) @180C	II081023-4 II081023-4 II081023-4 SM25400	99.76186 99.76186 99.76186	5.2	U 99.3 106.7 105.41	mg/L mg/L mg/L mg/L	99.5 101.7 100.4	-0.9 85 85 85	0.9 115 115 115			Qual
WG254737ICB WG254737LFB L72605-10AS L72605-10ASD Residue, Filterab ACZ ID WG254606	ICB LFB AS ASD Ie (TDS	10/29/08 21:55 10/29/08 22:08 10/29/08 23:03 10/29/08 23:06) @180C Analyzed	II081023-4 II081023-4 II081023-4 SM25400	99.76186 99.76186 99.76186	5.2	U 99.3 106.7 105.41	mg/L mg/L mg/L mg/L	99.5 101.7 100.4	-0.9 85 85 85 85	0.9 115 115 115 Upper			Qual
WG254737ICB WG254737LFB L72605-10AS L72605-10ASD Residue, Filterab ACZ ID WG254606 WG254606PBW	ICB LFB AS ASD Ie (TDS Type	10/29/08 21:55 10/29/08 22:08 10/29/08 23:03 10/29/08 23:06) @180C Analyzed	II081023-4 II081023-4 II081023-4 SM25400 PCN/SCN	99.76186 99.76186 99.76186	5.2	U 99.3 106.7 105.41 Found	mg/L mg/L mg/L mg/L	99.5 101.7 100.4 Rec	-0.9 85 85 85 Lower	0.9 115 115 115 115 Upper			Qual
WG254737ICB WG254737LFB L72605-10AS L72605-10ASD Residue, Filterab ACZ ID WG254606 WG254606PBW WG254606LCSW	ICB LFB AS ASD Ie (TDS Type	10/29/08 21:55 10/29/08 22:08 10/29/08 23:03 10/29/08 23:06) @180C Analyzed 10/27/08 14:50 10/27/08 14:50	II081023-4 II081023-4 II081023-4 SM25400	99.76186 99.76186 99.76186	5.2 Sample	U 99.3 106.7 105.41 Found U 238	mg/L mg/L mg/L mg/L	99.5 101.7 100.4	-0.9 85 85 85 85	0.9 115 115 115 Upper	RPD	Limit	Qual
WG254737ICB WG254737LFB L72605-10AS L72605-10ASD Residue, Filterab ACZ ID WG254606 WG254606PBW WG254606LCSW	ICB LFB AS ASD Ie (TDS Type	10/29/08 21:55 10/29/08 22:08 10/29/08 23:03 10/29/08 23:06) @180C Analyzed	II081023-4 II081023-4 II081023-4 SM25400 PCN/SCN	99.76186 99.76186 99.76186 C QC	5.2	U 99.3 106.7 105.41 Found	mg/L mg/L mg/L mg/L	99.5 101.7 100.4 Rec	-0.9 85 85 85 Lower	0.9 115 115 115 115 Upper			Qual
WG254737ICB WG254737LFB L72605-10AS L72605-10ASD Residue, Filterab ACZ ID WG254606 WG254606PBW WG254606LCSW L72613-01DUP	ICB LFB AS ASD Ie (TDS Type PBW LCSW DUP	10/29/08 21:55 10/29/08 22:08 10/29/08 23:03 10/29/08 23:06) @180C Analyzed 10/27/08 14:50 10/27/08 14:50	II081023-4 II081023-4 II081023-4 SM25400 PCN/SCN	99.76186 99.76186 99.76186 C QC	5.2 Sample	U 99.3 106.7 105.41 Found U 238	mg/L mg/L mg/L mg/L	99.5 101.7 100.4 Rec	-0.9 85 85 85 Lower	0.9 115 115 115 115 Upper	RPD	Limit	Qual
WG254737ICB WG254737LFB L72605-10AS L72605-10ASD Residue, Filterab ACZ ID WG254606 WG254606PBW WG254606LCSW L72613-01DUP Selenium, dissol	ICB LFB AS ASD Ie (TDS Type PBW LCSW DUP	10/29/08 21:55 10/29/08 22:08 10/29/08 23:03 10/29/08 23:06) @180C Analyzed 10/27/08 14:50 10/27/08 14:50	II081023-4 II081023-4 II081023-4 SM25400 PCN/SCN	99.76186 99.76186 99.76186 C QC	5.2 Sample	U 99.3 106.7 105.41 Found U 238	mg/L mg/L mg/L Units	99.5 101.7 100.4 Rec	-0.9 85 85 85 Lower	0.9 115 115 115 115 Upper	RPD	Limit	Qual
WG254737ICB WG254737LFB L72605-10AS L72605-10ASD Residue, Filterab ACZ ID WG254606 WG254606PBW	ICB LFB AS ASD Ie (TDS Type PBW LCSW DUP	10/29/08 21:55 10/29/08 22:08 10/29/08 23:03 10/29/08 23:06) @180C Analyzed 10/27/08 14:50 10/27/08 15:00	II081023-4 II081023-4 II081023-4 SM25400 PCN/SCN PCN/SCN	99.76186 99.76186 99.76186 QC 260	Sample	U 99.3 106.7 105.41 Found U 238 372	mg/L mg/L mg/L Units	99.5 101.7 100.4 Rec	-0.9 85 85 85 Lower -20 80	0.9 115 115 115 115 Upper	RPD	Limit	
WG254737ICB WG254737ICB L72605-10AS L72605-10ASD Residue, Filterab ACZ ID WG254606 WG254606PBW WG254606LCSW L72613-01DUP Selenium, dissolated MG254782	ICB LFB AS ASD Ie (TDS Type PBW LCSW DUP ved Type	10/29/08 21:55 10/29/08 22:08 10/29/08 23:03 10/29/08 23:06) @180C Analyzed 10/27/08 14:50 10/27/08 15:00 Analyzed	II081023-4 II081023-4 II081023-4 SM25400 PCN/SCN PCN29989 M200.8 IG PCN/SCN	99.76186 99.76186 99.76186 260 260	Sample	U 99.3 106.7 105.41 Found U 238 372	mg/L mg/L mg/L Units mg/L mg/L mg/L mg/L	99.5 101.7 100.4 Rec	-0.9 85 85 85 Lower -20 80	0.9 115 115 115 115 Upper	RPD	Limit	
WG254737ICB WG254737ICB L72605-10AS L72605-10ASD Residue, Filterab ACZ ID WG254606 WG254606PBW WG254606LCSW L72613-01DUP Selenium, dissola ACZ ID WG254782 WG254782	ICB LFB AS ASD Ile (TDS Type PBW LCSW DUP ved Type	10/29/08 21:55 10/29/08 22:08 10/29/08 23:03 10/29/08 23:06) @180C Analyzed 10/27/08 14:50 10/27/08 15:00	II081023-4 II081023-4 II081023-4 SM25400 PCN/SCN PCN/SCN	99.76186 99.76186 99.76186 QC 260	Sample	U 99.3 106.7 105.41 Found U 238 372 Found	mg/L mg/L mg/L Units mg/L mg/L mg/L mg/L	99.5 101.7 100.4 Rec	-0.9 85 85 85 Lower -20 80	0.9 115 115 115 115 Upper 20 120 Upper	RPD	Limit	
WG254737ICB WG254737ICB L72605-10AS L72605-10ASD Residue, Filterab ACZ ID WG254606 WG254606PBW WG254606LCSW L72613-01DUP Selenium, dissola ACZ ID WG254782 WG254782ICV WG254782ICB	ICB LFB AS ASD Ie (TDS Type PBW LCSW DUP ved Type ICV ICB	10/29/08 21:55 10/29/08 22:08 10/29/08 23:03 10/29/08 23:06) @180C Analyzed 10/27/08 14:50 10/27/08 15:00 Analyzed 10/27/08 3:23 10/31/08 3:23	II081023-4 II081023-4 II081023-4 SM25400 PCN/SCN PCN29989 M200.8 IO PCN/SCN MS081003-4	99.76186 99.76186 99.76186 QC 260 CP-MS QC	Sample	U 99.3 106.7 105.41 Found U 238 372 Found .05107	mg/L mg/L mg/L Units Units Units	99.5 101.7 100.4 Rec 91.5	-0.9 85 85 85 Lower -20 80 Lower 90 -0.00022	0.9 115 115 115 Upper 20 120 Upper	RPD	Limit	
WG254737ICB WG254737LFB L72605-10AS L72605-10ASD Residue, Filterab ACZ ID WG254606 WG254606PBW WG254606LCSW L72613-01DUP Selenium, dissolatzi ID	ICB LFB AS ASD Ile (TDS Type PBW LCSW DUP ved Type	10/29/08 21:55 10/29/08 22:08 10/29/08 23:03 10/29/08 23:06) @180C Analyzed 10/27/08 14:50 10/27/08 15:00 Analyzed	II081023-4 II081023-4 II081023-4 SM25400 PCN/SCN PCN29989 M200.8 IG PCN/SCN	99.76186 99.76186 99.76186 260 260	Sample	U 99.3 106.7 105.41 Found U 238 372 Found	mg/L mg/L mg/L Units mg/L mg/L mg/L mg/L	99.5 101.7 100.4 Rec	-0.9 85 85 85 Lower -20 80	0.9 115 115 115 115 Upper 20 120 Upper	RPD	Limit	

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Sodium, dissolv	ed		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254737													
WG254737ICV	ICV	10/29/08 21:51	11080818-1	100		99.63	mg/L	99.6	95	105			
WG254737ICB	ICB	10/29/08 21:55				U	mg/L	55.5	-0.9	0.9			
WG254737LFB	LFB	10/29/08 22:08	11081023-4	98.21624		98.19	mg/L	100	85	115			
L72605-10AS	AS	10/29/08 23:03	11081023-4	98.21624	308	384.11	mg/L	77.5	85	115			M2
L72605-10ASD	ASD	10/29/08 23:06	11081023-4	98.21624	308	388.23	mg/L	81.7	85	115	1.07	20	M2
Sulfate			SM4500	SO4-D									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254731													
WG254731PBW	PBW	10/29/08 10:30				U	mg/L		-30	30			
WG254731LCSW	LCSW	10/29/08 10:32	WC080910-2	100		102	mg/L	102	80	120			
L72622-01DUP	DUP	10/29/08 11:30			1780	1585	mg/L				11.6	20	
Thallium, dissol	ved		M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254782													
WG254782ICV	ICV	10/31/08 3:23	MS081003-4	.05		.04924	mg/L	98.5	90	110			
WG254782ICB	ICB	10/31/08 3:28				U	mg/L	00.0	-0.00022				
WG254782LFB	LFB	10/31/08 3:39	MS081003-7	.0501		.04424	mg/L	88.3	85	115			
L72603-06AS	AS	10/31/08 5:02	MS081003-7	.501	U	.5017	mg/L	100.1	70	130			
L72603-06ASD	ASD	10/31/08 5:07	MS081003-7	.501	U	.4654	mg/L	92.9	70	130	7.51	20	
Uranium, dissol	ved		M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254782													
WG254782ICV	ICV	10/31/08 3:23	MS081003-4	.05		.04694	mg/L	93.9	90	110			
WG254782ICB	ICB	10/31/08 3:28				U	mg/L		-0.00022				
WG254782LFB	LFB	10/31/08 3:39	MS081003-7	.05		.0433	mg/L	86.6	85	115			
L72603-06AS	AS	10/31/08 5:02	MS081003-7	.5	.001	.4951	mg/L	98.8	70	130			
L72603-06ASD	ASD	10/31/08 5:07	MS081003-7	.5	.001	.4593	mg/L	91.7	70	130	7.5	20	
Zinc, dissolved			M200.7 IC	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254521													
WG254521ICV	ICV	10/28/08 18:37	11080818-1	2		1.95	mg/L	97.5	95	105			
WG254521ICB	ICB	10/28/08 18:41				U	mg/L	-	-0.03	0.03			
WG254521LFB	LFB	10/28/08 18:51	11081023-4	.5		.505	mg/L	101	85	115			
L72605-10AS	AS	10/28/08 19:38	11081023-4	.5	.04	.558	mg/L	103.6	85	115			
L72605-10ASD	ASD	10/28/08 19:41	11081023-4	.5	.04	.542	mg/L	100.4	85	115	2.91	20	

(800) 334-5493

Inorganic Extended Qualifier Report

ACZ Project ID: L72612

FMI Gold & Copper - Sierrita

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L72612-01	WG254521	Calcium, dissolved	M200.7 ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG254737	Sodium, dissolved	M200.7 ICP	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG254683	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254913	Fluoride	SM4500F-C	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254837	Total Alkalinity	SM2320B - Titration	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
L72612 - 02	WG254521	Calcium, dissolved	M200.7 ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG254737	Sodium, dissolved	M200.7 ICP	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG254683	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254913	Fluoride	SM4500F-C	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254837	Total Alkalinity	SM2320B - Titration	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
L72612-03	WG254521	Calcium, dissolved	M200.7 ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG254737	Sodium, dissolved	M200.7 ICP	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG254837	Conductivity @25C	SM2510B	N1	See Case Narrative.
	WG254683	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG255003	Fluoride	SM4500F-C	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254837	рH	SM4500H+ B	N1	See Case Narrative.
		Total Alkalinity	SM2320B - Titration	N1	See Case Narrative.
			SM2320B - Titration	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
L72612-04	WG254521	Calcium, dissolved	M200.7 ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG254737	Sodium, dissolved	M200.7 ICP	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG254898	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG255003	Fluoride	SM4500F-C	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254837	Total Alkalinity	SM2320B - Titration	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).

FMI Gold & Copper - Sierrita

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L72612-05	WG254521	Calcium, dissolved	M200.7 ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG254737	Sodium, dissolved	M200.7 ICP	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG254738	Chloride	SM4500CI-E	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254898	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG255003	Fluoride	SM4500F-C	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254837	Total Alkalinity	SM2320B - Titration	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).

Certification Qualifiers

FMI Gold & Copper - Sierrita

ACZ Project ID: L72612

No certification qualifiers associated with this analysis

Sample Receipt

FMI Gold & Copper - Sierrita

OJ06DZ

ACZ Project ID:

L72612

Date Received:

10/22/2008

Received By:

Date Printed: 10/22/2008

Receipt Verification

- 1) Does this project require special handling procedures such as CLP protocol?
- 2) Are the custody seals on the cooler intact?
- 3) Are the custody seals on the sample containers intact?
- 4) Is there a Chain of Custody or other directive shipping papers present?
- 5) Is the Chain of Custody complete?
- 6) Is the Chain of Custody in agreement with the samples received?
- 7) Is there enough sample for all requested analyses?
- 8) Are all samples within holding times for requested analyses?
- 9) Were all sample containers received intact?
- 10) Are the temperature blanks present?
- 11) Is the trip blank for Cyanide present?
- 12) Is the trip blank for VOA present?
- 13) Are samples requiring no headspace, headspace free?
- 14) Do the samples that require a Foreign Soils Permit have one?

YES	NO	NA
		Х
Χ		
		Х
Χ		
Х		
Χ		
Х		
X		
Χ		
		Х
	Х	
		Х
		Х
		Χ

Exceptions: If you answered no to any of the above questions, please describe

N/A

Contact (For any discrepancies, the client must be contacted)

N/A

Shipping Containers

Cooler Id	Temp (°C)	Rad (μR/hr)
1713	4.2	15

Client must contact ACZ Project Manager if analysis should not proceed for samples received outside of thermal preservation acceptance criteria.

Notes

Sample Receipt

FMI Gold & Copper - Sierrita

OJ06DZ

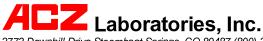
ACZ Project ID: Date Received: L72612

10/22/2008

Received By:

Sample Container Preservation

SAMPLE	CLIENT ID	R < 2	G < 2	BK < 2	Y<2	YG<2	B< 2	0 < 2	T >12	N/A	RAD	ID
L72612-01	MH-13A		Υ		Υ							
L72612-02	MH-13B		Υ		Υ							
L72612-03	MH-13C		Υ		Υ							
L72612-04	MH-26-B		Υ		Υ							
L72612-05	IW-19		Υ		Υ							


Sample Container Preservation Legend

Abbreviation	Description	Container Type	Preservative/Limits
R	Raw/Nitric	RED	pH must be < 2
В	Filtered/Sulfuric	BLUE	pH must be < 2
BK	Filtered/Nitric	BLACK	pH must be < 2
G	Filtered/Nitric	GREEN	pH must be < 2
0	Raw/Sulfuric	ORANGE	pH must be < 2
Р	Raw/NaOH	PURPLE	pH must be > 12 *
T	Raw/NaOH Zinc Acetate	TAN	pH must be > 12
Υ	Raw/Sulfuric	YELLOW	pH must be < 2
YG	Raw/Sulfuric	YELLOW GLASS	pH must be < 2
N/A	No preservative needed	Not applicable	
RAD	Gamma/Beta dose rate	Not applicable	must be < 250 μR/hr

^{*} pH check performed by analyst prior to sample preparation

Sample IDs Reviewed By:		

ACZ Labo 2773 Downhill Drive Steambo	ratories at Springs, CO	•	00) 334	-5493	61	2	CHA	AIN of C	CUST	ODY
Report to:										
Name: Billy Dorris								Mine k		
Company: Freeport McI	MoRan Sie	mta			<u>67ee</u>	n Valle	24. Az	856	14	
E-mail: billy-dorrise	@fmi.com]	Telep	hone:	520-6	048-88	73		
Copy of Report to:							٠.			
Name: Dan Simps	٥^			E-mai	1: da	ns@hg	inc.a	m		
Company: Hydro Geo								00 Ex	t- 13	3
Invoice to:										
Name:				Addre	ess:					
Company:			1							
E-mail:				Telep	hone:					
If sample(s) received past hold								YES	s	
analysis before expiration, shal								NC]
If "NO" then ACZ will contact of is indicated, ACZ will proceed with the contact of the contact							will be au	alified.		
PROJECT INFORMATION	men ene requese	ed analyses	5, 00011					list or use q	uote nun	nber)
Quote #:						<i>[2]</i>				
Project/PO #: DJø6	DZ			 -	2	1/2				
Reporting state for complia			1	of Containers	Ambient TB	2,5				
Sampler's Name:				වි	2	52				
Are any samples NRC licens	sable material?			t of	Ž	Vranur Metal-D				
SAMPLE IDENTIFICATION	DATE:		Matrix		4	36		<u> </u>		
MH-13A	10-20-08/	12:06	GW	5	X	X				
MH-13B	10-20-08/	11:33	GW	5_	X	X				
mH-13C	10-20-08/	10:31	GW	5	X	×				
MH-26-B	10-20-08/	12:55	GW	5	X	X	_		_	
IW-19	10-20-08/	14:00	GW	5	X	X			ļ—	
			ļ		-					
			1							
			<u> </u>							
					At (Dain)	in a Mator	SI /Sludge) 50 (Sail)	OL (Oil)	Othor
Matrix SW (Surface Water)		er) · www (w	aste wat	er) · D	W (DITTIN	ang water)	SL (Sludge	e) · 30 (30II)	· OL (OII)	· Other
REMARKS/ SAMPLE DISCLO	SUKES			عمد " مح	0.0	1 150	n me.i	45 wit	h DC	
Copy of report to	o Dan Si	mpson	COM	MINIT	0/11	9 204	16301	, , ,		
Summery.										PAGE
										of
UPS TRACKING #	£12 867	7 784	23 /	000	570	25				
Please refe	r to ACZ's terr	ns & conc	litions l	ocated	d on th	ne <u>reverse</u>			DATE	ME
RELINQUISHED BY		DATE:T	_	1		RECEIVED	BY:		DATE:TI	
Billy 7. Jours	//	12-21-08/1	5:00			V/L		10 X	1.08 9	167
				<u> </u>						
	M/hito Datus			<u> </u>		a for your r	. 1.		- · · · - ·	

Analytical Report

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

November 12, 2008

Bill Dorris Phelps Dodge Sierrita P.O. Box 527 6200 West Duval Mine Road Green Valley, AZ 85622-0527

Cc: Dan Simpson

Project ID: OJ06DZ

ACZ Project ID: L72697-SULFATE ONLY

Bill Dorris:

Enclosed are analytical reports for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on October 28, 2008. This project was assigned to ACZ's project number, L72697. Please reference this number in all future inquiries.

At the request of Phelps Dodge Sierrita, Inc. (PDSI), this laboratory report has been prepared to contain only information specific to samples and analytes identified by PDSI as evaluated pursuant to Mitigation Order No. P-500-06 with Arizona Department of Environmental Quality. Samples and analytes unrelated to the Mitigation Order, but which may be identified on the chain of custody and sample receipt, have been reported to PDSI in a separate report.

All analyses were performed according to ACZ's Quality Assurance Plan, version 12.0. The enclosed results relate only to the samples received under L72697. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute. Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all the requirements of NELAC.

This report should be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

ACZ disposes of samples and sub-samples thirty days after the analytical results are reported to the client. That time frame has elapsed for this project. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years. Please notify your Project Manager if you have other needs. If you have any questions, please contact your Project Manager or Customer Service Representative.

Scott Habermehl has reviewed and approved this report.

S. Havermehl

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: IW-18 ACZ Sample ID: **L72697-01**

Date Sampled: 10/24/08 09:55

Date Received: 10/28/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	SM4500 SO4-D	1680		ma/l	20	100	10/30/08 15:03	kah

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: IW-20 ACZ Sample ID: **L72697-02**

Date Sampled: 10/24/08 13:10

Date Received: 10/28/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result Qual X	Q Units	MDL	PQL	Date	Analyst
Sulfate	SM4500 SO4-D	1600	mg/L	10	50	10/30/08 15:06	kah

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: IW-21 ACZ Sample ID: L72697-03

Date Sampled: 10/24/08 13:20

Date Received: 10/28/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	SM4500 SO4-D	1640	mg/L	10	50	10/30/08 15:10	kah

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: IW-22 ACZ Sample ID: **L72697-04**Date Sampled: 10/24/08 11:30

Date Received: 10/28/08
Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	SM4500 SO4-D	1720		ma/L	10	50	10/30/08 15:13	kah

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: IW-23 ACZ Sample ID: **L72697-05**

Date Sampled: 10/24/08 11:50

Date Received: 10/28/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result Qual XC	Units	MDL	PQL	Date	Analyst
Sulfate	SM4500 SO4-D	1780	mg/L	50	250	10/30/08 15:19	kah

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: IW-24 ACZ Sample ID: **L72697-06**

Date Sampled: 10/24/08 12:00

Date Received: 10/28/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	SM4500 SO4-D	1640	mg/L	20	100	10/30/08 15:23	kah

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: DUP102408A ACZ Sample ID: **L72697-07**

Date Sampled: 10/24/08 00:00

Date Received: 10/28/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result Qual X0	Q Units	MDL	PQL	Date	Analyst
Sulfate	SM4500 SO4-D	1720	mg/L	10	50	10/30/08 15:26	kah

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report Header Explanations

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest Limit Upper limit for RPD, in %.

Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit, typically 5 times the MDL.

QC True Value of the Control Sample or the amount added to the Spike

Rec Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

QC Sample Types	QC	Sam	ple i	Тур	es
-----------------	----	-----	-------	-----	----

AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calibration Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution

QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method or calibration procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method. Spikes/Fortified Matrix Determines sample matrix interferences, if any.

Standard Verifies the validity of the calibration.

ACZ Qualifiers (Qual)

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity.
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time.
- U The material was analyzed for, but was not detected above the level of the associated value.

The associated value is either the sample quantitation limit or the sample detection limit.

Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (5) EPA SW-846. Test Methods for Evaluating Solid Waste, Third Edition with Update III, December 1996.
- (6) Standard Methods for the Examination of Water and Wastewater, 19th edition, 1995.

Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.

FMI Gold & Copper - Sierrita

Project ID:	0.	J06DZ											
Alkalinity as CaC	:03		SM2320B	3 - Titrat i on									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254837													
WG254837PBW1	PBW	10/30/08 13:26				U	mg/L		-20	20			
WG254837LCSW2	LCSW	10/30/08 13:36	WC081022-2	820.0001		782.5	mg/L	95.4	90	110			
WG254837PBW2	PBW	10/30/08 16:23				U	mg/L		-20	20			
WG254837LCSW5	LCSW	10/30/08 16:34	WC081022-2	820.0001		789.3	mg/L	96.3	90	110			
WG254837PBW3	PBW	10/30/08 19:35				U	mg/L		-20	20			
WG254837LCSW8	LCSW	10/30/08 19:46	WC081022-2	820.0001		792.6	mg/L	96.7	90	110			
L72697-01DUP	DUP	10/30/08 22:52			125	126.1	mg/L				0.9	20	
WG254837PBW4	PBW	10/30/08 22:58				U	mg/L		-20	20			
WG254837LCSW11	LCSW	10/30/08 23:09	WC081022-2	820.0001		802.3	mg/L	97.8	90	110			
L72698-04DUP	DUP	10/31/08 0:39			120	120.2	mg/L				0.2	20	
WG254837LCSW14	LCSW	10/31/08 2:19	WC081022-2	820.0001		808.5	mg/L	98.6	90	110			
Aluminum, disso	lved		M200.7 IC	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255180													
WG255180ICV	ICV	11/05/08 13:48	11080818-1	2		1.975	mg/L	98.8	95	105			
WG255180ICB	ICB	11/05/08 13:52				U	mg/L		-0.09	0.09			
WG255180LFB	LFB	11/05/08 14:04	11081023-4	1		1.019	mg/L	101.9	85	115			
L72696-01AS	AS	11/05/08 14:21	11081023-4	1	U	1.025	mg/L	102.5	85	115			
L72696-01ASD	ASD	11/05/08 14:24	11081023-4	1	U	1.039	mg/L	103.9	85	115	1.36	20	
L72697-04AS	AS	11/05/08 14:57	11081023-4	2	U	2.096	mg/L	104.8	85	115			
L72697-04ASD	ASD	11/05/08 15:01	11081023-4	2	U	2.059	mg/L	103	85	115	1.78	20	
WG255325													
WG255325ICV	ICV	11/07/08 15:03	11080818-1	2		1.94	mg/L	97	95	105			
WG255325ICB	ICB	11/07/08 15:07				U	mg/L		-0.09	0.09			
WG255325LFB	LFB	11/07/08 15:20	11081105-2	1		1.001	mg/L	100.1	85	115			
L72709-01AS	AS	11/07/08 15:30	11081105-2	1	.07	1.071	mg/L	100.1	85	115			
L72709-01ASD	ASD	11/07/08 15:33	11081105 - 2	1	.07	1.067	mg/L	99.7	85	115	0.37	20	
Antimony, dissol	ved		M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255377													
WG255377ICV	ICV	11/07/08 17:40	MS081101 - 2	.02		.02093	mg/L	104.7	90	110			
WG255377ICB	ICB	11/07/08 17:43				.00068	mg/L		-0.00088				
WG255377LFB	LFB	11/07/08 17:49	MS081003-7	.01		.00948	mg/L	94.8	85	115			
L72697-02AS	AS	11/07/08 17:59	MS081003-7	.02	U	.01997	mg/L	99.9	70	130			
L72697-02ASD	ASD	11/07/08 18:02	MS081003-7	.02	U	.02238	mg/L	111.9	70	130	11.38	20	
Arsenic, dissolve	ed		M200.8 IC	CP-MS									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255377													
WG255377ICV	ICV	11/07/08 17:40	MS081101-2	.05		.05045	mg/L	100.9	90	110			
WG255377ICV WG255377ICB	ICB	11/07/08 17:43	WOOD 1 10 1-2	.00		.03043	mg/L	100.0	-0.0011	0.0011			
WG255377LFB	LFB	11/07/08 17:49	MS081003-7	.05		.05187	mg/L	103.7	85	115			
L72697-02AS	AS	11/07/08 17:49	MS081003-7	.1	.002	.1152	mg/L	113.2	70	130			
L72097-02AS	ASD ASD	11/07/00 17.59	MC004003-7	.1	.002	1102	1119/L	113.2	70	130	1.40	20	

.002 .1135 mg/L

.1

70

130

1.49 20

111.5

ASD

11/07/08 18:02 MS081003-7

L72697-02ASD

FMI Gold & Copper - Sierrita

L72697-07DUP

REPIN.01.06.05.01

DUP

10/30/08 13:34

Project ID:	С	J06DZ											
Barium, dissol	ved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254880													
WG254880ICV	ICV	11/04/08 10:34	11080818-1	2		2.031	mg/L	101.6	95	105			
NG254880ICB	ICB	11/04/08 10:37				U	mg/L		-0.009	0.009			
WG254880LFB	LFB	11/04/08 10:49	11081023-4	.5		.5246	mg/L	104.9	85	115			
_72696-03AS	AS	11/04/08 11:40	11081023-4	.5	.049	.5727	mg/L	104.7	85	115			
.72696-03ASD	ASD	11/04/08 11:44	11081023-4	.5	.049	.577	mg/L	105.6	85	115	0.75	20	
Beryllium, diss	olved		M200.8 I	CP-MS									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qua
NG255377													
WG255377ICV	ICV	11/07/08 17:40	MS081101-2	.05		.05009	mg/L	100.2	90	110			
WG255377ICB	ICB	11/07/08 17:43				U	mg/L		-0.00022	0.00022			
NG255377LFB	LFB	11/07/08 17:49	MS081003-7	.05005		.05006	mg/L	100	85	115			
_72697-02AS	AS	11/07/08 17:59	MS081003-7	.1001	U	.10656	mg/L	106.5	70	130			
_72697-02ASD	ASD	11/07/08 18:02	MS081003-7	.1001	U	.10626	mg/L	106.2	70	130	0.28	20	
Cadmium, diss	olved		M200.8 I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qua
NG255377													
WG255377ICV	ICV	11/07/08 17:40	MS081101-2	.05		.05097	mg/L	101.9	90	110			
VG255377ICB	ICB	11/07/08 17:43				U	mg/L		-0.00022	0.00022			
VG255377LFB	LFB	11/07/08 17:49	MS081003-7	.05		.05208	mg/L	104.2	85	115			
_72697-02AS	AS	11/07/08 17:59	MS081003-7	.1	U	.10614	mg/L	106.1	70	130			
_72697-02ASD	ASD	11/07/08 18:02	MS081003-7	.1	U	.10628	mg/L	106.3	70	130	0.13	20	
Calcium, disso	lved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qua
NG254880													
WG254880ICV	ICV	11/04/08 10:34	11080818-1	100		100.17	mg/L	100.2	95	105			
VG254880ICB	ICB	11/04/08 10:37				U	mg/L		-0.6	0.6			
WG254880LFB	LFB	11/04/08 10:49	11081023-4	67.97008		72.04	mg/L	106	85	115			
_72696-03AS	AS	11/04/08 11:40	11081023-4	67.97008	222	284.53	mg/L	92	85	115			
.72696-03ASD	ASD	11/04/08 11:44	11081023-4	67.97008	222	284.6	mg/L	92.1	85	115	0.02	20	
Chloride			SM45000	CHE									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qua
WG254833													
WG254833ICB	ICB	10/30/08 8:44				U	mg/L		-3	3			
NG254833ICV	ICV	10/30/08 8:44	WI080808-1	54.945		57 . 5	mg/L	104.7	90	110			
WG254833LFB2	LFB	10/30/08 13:09	WI080818-2	30		32.8	mg/L	109.3	90	110			
-72678-02AS	AS	10/30/08 13:09	WI080818-2	30	22	55.1	mg/L	110.3	90	110			
-72678-03DUP	DUP	10/30/08 13:09	111000010-2	50	23	22.8	mg/L	1 10.0	50	110	0.9	20	
NG254833LFB1	LFB	10/30/08 13:24	WI080818-2	30	20	32.7	mg/L	109	90	110	0.0	20	
_72697-06AS	AS	10/30/08 13:33	10XCL	30	160	193	mg/L	110	90	110			
_12001-00A0	70	10/00/00 10.33	IUNOL	50	100	130	mg/∟	110	30	110	_		

140

140

mg/L

20

FMI Gold & Copper - Sierrita

Chromium, disso	lved		M200.7	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254880													
WG254880ICV	ICV	11/04/08 10:34	11080818-1	2		1.974	mg/L	98.7	95	105			
WG254880ICB	ICB	11/04/08 10:37				U	mg/L		-0.03	0.03			
WG254880LFB	LFB	11/04/08 10:49	11081023-4	.5		.522	mg/L	104.4	85	115			
L72696-03AS	AS	11/04/08 11:40	11081023-4	.5	U	.537	mg/L	107.4	85	115			
L72696-03ASD	ASD	11/04/08 11:44	11081023-4	.5	U	.542	mg/L	108.4	85	115	0.93	20	
Cobalt, dissolved	I		M200.7	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254880													
WG254880ICV	ICV	11/04/08 10:34	11080818-1	2.002		2.006	mg/L	100.2	95	105			
WG254880ICB	ICB	11/04/08 10:37				U	mg/L		-0.03	0.03			
WG254880LFB	LFB	11/04/08 10:49	11081023-4	.5		.532	mg/L	106.4	85	115			
L72696-03AS	AS	11/04/08 11:40	11081023-4	.5	U	.545	mg/L	109	85	115			
L72696-03ASD	ASD	11/04/08 11:44	11081023-4	.5	U	.545	mg/L	109	85	115	0	20	
WG255180													
WG255180ICV	ICV	11/05/08 13:48	11080818-1	2.002		2	mg/L	99.9	95	105			
WG255180ICB	ICB	11/05/08 13:52				U	mg/L		- 0.03	0.03			
WG255180LFB	LFB	11/05/08 14:04	11081023-4	.5		.519	mg/L	103.8	85	115			
L72696-01AS	AS	11/05/08 14:21	11081023-4	.5	U	.533	mg/L	106.6	85	115			
L72696-01ASD	ASD	11/05/08 14:24	11081023-4	.5	U	.521	mg/L	104.2	85	115	2.28	20	
L72697-04AS	AS	11/05/08 14:57	11081023-4	1	U	1.037	mg/L	103.7	85	115			
L72697-04ASD	ASD	11/05/08 15:01	11081023-4	1	U	.992	mg/L	99.2	85	115	4.44	20	
Conductivity @25	5C		SM2510	В									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254837													
WG254837LCSW1	LCSW	10/30/08 13:27	PCN30288	1408.8		1419	umhos/arr	100.7	90	110			
WG254837LCSW4	LCSW	10/30/08 16:24	PCN30288	1408.8		1386	umhos/arr	98.4	90	110			
WG254837LCSW7	LCSW	10/30/08 19:37	PCN30288	1408.8		1388	umhos/arr	98.5	90	110			
L72697-01DUP	DUP	10/30/08 22:52			3070	3100	umhos/arr				1	20	
WG254837LCSW10	LCSW	10/30/08 22:59	PCN30288	1408.8		1384	umhos/arr	98.2	90	110			
L72698-04DUP	DUP	10/31/08 0:39			3310	3300	umhos/arr				0.3	20	
WG254837LCSW13	LCSW	10/31/08 2:09	PCN30288	1408.8		1391	umhos/cm	98.7	90	110			
Copper, dissolve	d		M200.7	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254880													
WG254880ICV	ICV	11/04/08 10:34	11080818-1	2		1.971	mg/L	98.6	95	105			
WG254880ICB	ICB	11/04/08 10:37				U	mg/L		- 0.03	0.03			
WG254880LFB	LFB	11/04/08 10:49	11081023-4	.5		.523	mg/L	104.6	85	115			
L72696-03AS	AS	11/04/08 11:40	11081023-4	.5	U	.524	mg/L	104.8	85	115			
L72696-03ASD	ASD	11/04/08 11:44	11081023-4	.5	U	.539	mg/L	107.8	85	115	2.82	20	

FMI Gold & Copper - Sierrita

ACZ ID Type Analyzed PCN/SCN QC Sample Found WG255240 WG255240ICV ICV 11/06/08 10:39 WI081025-3 .3 .2803 WG255240ICB ICB 11/06/08 10:40 U U	mg/L mg/L mg/L mg/L	Rec 93.4	Lower 90	Upper	RPD	Limit	Qual
WG255240ICV ICV 11/06/08 10:39 WI081025-3 .3 .2803	mg/L mg/L	93.4	90				
	mg/L mg/L	93.4	QΩ				
	mg/L mg/L	00		110			
	mg/L		-0.015	0.015			
WG255091LRB LRB 11/06/08 10:41 U	•		- 0.015	0.015			
WG255091LFB LFB 11/06/08 10:42 WI081025-7 .2 .1916		95.8	90	110			
L72677-01DUP DUP 11/06/08 10:44 U U	mg/L				0	20	RA
L72697-01LFM LFM 11/06/08 10:45 WI081025-7 2 .017 .2037	mg/L	93.4	90	110			
Fluoride SM4500F-C							
ACZ ID Type Analyzed PCN/SCN QC Sample Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255078							
WG255078ICV ICV 11/04/08 9:29 WC081029-9 2 2.1	mg/L	105	95	105			
WG255078ICB ICB 11/04/08 9:39 U	mg/L		-0.3	0.3			
WG255078LFB1 LFB 11/04/08 9:45 WC080912-3 5 4.91	mg/L	98.2	90	110			
WG255078LFB2 LFB 11/04/08 11:23 WC080912-3 5 4.79	mg/L	95.8	90	110			
L72678-02AS AS 11/04/08 12:28 WC080912-3 5 .2 3.92	mg/L	74.4	90	110			M2
L72678-02DUP DUP 11/04/08 12:30 .2 .19	mg/L				5.1	20	RA
WG255164							
WG255164ICV ICV 11/06/08 14:10 WC081106-1 2 2.05	mg/L	102.5	95	105			
WG255164ICB ICB 11/06/08 14:17 U	mg/L		- 0.3	0.3			
WG255164LFB1 LFB 11/06/08 14:22 WC080912-3 5 4.98	mg/L	99.6	90	110			
L72630-01AS AS 11/06/08 14:37 WC080912-3 5 48.4 53.61	mg/L	104.2	90	110			
L72630-01DUP DUP 11/06/08 14:40 48.4 47.69	mg/L				1.5	20	
WG255164LFB2 LFB 11/06/08 16:04 WC080912-3 5 4.75	mg/L	95	90	110			
Iron, dissolved M200.7 ICP							
ACZ ID Type Analyzed PCN/SCN QC Sample Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254880							
WG254880ICV ICV 11/04/08 10:34 II080818-1 2 1.955	mg/L	97.8	95	105			
WG254880ICB ICB 11/04/08 10:37 U	mg/L		-0.06	0.06			
WG254880LFB LFB 11/04/08 10:49 II081023-4 1 1.041	mg/L	104.1	85	115			
L72696-03AS AS 11/04/08 11:40 II081023-4 1 .06 1.13	mg/L	107	85	115			
L72696-03ASD ASD 11/04/08 11:44 II081023-4 1 .06 1.137	mg/L	107.7	85	115	0.62	20	
Lead, dissolved M200.8 ICP-MS							
ACZ ID Type Analyzed PCN/SCN QC Sample Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255377							
WG255377ICV ICV 11/07/08 17:40 MS081101-2 .05 .04759	mg/L	95.2	90	110			
WG255377ICB ICB 11/07/08 17:43 U	mg/L		-0.00022	0.00022			
WG255377LFB LFB 11/07/08 17:49 MS081003-7 .05 .0476	mg/L	95.2	85	115			
L72697-02AS AS 11/07/08 17:59 MS081003-7 .1 .0003 .1034	mg/L	103.1	70	130			
L72697-02ASD ASD 11/07/08 18:02 MS081003-7 .1 .0003 .10378	mg/L	103.5	70	130	0.37	20	

FMI Gold & Copper - Sierrita

Magnesium, dis	solved		M200.7	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254880													
WG254880ICV	ICV	11/04/08 10:34	11080818-1	100		100.33	mg/L	100.3	95	105			
WG254880ICB	ICB	11/04/08 10:37				U	mg/L		-0.6	0.6			
WG254880LFB	LFB	11/04/08 10:49	11081023-4	49.96908		52.12	mg/L	104.3	85	115			
L72696-03AS	AS	11/04/08 11:40	11081023-4	49.96908	34.1	87.44	mg/L	106.7	85	115			
L72696-03ASD	ASD	11/04/08 11:44	11081023-4	49.96908	34.1	87.86	mg/L	107.6	85	115	0.48	20	
WG255180													
WG255180ICV	ICV	11/05/08 13:48	11080818-1	100		100.56	mg/L	100.6	95	105			
WG255180ICB	ICB	11/05/08 13:52				U	mg/L		-0.6	0.6			
WG255180LFB	LFB	11/05/08 14:04	11081023-4	49.96908		51.27	mg/L	102.6	85	115			
L72696-01AS	AS	11/05/08 14:21	11081023-4	49.96908	6.9	58.7	mg/L	103.7	85	115			
L72696-01ASD	ASD	11/05/08 14:24	11081023-4	49.96908	6.9	59.48	mg/L	105.2	85	115	1.32	20	
L72697-04AS	AS	11/05/08 14:57	11081023-4	99.93816	88.1	187.54	mg/L	99.5	85	115			
L72697-04ASD	ASD	11/05/08 15:01	11081023-4	99.93816	88.1	184.57	mg/L	96.5	85	115	1.6	20	
Manganese, dis	solved		M200.7	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254880													
WG254880ICV	ICV	11/04/08 10:34	11080818-1	2		1.9802	mg/L	99	95	105			
WG254880ICB	ICB	11/04/08 10:37				U	mg/L		-0.015	0.015			
WG254880LFB	LFB	11/04/08 10:49	11081023-4	.5		.5496	mg/L	109.9	85	115			
L72696-03AS	AS	11/04/08 11:40	11081023-4	.5	U	. 5629	mg/L	112.6	85	115			
L72696-03ASD	ASD	11/04/08 11:44	11081023-4	.5	U	- 5661	mg/L	113.2	85	115	0.57	20	
Mercury, dissol	ved		M245.1	CVAA									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254977													
WG254977ICV	ICV	11/03/08 8:43	11081015-2	.005		.00504	mg/L	100.8	95	105			
WG254977ICB	ICB	11/03/08 8:45				U	mg/L		-0.0002	0.0002			
WG254980													
WG254980LRB	LRB	11/03/08 13:33				U	mg/L		-0.00044	0.00044			
WG254980LFB	LFB	11/03/08 13:35	11081027-2	.002		.00194	mg/L	97	85	115			
L72656-01LFM	LFM	11/03/08 13:39	11081027-2	.002	U	.00191	mg/L	95.5	85	115			
L72656-01LFMD	LFMD	11/03/08 13:41	11081027-2	.002	U	.00191	mg/L	95.5	85	115	0	20	
L72697-04LFM	LFM	11/03/08 14:11	11081027 - 2	.002	U	.00205	mg/L	102.5	85	115			
L72697-04LFMD	LFMD	11/03/08 14:13	11081027 - 2	.002	U	.00203	mg/L	101.5	85	115	0.98	20	
Molybdenum, d	issolved		M200.7	ICP									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255180													
WG255180ICV	ICV	11/05/08 13:48	11080818-1	2		1.998	mg/L	99.9	95	105			
WG255180ICB	ICB	11/05/08 13:52				U	mg/L		- 0.03	0.03			
WG255180LFB	LFB	11/05/08 14:04	11081023-4	.5		.501	mg/L	100.2	85	115			
L 7 2696-01AS	AS	11/05/08 14:21	11081023-4	.5	U	.496	mg/L	99.2	85	115			
L72696-01ASD	ASD	11/05/08 14:24	11081023-4	. 5	U	.502	mg/L	100.4	85	115	1.2	20	
L72697-04AS	AS	11/05/08 14:57	11081023-4	1	.12	1.168	mg/L	104.8	85	115			
L72697-04ASD	ASD	11/05/08 15:01	11081023-4	1	.12								

FMI Gold & Copper - Sierrita

Nickel, dissolved	ı		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254880													
WG254880ICV	ICV	11/04/08 10:34	11080818-1	2.004		1.944	mg/L	97	95	105			
WG254880ICB	ICB	11/04/08 10:37				U	mg/L		-0.03	0.03			
WG254880LFB	LFB	11/04/08 10:49	11081023-4	.4985		.519	mg/L	104.1	85	115			
L72696-03AS	AS	11/04/08 11:40	11081023-4	.4985	U	.55	mg/L	110.3	85	115			
L72696-03ASD	ASD	11/04/08 11:44	11081023-4	.4985	U	.554	mg/L	111.1	85	115	0.72	20	
Nitrate/Nitrite as	N		M353.2 -	H2SO4 pre	eserved								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254994													
WG254994ICV	ICV	11/01/08 19:11	WI080916-5	2.416		2.391	mg/L	99	90	110			
WG254994ICB	ICB	11/01/08 19:12				.025	mg/L		-0.06	0.06			
WG254994LFB1	LFB	11/01/08 19:13	WI080913-4	2		2.058	mg/L	102.9	90	110			
L72688-01AS	AS	11/01/08 19:16	WI080913-4	2	.05	2.261	mg/L	110.6	90	110			М
L72697-01DUP	DUP	11/01/08 19:18			2.17	2.159	mg/L				0.5	20	
WG254994LFB2	LFB	11/01/08 19:52	WI080913-4	2		1.988	mg/L	99.4	90	110			
WG255219													
WG255219ICV	ICV	11/05/08 19:45	WI080916-5	2.416		2.392	mg/L	99	90	110			
WG255219ICB	ICB	11/05/08 19:47				U	mg/L		-0.06	0.06			
WG255221													
WG255221ICV	ICV	11/05/08 21:03	WI080916-5	2.416		2.286	mg/L	94.6	90	110			
WG255221ICB	ICB	11/05/08 21:05				U	mg/L		-0.06	0.06			
WG255221LFB	LFB	11/05/08 21:06	WI080913-4	2		1.912	mg/L	95.6	90	110			
L72630-01AS	AS	11/05/08 21:08	WI080913-4	2	.1	1.915	mg/L	90.8	90	110			
L72639-01DUP	DUP	11/05/08 21:11			.55	.554	mg/L				0.7	20	
pH (lab)			M150.1 -	Electrome	tric								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254837													
WG254837LCSW3	LCSW	10/30/08 13:40	PCN29627	6		6.13	units	102.2	90	110			
WG254837LCSW6	LCSW	10/30/08 16:37	PCN29627	6		6.17	units	102.8	90	110			
WG254837LCSW9	LCSW	10/30/08 19:50	PCN29627	6		6.14	units	102.3	90	110			
L72697-01DUP	DUP	10/30/08 22:52			7.9	7.96	units				0.8	20	
WG254837LCSW12	LCSW	10/30/08 23:12	PCN29627	6		6.06	units	101	90	110			
L72698-04DUP	DUP	10/31/08 0:39			8	8.05	units				0.6	20	
WG254837LCSW15	LCSW	10/31/08 2:23	PCN29627	6		6.17	units	102.8	90	110			
Potassium, disso	olved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254880													
WG254880ICV	ICV	11/04/08 10:34	11080818-1	20		20.81	mg/L	104.1	95	105			
WG254880ICB	ICB	11/04/08 10:37				U	mg/L		-0.9	0.9			
WG254880LFB	LFB	11/04/08 10:49	11081023-4	99.76186		105.79	mg/L	106	85	115			
L72696-03AS	AS	11/04/08 11:40	11081023-4	99.76186	3.5	112.52	mg/L	109.3	85	115			
L72696-03ASD	ASD	11/04/08 11:44	11081023-4	99.76186	3.5	113.25	mg/L	110	85	115	0.65	20	

FMI Gold & Copper - Sierrita

-													
Residue, Filteral	ble (TDS) @180C	SM25400	;									
ACZID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254772													
WG254772PBW	PBW	10/29/08 15:00				U	mg/L		-20	20			
WG254772LCSW	LCSW	10/29/08 15:00	PCN29989	260		256	mg/L	98.5	80	120			
L72698-02DUP	DUP	10/29/08 15:19			2640	2668	mg/L				1.1	20	
Selenium, disso	lved		M200.8 I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255377													
WG255377ICV	ICV	11/07/08 17:40	MS081101-2	.05		.051	mg/L	102	90	110			
WG255377ICB	ICB	11/07/08 17:43				U	mg/L		-0.00022	0.00022			
WG255377LFB	LFB	11/07/08 17:49	MS081003-7	.05		.05065	mg/L	101.3	85	115			
L72697-02AS	AS	11/07/08 17:59	MS081003-7	.1	.001	.11272	mg/L	111.7	70	130			
L72697-02ASD	ASD	11/07/08 18:02	MS081003-7	.1	.001	.11278	mg/L	111.8	70	130	0.05	20	
Sodium, dissolv	red		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255180													
WG255180ICV	ICV	11/05/08 13:48	11080818-1	100		101.47	mg/L	101.5	95	105			
WG255180ICB	ICB	11/05/08 13:52				U	mg/L		-0.9	0.9			
WG255180LFB	LFB	11/05/08 14:04	11081023-4	98.21624		101.5	mg/L	103.3	85	115			
L72696-01AS	AS	11/05/08 14:21	11081023-4	98.21624	26.4	126.71	mg/L	102.1	85	115			
L72696-01ASD	ASD	11/05/08 14:24	11081023-4	98.21624	26.4	127.18	mg/L	102.6	85	115	0.37	20	
L72697-04AS	AS	11/05/08 14:57	11081023-4	196.43248	194	391.53	mg/L	100.6	85	115			
L72697-04ASD	ASD	11/05/08 15:01	11081023-4	196.43248	194	381.2	mg/L	95.3	85	115	2.67	20	
Sulfate			SM4500	SO4-D									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254865													
WG254865PBW	PBW	10/30/08 14:37				U	mg/L		-30	30			
WG254865LCSW	LCSW	10/30/08 14:40	WC080910-2	100		95	mg/L	95	80	120			
L72697-04DUP	DUP	10/30/08 15:16			1720	1759	mg/L				2.2	20	
L72698-07DUP	DUP	10/30/08 15:52			17 20	1757	mg/L				2.1	20	
Thallium, dissol	ved		M200.8 I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255377													
WG255377ICV	ICV	11/07/08 17:40	MS081101-2	.05		.04956	mg/L	99.1	90	110			
WG255377ICB	ICB	11/07/08 17:43				U	mg/L		-0.00022				
WG255377LFB	LFB	11/07/08 17:49	MS081003-7	.0501		.04912	mg/L	98	85	115			
L72697-02AS	AS	11/07/08 17:59	MS081003-7	.1002	U	.10784	mg/L	107.6	70	130			
L72697-02ASD	ASD	11/07/08 18:02	MS081003-7	.1002	U	.10806	mg/L	107.8	70	130	0.2	20	

FMI Gold & Copper - Sierrita

Uranium, disso	lved		M200.8 IC	P-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255377													
WG255377ICV	ICV	11/07/08 17:40	MS081101-2	.05		.05075	mg/L	101.5	90	110			
WG255377ICB	ICB	11/07/08 17:43				U	mg/L		-0.00022	0.00022			
WG255377LFB	LFB	11/07/08 17:49	MS081003-7	.05		.05167	mg/L	103.3	85	115			
L72697-02AS	AS	11/07/08 17:59	MS081003-7	.1	.0325	.15192	mg/L	119.4	70	1 30			
L72697-02ASD	ASD	11/07/08 18:02	MS081003-7	.1	.0325	.15182	mg/L	119.3	70	1 30	0.07	20	
Zinc, dissolved			M200.7 IC	Р									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254880													
WG254880ICV	ICV	11/04/08 10:34	11080818-1	2		1.946	mg/L	97.3	95	105			
WG254880ICB	ICB	11/04/08 10:37				U	mg/L		-0.03	0.03			
WG254880LFB	LFB	11/04/08 10:49	II081023-4	.5		.519	mg/L	103.8	85	115			
L72696-03AS	AS	11/04/08 11:40	11081023-4	.5	.08	.651	mg/L	114.2	85	115			
L72696-03ASD	ASD	11/04/08 11:44	11081023-4	.5	.08	.626	mg/L	109.2	85	115	3.92	20	
WG255180													
WG255180ICV	ICV	11/05/08 13:48	11080818-1	2		1.961	mg/L	98.1	95	105			
WG255180ICB	ICB	11/05/08 13:52				U	mg/L		- 0.03	0.03			
WG255180LFB	LFB	11/05/08 14:04	II081023-4	.5		.523	mg/L	104.6	85	115			
L72696-01AS	AS	11/05/08 14:21	11081023-4	.5	.05	.565	mg/L	103	85	115			
L72696-01ASD	ASD	11/05/08 14:24	11081023-4	.5	.05	.573	mg/L	104.6	85	115	1.41	20	
L72697-04AS	AS	11/05/08 14:57	11081023-4	1	.02	1.205	mg/L	118.5	85	115			M
L72697-04ASD	ASD	11/05/08 15:01	11081023-4	1	.02	1.06	mg/L	104	85	115	12.8	20	

Inorganic Extended Qualifier Report

FMI Gold & Copper - Sierrita

ACZ Project ID: L72697

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L72697-01	WG255240	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG255078	Fluoride	SM4500F-C	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			SM4500F-C	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254994	Nitrate/Nitrite as N	M353.2 - H2SO4 preserved	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
L72697-02	WG255240	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG255078	Fluoride	SM4500F-C	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			SM4500F-C	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254994	Nitrate/Nitrite as N	M353.2 - H2SO4 preserved	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
L72697-03	WG255240	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254994	Nitrate/Nitrite as N	M353.2 - H2SO4 preserved	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
L72697-04	WG255240	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254994	Nitrate/Nitrite as N	M353,2 - H2SO4 preserved	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
L72697 - 05	WG255240	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
L72697 - 06	WG255180	Zinc, dissolved	M200.7 ICP	MA	Recovery for either the spike or spike duplicate was outside of the acceptance limits; the RPD was within the acceptance limits,
	WG255240	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254994	Nitrate/Nitrite as N	M353.2 - H2SO4 preserved	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
L72697-07	WG255180	Zinc, dissolved	M200.7 ICP	MA	Recovery for either the spike or spike duplicate was outside of the acceptance limits; the RPD was within the acceptance limits.
	WG255240	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254994	Nitrate/Nitrite as N	M353,2 - H2SO4 preserved	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.

Certification Qualifiers

FMI Gold & Copper - Sierrita

ACZ Project ID: L72697

No certification qualifiers associated with this analysis

Sample Receipt

FMI Gold & Copper - Sierrita

OJ06DZ

ACZ Project ID: Date Received: L72697

10/28/2008

Received By:

Date Printed: 10/29/2008

Receipt Verification

- 1) Does this project require special handling procedures such as CLP protocol?
- 2) Are the custody seals on the cooler intact?
- 3) Are the custody seals on the sample containers intact?
- 4) Is there a Chain of Custody or other directive shipping papers present?
- 5) Is the Chain of Custody complete?
- 6) Is the Chain of Custody in agreement with the samples received?
- 7) Is there enough sample for all requested analyses?
- 8) Are all samples within holding times for requested analyses?
- 9) Were all sample containers received intact?
- 10) Are the temperature blanks present?
- 11) Is the trip blank for Cyanide present?
- 12) Is the trip blank for VOA present?
- 13) Are samples requiring no headspace, headspace free?
- 14) Do the samples that require a Foreign Soils Permit have one?

YES	NO	NA
		Х
Χ		
		Х
Χ		
	Х	
Χ		
Х		
X		
Χ		
		Х
	Х	
		Х
		Х
		Х

Exceptions: If you answered no to any of the above questions, please describe

The requested analyses were not present. The requested analyses was not present on the chain of custody. The samples were entered for the AMBIENT-TB quote per the information present on the sample bags.

Contact (For any discrepancies, the client must be contacted)

The client was not contacted.

Shipping Containers

Cooler Id	Temp (°C)	Rad (μR/hr)
1549	2.1	14

Client must contact ACZ Project Manager if analysis should not proceed for samples received outside of thermal preservation acceptance criteria.

Notes

Sample Receipt

FMI Gold & Copper - Sierrita

OJ06DZ

ACZ Project ID: Date Received:

L72697

10/28/2008

Received By:

Sample Container Preservation

SAMPLE	CLIENT ID	R < 2	G < 2	BK < 2	Y<2	YG<2	B< 2	0<2	T >12	N/A	RAD	ID
L72697-01	IW-18		Υ		Υ							
L72697-02	IW-20		Υ		Υ							
L72697-03	IW-21		Υ		Υ							
L72697-04	IW-22		Υ		Υ							
L72697-05	IW-23		Υ		Υ							
L72697-06	IW-24		Υ		Υ							
L72697-07	DUP102408A		Υ		Υ							

Sample Container Preservation Legend

Abbreviation	Description	Container Type	Preservative/Limits
R	Raw/Nitric	RED	pH must be < 2
В	Filtered/Sulfuric	BLUE	pH must be < 2
BK	Filtered/Nitric	BLACK	pH must be < 2
G	Filtered/Nitric	GREEN	pH must be < 2
0	Raw/Sulfuric	ORANGE	pH must be < 2
Р	Raw/NaOH	PURPLE	pH must be > 12 *
Т	Raw/NaOH Zinc Acetate	TAN	pH must be > 12
Υ	Raw/Sulfuric	YELLOW	pH must be < 2
YG	Raw/Sulfuric	YELLOW GLASS	pH must be < 2
N/A	No preservative needed	Not applicable	
RAD	Gamma/Beta dose rate	Not applicable	must be $< 250 \mu R/hr$

^{*} pH check performed by analyst prior to sample preparation

Sample IDs Reviewed By:	

ACZ Labo	oratories, Inc.	00) 334	1-5493	100	7	,	CH	4IN	of Cl	JST	ODY
Report to:	, 3,	,									
Name: Bill Dorris			Addre	ess: 💪	200	w.	Duva	J M	ine R	d	
Company: Freeport M	MoRan Sierrita		t .								
E-mail: billy-dorris	@fmi.com		Telep	<u>een</u> hone:	52	o'-6	48-	887	3		
Copy of Report to:											
Name: Dan Sim	0500		E-ma	ii: <i>d</i> a	2056	hai	nc, c	com	-		
Company: Hydro Geo	Chem			_					EXT	133	,
Invoice to:											
Name:		•	Addre	-cc.							
Company:		-	/ tdair	233.							
E-mail:			Telep	hone:							
If sample(s) received past hold	ding time (HT), or if insuffic	ient HT			mplete	:			YES		
analysis before expiration, sha If "NO" then ACZ will contact of	II ACZ proceed with request client for further instruction	ted shor n. If neit	t HT a ther "Y	nalyses ES" nor	? "NO"				NO		
is indicated, ACZ will proceed to	with the requested analyses	s, even i								oto nun	abor)
PROJECT INFORMATION			ANA	11 1 SES	REQUE	21ED (allac//	iist or	use quo)ce nun	iber)
Quote #:	N -2		S S								
Project/PO#: OJØ6		1	of Containers								
Reporting state for complia	ince testing:	1	Önt				ļ				
Sampler's Name:		1	of O								
Are any samples NRC licens SAMPLE IDENTIFICATION		Matrix	#								
Iw-18	10-24-08/9:55	GW	5								
Iw-20	10-24-08/13:10	GW	+								
IW-21	10-24-08/13:20	GW	5			-					
Iw-22	10-24-08/11:30		5								
Iw-23	10-24-08/11:50	Gw	+						1		
Iw-24	10-24-08/12:00	GW	5								
DUP102408A	10-24-08/	GW	5								
Matrix SW (Surface Water)	GW (Ground Water) - WW (W	aste Wat	er) · D	W (Drink	ing Wat	er) · SL	. (Sludge	e) · SO	(Soil) ·	OL (Oil)	· Other
REMARKS/ SAMPLE DISCLO				,		·'		۸.			
Coon of report	t to Dan Simp	1500	O	ntai	15	only	"5	" YO	res	υ <i>H5</i>	
with QC Su	mmaru.					•		,		-	PAGE
001111 & 2	, ,										17,00
				, -	<i>.</i>						of
UPS TRACKING	# 12 867 7E4 r to ACZ's terms & cond	/ <i>23</i>	1000	602	8 Serous	arce ci	de of	thic CC)C	ļ	<u> </u>
RELINQUISHED BY			ocate			/ED BY		LI 113 C		ATE:TII	ME
Bills J. Don				/ .	21						9.50
Tolking T. John	ישרו אייטון בייען בייען בייען אייטון איי	17.00		-60	<i>/</i> <u> </u>				Y U '2	<u> 3 V ひ</u>	/
			lacksquare		_						\dashv
I					_				1		

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: IW-11 ACZ Sample ID: **L72698-01**

Date Sampled: 10/24/08 11:10

Date Received: 10/28/08
Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	SM4500 SO4-D	2260	*	ma/L	50	250	11/18/08 10:17	abm

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: IW-12 ACZ Sample ID: **L72698-02**

Date Sampled: 10/24/08 10:50
Date Received: 10/28/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	SM4500 SO4-D	1520		ma/L	20	100	10/30/08 15:33	kah

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: IW-13 ACZ Sample ID: **L72698-03**

Date Sampled: 10/24/08 10:40
Date Received: 10/28/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	SM4500 SO4-D	1930		mg/L	50	250	10/30/08 15:36	kah

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: IW-14 ACZ Sample ID: L72698-04

Date Sampled: 10/24/08 10:30

Date Received: 10/28/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	SM4500 SO4-D	1840		mg/L	1 0	50	10/30/08 15:39	kah

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: IW-15 ACZ Sample ID: **L72698-05**

Date Sampled: 10/24/08 10:10

Date Received: 10/28/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	SM4500 SO4-D	1850		mg/L	50	250	10/30/08 15:43	kah

FMI Gold & Copper - SierritaProject ID: OJ06DZ
Sample ID: IW-16

ACZ Sample ID: **L72698-06**

Date Sampled: 10/24/08 10:05

Date Received: 10/28/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	SM4500 SO4-D	1850	*	mg/L	50	250	11/11/08 12:17	abm

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: IW-17 ACZ Sample ID: **L72698-07**

Date Sampled: 10/24/08 10:00
Date Received: 10/28/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	SM4500 SO4-D	1720		ma/L	10	50	10/30/08 15:49	kah

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report Header Explanations

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest Limit Upper limit for RPD, in %.

Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit, typically 5 times the MDL.

QC True Value of the Control Sample or the amount added to the Spike

Rec Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

QC	Sai	mpl	е Ту	pes

AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calibration Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution

QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method or calibration procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method. Spikes/Fortified Matrix Determines sample matrix interferences, if any.

Standard Verifies the validity of the calibration.

ACZ Qualifiers (Qual)

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity.
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time.
- U The material was analyzed for, but was not detected above the level of the associated value.

The associated value is either the sample quantitation limit or the sample detection limit.

Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (5) EPA SW-846. Test Methods for Evaluating Solid Waste, Third Edition with Update III, December 1996.
- (6) Standard Methods for the Examination of Water and Wastewater, 19th edition, 1995.

Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.

FMI Gold & Copper - Sierrita

March Marc	Alkalinity as CaC	:03		SM2320B	- Titration									
MG254837C8W	ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
MCG254837LCSIV12	WG254837													
WG254837LGSW2 LGSW 1030008 18-24 WC081022-2 82-0.001 F82.5 mg/L 96.3 90 110 VG254837LGSW5 PBW 1030008 18-34 WC081022-2 82-0.001 78-83.3 mg/L 96.3 90 110 VG254837LGSW5 PBW 1030008 19-36 WC081022-2 82-0.001 792.6 mg/L 96.7 90 110 VG254837LGSW6 CSW 1030008 19-36 WC081022-2 82-0.001 792.6 mg/L 96.7 90 110 VG254837LGSW6 VG254837LGSW	WG254837PBW1	PBW	10/30/08 13:26				U	mg/L		-20	20			
MCG254837FBXM	WG254837LCSW2	LCSW	10/30/08 13:36	WC081022-2	820.0001		782.5	-	95.4	90	110			
MCG254837FBW1	WG254837PBW2	PBW	10/30/08 16:23				U	mg/L		-20	20			
WG254837LCSW8 LCSW 10/3008 19-46 WC08102-2 82.0001 0.79.6 mg/L 96.7 90 110 0.2	WG254837LCSW5	LCSW	10/30/08 16:34	WC081022-2	820.0001		789.3	mg/L	96.3	90	110			
WG254837L6SW11 LCSW	WG254837PBW3	PBW	10/30/08 19:35				U	mg/L		-20	20			
WG254837LGSW11 LCSW	WG254837LCSW8	LCSW	10/30/08 19:46	WC081022-2	820.0001		792.6	mg/L	96.7	90	110			
L72698-04DUP DUP 10/31/08 2:07	WG254837PBW4	PBW	10/30/08 22:58				U	mg/L		-20	20			
L72699-07DUP DUP 10/31/08 2-19 WC08102-2 820.001 0.808.5 mg/L 98.6 90 110 0.71 0.008	WG254837LCSW11	LCSW	10/30/08 23:09	WC081022-2	820.0001		802.3	mg/L	97.8	90	110			
MG254837LCSW14								mg/L						
Aluminum, dissolved M200.7 ICP Aralyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit Qual						109		-				7.1	20	
MCG255096 CV	WG254837LCSW14	LCSW	10/31/08 2:19	WC081022-2	820.0001		808.5	mg/L	98.6	90	110			
WG255096 CV CV	Aluminum, disso	lved		M200.7 IC	P									
WG255096 CV CV	ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255096 CB	WG255096													
WG255996LFB	WG255096ICV	ICV	11/05/08 19:17	11080818-1	2		2.044	mg/L	102.2	95	105			
L72699-01AS AS 11/05/08 20:04 1081023-4 1 0.07 0.98 mg/L 91 85 115 15.7 20 Antimony, dis>√ve	WG255096ICB	ICB	11/05/08 19:21				.043	mg/L		- 0.09	0.09			
L72699-01ASD ASD 11/05/08 20:14 I/0810234 1 .07 1.147 mg/L 107.7 85 115 15.7 20 Antimony, dissolved M200.8 ICP-MS Magon.8 ICP-MS ACZID Type Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit Qual WG255377ICB ICV 11/07/08 17:40 MS081101-2 .02 .02093 mg/L 104.7 90 110	WG255096LFB	LFB	11/05/08 19:34	11081023-4	1		1.125	mg/L	112.5	85	115			
Antimony, dissolved	L72699-01AS	AS	11/05/08 20:04	11081023-4	1	.07	.98	mg/L	91	85	115			
NGZ55377C CV	L72699-01ASD	ASD	11/05/08 20:14	11081023-4	1	.07	1.147	mg/L	107.7	85	115	15.7	20	
WG255377 CV	Antimony, dissol	ved		M200.8 IC	CP-MS									
WG255377ICV	ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255377ICB ICB 11/07/08 17:43	WG255377													
WG255377LFB	WG255377ICV	ICV	11/07/08 17:40	MS081101-2	.02		.02093	mg/L	104.7	90	110			
L72697-02AS AS 11/07/08 17:59 MS081003-7 .02 U .01997 mg/L 99.9 70 130 L72697-02ASD ASD 11/07/08 18:02 MS081003-7 .02 U .02238 mg/L 111.9 70 130 11.38 20 L72698-04AS AS 11/07/08 18:39 MS081003-7 .02 U .02024 mg/L 101.2 70 130 L72698-04ASD ASD 11/07/08 18:42 MS081003-7 .02 U .01997 mg/L 99.9 70 130 1.34 20 Arsenic, dissolvet M200.8 ICP-MS ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit Qual WG255377 WG255377ICV ICV 11/07/08 17:40 MS081101-2 .05 .05045 mg/L 100.9 90 110 WG255377ICB ICB 11/07/08 17:43 U mg/L -0.0011 0.0011 WG255377LFB LFB 11/07/08 17:49 MS081003-7 .05 .05187 mg/L 103.7 85 115 L72697-02AS AS 11/07/08 18:02 MS081003-7 .1 .002 .1152 mg/L 113.2 70 130 L72698-04AS AS 11/07/08 18:39 MS081003-7 .1 .002 .1155 mg/L 111.5 70 130 1.49 20 L72698-04AS AS 11/07/08 18:39 MS081003-7 .1 .002 .1196 mg/L 117.6 70 130 1.49 20	WG255377ICB	ICB	11/07/08 17:43				.00068	-		-0.00088	0.00088			
L72697-02ASD ASD 11/07/08 18:02 MS081003-7 .02 U .02238 mg/L 111.9 70 130 11.38 20 L72698-04AS AS 11/07/08 18:39 MS081003-7 .02 U .02024 mg/L 101.2 70 130 L72698-04ASD ASD 11/07/08 18:42 MS081003-7 .02 U .01997 mg/L 99.9 70 130 1.34 20 Arsenic, dissolved M200.8 ICP-MS ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit Qual WG255377ICV ICV 11/07/08 17:40 MS081101-2 .05 .05045 mg/L 100.9 90 110 WG255377ICB ICB 11/07/08 17:43 U mg/L -0.0011 0.0011 WG255377LFB LFB 11/07/08 17:49 MS081003-7 .05 .05187 mg/L 103.7 85 115 L72697-02AS AS 11/07/08 18:02 MS081003-7 .1 .002 .1152 mg/L 113.2 70 130 L72698-04AS AS 11/07/08 18:02 MS081003-7 .1 .002 .1155 mg/L 111.5 70 130 L72698-04AS AS 11/07/08 18:39 MS081003-7 .1 .002 .1196 mg/L 117.6 70 130 L72698-04AS AS 11/07/08 18:39 MS081003-7 .1 .002 .1196 mg/L 117.6 70 130	WG255377LFB	LFB	11/07/08 17:49	MS081003-7	.01		.00948	mg/L	94.8	85	115			
L72698-04AS AS 11/07/08 18:39 MS081003-7 .02 U .02024 mg/L 101.2 70 130 L72698-04ASD ASD 11/07/08 18:42 MS081003-7 .02 U .01997 mg/L 99.9 70 130 1.34 20 Arsenic, dissolved M200.8 ICP-MS ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit Qual WG255377ICV ICV 11/07/08 17:40 MS081101-2 .05 .05045 mg/L 100.9 90 110 WG255377ICB ICB 11/07/08 17:43 U mg/L -0.0011 0.0011 WG255377LFB LFB 11/07/08 17:49 MS081003-7 .05 .05187 mg/L 103.7 85 115 L72697-02AS AS 11/07/08 18:02 MS081003-7 .1 .002 .1152 mg/L 113.2 70 130 L72698-04AS AS 11/07/08 18:02 MS081003-7 .1 .002 .1155 mg/L 111.5 70 130 1.49 20 L72698-04AS AS 11/07/08 18:39 MS081003-7 .1 .002 .1196 mg/L 117.6 70 130	L72697-02AS	AS	11/07/08 17:59	MS081003-7	.02	U	.01997	mg/L	99.9	70	1 30			
L72698-04ASD ASD 11/07/08 18:42 MS081003-7 .02 U .01997 mg/L 99.9 70 130 1.34 20 Arsenic, dissolved M200.8 ICP-MS ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit Qual WG255377 WG255377ICV ICV 11/07/08 17:40 MS081101-2 .05 .05045 mg/L 100.9 90 110 WG255377ICB ICB 11/07/08 17:43 U mg/L -0.0011 0.0011 WG255377LFB LFB 11/07/08 17:49 MS081003-7 .05 .05187 mg/L 103.7 85 115 L72697-02AS AS 11/07/08 18:02 MS081003-7 .1 .002 .1152 mg/L 113.2 70 130 L72698-04AS AS 11/07/08 18:02 MS081003-7 .1 .002 .1135 mg/L 111.5 70 130 1.49 20 L72698-04AS AS 11/07/08 18:39 MS081003-7 .1 .002 .1196 mg/L 117.6 70 130	L72697-02ASD	ASD	11/07/08 18:02	MS081003-7	.02	U	.02238	mg/L	111.9	70	1 30	11.38	20	
Arsenic, dissolved M200.8 ICP-MS ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit Qual WG255377 WG255377ICV ICV 11/07/08 17:40 MS081101-2 .05 .05045 mg/L 100.9 90 110 WG255377ICB ICB 11/07/08 17:43 U mg/L -0.0011 0.0011 WG255377LFB LFB 11/07/08 17:49 MS081003-7 .05 .05187 mg/L 103.7 85 115 L72697-02AS AS 11/07/08 18:59 MS081003-7 .1 .002 .1152 mg/L 113.2 70 130 L72697-02ASD ASD 11/07/08 18:02 MS081003-7 .1 .002 .1135 mg/L 111.5 70 130 1.49 20 L72698-04AS AS 11/07/08 18:39 MS081003-7 .1 .002 .1196 mg/L 117.6 70 130	L72698-04AS	AS	11/07/08 18:39	MS081003-7	.02	U	.02024	mg/L	101.2	70	130			
ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec Lower Upper RPD Limit Qual WG255377 WG255377ICV ICV 11/07/08 17:40 MS081101-2 .05 .05045 mg/L 100.9 90 110 WG255377ICB ICB 11/07/08 17:49 MS081003-7 .05 .05187 mg/L 103.7 85 115 L72697-02AS AS 11/07/08 18:02 MS081003-7 .1 .002 .1152 mg/L 113.2 70 130 L72698-04AS AS 11/07/08 18:39 MS081003-7 .1 .002 .1196 mg/L 111.5 70 130 L72698-04AS AS 11/07/08 18:39 MS081003-7 .1 .002 .1196 mg/L 117.6 70 130	L72698-04ASD	ASD	11/07/08 18:42	MS081003-7	.02	U	.01997	mg/L	99.9	70	1 30	1.34	20	
WG255377 WG255377ICV ICV 11/07/08 17:40 MS081101-2 .05 .05045 mg/L 100.9 90 110 WG255377ICB ICB 11/07/08 17:43 U mg/L -0.0011 0.0011 WG255377LFB LFB 11/07/08 17:49 MS081003-7 .05 .05187 mg/L 103.7 85 115 L72697-02AS AS 11/07/08 17:59 MS081003-7 .1 .002 .1152 mg/L 113.2 70 130 L72697-02ASD ASD 11/07/08 18:02 MS081003-7 .1 .002 .1135 mg/L 111.5 70 130 1.49 20 L72698-04AS AS 11/07/08 18:39 MS081003-7 .1 .002 .1196 mg/L 117.6 70 130 1.49 20	Arsenic, dissolve	ed		M200.8 IC	CP-MS									
WG255377ICV ICV 11/07/08 17:40 MS081101-2 .05 .05045 mg/L 100.9 90 110 WG255377ICB ICB 11/07/08 17:43 U mg/L -0.0011 0.0011 WG255377LFB LFB 11/07/08 17:49 MS081003-7 .05 .05187 mg/L 103.7 85 115 L72697-02AS AS 11/07/08 18:02 MS081003-7 .1 .002 .1152 mg/L 113.2 70 130 L72697-02ASD AS 11/07/08 18:02 MS081003-7 .1 .002 .1135 mg/L 111.5 70 130 1.49 20 L72698-04AS AS 11/07/08 18:39 MS081003-7 .1 .002 .1196 mg/L 117.6 70 130 1.49 20	ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255377ICB ICB 11/07/08 17:43 U mg/L -0.0011 0.0011 WG255377LFB LFB 11/07/08 17:49 MS081003-7 .05 .05187 mg/L 103.7 85 115 L72697-02AS AS 11/07/08 18:02 MS081003-7 .1 .002 .1152 mg/L 113.2 70 130 L72697-02ASD AS 11/07/08 18:02 MS081003-7 .1 .002 .1135 mg/L 111.5 70 130 1.49 20 L72698-04AS AS 11/07/08 18:39 MS081003-7 .1 .002 .1196 mg/L 117.6 70 130 .49 20	WG255377													
WG255377ICB ICB 11/07/08 17:43 U mg/L -0.0011 0.0011 WG255377LFB LFB 11/07/08 17:49 MS081003-7 .05 .05187 mg/L 103.7 85 115 L72697-02AS AS 11/07/08 18:02 MS081003-7 .1 .002 .1152 mg/L 113.2 70 130 L72697-02ASD AS 11/07/08 18:02 MS081003-7 .1 .002 .1135 mg/L 111.5 70 130 1.49 20 L72698-04AS AS 11/07/08 18:39 MS081003-7 .1 .002 .1196 mg/L 117.6 70 130 .49 20	WG255377ICV	ICV	11/07/08 17:40	MS081101-2	.05		.05045	ma/L	100.9	90	110			
WG255377LFB LFB 11/07/08 17:49 MS081003-7 .05 .05187 mg/L 103.7 85 115 L72697-02AS AS 11/07/08 17:59 MS081003-7 .1 .002 .1152 mg/L 113.2 70 130 L72697-02ASD ASD 11/07/08 18:02 MS081003-7 .1 .002 .1135 mg/L 111.5 70 130 1.49 20 L72698-04AS AS 11/07/08 18:39 MS081003-7 .1 .002 .1196 mg/L 117.6 70 130 .49 20				_				-						
L72697-02AS AS 11/07/08 17:59 MS081003-7 .1 .002 .1152 mg/L 113.2 70 130 L72697-02ASD ASD 11/07/08 18:02 MS081003-7 .1 .002 .1135 mg/L 111.5 70 130 1.49 20 L72698-04AS AS 11/07/08 18:39 MS081003-7 .1 .002 .1196 mg/L 117.6 70 130				MS081003-7	.05			-	103.7					
L72697-02ASD ASD 11/07/08 18:02 MS081003-7 .1 .002 .1135 mg/L 111.5 70 130 1.49 20 L72698-04AS AS 11/07/08 18:39 MS081003-7 .1 .002 .1196 mg/L 117.6 70 130						.002		-						
L72698-04AS AS 11/07/08 18:39 MS081003-7 .1 .002 .1196 mg/L 117.6 70 130								-		70		1.49	20	
L72698-04ASD ASD 11/07/08 18:42 MS081003-7 .1 .002 .1154 mg/L 113.4 70 130 3.57 20								-		70				
	L72698-04ASD	ASD	11/07/08 18:42	MS081003-7	.1	.002	.1154	mg/L	113.4	70	130	3.57	20	

FMI Gold & Copper - Sierrita

Barium, dissol	ved		M200.7 IC	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qua
WG255267													
WG255267ICV	ICV	11/06/08 15:34	11080818-1	2		1.9686	mg/L	98.4	95	105			
WG255267ICB	ICB	11/06/08 15:38	110000101	-		U	mg/L	00.1	-0.009	0.009			
WG255267LFB	LFB	11/06/08 15:52	11081105-2	.5		.5129	mg/L	102.6	85	115			
L72699-01AS	AS	11/06/08 16:32	11081105-2	.5	.043	.5012	mg/L	91.6	85	115			
_72699-01ASD	ASD	11/06/08 16:36	11081105-2	.5	.043	.5313	mg/L	97.7	85	115	5.83	20	
Beryllium, diss	olved		M200.8 IC	CP - MS									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qua
WG255377													
NG255377ICV	ICV	11/07/08 17:40	MS081101-2	.05		.05009	mg/L	100.2	90	110			
WG255377ICB	ICB	11/07/08 17:43				U	mg/L		-0.00022	0.00022			
WG255377LFB	LFB	11/07/08 17:49	MS081003-7	.05005		.05006	mg/L	100	85	115			
_72697-02AS	AS	11/07/08 17:59	MS081003-7	.1001	U	.10656	mg/L	106.5	70	130			
_72697-02ASD	ASD	11/07/08 18:02	MS081003-7	.1001	U	.10626	mg/L	106.2	70	130	0.28	20	
_72698-04AS	AS	11/07/08 18:39	MS081003-7	.1001	U	.10876	mg/L	108.7	70	130			
_72698-04ASD	ASD	11/07/08 18:42	MS081003-7	.1001	Ü	.1058	mg/L	105.7	70	130	2.76	20	
Cadmium, diss	olved		M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qua
WG255377													
NG255377ICV	ICV	11/07/08 17:40	MS081101-2	.05		.05097	mg/L	101.9	90	110			
WG255377ICB	ICB	11/07/08 17:43				U	mg/L		-0.00022	0.00022			
WG255377LFB	LFB	11/07/08 17:49	MS081003-7	.05		.05208	mg/L	104.2	85	115			
-72697-02AS	AS	11/07/08 17:59	MS081003-7	.1	U	.10614	mg/L	106.1	70	130			
_72697-02ASD	ASD	11/07/08 18:02	MS081003-7	.1	U	.10628	mg/L	106.3	70	130	0.13	20	
_72698-04AS	ASD	11/07/08 18:39	MS081003-7	.1	U	.10020	mg/L	100.3	70 70	130	0.13	20	
-72698-04ASD	ASD	11/07/08 18:42	MS081003-7	.1	U	.10602	mg/L	109.4	70 70	130	3.14	20	
Calcium, disso		1 1/01/00 10:12	M200.7 IC			. 10002	9/2				0.11		
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qui
WG255096	- 71									- 1-1			
	ICV	11/05/09 10:17	11000010 1	100		100.04	ma/l	100.0	OF.	105			
NG255096ICV	ICV	11/05/08 19:17	11080818-1	100		102.34	mg/L	102.3	95 0.6	105			
NG255096ICB	ICB	11/05/08 19:21	11004000 4	67.07000		U 70.47	mg/L	400.4	-0.6	0.6			
NG255096LFB	LFB	11/05/08 19:34	11081023-4	67.97008	000	73.47	mg/L	108.1	85	115			
-72699-01AS	AS	11/05/08 20:04	11081023-4	67.97008	230	291.71	mg/L	90.8	85	115	0.10	00	
.72699-01ASD	ASD	11/05/08 20:14	11081023-4	67.97008	230	298.07	mg/L	100.1	85	115	2.16	20	
NG255522	167.	4444400 40 0	110000101	400		400 = :		400 -	6 -	40-			
VG255522ICV	ICV	11/11/08 19:30	11080818-1	100		100.74	mg/L	100.7	95	105			
VG255522ICB	ICB	11/11/08 19:34				U	mg/L		-0.6	0.6			
VG255522LFB	LFB	11/11/08 19:46	11081110-2	67.97008		71.59	mg/L	105.3	85	115			
.72659-08AS	AS	11/11/08 19:56	11081110-2	67.97008	103	167.64	mg/L	95.1	85	115			
_72659-08ASD	ASD	11/11/08 19:59	II081110-2	67.97008	103	166.36	mg/L	93.2	85	115	0.77	20	
_72718-01AS	AS	11/11/08 20:42	11081110-2	67.97008	229	285.97	mg/L	83.8	85	115			

FMI Gold & Copper - Sierrita Project ID: OJ06DZ

Chloride			SM4500C	I-E									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254833													
WG254833ICB	ICB	10/30/08 8:44				U	mg/L		-3	3			
WG254833ICV	ICV	10/30/08 8:44	WI080808-1	54.945		57.5	mg/L	104.7	90	110			
WG254833LFB2	LFB	10/30/08 13:09	WI080818-2	30		32.8	mg/L	109.3	90	110			
WG254833LFB1	LFB	10/30/08 13:24	WI080818-2	30		32.7	mg/L	109	90	110			
L72697-06AS	AS	10/30/08 13:33	10XCL	30	160	193	mg/L	110	90	110			
L72697-07DUP	DUP	10/30/08 13:34			1 40	1 40	mg/L				0	20	
Chromium, disso	olved		M200.7 IC	CP CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255096													
WG255096ICV	ICV	11/05/08 19:17	11080818-1	2		2.091	mg/L	104.6	95	105			
WG255096ICB	ICB	11/05/08 19:21				U	mg/L		- 0.03	0.03			
WG255096LFB	LFB	11/05/08 19:34	11081023-4	.5		.57	mg/L	114	85	115			
L72699-01AS	AS	11/05/08 20:04	H081023-4	.5	U	.532	mg/L	106.4	85	115			
L72699-01ASD	ASD	11/05/08 20:14	II081023 - 4	.5	U	.559	mg/L	111.8	85	115	4.95	20	
Cobalt, dissolved	M200.7 IC	CP											
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255096													
WG255096ICV	ICV	11/05/08 19:17	11080818-1	2.002		2.042	mg/L	102	95	105			
WG255096ICB	ICB	11/05/08 19:21				U	mg/L		- 0.03	0.03			
WG255096LFB	LFB	11/05/08 19:34	H081023-4	.5		.561	mg/L	112.2	85	115			
L72699-01AS	AS	11/05/08 20:04	H081023 - 4	.5	.02	.516	mg/L	99.2	85	115			
L72699-01ASD	ASD	11/05/08 20:14	11081023-4	.5	.02	.539	mg/L	103.8	85	115	4.36	20	
Conductivity @25	5C		SM2510B	i									_
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254837													
WG254837LCSW1	LCSW	10/30/08 13:27	PCN30288	1408.8		1419	umhos/cm	100.7	90	110			
WG254837LCSW4	LCSW	10/30/08 16:24	PCN30288	1408.8		1386	umhos/cm	98.4	90	110			
WG254837LCSW7	LCSW	10/30/08 19:37	PCN30288	1408.8		1388	umhos/cm	98.5	90	110			
WG254837LCSW10	LCSW	10/30/08 22:59	PCN30288	1408.8		1384	umhos/cm	98.2	90	110			
L72698-04DUP	DUP	10/31/08 0:39			3310	3300	umhos/cm				0.3	20	
L72699-07DUP	DUP	10/31/08 2:07			3240	3250	umhos/cm				0.3	20	
WG254837LCSW13	LCSW	10/31/08 2:09	PCN30288	1408.8		1391	umhos/cm	98.7	90	110			
Copper, dissolve	d		M200.7 IC	CP CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255267													
WG255267ICV	ICV	11/06/08 15:34	11080818-1	2		1.92	mg/L	96	95	105			
WG255267ICB	ICB	11/06/08 15:38				U	mg/L		- 0.03	0.03			
WG255267LFB	LFB	11/06/08 15:52	11081105-2	.5		.516	mg/L	103.2	85	115			
L72699-01AS	AS	11/06/08 16:32	11081105-2	.5	U	.463	mg/L	92.6	85	115			
L72699-01ASD	ASD	11/06/08 16:36	11081105-2	.5	U	.497	mg/L	99.4	85	115	7.08	20	

FMI Gold & Copper - Sierrita

Cyanide, total			M335.4 - C	olorimet	ric w/ distil	lation							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255240													
WG255240ICV	ICV	11/06/08 10:39	WI081025-3	.3		-2803	mg/L	93.4	90	110			
WG255240ICB	ICB	11/06/08 10:40				U	mg/L		-0.015	0.015			
WG255091LRB	LRB	11/06/08 10:41				U	mg/L		- 0.015	0.015			
WG255091LFB	LFB	11/06/08 10:42	WI081025-7	.2		.1916	mg/L	95.8	90	110			
L72677-01DUP	DUP	11/06/08 10:44			U	U	mg/L				0	20	RA
L72697-01LFM	LFM	11/06/08 10:45	WI081025-7	.2	.017	.2037	mg/L	93.4	90	110			
L72698-01DUP	DUP	11/06/08 10:54			.006	.0062	mg/L				3.3	20	RA
L72698-02LFM	LFM	11/06/08 10:56	WI081025-7	.2	.011	-2079	mg/L	98.5	90	110			
Fluoride			SM4500F-	С									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255078													
WG255078ICV	ICV	11/04/08 9:29	WC081029-9	2		2.1	mg/L	105	95	105			
WG255078ICB	ICB	11/04/08 9:39				U	mg/L		-0.3	0.3			
WG255135													
WG255135ICV	ICV	11/04/08 15:24	WC081029-9	2		1.95	mg/L	97.5	95	105			
WG255135ICB	ICB	11/04/08 15:32				U	mg/L		- 0.3	0.3			
WG255135LFB1	LFB	11/04/08 15:39	WC080912-3	5		5.02	mg/L	100.4	90	110			
L72698-05AS	AS	11/04/08 16:28	WC080912-3	5	.3	3.76	mg/L	69.2	90	110			M2
L72698-05DUP	DUP	11/04/08 16:30			.3	.27	mg/L				10.5	20	RA
WG255135LFB2	LFB	11/04/08 17:08	WC080912-3	5		4.93	mg/L	98.6	90	110			
WG255164													
WG255164ICV	ICV	11/06/08 14:10	WC081106-1	2		2.05	mg/L	102.5	95	105			
WG255164ICB	ICB	11/06/08 14:17				U	mg/L		- 0.3	0.3			
WG255164LFB1	LFB	11/06/08 14:22	WC080912-3	5		4.98	mg/L	99.6	90	110			
L72630-01AS	AS	11/06/08 14:37	WC080912-3	5	48.4	53.61	mg/L	104.2	90	110			
L72630-01DUP	DUP	11/06/08 14:40			48.4	47.69	mg/L				1.5	20	
L72698-04AS	AS	11/06/08 15:17	WC080912-3	5	.3	4.91	mg/L	92.2	90	110			
L72698-04DUP	DUP	11/06/08 15:20			.3	.3	mg/L				0	20	RA
WG255164LFB2	LFB	11/06/08 16:04	WC080912-3	5		4.75	mg/L	95	90	110			
Iron, dissolved			M200.7 IC	Р									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255267													
WG255267ICV	ICV	11/06/08 15:34	11080818-1	2		1.948	mg/L	97.4	95	105			
WG255267ICB	ICB	11/06/08 15:38				U	mg/L		- 0.06	0.06			
WG255267LFB	LFB	11/06/08 15:52	11081105-2	1		1.104	mg/L	110.4	85	115			
L72699-01AS	AS	11/06/08 16:32	11081105-2	1	.14	1.101	mg/L	96.1	85	115			
L72699-01ASD	ASD	11/06/08 16:36	11081105-2	1	.14	1.152	mg/L	101.2	85	115	4.53	20	

FMI Gold & Copper - Sierrita

Lead, dissolved			M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255377													
WG255377ICV	ICV	11/07/08 17:40	MS081101-2	.05		.04759	mg/L	95.2	90	110			
WG255377ICB	ICB	11/07/08 17:43				U	mg/L		-0.00022	0.00022			
WG255377LFB	LFB	11/07/08 17:49	MS081003-7	.05		.0476	mg/L	95.2	85	115			
L72697-02AS	AS	11/07/08 17:59	MS081003-7	.1	.0003	. 1034	mg/L	103.1	70	1 30			
L72697-02ASD	ASD	11/07/08 18:02	MS081003-7	.1	.0003	.10378	mg/L	103.5	70	130	0.37	20	
L72698-04AS	AS	11/07/08 18:39	MS081003-7	.1	.0003	.10692	mg/L	106.6	70	130			
L72698-04ASD	ASD	11/07/08 18:42	MS081003-7	.1	.0003	.10364	mg/L	103.3	70	130	3.12	20	
Magnesium, dissolved			M200.7 IC	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255096													
WG255096ICV	ICV	11/05/08 19:17	11080818 -1	100		102.51	mg/L	102.5	95	105			
WG255096ICB	ICB	11/05/08 19:21				U	mg/L		-0.6	0.6			
WG255096LFB	LFB	11/05/08 19:34	11081023-4	49.96908		53.53	mg/L	107.1	85	115			
L72699-01AS	AS	11/05/08 20:04	II081023 - 4	49.96908	53.7	105.37	mg/L	103.4	85	115			
L72699-01ASD	ASD	11/05/08 20:14	11081023-4	49.96908	53.7	108.2	mg/L	109.1	85	115	2.65	20	
WG255522													
WG255522ICV	ICV	11/11/08 19:30	11080818-1	100		100.29	mg/L	100.3	95	105			
WG255522ICB	ICB	11/11/08 19:34				U	mg/L		-0.6	0.6			
WG255522LFB	LFB	11/11/08 19:46	II081110 - 2	49.96908		51.88	mg/L	103.8	85	115			
L72659-08AS	AS	11/11/08 19:56	II081110 - 2	49.96908	24.8	77.49	mg/L	105.4	85	115			
L72659-08ASD	ASD	11/11/08 19:59	II081110 - 2	49.96908	24.8	76.77	mg/L	104	85	115	0.93	20	
L72718-01AS	AS	11/11/08 20:42	II081110-2	49.96908	48	97.37	mg/L	98.8	85	115			
L72718-01ASD	ASD	11/11/08 20:46	11081110-2	49.96908	48	98.84	mg/L	101.7	85	115	1.5	20	
Manganese, dis	solved		M200.7 IC	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255267													
WG255267ICV	ICV	11/06/08 15:34	11080818-1	2		1.9014	mg/L	95.1	95	105			
WG255267ICB	ICB	11/06/08 15:38				U	mg/L		-0.015	0.015			
WG255267LFB	LFB	11/06/08 15:52	11081105-2	.5		. 5425	mg/L	108.5	85	115			
L72699-01AS	AS	11/06/08 16:32	11081105-2	.5	U	.4853	mg/L	97.1	85	115			
L72699-01ASD	ASD	11/06/08 16:36	11081105-2	.5	U	. 5164	mg/L	103.3	85	115	6.21	20	
Mercury, dissolv	ved		M245.1 C	VAA									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255124													
WG255124ICV	ICV	11/07/08 11:22	11081103-1	.005		.00527	mg/L	105.4	95	105			
WG255124ICB	ICB	11/07/08 11:24				U	mg/L		-0.0002	0.0002			
WG255270													
WG255270LRB	LRB	11/07/08 16:52				U	mg/L		-0.00044	0.00044			
WG255270LFB	LFB	11/07/08 16:54	11081027-2	.002		.00196	mg/L	98	85	115			
L72639-01LFM	LFM	11/07/08 16:58	11081027-2	.002	U	.00198	mg/L	99	85	115			
L72639-01LFMD	LFMD	11/07/08 17:00	11081027-2	.002	U	.00198	mg/L	99	85	115	0	20	

Inorganic QC Summary

ACZ Project ID: L72698

FMI Gold & Copper - Sierrita

Molybdenum, dis	solved		M200.7 I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255096													
WG255096ICV	ICV	11/05/08 19:17	11080818-1	2		2.018	mg/L	100.9	95	105			
WG255096ICB	ICB	11/05/08 19:21				U	mg/L		-0.03	0.03			
WG255096LFB	LFB	11/05/08 19:34	11081023-4	.5		.541	mg/L	108.2	85	115			
L72699-01AS	AS	11/05/08 20:04	11081023-4	.5	U	.491	mg/L	98.2	85	115			
L72699-01ASD	ASD	11/05/08 20:14	11081023-4	.5	U	.538	mg/L	107.6	85	115	9.14	20	
Nickel, dissolved			M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255096													
WG255096ICV	ICV	11/05/08 19:17	11080818-1	2.004		1.992	mg/L	99.4	95	105			
WG255096ICB	ICB	11/05/08 19:21				.01	mg/L		-0.03	0.03			
WG255096LFB	LFB	11/05/08 19:34	11081023-4	.4985		.542	mg/L	108.7	85	115			
L72699-01AS	AS	11/05/08 20:04	11081023-4	.4985	.01	.505	mg/L	99.3	85	115			
L72699-01ASD	ASD	11/05/08 20:14	11081023-4	.4985	.01	.548	mg/L	107.9	85	115	8.17	20	
Nitrate/Nitrite as	N		M353.2 -	H2SO4 pre	eserved								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254994													
WG254994ICV	ICV	11/01/08 19:11	WI080916-5	2.416		2.391	mg/L	99	90	110			
WG254994ICB	ICB	11/01/08 19:12				.025	mg/L		- 0.06	0.06			
WG254994LFB1	LFB	11/01/08 19:13	WI080913-4	2		2.058	mg/L	102.9	90	110			
L72688-01AS	AS	11/01/08 19:16	WI080913-4	2	.05	2.261	mg/L	110.6	90	110			M1
L72697-01DUP	DUP	11/01/08 19:18			2.17	2.159	mg/L				0.5	20	
L72698-04AS	AS	11/01/08 19:35	WI080913-4	2	1.58	3.865	mg/L	114.3	90	110			M1
L72698-05DUP	DUP	11/01/08 19:37			2.01	2.007	mg/L				0.1	20	
WG254994LFB2	LFB	11/01/08 19:52	WI080913-4	2		1.988	mg/L	99.4	90	110			
pH (lab)			M150.1 -	Electrome	tric								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254837													
WG254837LCSW3	LCSW	10/30/08 13:40	PCN29627	6		6.13	units	102.2	90	110			
WG254837LCSW6	LCSW	10/30/08 16:37	PCN29627	6		6.17	units	102.8	90	110			
WG254837LCSW9	LCSW	10/30/08 19:50	PCN29627	6		6.14	units	102.3	90	110			
WG254837LCSW12		10/30/08 23:12	PCN29627	6		6.06	units	101	90	110			
L72698-04DUP	DUP	10/31/08 0:39			8	8.05	units				0.6	20	
L72699-07DUP	DUP	10/31/08 2:07			8.3	8.43	units				1.6	20	
WG254837LCSW15		10/31/08 2:23	PCN29627	6		6.17	units	102.8	90	110			
Potassium, disso	lved		M200.7 I	CP									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255096													
WG255096ICV	ICV	11/05/08 19:17	11080818-1	20		21	mg/L	105	95	105			
WG255096ICB	ICB	11/05/08 19:21	.5555101	0		.46	mg/L	. 50	-0.9	0.9			
WG255096LFB	LFB	11/05/08 19:34	11081023-4	99.76186		105.81	mg/L	106.1	85	115			
L72699-01AS	AS	11/05/08 20:04	11081023-4	99.76186	10.4	115.54	mg/L	105.4	85	115			
L72699-01ASD	ASD	11/05/08 20:14	11081023-4	99.76186	10.4	122.54	mg/L	112.4	85	115	5.88	20	
	_			•		•	9						

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Residue, Filteral	ole (TDS	∆ @180C	SM25400	·									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254772													
WG254772PBW	PBW	10/29/08 15:00				U	mg/L		-20	20			
WG254772LCSW	LCSW	10/29/08 15:00	PCN29989	260		256	mg/L	98.5	80	1 20			
L72698-02DUP	DUP	10/29/08 15:19			2640	2668	mg/L				1.1	20	
WG254874													
WG254874PBW	PBW	10/30/08 14:50				U	mg/L		-20	20			
WG254874LCSW	LCSW	10/30/08 14:50	PCN29990	260		238	mg/L	91.5	80	1 20			
L72699-05DUP	DUP	10/30/08 15:00			3110	3132	mg/L				0.7	20	
Selenium, disso	lved		M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255377													
WG255377ICV	ICV	11/07/08 17:40	MS081101-2	.05		.051	mg/L	102	90	110			
WG255377ICB	ICB	11/07/08 17:43				U	mg/L		-0.00022	0.00022			
WG255377LFB	LFB	11/07/08 17:49	MS081003-7	.05		.05065	mg/L	101.3	85	115			
L72697-02AS	AS	11/07/08 17:59	MS081003-7	.1	.001	.11272	mg/L	111.7	70	1 30			
L72697-02ASD	ASD	11/07/08 18:02	MS081003-7	.1	.001	.11278	mg/L	111.8	70	130	0.05	20	
L72698-04AS	AS	11/07/08 18:39	MS081003-7	.1	.0008	.11604	mg/L	115.2	70	1 30			
L72698-04ASD	ASD	11/07/08 18:42	MS081003-7	.1	.0008	.11724	mg/L	116.4	70	1 30	1.03	20	
Sodium, dissolv	ed		M200.7 IC	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255096													
WG255096ICV	ICV	11/05/08 19:17	11080818-1	100		103.43	mg/L	103.4	95	105			
WG255096ICB	ICB	11/05/08 19:21				U	mg/L		-0.9	0.9			
WG255096LFB	LFB	11/05/08 19:34	11081023-4	98.21624		105.43	mg/L	107.3	85	115			
L72699-01AS	AS	11/05/08 20:04	11081023-4	98.21624	66.4	162.43	mg/L	97.8	85	115			
L72699-01ASD	ASD	11/05/08 20:14	11081023-4	98.21624	66.4	170.44	mg/L	105.9	85	115	4.81	20	
WG255522													
WG255522ICV	ICV	11/11/08 19:30	11080818-1	100		100.62	mg/L	100.6	95	105			
WG255522ICB	ICB	11/11/08 19:34				U	mg/L		-0.9	0.9			
WG255522LFB	LFB	11/11/08 19:46	11081110-2	98.21624		100.76	mg/L	102.6	85	115			
L72659-08AS	AS	11/11/08 19:56	11081110-2	98.21624	47.5	146.12	mg/L	100.4	85	115			
L72659-08ASD	ASD	11/11/08 19:59	11081110-2	98.21624	47.5	144.61	mg/L	98.9	85	115	1.04	20	
L72718-01AS	AS	11/11/08 20:42	II081110-2	98.21624	29.8	126.08	mg/L	98	85	115			
L72718-01ASD	ASD	11/11/08 20:46	II081110-2	98.21624	29.8	127.42	mg/L	99.4	85	115	1.06	20	

REPIN.01.06.05.01 Page 16 of 23

FMI Gold & Copper - Sierrita

Sulfate			SM4500 S	04-D									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254865													
WG254865PBW	PBW	10/30/08 14:37				U	mg/L		-30	30			
WG254865LCSW	LCSW	10/30/08 14:40	WC080910-2	100		95	mg/L	95	80	1 20			
L72698-07DUP	DUP	10/30/08 15:52			1720	1757	mg/L				2.1	20	
WG255512													
WG255512PBW	PBW	11/11/08 12:11				15	mg/L		-30	30			
WG255512LCSW	LCSW	11/11/08 12:13	WC080910-2	100	00	108	mg/L	108	80	1 20	4.0	00	
L72787-01DUP	DUP	11/11/08 12:36			80	81	mg/L				1.2	20	RA
WG255904													
WG255904PBW	PBW	11/18/08 10:10				U	mg/L		-30	30			
WG255904LCSW	LCSW	11/18/08 10:12	WC080910-2	100		103	mg/L	103	80	120	0	20	DA
L73029-06DUP	DUP	11/18/08 11:02			U	U	mg/L				0	20	RA
Thallium, dissol	ved		M200.8 IC	P - MS									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255377													
WG255377ICV	ICV	11/07/08 17:40	MS081101-2	.05		.04956	mg/L	99.1	90	110			
WG255377ICB	ICB	11/07/08 17:43				U	mg/L		-0.00022	0.00022			
WG255377LFB	LFB	11/07/08 17:49	MS081003-7	.0501		.04912	mg/L	98	85 70	115			
L72697-02AS L72697-02ASD	AS ASD	11/07/08 17:59 11/07/08 18:02	MS081003-7 MS081003-7	.1002 .1002	U	.10784	mg/L mg/L	107.6 107.8	70 70	130 130	0.2	20	
L72698-04AS	AS	11/07/08 18:39	MS081003-7	.1002	U	.11112	mg/L	110.9	70	130	0.2	20	
L72698-04ASD	ASD	11/07/08 18:42	MS081003-7	.1002	U	.10786	mg/L	107.6	70	130	2.98	20	
Uranium, dissol	v ed		M200.8 IC	P - MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255377													
WG255377ICV	ICV	11/07/08 17:40	MS081101-2	.05		.05075	mg/L	101.5	90	110			
WG255377ICB	ICB	11/07/08 17:43				U	mg/L		-0.00022	0.00022			
WG255377LFB	LFB	11/07/08 17:49	MS081003-7	.05		.05167	mg/L	103.3	85	115			
L72697-02AS	AS	11/07/08 17:59	MS081003-7	.1	.0325	.15192	mg/L	119.4	70 70	130	0.07	00	
L72697-02ASD L72698-04AS	ASD AS	11/07/08 18:02 11/07/08 18:39	MS081003-7 MS081003-7	.1 .1	.0325 .0379	.15182 .16048	mg/L	119.3 122.6	70 70	130 130	0.07	20	
L72698-04ASD	ASD	11/07/08 18:42	MS081003-7	.1	.0379	.15848	mg/L mg/L	120.6	70 70	130	1.25	20	
Zinc, dissolved			M200.7 IC										
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255096													
WG255096ICV	ICV	11/05/08 19:17	11080818-1	2		1.979	mg/L	99	95	105			
WG255096ICB	ICB	11/05/08 19:21		-		U	mg/L	50	-0.03	0.03			
WG255096LFB	LFB	11/05/08 19:34	11081023-4	.5		.546	mg/L	109.2	85	115			
L72699-01AS	AS	11/05/08 20:04	11081023-4	.5	U	.535	mg/L	107	85	115			
L72699-01ASD	ASD	11/05/08 20:14	11081023-4	.5	U	.562	mg/L	112.4	85	115	4.92	20	

Inorganic Extended Qualifier Report

FMI Gold & Copper - Sierrita

ACZ Project ID: L72698

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L72698-01	WG255240	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254994	Nitrate/Nitrite as N	M353.2 - H2SO4 preserved	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG255904	Sulfate	SM4500 SO4-D	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
L72698-02	WG255240	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254994	Nitrate/Nitrite as N	M353.2 - H2SO4 preserved	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
L72698-03	WG255240	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254994	Nitrate/Nitrite as N	M353.2 - H2SO4 preserved	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
L72698-04	WG255240	Cyanide, total	M335,4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG255164	Fluoride	SM4500F-C	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254994	Nitrate/Nitrite as N	M353.2 - H2SO4 preserved	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
L72698-05	WG255240	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG255135	Fluoride	SM4500F-C	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			SM4500F-C	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254994	Nitrate/Nitrite as N	M353.2 - H2SO4 preserved	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
L72698-06	WG255522	Calcium, dissolved	M200.7 ICP	МЗ	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG254837	Conductivity @25C	SM2510B	N1	See Case Narrative.
	WG255240	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG255135	Fluoride	SM4500F-C	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			SM4500F-C	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254994	Nitrate/Nitrite as N	M353.2 - H2SO4 preserved	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG254837	pH	SM4500H+ B	N1	See Case Narrative.
	WG255512	Sulfate	SM4500 SO4-D	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254837	Total Alkalinity	SM2320B - Titration	N1	See Case Narrative.

Inorganic Extended Qualifier Report

ACZ Project ID: L72698

FMI Gold & Copper - Sierrita

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L72698-07	WG255240	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG255135	Fluoride	SM4500F-C	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			SM4500F-C	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254994	Nitrate/Nitrite as N	M353.2 - H2SO4 preserved	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.

Certification Qualifiers

FMI Gold & Copper - Sierrita

ACZ Project ID: L72698

No certification qualifiers associated with this analysis

Sample Receipt

FMI Gold & Copper - Sierrita

OJ06DZ

ACZ Project ID: Date Received: L72698 10/28/2008

Received By:

Date Printed: 10/28/2008

Receipt Verification

- 1) Does this project require special handling procedures such as CLP protocol?
- 2) Are the custody seals on the cooler intact?
- 3) Are the custody seals on the sample containers intact?
- 4) Is there a Chain of Custody or other directive shipping papers present?
- 5) Is the Chain of Custody complete?
- 6) Is the Chain of Custody in agreement with the samples received?
- 7) Is there enough sample for all requested analyses?
- 8) Are all samples within holding times for requested analyses?
- 9) Were all sample containers received intact?
- 10) Are the temperature blanks present?
- 11) Is the trip blank for Cyanide present?
- 12) Is the trip blank for VOA present?
- 13) Are samples requiring no headspace, headspace free?
- 14) Do the samples that require a Foreign Soils Permit have one?

YES	NO	NA
		Х
Х		
		Х
Х		
Χ		
Х		
Х		
Х		
Х		
		Х
	Х	
		Х
		X
		Х

Exceptions: If you answered no to any of the above questions, please describe

N/A

Contact (For any discrepancies, the client must be contacted)

N/A

Shipping Containers

Cooler Id	Temp (°C)	Rad (µR/hr)
2435	5.3	17

Client must contact ACZ Project Manager if analysis should not proceed for samples received outside of thermal preservation acceptance criteria.

Notes

Sample Receipt

FMI Gold & Copper - Sierrita

OJ06DZ

ACZ Project ID: Date Received:

L72698

10/28/2008

Received By:

Sample Container Preservation

SAMPLE	CLIENT ID	R < 2	G < 2	BK < 2	Y<2	YG<2	B< 2	0<2	T >12	N/A	RAD	ID
L72698-01	IW-11		Υ		Υ							
L72698-02	IW-12		Υ		Υ							
L72698-03	IW-13		Υ		Υ							
L72698-04	IW-14		Υ		Υ							
L72698-05	IW-15		Υ		Υ							
L72698-06	IW-16		Υ		Υ							
L72698-07	IW-17		Υ		Υ							

Sample Container Preservation Legend

A bbreviation	Description	Container Type	Preservative/Limits
R	Raw/Nitric	RED	pH must be < 2
В	Filtered/Sulfuric	BLUE	pH must be < 2
BK	Filtered/Nitric	BLACK	pH must be < 2
G	Filtered/Nitric	GREEN	pH must be < 2
0	Raw/Sulfuric	ORANGE	pH must be < 2
Р	Raw/NaOH	PURPLE	pH must be > 12 *
Т	Raw/NaOH Zinc Acetate	TAN	pH must be > 12
Υ	Raw/Sulfuric	YELLOW	pH must be < 2
YG	Raw/Sulfuric	YELLOW GLASS	pH must be < 2
N/A	No preservative needed	Not applicable	
RAD	Gamma/Beta dose rate	Not applicable	must be $< 250 \mu R/hr$

^{*} pH check performed by analyst prior to sample preparation

Sample IDs Reviewed By:	

Analytical Report

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

November 13, 2008

Bill Dorris Phelps Dodge Sierrita P.O. Box 527 6200 West Duval Mine Road Green Valley, AZ 85622-0527

Cc: Dan Simpson

Project ID: OJ06DZ

ACZ Project ID: L72699-SULFATE ONLY

Bill Dorris:

Enclosed are analytical reports for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on October 28, 2008. This project was assigned to ACZ's project number, L72699. Please reference this number in all future inquiries.

At the request of Phelps Dodge Sierrita, Inc. (PDSI), this laboratory report has been prepared to contain only information specific to samples and analytes identified by PDSI as evaluated pursuant to Mitigation Order No. P-500-06 with Arizona Department of Environmental Quality. Samples and analytes unrelated to the Mitigation Order, but which may be identified on the chain of custody and sample receipt, have been reported to PDSI in a separate report.

All analyses were performed according to ACZ's Quality Assurance Plan, version 12.0. The enclosed results relate only to the samples received under L72699. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute. Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all the requirements of NELAC.

This report should be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

ACZ disposes of samples and sub-samples thirty days after the analytical results are reported to the client. That time frame has elapsed for this project. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years. Please notify your Project Manager if you have other needs. If you have any questions, please contact your Project Manager or Customer Service Representative.

Scott Habermehl has reviewed and approved this report.

S. Habermeh

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: IW-1 ACZ Sample ID: *L72699-01*

Date Sampled: 10/24/08 12:55

Date Received: 10/28/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	SM4500 SO4-D	700	*	mg/L	10	50	11/03/08 10:37	gkj

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: IW-2A ACZ Sample ID: **L72699-02**

Date Sampled: 10/24/08 12:45

Sample Matrix: Ground Water

Date Received: 10/28/08

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	SM4500 SO4-D	60	*	mg/L	10	50	11/03/08 10:40	gkj

FMI Gold & Copper - SierritaProject ID: OJ06DZ
Sample ID: IW-4

ACZ Sample ID: **L72699-03**Date Sampled: 10/24/08 12:05

Date Received: 10/28/08
Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	SM4500 SO4-D	1630	*	mg/L	50	250	11/03/08 10:44	gkj

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: IW-6A ACZ Sample ID: **L72699-04**

Date Sampled: 10/24/08 11:00

Date Received: 10/28/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	SM4500 SO4-D	1930	*	mg/L	50	250	11/03/08 10:47	gkj

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: IW-8 ACZ Sample ID: **L72699-05**

Date Sampled: 10/24/08 12:30
Date Received: 10/28/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	SM4500 SO4-D	1890	*	mg/L	50	250	11/03/08 10:50	gkj

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: IW-9 ACZ Sample ID: **L72699-06**

Date Sampled: 10/24/08 12:15

Date Received: 10/28/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	SM4500 SO4-D	1720	*	mg/L	10	50	11/03/08 10:53	gkj

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: IW-10 ACZ Sample ID: **L72699-07**Date Sampled: 10/24/08 11:40

Date Received: 10/28/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	SM4500 SO4-D	1730	*	mg/L	10	50	11/03/08 10:57	gkj

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report Header Explanations

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest Limit Upper limit for RPD, in %.

Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit, typically 5 times the MDL.

QC True Value of the Control Sample or the amount added to the Spike

Rec Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

QC	Sai	mpl	е Ту	pes

AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calibration Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution

QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method or calibration procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method. Spikes/Fortified Matrix Determines sample matrix interferences, if any.

Standard Verifies the validity of the calibration.

ACZ Qualifiers (Qual)

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity.
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time.
- U The material was analyzed for, but was not detected above the level of the associated value.

The associated value is either the sample quantitation limit or the sample detection limit.

Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (5) EPA SW-846. Test Methods for Evaluating Solid Waste, Third Edition with Update III, December 1996.
- (6) Standard Methods for the Examination of Water and Wastewater, 19th edition, 1995.

Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Alkalinity as CaC	О3		SM2320B	- Titration									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254837													
WG254837PBW1	PBW	10/30/08 13:26				U	mg/L		-20	20			
WG254837LCSW2	LCSW	10/30/08 13:36	WC081022-2	820.0001		782.5	mg/L	95.4	90	110			
WG254837PBW2	PBW	10/30/08 16:23				U	mg/L		-20	20			
WG254837LCSW5	LCSW	10/30/08 16:34	WC081022-2	820.0001		789.3	mg/L	96.3	90	110			
WG254837PBW3	PBW	10/30/08 19:35				U	mg/L		-20	20			
WG254837LCSW8	LCSW	10/30/08 19:46	WC081022-2	820.0001		792.6	mg/L	96.7	90	110			
WG254837PBW4	PBW	10/30/08 22:58				U	mg/L		-20	20			
WG254837LCSW11		10/30/08 23:09	WC081022-2	820.0001		802.3	mg/L	97.8	90	110			
L72699-07DUP	DUP	10/31/08 2:07			109	117	mg/L				7.1	20	
WG254837LCSW14	LCSW	10/31/08 2:19	WC081022-2	820.0001		808.5	mg/L	98.6	90	110			
Aluminum, disso	lved		M200.7 IC	P									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255096													
WG255096ICV	ICV	11/05/08 19:17	11080818-1	2		2.044	mg/L	102.2	95	105			
WG255096ICB	ICB	11/05/08 19:21				.043	mg/L		-0.09	0.09			
WG255096LFB	LFB	11/05/08 19:34	11081023-4	1		1.125	mg/L	112.5	85	115			
L72699-01AS	AS	11/05/08 20:04	11081023-4	1	.07	.98	mg/L	91	85	115			
L72699-01ASD	ASD	11/05/08 20:14	11081023-4	1	.07	1.147	mg/L	107.7	85	115	15.7	20	
L72701-01AS	AS	11/05/08 20:41	11081023-4	1	.09	1.126	mg/L	103.6	85	115			
L72701-01ASD	ASD	11/05/08 20:44	11081023-4	1	.09	1.125	mg/L	103.5	85	115	0.09	20	
Antimony, dissol	ved		M200.8 IC	P-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255390													
WG255390ICV	ICV	11/09/08 0:58	MS081101-2	.02		.02078	mg/L	103.9	90	110			
WG255390ICB	ICB	11/09/08 1:04				U	mg/L		-0.00088	0.00088			
WG255390LFB	LFB	11/09/08 1:14	MS081003-7	.01		.00976	mg/L	97.6	85	115			
L72699-02AS	AS	11/09/08 1:30	MS081003-7	.01	U	.00972	mg/L	97.2	70	1 30			
L72699-02ASD	ASD	11/09/08 1:35	MS081003-7	.01	U	.00977	mg/L	97.7	70	1 30	0.51	20	
Arsenic, dissolve	ed		M200.8 IC	P-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255390													
WG255390ICV	ICV	11/09/08 0:58	MS081101-2	.05		.05228	mg/L	104.6	90	110			
WG255390ICB	ICB	11/09/08 1:04	50011012	.00		.00220	mg/L	10-110	-0.0011	0.0011			
WG255390LFB	LFB	11/09/08 1:14	MS081003-7	.05		.04985	mg/L	99.7	85	115			
L72699-02AS	AS	11/09/08 1:30	MS081003-7	.05	.0061	.05775	mg/L	103.3	70	130			
				.50			9, -			.50			

Page 10 of 23 REPIN.01.06.05.01

FMI Gold & Copper - Sierrita

Barium, dissolv	ved		M200.7 IC	CP									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255267													
WG255267ICV	ICV	11/06/08 15:34	11080818-1	2		1.9686	mg/L	98.4	95	105			
WG255267ICB	ICB	11/06/08 15:38				U	mg/L		-0.009	0.009			
WG255267LFB	LFB	11/06/08 15:52	II081105-2	.5		.5129	mg/L	102.6	85	115			
L72699-01AS	AS	11/06/08 16:32	II081105-2	.5	.043	.5012	mg/L	91.6	85	115			
L72699-01ASD	ASD	11/06/08 16:36	11081105-2	.5	.043	. 5313	mg/L	97.7	85	115	5.83	20	
L72701-01AS	AS	11/06/08 17:12	11081105-2	.5	U	. 5192	mg/L	103.8	85	115			
L72701-01ASD	ASD	11/06/08 17:15	II081105 - 2	.5	U	. 5174	mg/L	103.5	85	115	0.35	20	
Beryllium, diss	olved		M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255390													
WG255390ICV	ICV	11/09/08 0:58	MS081101-2	.05		.04976	mg/L	99.5	90	110			
WG255390ICB	ICB	11/09/08 1:04		-2-		U	mg/L	- 5.5	-0.00022	0.00022			
WG255390LFB	LFB	11/09/08 1:14	MS081003-7	.05005		.0492	mg/L	98.3	85	115			
L72699-02AS	AS	11/09/08 1:30	MS081003-7	.05005	U	.05094	mg/L	101.8	70	130			
L72699-02ASD	ASD	11/09/08 1:35	MS081003-7	.05005	U	.04948	mg/L	98.9	70	130	2.91	20	
WG255450													
WG255450ICV	ICV	11/10/08 22:52	MS081101-2	.05		.05064	mg/L	101.3	90	110			
WG255450ICB	ICB	11/10/08 22:57				U	mg/L		-0.00022	0.00022			
WG255450LFB	LFB	11/10/08 23:03	MS081108-3	.05005		.04872	mg/L	97.3	85	115			
L72699-03AS	AS	11/10/08 23:13	MS081108-3	.1001	U	.09958	mg/L	99.5	70	130			
L72699-03ASD	ASD	11/10/08 23:18	MS081108-3	.1001	U	.09906	mg/L	99	70	130	0.52	20	
Cadmium, diss	olved		M200.8 I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255390													
WG255390ICV	ICV	11/09/08 0:58	MS081101-2	.05		.0502	mg/L	100.4	90	110			
WG255390ICB	ICB	11/09/08 1:04				.00011	mg/L		-0.00022	0.00022			
WG255390LFB	LFB	11/09/08 1:14	MS081003-7	.05		.04819	mg/L	96.4	85	115			
L72699-02AS	AS	11/09/08 1:30	MS081003-7	.05	U	.04727	mg/L	94.5	70	130			
L72699-02ASD	ASD	11/09/08 1:35	MS081003-7	.05	U	.04719	mg/L	94.4	70	130	0.17	20	
Calcium, disso	lved		M200.7 IC	CP									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255096													
WG255096ICV	ICV	11/05/08 19:17	11080818-1	100		102.34	mg/L	102.3	95	105			
WG255096ICB	ICB	11/05/08 19:21				U	mg/L		-0.6	0.6			
WG255096LFB	LFB	11/05/08 19:34	11081023-4	67.97008		73.47	mg/L	108.1	85	115			
L72699-01AS	AS	11/05/08 20:04	11081023-4	67.97008	230	291.71	mg/L	90.8	85	115			
L72699-01ASD	ASD	11/05/08 20:14	11081023-4	67.97008	230	298.07	mg/L	100.1	85	115	2.16	20	
L72701-01AS	AS	11/05/08 20:41	11081023-4	67.97008	12.8	84.5	mg/L	105.5	85	115			
L72701-01ASD	ASD	11/05/08 20:44	11081023-4	67.97008	12.8	84.93	mg/L	106.1	85	115	0.51	20	

FMI Gold & Copper - Sierrita

Chloride			SM4500C	ŀΕ									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254882													
WG254882ICB	ICB	10/30/08 8:44				U	mg/L		-3	3			
WG254882ICV	ICV	10/30/08 8:44	WI080808-1	54.945		57.5	mg/L	104.7	90	110			
WG254882LFB1	LFB	10/30/08 14:45	WI080818-2	30		32.5	mg/L	108.3	90	110			
L72688-01AS	AS	10/30/08 14:45	WI080818-2	300	30	319	mg/L	96.3	90	110			
_72699-01DUP	DUP	10/30/08 14:45			72	71.5	mg/L				0.7	20	
WG254882LFB2	LFB	10/30/08 14:49	WI080818-2	30		33.1	mg/L	110.3	90	110			
WG254882LFB2	LFB	10/30/08 15:22	WI080818-2	30		32.5	mg/L	108.3	90	110			
Chromium, diss	olved		M200.7 IC	DP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255096													
NG255096ICV	ICV	11/05/08 19:17	11080818-1	2		2.091	mg/L	104.6	95	105			
WG255096ICB	ICB	11/05/08 19:21	11000010-1	2		2.001 U	mg/L	10-4.0	- 0.03	0.03			
WG255096LFB	LFB	11/05/08 19:34	11081023-4	.5		.57	mg/L	114	-0.03 85	115			
_72699-01AS	AS	11/05/08 20:04	11081023-4	.5 .5	U	.532	mg/L	106.4	85	115			
_72699-01ASD	ASD	11/05/08 20:04	11081023-4	.5 .5	U	.559	mg/L	111.8	85	115	4.95	20	
_72701 - 01ASD	ASD	11/05/08 20:41	11081023 -4	.5 .5	.02	.567	•	109.4	85	115	4.93	20	
L72701-01AS L72701-01ASD	ASD	11/05/08 20:44	11081023 -4 11081023-4	.5 .5	.02	.574	mg/L mg/L	1109.4	85	115	1.23	20	
		1 1/03/06 20.44			.02	.574	mg/L	1 10.0	00	113	1.23	20	
Cobalt, dissolve		A colored	M200.7 IC		0	Fo. and	11.35-	D	1		DDD	1.526	0 -1
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255096													
WG255096ICV	ICV	11/05/08 19:17	11080818-1	2.002		2.042	mg/L	102	95	105			
WG255096ICB	ICB	11/05/08 19:21				U	mg/L		- 0.03	0.03			
WG255096LFB	LFB	11/05/08 19:34	II081023 - 4	.5		.561	mg/L	112.2	85	115			
L72699-01AS	AS	11/05/08 20:04	11081023-4	.5	.02	.516	mg/L	99.2	85	115			
_72699-01ASD	ASD	11/05/08 20:14	11081023-4	.5	.02	.539	mg/L	103.8	85	115	4.36	20	
L72701-01AS	AS	11/05/08 20:41	11081023-4	.5	U	.543	mg/L	108.6	85	115			
L72701-01ASD	ASD	11/05/08 20:44	II081023 - 4	.5	U	.543	mg/L	108.6	85	115	0	20	
Conductivity @2	:5C		SM2510B										
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254837													
WG254837LCSW1	LCSW	10/30/08 13:27	PCN30288	1408.8		1419	.mhos/cm	100.7	90	110			
WG254837LCSW4	LCSW	10/30/08 16:24	PCN30288	1408.8		1386	umhos/cm	98.4	90	110			
WG254837LCSW7	LCSW	10/30/08 19:37	PCN30288	1408.8		1388	umhos/cm	98.5	90	110			
WG254837LCSW10		10/30/08 22:59	PCN30288	1408.8		1384	umhos/cm	98.2	90	110			
L72699-07DUP	DUP	10/31/08 2:07			3240	3250	umhos/cm				0.3	20	

FMI Gold & Copper - Sierrita

Copper, dissolv	red		M200.7 IC	Р									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255267													
WG255267ICV	ICV	11/06/08 15:34	11080818-1	2		1.92	mg/L	96	95	105			
WG255267ICB	ICB	11/06/08 15:38				U	mg/L		-0.03	0.03			
WG255267LFB	LFB	11/06/08 15:52	II081105-2	.5		.516	mg/L	103.2	85	115			
L72699-01AS	AS	11/06/08 16:32	II081105-2	.5	U	.463	mg/L	92.6	85	115			
L72699-01ASD	ASD	11/06/08 16:36	II081105-2	.5	U	.497	mg/L	99.4	85	115	7.08	20	
L72701-01AS	AS	11/06/08 17:12	II081105-2	.5	U	.522	mg/L	104.4	85	115			
L72701-01ASD	ASD	11/06/08 17:15	II081105 - 2	.5	U	.521	mg/L	104 . 2	85	115	0.19	20	
Cyanide, total			M335.4 - C	Colorime	tric w/ distil	lation							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255240													
WG255240ICV	ICV	11/06/08 10:39	WI081025-3	.3		.2803	mg/L	93.4	90	110			
WG255240ICB	ICB	11/06/08 10:40				U	mg/L		-0.015	0.015			
WG255091LRB	LRB	11/06/08 10:41				U	mg/L		-0.015	0.015			
WG255091LFB	LFB	11/06/08 10:42	WI081025-7	.2		.1916	mg/L	95.8	90	110			
L72698-01DUP	DUP	11/06/08 10:54			.006	.0062	mg/L				3.3	20	RA
L72698-02LFM	LFM	11/06/08 10:56	WI081025-7	.2	.011	.2079	mg/L	98.5	90	110			
WG255259													
WG255259ICV	ICV	11/06/08 11:15	WI081025-3	.3		.2865	mg/L	95.5	90	110			
WG255259ICB	ICB	11/06/08 11:16				U	mg/L		-0.015	0.015			
WG255160LRB	LRB	11/06/08 11:17				U	mg/L		-0.015	0.015			
WG255160LFB	LFB	11/06/08 11:18	WI081025-7	.2		.1909	mg/L	95.5	90	110			
L72694-01DUP	DUP	11/06/08 11:19			U	U	mg/L				0	20	RA
L72694-02LFM	LFM	11/06/08 11:21	WI081025-7	.2	U	.1925	mg/L	96.3	90	110			
L72709-04DUP	DUP	11/06/08 11:31			U	U	mg/L				0	20	RA
L72709-05LFM	LFM	11/06/08 11:33	WI081025-7	.2	U	. 1908	mg/L	95 . 4	90	110			
Fluoride			SM4500F-	С									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255078													
WG255078ICV	ICV	11/04/08 9:29	WC081029-9	2		2.1	mg/L	105	95	105			
WG255078ICB	ICB	11/04/08 9:39				U	mg/L		-0.3	0.3			
WG255135													
WG255135ICV	ICV	11/04/08 15:24	WC081029-9	2		1.95	mg/L	97.5	95	105			
WG255135ICB	ICB	11/04/08 15:32				U	mg/L		-0.3	0.3			
WG255135LFB1	LFB	11/04/08 15:39	WC080912-3	5		5.02	mg/L	100.4	90	110			
L72698-05AS	AS	11/04/08 16:28	WC080912-3	5	.3	3.76	mg/L	69.2	90	110			M2
L72698-05DUP	DUP	11/04/08 16:30			.3	.27	mg/L				10.5	20	RA
WG255135LFB2	LFB	11/04/08 17:08	WC080912-3	5		4.93	mg/L	98.6	90	110			

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Iron, dissolved			M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255267													
WG255267ICV	ICV	11/06/08 15:34	11080818-1	2		1.948	mg/L	97.4	95	105			
WG255267ICB	ICB	11/06/08 15:38				U	mg/L		-0.06	0.06			
WG255267LFB	LFB	11/06/08 15:52	11081105-2	1		1.104	mg/L	110.4	85	115			
L 7 2699-01AS	AS	11/06/08 16:32	11081105-2	1	.14	1.101	mg/L	96.1	85	115			
L72699-01ASD	ASD	11/06/08 16:36	11081105-2	1	.14	1.152	mg/L	101.2	85	115	4.53	20	
L72701-01AS	AS	11/06/08 17:12	11081105-2	1	.04	1.189	mg/L	114.9	85	115			
L72701-01ASD	ASD	11/06/08 17:15	11081105-2	1	.04	1.125	mg/L	108.5	85	115	5.53	20	
Lead, dissolved			M200.8 I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255390													
WG255390ICV	ICV	11/09/08 0:58	MS081101-2	.05		.04813	mg/L	96.3	90	110			
WG255390ICB	ICB	11/09/08 1:04				.00018	mg/L		-0.00022	0.00022			
WG255390LFB	LFB	11/09/08 1:14	MS081003-7	.05		.04519	mg/L	90.4	85	115			
L 7 2699-02AS	AS	11/09/08 1:30	MS081003-7	.05	.0009	.04502	mg/L	88.2	70	130			
L72699-02ASD	ASD	11/09/08 1:35	MS081003-7	.05	.0009	.04416	mg/L	86.5	70	130	1.93	20	
Magnesium, dis	solved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255096													
WG255096ICV	ICV	11/05/08 19:17	11080818-1	100		102.51	mg/L	102.5	95	105			
WG255096ICB	ICB	11/05/08 19:21				U	mg/L		-0.6	0.6			
WG255096LFB	LFB	11/05/08 19:34	11081023-4	49.96908		53.53	mg/L	107.1	85	115			
L 7 2699-01AS	AS	11/05/08 20:04	11081023-4	49.96908	53.7	105.37	mg/L	103.4	85	115			
L 7 2699-01ASD	ASD	11/05/08 20:14	11081023-4	49.96908	53.7	108.2	mg/L	109.1	85	115	2.65	20	
L72701-01AS	AS	11/05/08 20:41	11081023-4	49.96908	2.6	52.38	mg/L	99.6	85	115			
L72701-01ASD	ASD	11/05/08 20:44	11081023-4	49.96908	2.6	52.42	mg/L	99.7	85	115	0.08	20	
Manganese, diss	solved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255267													
WG255267ICV	ICV	11/06/08 15:34	11080818-1	2		1.9014	mg/L	95.1	95	105			
WG255267ICB	ICB	11/06/08 15:38				U	mg/L		-0.015	0.015			
WG255267LFB	LFB	11/06/08 15:52	11081105-2	.5		. 5425	mg/L	108.5	85	115			
L72699-01AS	AS	11/06/08 16:32	11081105-2	.5	U	.4853	mg/L	97.1	85	115			
L72699-01ASD	ASD	11/06/08 16:36	11081105-2	.5	U	. 5164	mg/L	103.3	85	115	6.21	20	
L72701-01AS	AS	11/06/08 17:12	11081105-2	.5	U	.5519	mg/L	110.4	85	115			
L72701-01ASD	ASD	11/06/08 17:15	11081105-2	.5	U	. 5511	mg/L	110.2	85	115	0.15	20	

REPIN.01.06.05.01 Page 14 of 23

FMI Gold & Copper - Sierrita

Mercury, dissolv	ved		M245.1 (CVAA									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255124													
WG255124ICV	ICV	11/07/08 11:22	11081103-1	.005		.00527	mg/L	105.4	95	105			
WG255124ICB	ICB	11/07/08 11:24				U	mg/L		-0.0002	0.0002			
WG255270							-						
WG255270LRB	LRB	11/07/08 16:52				U	mg/L		-0.00044	0.00044			
WG255270LFB	LFB	11/07/08 16:54	11081027-2	.002		.00196	mg/L	98	85	115			
L72639-01LFM	LFM	11/07/08 16:58	11081027-2	.002	U	.00198	mg/L	99	85	115			
L72639-01LFMD	LFMD	11/07/08 17:00	11081027-2	.002	U	.00198	mg/L	99	85	115	0	20	
L72699-03LFM	LFM	11/07/08 17:31	11081027-2	.002	U	.00206	mg/L	103	85	115			
L72699-03LFMD	LFMD	11/07/08 17:33	11081027-2	.002	U	.00204	mg/L	102	85	115	0.98	20	
Molybdenum, di	issolved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255096													
WG255096ICV	ICV	11/05/08 19:17	11080818-1	2		2.018	mg/L	100.9	95	105			
WG255096ICB	ICB	11/05/08 19:21	11000010-1	2		2.010 U	mg/L	100.5	-0.03	0.03			
WG255096LFB	LFB	11/05/08 19:34	11081023-4	.5		.541	mg/L	108.2	85	115			
L72699-01AS	AS	11/05/08 20:04	11081023-4	.5	U	.491	mg/L	98.2	85	115			
L72699-01ASD	ASD	11/05/08 20:14	11081023-4	.5	U	.538	mg/L	107.6	85	115	9.14	20	
L72701-01AS	AS	11/05/08 20:41	11081023-4	.5	.05	.569	mg/L	103.8	85	115			
L72701-01ASD	ASD	11/05/08 20:44	11081023-4	.5	.05	.585	mg/L	107	85	115	2.77	20	
WG255267													
WG255267ICV	ICV	11/06/08 15:34	11080818-1	2		1.905	mg/L	95.3	95	105			
WG255267ICB	ICB	11/06/08 15:38		_		U	mg/L	00.0	-0.03	0.03			
WG255267LFB	LFB	11/06/08 15:52	11081105-2	.5		.52	mg/L	104	85	115			
L72699-01AS	AS	11/06/08 16:32	11081105-2	.5	.03	.453	mg/L	84.6	85	115			
L72699-01ASD	ASD	11/06/08 16:36	11081105-2	.5	.03	.485	mg/L	91	85	115	6.82	20	
L72701-01AS	AS	11/06/08 17:12	11081105-2	.5	.05	.56	mg/L	102	85	115			
L72701-01ASD	ASD	11/06/08 17:15	11081105-2	.5	.05	.554	mg/L	100.8	85	115	1.08	20	
Nickel, dissolve	d		M200.7 I	СР									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255096													
WG255096ICV	ICV	11/05/08 19:17	11080818-1	2.004		1.992	mg/L	99.4	95	105			
WG255096ICB	ICB	11/05/08 19:21				.01	mg/L		-0.03	0.03			
WG255096LFB	LFB	11/05/08 19:34	11081023-4	.4985		.542	mg/L	108.7	85	115			
L72699-01AS	AS	11/05/08 20:04	11081023-4	.4985	.01	.505	mg/L	99.3	85	115			
L72699-01ASD	ASD	11/05/08 20:14	11081023-4	.4985	.01	.548	mg/L	107.9	85	115	8.17	20	
L72701-01AS	AS	11/05/08 20:41	11081023-4	.4985	.02	.542	mg/L	104.7	85	115		•	
		11/05/08 20:44	11081023-4	-			-						

FMI Gold & Copper - Sierrita

Nitrate/Nitrite as	N		M353.2 -	H2SO4 pre	eserved								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254994													
WG254994ICV	ICV	11/01/08 19:11	WI080916-5	2.416		2.391	mg/L	99	90	110			
WG254994ICB	ICB	11/01/08 19:12				.025	mg/L		-0.06	0.06			
WG254994LFB1	LFB	11/01/08 19:13	WI080913-4	2		2.058	mg/L	102.9	90	110			
L72698-04AS	AS	11/01/08 19:35	WI080913-4	2	1.58	3.865	mg/L	114.3	90	110			M1
L72698-05DUP	DUP	11/01/08 19:37			2.01	2.007	mg/L				0.1	20	
WG254994LFB2	LFB	11/01/08 19:52	WI080913-4	2		1.988	mg/L	99.4	90	110			
L72699-07AS	AS	11/01/08 19:55	WI080913-4	2	1.12	3.301	mg/L	109.1	90	110			
L72700-01DUP	DUP	11/01/08 19:57			.18	.177	mg/L				1.7	20	RA
pH (lab)			M150.1 -	Electrome	tric								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254837													
WG254837LCSW3	LCSW	10/30/08 13:40	PCN29627	6		6.13	units	102.2	90	110			
WG254837LCSW6	LCSW	10/30/08 16:37	PCN29627	6		6.17	units	102.8	90	110			
WG254837LCSW9	LCSW	10/30/08 19:50	PCN29627	6		6.14	units	102.3	90	110			
WG254837LCSW12	LCSW	10/30/08 23:12	PCN29627	6		6.06	units	101	90	110			
L72699-07DUP	DUP	10/31/08 2:07			8.3	8.43	units				1.6	20	
WG254837LCSW15	LCSW	10/31/08 2:23	PCN29627	6		6.17	units	102.8	90	110			
Potassium, disso	olved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255096													
WG255096ICV	ICV	11/05/08 19:17	11080818-1	20		21	mg/L	105	95	105			
WG255096ICB	ICB	11/05/08 19:21				.46	mg/L		-0.9	0.9			
WG255096LFB	LFB	11/05/08 19:34	II081023 - 4	99.76186		105.81	mg/L	106.1	85	115			
L72699-01AS	AS	11/05/08 20:04	11081023-4	99.76186	10.4	115.54	mg/L	105.4	85	115			
L72699-01ASD	ASD	11/05/08 20:14	11081023-4	99.76186	10.4	122.54	mg/L	112.4	85	115	5.88	20	
L72701-01AS	AS	11/05/08 20:41	11081023-4	99.76186	2.9	112.28	mg/L	109.6	85	115			
L72701-01ASD	ASD	11/05/08 20:44	II081023 - 4	99.76186	2.9	112.51	mg/L	109.9	85	115	0.2	20	
Residue, Filterab	le (TDS) @180C	SM25400										
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG254874													
WG254874PBW	PBW	10/30/08 14:50				U	mg/L		- 20	20			
WG254874LCSW	LCSW	10/30/08 14:50	PCN29990	260		238	mg/L	91.5	80	120			
L72699-05DUP	DUP	10/30/08 15:00	. 0.120000	200	3110	3132	mg/L	01.0	00	.20	0.7	20	
L72746-05DUP	DUP	10/30/08 15:09			220	186	mg/L				16.7	20	
Selenium, dissol	ved		M200.8 I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255390													
WG255390ICV	ICV	11/09/08 0:58	MS081101-2	.05		.0517	mg/L	103.4	90	110			
WG255390ICV WG255390ICB	ICB	11/09/08 0:56	WIOUUT TU 1=2	.00		.00012	mg/L	100.4	- 0.00022	0.00022			
WG2553901CB WG255390LFB	LFB	11/09/08 1:14	MS081003-7	.05		.04907	mg/L	98.1	- 0.00022	115			
L72699-02AS	AS	11/09/08 1:14	MS081003-7	.05	.0005	.05196	mg/L	102.9	70	130			
L72699-02ASD	ASD	11/09/08 1:35	MS081003-7	.05	.0005	.04942	mg/L	97.8	70 70	130	5.01	20	
L12000-02AOD	AOD	1 1/00/00 1.00	WICOU 1000-1	.00	.0000	,U-34Z	mg/L	57.0	70	100	0.01	20	

FMI Gold & Copper - Sierrita

Sodium, dissolv	ed		M200.7 I	CP CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255096													
WG255096ICV	ICV	11/05/08 19:17	11080818-1	100		103.43	mg/L	103.4	95	105			
WG255096ICB	ICB	11/05/08 19:21				U	mg/L		-0.9	0.9			
WG255096LFB	LFB	11/05/08 19:34	11081023-4	98.21624		105.43	mg/L	107.3	85	115			
L72699-01AS	AS	11/05/08 20:04	11081023-4	98.21624	66.4	162.43	mg/L	97.8	85	115			
L72699-01ASD	ASD	11/05/08 20:14	11081023-4	98.21624	66.4	170.44	mg/L	105.9	85	115	4.81	20	
L72701-01AS	AS	11/05/08 20:41	11081023-4	98.21624	174	271.86	mg/L	99.6	85	115			
L72701-01ASD	ASD	11/05/08 20:44	11081023-4	98.21624	174	272.6	mg/L	100.4	85	115	0.27	20	
Sulfate			SM4500	SO4-D									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255024													
WG255024PBW	PBW	11/03/08 10:31				U	mg/L		-30	30			
WG255024LCSW	LCSW	11/03/08 10:34	WC080910-2	100		95	mg/L	95	80	120			
L72709-02DUP	DUP	11/03/08 11:10			30	35	mg/L				15.4	20	RA
Thallium, dissol	ved		M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255390													
WG255390ICV	ICV	11/09/08 0:58	MS081101-2	.05		.05033	mg/L	100.7	90	110			
WG255390ICB	ICB	11/09/08 1:04				.00013	mg/L		-0.00022				
WG255390LFB	LFB	11/09/08 1:14	MS081003-7	.0501		.04657	mg/L	93	85	115			
L72699-02AS	AS	11/09/08 1:30	MS081003-7	.0501	U	.04604	mg/L	91.9	70	130			
L 7 2699-02ASD	ASD	11/09/08 1:35	MS081003-7	.0501	U	.04569	mg/L	91.2	70	130	0.76	20	
Uranium, dissol	ved		M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255390													
WG255390ICV	ICV	11/09/08 0:58	MS081101-2	.05		.0471	mg/L	94.2	90	110			
WG255390ICB	ICB	11/09/08 1:04				U	mg/L		-0.00022	0.00022			
WG255390LFB	LFB	11/09/08 1:14	MS081003-7	.05		.04481	mg/L	89.6	85	115			
L72699-02AS	AS	11/09/08 1:30	MS081003-7	.05	.002	.04734	mg/L	90.7	70	130			
L72699-02ASD	ASD	11/09/08 1:35	MS081003-7	.05	.002	.04675	mg/L	89.5	70	130	1.25	20	
Zinc, dissolved			M200.7 IC	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255096													
WG255096ICV	ICV	11/05/08 19:17	11080818-1	2		1.979	mg/L	99	95	105			
WG255096ICB	ICB	11/05/08 19:21				U	mg/L		-0.03	0.03			
WG255096LFB	LFB	11/05/08 19:34	11081023-4	.5		.546	mg/L	109.2	85	115			
L72699-01AS	AS	11/05/08 20:04	11081023-4	.5	U	.535	mg/L	107	85	115			
L72699-01ASD	ASD	11/05/08 20:14	11081023-4	.5	U	.562	mg/L	112.4	85	115	4.92	20	
L72701-01AS	AS	11/05/08 20:41	11081023-4	.5	.05	.602	mg/L	110.4	85	115			
L72701-01ASD	ASD	11/05/08 20:44	11081023-4	.5	.05	.607	mg/L	111.4	85	115	0.83	20	

Inorganic Extended Qualifier Report

FMI Gold & Copper - Sierrita

ACZ Project ID: L72699

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L72699-01	WG255390	Beryllium, dissolved	M200.8 ICP-MS	VC	CCV recovery was above the acceptance limits. Target analyte was not detected in the sample [< MDL].
	WG255240	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG255135	Fluoride	SM4500F-C	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			SM4500F-C	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254994	Nitrate/Nitrite as N	M353.2 - H2SO4 preserved	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG255024	Sulfate	SM4500 SO4-D	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
L72699-02	WG255390	Beryllium, dissolved	M200.8 ICP-MS	VC	CCV recovery was above the acceptance limits. Target analyte was not detected in the sample [< MDL].
	WG255240	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG255135	Fluoride	SM4500F-C	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			SM4500F-C	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254994	Nitrate/Nitrite as N	M353.2 - H2SO4 preserved	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG255024	Sulfate	SM4500 SO4-D	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
L72699-03	WG255240	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG255135	Fluoride	SM4500F-C	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			SM4500F-C	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254994	Nitrate/Nitrite as N	M353.2 - H2SO4 preserved	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG255024	Sulfate	SM4500 SO4-D	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
L72699-04	WG255259	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG255135	Fluoride	SM4500F-C	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			SM4500F-C	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254994	Nitrate/Nitrite as N	M353.2 - H2SO4 preserved	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG255024	Sulfate	SM4500 SO4-D	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).

FMI Gold & Copper - Sierrita

QUAL	DESCRIPTION
N1	See Case Narrative.
RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
M2	Matrix spike recovery was low, the recovery of the

ACZ Project ID: L72699

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L72699-05	WG254837	Conductivity @25C	SM2510B	N1	See Case Narrative.
	WG255259	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG255135	Fluoride	SM4500F-C	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			SM4500F-C	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254994	Nitrate/Nitrite as N	M353.2 - H2SO4 preserved	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG254837	pН	SM4500H+ B	N1	See Case Narrative.
	WG255024	Sulfate	SM4500 SO4-D	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254837	Total Alkalinity	SM2320B - Titration	N1	See Case Narrative.
L72699-06	WG255259	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG255135	Fluoride	SM4500F-C	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			SM4500F-C	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254994	Nitrate/Nitrite as N	M353.2 - H2SO4 preserved	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG255024	Sulfate	SM4500 SO4-D	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
L72699-07	WG255160	Cyanide, total	M335.4 - Manual Distillation	QB	Method-specified preservation criteria cannot be met due to sample matrix.
	WG255259		M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG255135	Fluoride	SM4500F-C	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			SM4500F-C	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG254994	Nitrate/Nitrite as N	M353.2 - H2SO4 preserved	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG255024	Sulfate	SM4500 SO4-D	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).

Certification Qualifiers

FMI Gold & Copper - Sierrita

ACZ Project ID: L72699

No certification qualifiers associated with this analysis

Sample Receipt

FMI Gold & Copper - Sierrita

OJ06DZ

ACZ Project ID: Date Received:

L72699 10/28/2008

Received By:

Date Printed: 10/28/2008

Receipt Verification

- 1) Does this project require special handling procedures such as CLP protocol?
- 2) Are the custody seals on the cooler intact?
- 3) Are the custody seals on the sample containers intact?
- 4) Is there a Chain of Custody or other directive shipping papers present?
- 5) Is the Chain of Custody complete?
- 6) Is the Chain of Custody in agreement with the samples received?
- 7) Is there enough sample for all requested analyses?
- 8) Are all samples within holding times for requested analyses?
- 9) Were all sample containers received intact?
- 10) Are the temperature blanks present?
- 11) Is the trip blank for Cyanide present?
- 12) Is the trip blank for VOA present?
- 13) Are samples requiring no headspace, headspace free?
- 14) Do the samples that require a Foreign Soils Permit have one?

YES	NO	NA
		Х
Х		
		Х
Х		
Χ		
Х		
Х		
Х		
Х		
		Х
	Х	
		Х
		X
		Х

Exceptions: If you answered no to any of the above questions, please describe

N/A

Contact (For any discrepancies, the client must be contacted)

N/A

Shipping Containers

Cooler Id	Temp (°C)	Rad (μR/hr)
2248	2.5	14

Client must contact ACZ Project Manager if analysis should not proceed for samples received outside of thermal preservation acceptance criteria.

Notes

Sample Receipt

FMI Gold & Copper - Sierrita

OJ06DZ

ACZ Project ID: Date Received:

L72699 10/28/2008

ate Received: 10 Received By:

Sample Container Preservation

SAMPLE	CLIENT ID	R < 2	G < 2	BK < 2	Y<2	YG<2	B< 2	0<2	T >12	N/A	RAD	ID
L72699-01	IW-1		Υ		Υ							
L72699-02	IW-2A		Υ		Υ							
L72699-03	IW-4		Υ		Υ							
L72699-04	IW-6A		Υ		Υ							
L72699-05	IW-8		Υ		Υ							
L72699-06	IW-9		Υ		Υ							
L72699-07	IW-10		Υ		Υ							

Sample Container Preservation Legend

Abbreviation	Description	Container Type	Preservative/Limits
R	Raw/Nitric	RED	pH must be < 2
В	Filtered/Sulfuric	BLUE	pH must be < 2
BK	Filtered/Nitric	BLACK	pH must be < 2
G	Filtered/Nitric	GREEN	pH must be < 2
0	Raw/Sulfuric	ORANGE	pH must be < 2
Р	Raw/NaOH	PURPLE	pH must be > 12 *
Т	Raw/NaOH Zinc Acetate	TAN	pH must be > 12
Υ	Raw/Sulfuric	YELLOW	pH must be < 2
YG	Raw/Sulfuric	YELLOW GLASS	pH must be < 2
N/A	No preservative needed	Not applicable	
RAD	Gamma/Beta dose rate	Not applicable	must be $< 250 \mu R/hr$

^{*} pH check performed by analyst prior to sample preparation

Sample IDs Reviewed By:	

Analytical Report

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

November 21, 2008

Bill Dorris Phelps Dodge Sierrita P.O. Box 527 6200 West Duval Mine Road Green Valley, AZ 85622-0527

Cc: Dan Simpson

Project ID: OJ06DZ

ACZ Project ID: L72698-SULFATE ONLY

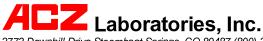
Bill Dorris:

Enclosed are analytical reports for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on October 28, 2008. This project was assigned to ACZ's project number, L72698. Please reference this number in all future inquiries.

At the request of Phelps Dodge Sierrita, Inc. (PDSI), this laboratory report has been prepared to contain only information specific to samples and analytes identified by PDSI as evaluated pursuant to Mitigation Order No. P-500-06 with Arizona Department of Environmental Quality. Samples and analytes unrelated to the Mitigation Order, but which may be identified on the chain of custody and sample receipt, have been reported to PDSI in a separate report.

All analyses were performed according to ACZ's Quality Assurance Plan, version 12.0. The enclosed results relate only to the samples received under L72698. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute. Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all the requirements of NELAC.

This report should be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.


ACZ disposes of samples and sub-samples thirty days after the analytical results are reported to the client. That time frame has elapsed for this project. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years. Please notify your Project Manager if you have other needs. If you have any questions, please contact your Project Manager or Customer Service Representative.

Scott Habermehl has reviewed and approved this report.

S. Halermehl

Analytical Report

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

November 14, 2008

Bill Dorris Phelps Dodge Sierrita P.O. Box 527 6200 West Duval Mine Road Green Valley, AZ 85622-0527

Cc: Dan Simpson

Project ID: OJ06DZ

ACZ Project ID: L72758- SULFATE ONLY

Bill Dorris:

Enclosed are analytical reports for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on October 30, 2008. This project was assigned to ACZ's project number, L72758. Please reference this number in all future inquiries.

At the request of Phelps Dodge Sierrita, Inc. (PDSI), this laboratory report has been prepared to contain only information specific to samples and analytes identified by PDSI as evaluated pursuant to Mitigation Order No. P-500-06 with Arizona Department of Environmental Quality. Samples and analytes unrelated to the Mitigation Order, but which may be identified on the chain of custody and sample receipt, have been reported to PDSI in a separate report.

All analyses were performed according to ACZ's Quality Assurance Plan, version 12.0. The enclosed results relate only to the samples received under L72758. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute. Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all the requirements of NELAC.

This report should be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

ACZ disposes of samples and sub-samples thirty days after the analytical results are reported to the client. That time frame has elapsed for this project. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years. Please notify your Project Manager if you have other needs. If you have any questions, please contact your Project Manager or Customer Service Representative.

Scott Habermehl has reviewed and approved this report.

S. Halermehl

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: IW-3A ACZ Sample ID: **L72758-01**

Date Sampled: 10/27/08 13:05 Date Received: 10/30/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result Qual X0	Q Units	MDL	PQL	Date	Analyst
Sulfate	SM4500 SO4-D	1450	mg/L	10	50	11/04/08 10:42	kah

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: IW-5 ACZ Sample ID: **L72758-02**

Date Sampled: 10/27/08 13:20

Date Received: 10/30/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result Qual	XQ Units	MDL	PQL	Date	Analyst
Sulfate	SM4500 SO4-D	1720	mg/L	10	50	11/04/08 10:44	kah

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report Header Explanations

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest Limit Upper limit for RPD, in %.

Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit, typically 5 times the MDL.

QC True Value of the Control Sample or the amount added to the Spike

Rec Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

QC Sample Types	QC	Sam	ple i	Тур	es
-----------------	----	-----	-------	-----	----

AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calibration Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution

QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method or calibration procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method. Spikes/Fortified Matrix Determines sample matrix interferences, if any.

Standard Verifies the validity of the calibration.

ACZ Qualifiers (Qual)

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity.
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time.
- U The material was analyzed for, but was not detected above the level of the associated value.

The associated value is either the sample quantitation limit or the sample detection limit.

Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (5) EPA SW-846. Test Methods for Evaluating Solid Waste, Third Edition with Update III, December 1996.
- (6) Standard Methods for the Examination of Water and Wastewater, 19th edition, 1995.

Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.

FMI Gold & Copper - Sierrita

Project ID: O.106DZ

	0												
Alkalinity as CaC	:03		SM2320B	- Titration									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255107													
WG255107PBW1	PBW	11/04/08 15:58				16.2	mg/L		-20	20			
WG255107LCSW2	LCSW	11/04/08 16:09	WC081022-2	820.0001		820.1	mg/L	100	90	110			
WG255107PBW2	PBW	11/04/08 18:49				U	mg/L		-20	20			
WG255107LCSW5	LCSW	11/04/08 19:00	WC081022-2	820.0001		819.7	mg/L	100	90	110			
L72761-01DUP	DUP	11/04/08 20:31			141	142.2	mg/L				8.0	20	
WG255107PBW3	PBW	11/04/08 22:05				U	mg/L 		-20	20			
WG255107LCSW8	LCSW	11/04/08 22:16	WC081022-2	820.0001		828.5	mg/L	101	90	110			
WG255107PBW4	PBW	11/05/08 0:17	W0004000	000.0004		U	mg/L	400.0	-20	20			
WG255107LCSW11 WG255107LCSW14		11/05/08 0:29 11/05/08 2:55	WC081022-2 WC081022-2	820.0001		826.3 833.4	mg/L	100.8 101 . 6	90 90	110 110			
	LCSVV	1 1/05/06 2.55	VVCU01022-2	020.0001		033.4	mg/L	101.0	90	110			
Aluminum, disso	olved		M200.7 IC										
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255189													
WG255189ICV	ICV	11/05/08 21:45	11080818-1	2		2.038	mg/L	101.9	95	105			
WG255189ICB	ICB	11/05/08 21:48				U	mg/L		-0.09	0.09			
WG255189LFB	LFB	11/05/08 22:02	11081023-4	1		.996	mg/L	99.6	85	115			
L72745-04AS	AS	11/05/08 22:56	11081023-4	1	.03	1.092	mg/L	106.2	85	115			
L72745-04ASD	ASD	11/05/08 23:00	11081023-4	1	.03	1.138	mg/L	110.8	85	115	4.13	20	
A ()													
Antimony, disso	lved		M200.8 IC	P-MS									
Acz ID	Type	Analyzed	M200.8 IC	CP-MS QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
		Analyzed			Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
ACZ ID		Analyzed 11/08/08 15:52			Sample	Found .02082	Units mg/L	Rec 104.1	Lower 90	Upper	RPD	Limit	Qual
ACZ ID WG255392	Туре		PCN/SCN	QC	Sample						RPD	Limit	Qual
ACZ ID WG255392 WG255392ICV	Type	11/08/08 15:52	PCN/SCN	QC	Sample	.02082	mg/L		90	110	RPD	Limit	Qual
ACZ ID WG255392 WG255392ICV WG255392ICB	Type ICV ICB	11/08/08 15:52 11/08/08 15:56	PCN/SCN MS081101-2	.02	Sample U	.02082	mg/L mg/L	104.1	90 -0.00088	110 0.00088	RPD	Limit	Qual
WG255392 WG255392ICV WG255392ICB WG255392LFB	ICV ICB LFB	11/08/08 15:52 11/08/08 15:56 11/08/08 16:03	PCN/SCN MS081101-2 MS081003-7	.02 .01		.02082 .00048 .00958	mg/L mg/L mg/L	104.1 95.8	90 -0.00088 85	110 0.00088 115	RPD 4.07	Limit	Qual
WG255392 WG255392ICV WG255392ICB WG255392LFB L72746-03AS	ICV ICB LFB AS ASD	11/08/08 15:52 11/08/08 15:56 11/08/08 16:03 11/08/08 16:58	MS081101-2 MS081003-7 MS081003-7	.02 .01 .01 .01	U	.02082 .00048 .00958 .00891	mg/L mg/L mg/L mg/L	104.1 95.8 89.1	90 -0.00088 85 70	110 0.00088 115 130			Qual
WG255392 WG255392ICV WG255392ICB WG255392LFB L72746-03AS L72746-03ASD	ICV ICB LFB AS ASD	11/08/08 15:52 11/08/08 15:56 11/08/08 16:03 11/08/08 16:58	MS081101-2 MS081003-7 MS081003-7 MS081003-7	.02 .01 .01 .01	U	.02082 .00048 .00958 .00891	mg/L mg/L mg/L mg/L mg/L	104.1 95.8 89.1	90 -0.00088 85 70	110 0.00088 115 130			Qual
WG255392 WG255392ICV WG255392ICB WG255392LFB L72746-03AS L72746-03ASD	ICV ICB LFB AS ASD	11/08/08 15:52 11/08/08 15:56 11/08/08 16:03 11/08/08 16:58 11/08/08 17:02	MS081101-2 MS081003-7 MS081003-7 MS081003-7 MS081003-7	.02 .01 .01 .01	U	.02082 .00048 .00958 .00891 .00928	mg/L mg/L mg/L mg/L mg/L	104.1 95.8 89.1 92.8	90 -0.00088 85 70 70	110 0.00088 115 130 130	4.07	20	
WG255392 WG255392ICV WG255392ICB WG255392LFB L72746-03AS L72746-03ASD Arsenic, dissolve ACZ ID	ICV ICB LFB AS ASD	11/08/08 15:52 11/08/08 15:56 11/08/08 16:03 11/08/08 16:58 11/08/08 17:02 Analyzed	MS081101-2 MS081003-7 MS081003-7 MS081003-7 MS081003-7	.02 .01 .01 .01 .01 CP-MS	U	.02082 .00048 .00958 .00891 .00928	mg/L mg/L mg/L mg/L	104.1 95.8 89.1 92.8	90 -0.00088 85 70 70	110 0.00088 115 130 130	4.07	20	
WG255392 WG255392ICV WG255392ICB WG255392IFB L72746-03AS L72746-03ASD Arsenic, dissolve ACZ ID WG255392	ICV ICB LFB AS ASD	11/08/08 15:52 11/08/08 15:56 11/08/08 16:03 11/08/08 16:58 11/08/08 17:02 Analyzed	MS081101-2 MS081003-7 MS081003-7 MS081003-7 MS081003-7	.02 .01 .01 .01	U	.02082 .00048 .00958 .00891 .00928	mg/L mg/L mg/L mg/L Units	104.1 95.8 89.1 92.8	90 -0.00088 85 70 70	110 0.00088 115 130 130	4.07	20	
WG255392 WG255392ICV WG255392ICB WG255392LFB L72746-03AS L72746-03ASD Arsenic, dissolve ACZ ID WG255392 WG255392ICV	ICV ICB LFB AS ASD	11/08/08 15:52 11/08/08 15:56 11/08/08 16:03 11/08/08 16:58 11/08/08 17:02 Analyzed	MS081101-2 MS081003-7 MS081003-7 MS081003-7 MS081003-7	.02 .01 .01 .01 .01 CP-MS	U	.02082 .00048 .00958 .00891 .00928	mg/L mg/L mg/L mg/L	104.1 95.8 89.1 92.8	90 -0.00088 85 70 70 Lower	110 0.00088 115 130 130 Upper	4.07	20	
WG255392 WG255392ICV WG255392ICB WG255392LFB L72746-03AS L72746-03ASD Arsenic, dissolve ACZ ID WG255392 WG255392 WG255392ICV WG255392ICB	ICV ICB LFB AS ASD ed Type	11/08/08 15:52 11/08/08 15:56 11/08/08 16:03 11/08/08 16:58 11/08/08 17:02 Analyzed 11/08/08 15:52 11/08/08 15:56	MS081101-2 MS081003-7 MS081003-7 MS081003-7 M200.8 IC PCN/SCN	.02 .01 .01 .01 .01 CP-MS QC	U	.02082 .00048 .00958 .00891 .00928	mg/L mg/L mg/L mg/L mg/L	104.1 95.8 89.1 92.8 Rec	90 -0.00088 85 70 70 Lower	110 0.00088 115 130 130 Upper	4.07	20	
WG255392 WG255392ICV WG255392ICB WG255392LFB L72746-03AS L72746-03ASD Arsenic, dissolve ACZ ID WG255392 WG255392 WG255392ICV WG255392ICB WG255392LFB	ICV ICB LFB AS ASD Ed ICV ICB LFB	11/08/08 15:52 11/08/08 15:56 11/08/08 16:03 11/08/08 16:58 11/08/08 17:02 Analyzed 11/08/08 15:52 11/08/08 15:56 11/08/08 16:03	MS081101-2 MS081003-7 MS081003-7 MS081003-7 M200.8 IC PCN/SCN MS081101-2 MS081003-7	.02 .01 .01 .01 .01 CP-MS QC	U U Sample	.02082 .00048 .00958 .00891 .00928 Found	mg/L mg/L mg/L mg/L mg/L units	104.1 95.8 89.1 92.8 Rec 101.4	90 -0.00088 85 70 70 Lower 90 -0.0011 85	110 0.00088 115 130 130 Upper	4.07	20	
WG255392 WG255392ICV WG255392ICB WG255392LFB L72746-03AS L72746-03ASD Arsenic, dissolve ACZ ID WG255392 WG255392 WG255392ICV WG255392ICB WG255392LFB L72746-03AS	ICV ICB AS ASD ICV ICB ICV ICB AS ASD	11/08/08 15:52 11/08/08 15:56 11/08/08 16:03 11/08/08 16:58 11/08/08 17:02 Analyzed 11/08/08 15:52 11/08/08 15:56 11/08/08 16:03 11/08/08 16:58	MS081101-2 MS081003-7 MS081003-7 MS081003-7 MS081101-2 MS081003-7 MS081003-7	.02 .01 .01 .01 .01 .05 .05 .05	U U Sample	.02082 .00048 .00958 .00891 .00928 Found	mg/L mg/L mg/L mg/L mg/L mg/L units	104.1 95.8 89.1 92.8 Rec 101.4 95.7 109	90 -0.00088 85 70 70 Lower 90 -0.0011 85 70	110 0.00088 115 130 130 Upper 110 0.0011 115 130	4.07 RPD	20 Limit	
WG255392 WG255392ICV WG255392ICB WG255392LFB L72746-03AS L72746-03ASD WG255392 WG255392 WG255392ICV WG255392ICV WG255392ICB WG255392LFB L72746-03AS L72746-03ASD	ICV ICB AS ASD ICV ICB ICV ICB AS ASD	11/08/08 15:52 11/08/08 15:56 11/08/08 16:03 11/08/08 16:58 11/08/08 17:02 Analyzed 11/08/08 15:52 11/08/08 15:56 11/08/08 16:03 11/08/08 16:58	MS081101-2 MS081003-7 MS081003-7 MS081003-7 M200.8 IC PCN/SCN MS081101-2 MS081003-7 MS081003-7 MS081003-7	.02 .01 .01 .01 .01 .05 .05 .05	U U Sample	.02082 .00048 .00958 .00891 .00928 Found	mg/L mg/L mg/L mg/L Units Units mg/L mg/L mg/L mg/L mg/L	104.1 95.8 89.1 92.8 Rec 101.4 95.7 109	90 -0.00088 85 70 70 Lower 90 -0.0011 85 70	110 0.00088 115 130 130 Upper 110 0.0011 115 130	4.07 RPD	20 Limit	
WG255392 WG255392ICV WG255392ICB WG255392LFB L72746-03AS L72746-03ASD Arsenic, dissolve ACZ ID WG255392 WG255392 WG255392ICV WG255392ICB WG255392LFB L72746-03AS L72746-03ASD Barium, dissolve	ICV ICB LFB AS ASD ICB LFB AS ASD AS ASD AS ASD AS ASD	11/08/08 15:52 11/08/08 15:56 11/08/08 16:03 11/08/08 16:58 11/08/08 17:02 Analyzed 11/08/08 15:52 11/08/08 15:56 11/08/08 16:03 11/08/08 16:58 11/08/08 17:02	MS081101-2 MS081003-7 MS081003-7 MS081003-7 M200.8 IC PCN/SCN MS081101-2 MS081003-7 MS081003-7 MS081003-7 MS081003-7	.02 .01 .01 .01 .01 .05 .05 .05	U U Sample	.02082 .00048 .00958 .00891 .00928 Found .05072 U .04784 .0804	mg/L mg/L mg/L mg/L Units Units mg/L mg/L mg/L mg/L mg/L	104.1 95.8 89.1 92.8 Rec 101.4 95.7 109 110.2	90 -0.00088 85 70 70 -0.0011 85 70 70	110 0.00088 115 130 130 Upper 110 0.0011 115 130 130	4.07 RPD	20 Limit	Qual
WG255392 WG255392ICV WG255392ICB WG255392LFB L72746-03AS L72746-03ASD Arsenic, dissolve ACZ ID WG255392 WG255392 WG255392ICV WG255392ICB WG255392LFB L72746-03AS L72746-03ASD Barium, dissolve ACZ ID WG255326	ICV ICB LFB AS ASD ICB LFB AS ASD ASD AS ASD AS ASD	11/08/08 15:52 11/08/08 15:56 11/08/08 16:03 11/08/08 16:58 11/08/08 17:02 Analyzed 11/08/08 15:52 11/08/08 15:56 11/08/08 16:03 11/08/08 16:58 11/08/08 17:02 Analyzed	MS081101-2 MS081003-7 MS081003-7 MS081003-7 M200.8 IC PCN/SCN MS081101-2 MS081003-7 MS081003-7 MS081003-7 MS081003-7 MS081003-7	.02 .01 .01 .01 .01 .05 .05 .05 .05	U U Sample	.02082 .00048 .00958 .00891 .00928 Found .05072 U .04784 .0804 .08101	mg/L mg/L mg/L mg/L Units Mg/L mg/L mg/L mg/L mg/L mg/L mg/L	104.1 95.8 89.1 92.8 Rec 101.4 95.7 109 110.2	90 -0.00088 85 70 70 Lower 90 -0.0011 85 70 70	110 0.00088 115 130 130 Upper 110 0.0011 115 130 130 Upper	4.07 RPD	20 Limit	Qual
WG255392 WG255392ICV WG255392ICB WG255392LFB L72746-03AS L72746-03ASD Arsenic, dissolve ACZ ID WG255392 WG255392 WG255392ICV WG255392ICB WG255392LFB L72746-03AS L72746-03ASD Barium, dissolve ACZ ID WG255326 WG255326	ICV ICB AS ASD ICB LFB AS ASD ASD AS ASD AS ASD AS ASD AS ASD AS ASD	11/08/08 15:52 11/08/08 15:56 11/08/08 16:03 11/08/08 16:58 11/08/08 17:02 Analyzed 11/08/08 15:52 11/08/08 15:56 11/08/08 16:03 11/08/08 16:58 11/08/08 17:02 Analyzed 11/07/08 12:51	MS081101-2 MS081003-7 MS081003-7 MS081003-7 M200.8 IC PCN/SCN MS081101-2 MS081003-7 MS081003-7 MS081003-7 MS081003-7	.02 .01 .01 .01 .01 .05 .05 .05	U U Sample	.02082 .00048 .00958 .00891 .00928 Found .05072 U .04784 .0804	mg/L mg/L mg/L Units Units Units	104.1 95.8 89.1 92.8 Rec 101.4 95.7 109 110.2	90 -0.00088 85 70 70 Lower 90 -0.0011 85 70 70	110 0.00088 115 130 130 Upper 110 0.0011 115 130 130	4.07 RPD	20 Limit	Qual
WG255392 WG255392ICV WG255392ICB WG255392LFB L72746-03AS L72746-03ASD Arsenic, dissolve ACZ ID WG255392 WG255392 WG255392ICV WG255392ICB WG255392LFB L72746-03AS L72746-03ASD Barium, dissolve ACZ ID WG255326	ICV ICB LFB AS ASD ICB LFB AS ASD ASD AS ASD AS ASD	11/08/08 15:52 11/08/08 15:56 11/08/08 16:03 11/08/08 16:58 11/08/08 17:02 Analyzed 11/08/08 15:52 11/08/08 15:56 11/08/08 16:03 11/08/08 16:58 11/08/08 17:02 Analyzed	MS081101-2 MS081003-7 MS081003-7 MS081003-7 M200.8 IC PCN/SCN MS081101-2 MS081003-7 MS081003-7 MS081003-7 MS081003-7 MS081003-7	.02 .01 .01 .01 .01 .05 .05 .05 .05	U U Sample	.02082 .00048 .00958 .00891 .00928 Found .05072 U .04784 .0804 .08101	mg/L mg/L mg/L mg/L Units Mg/L mg/L mg/L mg/L mg/L mg/L mg/L	104.1 95.8 89.1 92.8 Rec 101.4 95.7 109 110.2	90 -0.00088 85 70 70 Lower 90 -0.0011 85 70 70	110 0.00088 115 130 130 Upper 110 0.0011 115 130 130 Upper	4.07 RPD	20 Limit	Qual
WG255392 WG255392ICV WG255392ICB WG255392LFB L72746-03AS L72746-03ASD Arsenic, dissolve ACZ ID WG255392 WG255392ICV WG255392ICV WG255392ICB WG255392LFB L72746-03AS L72746-03ASD Barium, dissolve ACZ ID WG255326 WG255326ICV WG255326ICV WG255326ICB	ICV ICB AS ASD ICB AS ASD ICV ICB	11/08/08 15:52 11/08/08 15:56 11/08/08 16:03 11/08/08 16:58 11/08/08 17:02 Analyzed 11/08/08 15:56 11/08/08 15:56 11/08/08 15:56 11/08/08 16:03 11/08/08 17:02 Analyzed Analyzed 11/07/08 12:51 11/07/08 12:55	MS081101-2 MS081003-7 MS081003-7 MS081003-7 M200.8 IC PCN/SCN MS081101-2 MS081003-7 MS081003-7 MS081003-7 MS081003-7 ICPCN/SCN	.02 .01 .01 .01 .01 .05 .05 .05 .05 .05 .2P .02	U U Sample	.02082 .00048 .00958 .00891 .00928 Found .05072 U .04784 .0804 .08101	mg/L mg/L mg/L mg/L Units Units Units	104.1 95.8 89.1 92.8 Rec 101.4 95.7 109 110.2	90 -0.00088 85 70 70 Lower 90 -0.0011 85 70 70 Lower	110 0.00088 115 130 130 Upper 110 0.0011 115 130 130 Upper	4.07 RPD	20 Limit	Qual

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Beryllium, diss	olved		M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255392													
WG255392ICV	ICV	11/08/08 15:52	MS081101-2	.05		.04913	mg/L	98.3	90	110			
WG255392ICB	ICB	11/08/08 15:56				U	mg/L		-0.00022	0.00022			
WG255392LFB	LFB	11/08/08 16:03	MS081003-7	.05005		.0456	mg/L	91.1	85	115			
L72746-03AS	AS	11/08/08 16:58	MS081003-7	.05005	U	.04976	mg/L	99.4	70	1 30			
L72746-03ASD	ASD	11/08/08 17:02	MS081003-7	.05005	U	.05053	mg/L	101	70	130	1.54	20	
Cadmium, diss	olved		M200.8 IC	CP - MS									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255392													
WG255392ICV	ICV	11/08/08 15:52	MS081101-2	.05		.05073	mg/L	101.5	90	110			
WG255392ICB	ICB	11/08/08 15:56				U	mg/L		-0.00022	0.00022			
WG255392LFB	LFB	11/08/08 16:03	MS081003-7	.05		.04776	mg/L	95.5	85	115			
L72746-03AS	AS	11/08/08 16:58	MS081003-7	.05	U	.05071	mg/L	101.4	70	130			
L72746-03ASD	ASD	11/08/08 17:02	MS081003-7	.05	U	.05087	mg/L	101.7	70	1 30	0.32	20	
Calcium, dissol	ved		M200.7 IC	CP CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255189													
WG255189ICV	ICV	11/05/08 21:45	11080818-1	100		98.25	mg/L	98.3	95	105			
WG255189ICB	ICB	11/05/08 21:48				U	mg/L		-0.6	0.6			
WG255189LFB	LFB	11/05/08 22:02	II081023 - 4	67.97008		68.2	mg/L	100.3	85	115			
L72745-04AS	AS	11/05/08 22:56	II081023 - 4	67.97008	280	334.93	mg/L	80.8	85	115			M3
L72745-04ASD	ASD	11/05/08 23:00	11081023 - 4	67.97008	280	331.66	mg/L	76	85	115	0.98	20	M3
Chloride			SM4500C	ŀΕ									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255258													
WG255258ICB	ICB	11/06/08 11:08				U	mg/L		-3	3			
WG255258ICV	ICV	11/06/08 11:08	WI081106-1	54.835		58	mg/L	105.8	90	110			
WG255258LFB1	LFB	11/06/08 12:32	WI080818-2	30		32.5	mg/L	108.3	90	110			
WG255258LFB2	LFB	11/06/08 12:36	WI080818-2	30		31.2	mg/L	104	90	110			
L72758-01AS	AS	11/06/08 13:01	10XCL	30	110	144	mg/L	113.3	90	110			M1
L72758-02DUP	DUP	11/06/08 13:03			170	169	mg/L				0.6	20	
Chromium, diss	solved		M200.7 IC	CP CP									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255189													
WG255189ICV	ICV	11/05/08 21:45	11080818-1	2		1.951	mg/L	97.6	95	105			
WG255189ICB	ICB	11/05/08 21:48				U	mg/L		- 0.03	0.03			
WG255189LFB	LFB	11/05/08 22:02	11081023-4	.5		.481	mg/L	96.2	85	115			
L72745-04AS	AS	11/05/08 22:56	II081023 - 4	.5	U	.512	mg/L	102.4	85	115			
L72745-04ASD	ASD	11/05/08 23:00	11081023-4	.5	U	.5	mg/L	100	85	115	2.37	20	

Page 6 of 16 REPIN.01.06.05.01

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Cobalt, dissolved	ı		M200.7 IC	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255189													
WG255189ICV	ICV	11/05/08 21:45	11080818-1	2.002		1.98	mg/L	98.9	95	105			
WG255189ICB	ICB	11/05/08 21:48				U	mg/L		-0.03	0.03			
WG255189LFB	LFB	11/05/08 22:02	11081023-4	.5		.504	mg/L	100.8	85	115			
L72745-04AS	AS	11/05/08 22:56	11081023-4	.5	.02	.537	mg/L	103.4	85	115			
L72745-04ASD	ASD	11/05/08 23:00	11081023-4	.5	.02	.518	mg/L	99.6	85	115	3.6	20	
Conductivity @25	5C		SM2510B	}									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255107													
WG255107LCSW1	LCSW	11/04/08 15:59	PCN30873	1408.8		1386	umhos/cm	98.4	90	110			
WG255107LCSW4	LCSW	11/04/08 18:50	PCN30873	1408.8		1407	umhos/cm	99.9	90	110			
L72761-01DUP	DUP	11/04/08 20:31			275	275	umhos/cm				0	20	
WG255107LCSW7	LCSW	11/04/08 22:06	PCN30873	1408.8		1351	umhos/cm	95.9	90	110			
WG255107LCSW10	LCSW	11/05/08 0:18	PCN30873	1408.8		1411	umhos/cm	100.2	90	110			
WG255107LCSW13	LCSW	11/05/08 2:44	PCN30873	1408.8		1391	umhos/arr	98.7	90	110			
Copper, dissolve	d		M200.7 IC	CP									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255189													
WG255189ICV	ICV	11/05/08 21:45	11080818-1	2		1.978	mg/L	98.9	95	105			
WG255189ICB	ICB	11/05/08 21:48				U	mg/L		- 0.03	0.03			
WG255189LFB	LFB	11/05/08 22:02	11081023-4	.5		.507	mg/L	101.4	85	115			
L72745-04AS	AS	11/05/08 22:56	11081023-4	.5	U	.552	mg/L	110.4	85	115			
L72745-04ASD	ASD	11/05/08 23:00	11081023-4	.5	U	.525	mg/L	105	85	115	5.01	20	
Cyanide, total			M335.4 -	Colorimetr	ic w/ distil	lation							
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255314													
WG255314ICV	ICV	11/06/08 20:04	WI081025-3	.3		-2923	mg/L	97.4	90	110			
WG255314ICB	ICB	11/06/08 20:05				U	mg/L		-0.015	0.015			
WG255315													
WG255315ICV	ICV	11/06/08 20:38	WI081025-3	.3		.2926	mg/L	97.5	90	110			
WG255315ICB	ICB	11/06/08 20:38				U	mg/L		-0.015	0.015			
WG255245LRB	LRB	11/06/08 20:39				U	mg/L		-0.015	0.015			
WG255245LFB	LFB	11/06/08 20:40	WI081025-7	.2		.1998	mg/L	99.9	90	110			
L72758-01DUP	DUP	11/06/08 20:44			.054	.055	mg/L				1.8	20	
	LFM	11/06/08 20:45	WI081025-7	.2	.007	.2121	mg/L	102.6	90	110			

REPIN.01.06.05.01 Page 7 of 16

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Fluoride			SM4500F	-C									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255164													
WG255164ICV	ICV	11/06/08 14:10	WC081106-1	2		2.05	mg/L	102.5	95	105			
WG255164ICB	ICB	11/06/08 14:17				U	mg/L		-0.3	0.3			
WG255164LFB1	LFB	11/06/08 14:22	WC080912-3	5		4.98	mg/L	99.6	90	110			
L72698-04AS	AS	11/06/08 15:17	WC080912-3	5	.3	4.91	mg/L	92.2	90	110			
L72698-04DUP	DUP	11/06/08 15:20			.3	.3	mg/L				0	20	RA
WG255164LFB2	LFB	11/06/08 16:04	WC080912-3	5		4.75	mg/L	95	90	110			
Iron, dissolved			M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255189													
WG255189ICV	ICV	11/05/08 21:45	11080818-1	2		1.975	mg/L	98.8	95	105			
WG255189ICB	ICB	11/05/08 21:48				U	mg/L		- 0.06	0.06			
WG255189LFB	LFB	11/05/08 22:02	11081023-4	1		1.027	mg/L	102.7	85	115			
L72745-04AS	AS	11/05/08 22:56	11081023-4	1	.13	1.209	mg/L	107.9	85	115			
L72745-04ASD	ASD	11/05/08 23:00	11081023-4	1	.13	1.16	mg/L	103	85	115	4.14	20	
Lead, dissolved			M200.8 I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255392													
WG255392ICV	ICV	11/08/08 15:52	MS081101-2	.05		.04689	mg/L	93.8	90	110			
WG255392ICB	ICB	11/08/08 15:56				U	mg/L		-0.00022	0.00022			
WG255392LFB	LFB	11/08/08 16:03	MS081003-7	.05		.04484	mg/L	89.7	85	115			
L72746-03AS	AS	11/08/08 16:58	MS081003-7	.05	U	.04607	mg/L	92.1	70	1 30			
L72746-03ASD	ASD	11/08/08 17:02	MS081003-7	.05	U	.04698	mg/L	94	70	1 30	1.96	20	
Magnesium, diss	solved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255189													
WG255189ICV	ICV	11/05/08 21:45	11080818-1	100		100.34	mg/L	100.3	95	105			
WG255189ICB	ICB	11/05/08 21:48				U	mg/L		-0.6	0.6			
WG255189LFB	LFB	11/05/08 22:02	11081023-4	49.96908		50.48	mg/L	101	85	115			
L72745-04AS	AS	11/05/08 22:56	11081023-4	49.96908	47.9	95.36	mg/L	95	85	115			
L72745-04ASD	ASD	11/05/08 23:00	11081023-4	49.96908	47.9	97.3	mg/L	98.9	85	115	2.01	20	
Manganese, diss	solved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255189													
WG255189ICV	ICV	11/05/08 21:45	11080818-1	2		1.9614	mg/L	98.1	95	105			
WG255189ICB	ICB	11/05/08 21:48		-		U	mg/L		-0.015	0.015			
WG255189LFB	LFB	11/05/08 22:02	11081023-4	.5		.529	mg/L	105.8	85	115			
L72745-04AS	AS	11/05/08 22:56	11081023-4	.5	2.7	3.1311	mg/L	86.2	85	115			
L72745-04ASD	ASD	11/05/08 23:00	11081023-4	.5	2.7	3.0391	mg/L	67.8	85	115	2.98	20	M3

Page 8 of 16 REPIN.01.06.05.01

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Mercury, dissol	ved		M245.1 C	VAA									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255124													
WG255124ICV	ICV	11/07/08 11:22	11081103-1	.005		.00527	mg/L	105.4	95	105			
WG255124ICB	ICB	11/07/08 11:24				U	mg/L		-0.0002	0.0002			
WG255272													
WG255272LRB	LRB	11/07/08 19:25				U	mg/L		-0.00044	0.00044			
WG255272LFB	LFB	11/07/08 19:27	11081027-2	.002		.00193	mg/L	96.5	85	115			
L72677-01LFM	LFM	11/07/08 19:32	11081027-2	.002	U	.00193	mg/L	96.5	85	115			
L72677-01LFMD	LFMD	11/07/08 19:34	11081027-2	.002	U	.00197	mg/L	98.5	85	115	2.05	20	
L72758-02LFM	LFM	11/07/08 20:11	11081027-2	.002	U	.002	mg/L	100	85	115			
L72758-02LFMD	LFMD	11/07/08 20:13	11081027-2	.002	U	.00204	mg/L	102	85	115	1.98	20	
Molybdenum, d	issolved		M200.7 IC	P									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255189													
WG255189ICV	ICV	11/05/08 21:45	11080818-1	2		1.966	mg/L	98.3	95	105			
WG255189ICB	ICB	11/05/08 21:48				U	mg/L		-0.03	0.03			
WG255189LFB	LFB	11/05/08 22:02	11081023-4	.5		.506	mg/L	101.2	85	115			
L72745-04AS	AS	11/05/08 22:56	11081023-4	.5	U	.477	mg/L	95.4	85	115			
L72745-04ASD	ASD	11/05/08 23:00	11081023-4	.5	U	.52	mg/L	104	85	115	8.63	20	
Nickel, dissolve	ed		M200.7 IC	P									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255189													
WG255189ICV	ICV	11/05/08 21:45	11080818-1	2.004		1.905	mg/L	95.1	95	105			
WG255189ICB	ICB	11/05/08 21:48				U	mg/L		-0.03	0.03			
WG255189LFB	LFB	11/05/08 22:02	11081023-4	.4985		.491	mg/L	98.5	85	115			
L72745-04AS	AS	11/05/08 22:56	11081023-4	.4985	.04	. 542	mg/L	100.7	85	115			
L72745-04ASD	ASD	11/05/08 23:00	11081023-4	. 4985	.04	.523	mg/L	96.9	85	115	3.57	20	
Nitrate/Nitrite as	s N		M353.2 - I	H2SO4 pr	reserved								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255219													
WG255219ICV	ICV	11/05/08 19:45	WI080916-5	2.416		2.392	mg/L	99	90	110			
WG255219ICB	ICB	11/05/08 19:47				U	mg/L		-0.06	0.06			
WG255221													
WG255221ICV	ICV	11/05/08 21:03	WI080916-5	2.416		2.286	mg/L	94.6	90	110			
WG255221ICB	ICB	11/05/08 21:05				U	mg/L		-0.06	0.06			
WG255221LFB	LFB	11/05/08 21:06	WI080913-4	2		1.912	mg/L	95.6	90	110			
L72630-01AS	AS	11/05/08 21:08	WI080913-4	2	.1	1.915	mg/L	90.8	90	110			
L72639-01DUP	DUP	11/05/08 21:11			.55	.554	mg/L		_	_	0.7	20	
L72758-02AS	AS	11/05/08 21:27	WI080913-4	2	1.01	3.043	mg/L	101.7	90	110		0.0	
L72759-01DUP	DUP	11/05/08 21:47			5.25	5.243	mg/L				0.1	20	

REPIN.01.06.05.01 Page 9 of 16

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

pH (lab)			M150.1 -	Electromet	tric								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255107													
WG255107LCSW3	LCSW	11/04/08 16:12	PCN29627	6		6.04	units	100.7	90	110			
WG255107LCSW6	LCSW	11/04/08 19:03	PCN29627	6		6.14	units	102.3	90	110			
L72761-01DUP	DUP	11/04/08 20:31			8.3	8.25	units				0.6	20	
WG255107LCSW9	LCSW	11/04/08 22:20	PCN29627	6		6.13	units	102.2	90	110			
WG255107LCSW12	LCSW	11/05/08 0:32	PCN29627	6		6.04	units	100.7	90	110			
WG255107LCSW15	LCSW	11/05/08 2:58	PCN29627	6		6.1	units	101.7	90	110			
Potassium, disso	lved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255189													
WG255189ICV	ICV	11/05/08 21:45	11080818-1	20		20.13	mg/L	100.7	95	105			
WG255189ICB	ICB	11/05/08 21:48				U	mg/L		-0.9	0.9			
WG255189LFB	LFB	11/05/08 22:02	11081023-4	99.76186		100.63	mg/L	100.9	85	115			
L72745-04AS	AS	11/05/08 22:56	11081023-4	99.76186	5	106.57	mg/L	101.8	85	115			
L72745-04ASD	ASD	11/05/08 23:00	11081023-4	99.76186	5	113.26	mg/L	108.5	85	115	6.09	20	
Residue, Filterab	le (TDS) @180C	SM25400										
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255016													
WG255016PBW	PBW	11/03/08 10:10				U	mg/L		- 20	20			
WG255016LCSW	LCSW	11/03/08 10:10	PCN29990	260		262	mg/L	100.8	80	120			
L72772-03DUP	DUP	11/03/08 10:29			3480	3500	mg/L				0.6	20	
Selenium, dissol	ved		M200.8 I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255392													
WG255392ICV	ICV	11/08/08 15:52	MS081101-2	.05		.05105	mg/L	102.1	90	110			
WG255392ICB	ICB	11/08/08 15:56				U	mg/L		-0.00022				
WG255392LFB	LFB	11/08/08 16:03	MS081003-7	.05		.04517	mg/L	90.3	85	115			
L72746-03AS	AS	11/08/08 16:58	MS081003-7	.05	.0002	.05702	mg/L	113.6	70	130			
L72746-03ASD	ASD	11/08/08 17:02	MS081003-7	.05	.0002	.05783	mg/L	115.3	70	130	1.41	20	
Sodium, dissolve	ed		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255326													
WG255326ICV	ICV	11/07/08 12:51	11080818-1	100		101.79	mg/L	101.8	95	105			
WG255326ICB	ICB	11/07/08 12:55				U	mg/L		- 0.9	0.9			
WG255326LFB	LFB	11/07/08 13:08	11081105-2	98.21624		100.15	mg/L	102	85	115			
L72724-03AS	AS	11/07/08 14:08	11081105-2	98.21624	20.3	123.77	mg/L	105.3	85	115			
L72724-03ASD	ASD	11/07/08 14:11	11081105-2	98.21624	20.3	124.59	mg/L	106.2	85	115	0.66	20	

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Sulfate			SM4500 S	04-D									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255094													
WG255094PBW	PBW	11/04/08 10:20				16	mg/L		-30	30			
WG255094LCSW	LCSW	11/04/08 10:22	WC080910-2	100		91	mg/L	91	80	1 20			
L72758-02DUP	DUP	11/04/08 10:46			1720	1762	mg/L				2.4	20	
Thallium, dissol	ved		M200.8 IC	P-MS									-
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qua
WG255392													
WG2553921CV	ICV	11/08/08 15:52	MS081101-2	.05		.0492	mg/L	98.4	90	110			
WG255392ICB	ICB	11/08/08 15:56				U	mg/L		-0.00022	0.00022			
WG255392LFB	LFB	11/08/08 16:03	MS081003-7	.0501		.04517	mg/L	90.2	85	115			
L72746-03AS	AS	11/08/08 16:58	MS081003-7	.0501	U	.04656	mg/L	92.9	70	130			
L72746-03ASD	ASD	11/08/08 17:02	MS081003-7	.0501	U	.04757	mg/L	95	70	1 30	2.15	20	
Uranium, dissol	ved		M200.8 IC	P-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qua
WG255392													
WG255392ICV	ICV	11/08/08 15:52	MS081101-2	.05		.05143	mg/L	102.9	90	110			
WG2553921CB	ICB	11/08/08 15:56				U	mg/L		-0.00022	0.00022			
WG255392LFB	LFB	11/08/08 16:03	MS081003-7	.05		.04879	mg/L	97.6	85	115			
L72746-03AS	AS	11/08/08 16:58	MS081003-7	.05	.004	.05611	mg/L	104.2	70	1 30			
L72746-03ASD	ASD	11/08/08 17:02	MS081003-7	.05	.004	.05726	mg/L	106.5	70	130	2.03	20	
Zinc, dissolved			M200.7 IC	Р									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qua
WG255435													
WG255435ICV	ICV	11/12/08 9:29	11080818-1	2		1.996	mg/L	99.8	95	105			
WG255435ICB	ICB	11/12/08 9:33				U	mg/L		- 0.03	0.03			
WG255435LFB	LFB	11/12/08 9:45	11081105-2	.5		.509	mg/L	101.8	85	115			
				_									
L72724-03AS	AS	11/12/08 10:45	II081105 - 2	.5	.04	.578	mg/L	107.6	85	115			

Inorganic Extended Qualifier Report

FMI Gold & Copper - Sierrita

ACZ Project ID: L72758

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L72758-01	WG255189	Aluminum, dissolved	M200.7 ICP	VC	CCV recovery was above the acceptance limits. Target analyte was not detected in the sample [< MDL].
		Calcium, dissolved	M200.7 ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
		Manganese, dissolved	M200.7 ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG255258	Chloride	SM4500CI-E	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG255164	Fluoride	SM4500F-C	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
L72758-02	WG255189	Aluminum, dissolved	M200.7 ICP	VC	CCV recovery was above the acceptance limits. Target analyte was not detected in the sample [< MDL].
		Calcium, dissolved	M200.7 ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
		Manganese, dissolved	M200.7 ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG255258	Chloride	SM4500CI-E	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG255164	Fluoride	SM4500F-C	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).

Certification Qualifiers

FMI Gold & Copper - Sierrita

ACZ Project ID: L72758

No certification qualifiers associated with this analysis

Sample Receipt

FMI Gold & Copper - Sierrita

OJ06DZ

ACZ Project ID: Date Received:

L72758

10/30/2008

Received By:

Date Printed: 10/30/2008

Receipt Verification

- 1) Does this project require special handling procedures such as CLP protocol?
- 2) Are the custody seals on the cooler intact?
- 3) Are the custody seals on the sample containers intact?
- 4) Is there a Chain of Custody or other directive shipping papers present?
- 5) Is the Chain of Custody complete?
- 6) Is the Chain of Custody in agreement with the samples received?
- 7) Is there enough sample for all requested analyses?
- 8) Are all samples within holding times for requested analyses?
- 9) Were all sample containers received intact?
- 10) Are the temperature blanks present?
- 11) Is the trip blank for Cyanide present?
- 12) Is the trip blank for VOA present?
- 13) Are samples requiring no headspace, headspace free?
- 14) Do the samples that require a Foreign Soils Permit have one?

NO	NA
	Х
	Х
	Х
Х	
	Х
	Х
	Х

Exceptions: If you answered no to any of the above questions, please describe

No Cyanide Trip Blank.

Contact (For any discrepancies, the client must be contacted)

The client was not contacted.

Shipping Containers

Cooler Id	Temp (°C)	Rad (µR/hr)
2970	4.6	13

Client must contact ACZ Project Manager if analysis should not proceed for samples received outside of thermal preservation acceptance criteria.

Notes

Sample Receipt

FMI Gold & Copper - Sierrita

OJ06DZ

ACZ Project ID: Date Received: L72758

10/30/2008

Received By:

Sample Container Preservation

SAMPLE	CLIENT ID	R < 2	G < 2	BK < 2	Y<2	YG<2	B< 2	0<2	T >12	N/A	RAD	ID
L72758-01	IW-3A		Υ		Υ							
L72758-02	IW-5		Υ		Υ							

Sample Container Preservation Legend

Abbreviation	Description	Container Type	Preservative/Limits
R	Raw/Nitric	RED	pH must be < 2
В	Filtered/Sulfuric	BLUE	pH must be < 2
BK	Filtered/Nitric	BLACK	pH must be < 2
G	Filtered/Nitric	GREEN	pH must be < 2
0	Raw/Sulfuric	ORANGE	pH must be < 2
Р	Raw/NaOH	PURPLE	pH must be > 12 *
T	Raw/NaOH Zinc Acetate	TAN	pH must be > 12
Υ	Raw/Sulfuric	YELLOW	pH must be < 2
YG	Raw/Sulfuric	YELLOW GLASS	pH must be < 2
N/A	No preservative needed	Not applicable	
RAD	Gamma/Beta dose rate	Not applicable	must be < 250 μR/hr

^{*} pH check performed by analyst prior to sample preparation

Sample IDs Reviewed By:		
Sallible IDS neviewed by.		

	oratories, Inc.		. 0	-/:	58	CHA	IN of CU	STODY
Report to:	boat Springs, CO 80487 (8	00) 334	-5493					
Name: Bill Dorris			Addre	ess. //	200 4	1 Duz	al Mine	RI
	McMoRan Sierrita		7,000	ERPA	Valle	- A2	85614	,
E-mail: billy - dorr	5 @ Ami Com	_	_		520-6	,		
Copy of Report to:	2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
			C	ملما	م د هم اد م	· ^ ^		
Name: Dan Simp Company: Hydro G	0500	-	E-mai	hana.	ns@hg	02 1500	om Ext 1	22
· · · · · · · · · · · · · · · · · · ·	to Chem	_	<u>i eleb</u>	none.	320- L	73-1500	<u>, ८×T /</u>	<u>"" " " " " " " " " " " " " " " " " " "</u>
Invoice to:								
Name:		4	Addre	ess:				
Company:		4						
E-mail:) !! .: (IT) .: .:			hone:			VEC	
	olding time (HT), or if insuffice hall ACZ proceed with reques						YES NO	
If "NO" then ACZ will contact	t client for further instruction	n. If nei	ther "Y	ES" nor	"NO"		_	
	d with the requested analyse	s, even i						
PROJECT INFORMATION			ANA	ALYSES	REQUESTE) (attach II	ist or use quot	e number)
Quote #:		_	હ	0	1/2			
Project/PO#: ひりゃ			aine	1	<u> %</u>			
Reporting state for comp	pliance testing:	-	ont	12	63			
Sampler's Name:			of Containers	Ö	12 2			
Are any samples NRC lice		Verini	#	\$	16			
SAMPLE IDENTIFICATION		Matrix		-	X	 - 		
<u> </u>	10-27-08/13:05	6W	5	X	X			
Iw-5	10-27-08/ 13:20	800	-3	X		+		
		· ··				+ +		
	"	1						
		 					_	
				 	-	<u> </u>		
		 						
Matrix SW (Surface Water	·) · GW (Ground Water) · WW (W	Vaste Wat	ter) D'	W (Drink	ing Water) ·	SL (Słudge)	- SO (Soil) • O	L (Oil) · Othe
REMARKS/ SAMPLE DISC	LOSURES							
	t to Dan Simps	on c	on ta	ins	only "	50,1 /	250. H5 1	with
QC Summary.		_			,	- 9 /	. , , , , ,	
ac summing.	•							PAGE
								of
UPS TRACKING	# 12 867 7E	4 23	100	00 60	000	aida af th	sia COC	
RELINQUISHED			ocate		reverse RECEIVED			TE:TIME
13-M 2	10-29-68/		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ΔG			11).6	4776
Tolly 7. Com	10 -100/	1 2,00	╂╌┼┼	18) 		- (U)	
			 		·			•4

Analytical Report

December 02, 2008

Report to:

Bill Dorris

FMI Gold & Copper - Sierrita

P.O. Box 527

Green Valley, AZ 85622-0527

cc: Dan Simpson

Bill to:

Accounts Payable

FMI Gold & Copper - Sierrita

P.O. Box 2671

Phoenix, AZ 85002-2671

Project ID: OJ069R ACZ Project ID: L72783

Bill Dorris:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on October 31, 2008. This project has been assigned to ACZ's project number, L72783. Please reference this number in all future inquiries.

All analyses were performed according to ACZ's Quality Assurance Plan, version 12.0. The enclosed results relate only to the samples received under L72783. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after January 02, 2009. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years.

If you have any questions or other needs, please contact your Project Manager.

Scott Habermehl has reviewed and approved this report.

S. Havermehl

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: MO-2007-3B ACZ Sample ID: *L72783-01*

Date Sampled: 10/22/08 09:20 Date Received: 10/31/08

Sample Matrix: Ground Water

Wet Chemistry

P	arameter	EPA Method	Result	Qual	ΧQ	Units	MDL	PQL	Date	Analyst
S	Su lf ate	300.0 - Ion Chromatography	42.4	Н	*	mg/L	0.5	3	11/26/08 1:38	сср

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: MO-2007-4A ACZ Sample ID: **L72783-02**

Date Sampled: 10/22/08 13:25

Date Received: 10/31/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	40.1	H *	mg/L	0.5	3	11/26/08 2:32	сср

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: MO-2007-4B ACZ Sample ID: **L72783-03**

Date Sampled: 10/22/08 12:50 Date Received: 10/31/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	37.4	H *	mg/L	0.5	3	11/26/08 2:50	сср

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: MO-2007-4C ACZ Sample ID: *L72783-04*

Date Sampled: 10/22/08 11:19

Date Received: 10/31/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	84.9	H *	mg/L	0.5	3	11/26/08 3:08	сср

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: DUP102208A ACZ Sample ID: **L72783-05**

Date Sampled: 10/22/08 00:00

Date Received: 10/31/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	41.6	H *	mg/L	0.5	3	11/26/08 3:26	сср

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: MO-2007-5B ACZ Sample ID: *L72783-06*

Date Sampled: 10/23/08 11:08

Date Received: 10/31/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XC	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	412	H *	mg/L	5	30	11/26/08 3:44	сср

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: MO-2007-5C ACZ Sample ID: **L72783-07**

Date Sampled: 10/23/08 13:17

Date Received: 10/31/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	257	H *	mg/L	3	10	11/26/08 4:03	сср

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: MO-2007-6A ACZ Sample ID: *L72783-08*

Date Sampled: 10/23/08 08:14 Date Received: 10/31/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	18.6	H *	mg/L	0.5	3	11/26/08 4:57	сср

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: MO-2007-6B ACZ Sample ID: *L72783-09*

Date Sampled: 10/23/08 09:25 Date Received: 10/31/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual	ΧQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	63.2	Н	*	mg/L	0.5	3	11/26/08 5:15	сср

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: I-10 ACZ Sample ID: **L72783-10**

Date Sampled: 10/28/08 08:30

Sample Matrix: Ground Water

Date Received: 10/31/08

Wet Chemistry

Parameter	EPA Method	Result	Qual X	Q Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	526	H *	mg/L	5	30	11/26/08 5:33	сср

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: M-8 ACZ Sample ID: **L72783-11**

Date Sampled: 10/28/08 11:49

Date Received: 10/31/08
Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	26.3	H *	mg/L	0.5	3	11/26/08 5:51	сср

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: M-9 ACZ Sample ID: *L72783-12*

Date Sampled: 10/28/08 14:17

Sample Matrix: Ground Water

Date Received: 10/31/08

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	74.8	H *	mg/L	0.5	3	11/26/08 6:46	сср

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: M-10 ACZ Sample ID: **L72783-13**

Date Sampled: 10/28/08 10:21 Date Received: 10/31/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	97.1	H *	mg/L	0.5	3	11/26/08 7:04	сср

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: M-20 ACZ Sample ID: *L72783-14*

Date Sampled: 10/28/08 12:30

Date Received: 10/31/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	1660	Н	*	mg/L	30	100	11/26/08 7:22	сср

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: DUP102808A ACZ Sample ID: *L72783-15*

Date Sampled: 10/28/08 00:00

Date Received: 10/31/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual X	Q Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	26.2	H *	mg/L	0.5	3	11/26/08 7:40	сср

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: ESP-1

ACZ Sample ID: **L72783-16**

Date Sampled: 10/30/08 09:36

Date Received: 10/31/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	121		mg/L	3	10	11/26/08 8:34	сср

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: ESP-2 ACZ Sample ID: **L72783-17**

Date Sampled: 10/30/08 08:57

Date Received: 10/31/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	30.1		mg/L	0.5	3	11/26/08 8:52	сср

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: ESP-3 ACZ Sample ID: **L72783-18**

Date Sampled: 10/30/08 10:10

Date Received: 10/31/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	36.8		mg/L	0.5	3	11/26/08 9:10	сср

FMI Gold & Copper - SierritaProject ID: OJ069R
Sample ID: ESP-4

ACZ Sample ID: **L72783-19**Date Sampled: 10/30/08 08:11
Date Received: 10/31/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	489		mg/L	5	30	11/26/08 9:28	сср

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: DUP103008A ACZ Sample ID: **L72783-20**

Date Sampled: 10/30/08 00:00
Date Received: 10/31/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	30.0		mg/L	0.5	3	11/26/08 9:47	сср

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report Header Explanations

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest Limit Upper limit for RPD, in %.

Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit, typically 5 times the MDL.

QC True Value of the Control Sample or the amount added to the Spike

Rec Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

	QC	Samp	le Ty	ypes
--	----	------	-------	------

AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calibration Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution

QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method or calibration procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method. Spikes/Fortified Matrix Determines sample matrix interferences, if any.

Standard Verifies the validity of the calibration.

ACZ Qualifiers (Qual)

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity.
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time.
- U The material was analyzed for, but was not detected above the level of the associated value.

The associated value is either the sample quantitation limit or the sample detection limit.

Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (5) EPA SW-846. Test Methods for Evaluating Solid Waste, Third Edition with Update III, December 1996.
- (6) Standard Methods for the Examination of Water and Wastewater, 19th edition, 1995.

Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.

For a complete list of ACZ's Extended Qualifiers, please click:

http://www.acz.com/public/extquallist.pdf

FMI Gold & Copper - Sierrita ACZ Project ID: L72783

Project ID: OJ069R

Sulfate			300.0 - Ion Chromatography										
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG256365													
WG256365ICV	ICV	11/25/08 12:54	WI081031-2	50		51.41	mg/L	102.8	90	110			
WG256365ICB	ICB	11/25/08 13:12				.59	mg/L		-1.5	1.5			
WG256365ICV1	ICV	11/25/08 14:46	WI081031-2	50		50.63	mg/L	101.3	90	110			
WG256365ICB1	ICB	11/25/08 15:04				U	mg/L		-1.5	1.5			
WG256365ICV2	ICV	11/26/08 19:05	WI081031-2	50		51.23	mg/L	102.5	90	110			
WG256365ICB2	ICB	11/26/08 19:23				U	mg/L		-1.5	1.5			
WG256368													
WG256368ICV	ICV	11/26/08 0:43	WI081031-2	50		51.32	mg/L	102.6	90	110			
WG256368ICB	ICB	11/26/08 1:02				U	mg/L		- 1.5	1.5			
WG256368LFB	LFB	11/26/08 1:20	WI081125-2	30		31.1	mg/L	103.7	90	110			
L72783-01AS	AS	11/26/08 1:56	WI081125-2	30	42.4	71.37	mg/L	96.6	90	110			
L72783-01DUP	DUP	11/26/08 2:14			42.4	42.19	mg/L				0.5	20	
L72783-11AS	AS	11/26/08 6:09	WI081125-2	30	26.3	56.12	mg/L	99.4	90	110			
L72783-11DUP	DUP	11/26/08 6:27			26.3	26.35	mg/L				0.2	20	

Page 23 of 29 REPIN.01.06.05.01

Inorganic Extended **Qualifier Report**

ACZ Project ID: L72783

(800) 334-5493

FMI Gold & Copper - Sierrita

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L72783-01	WG256368		300.0 - Ion Chromatography		Initial analysis within holding time. Reanalysis was past holding time, which was required due to a QC failure during the initial analysis.
L72783-02	WG256368	Sulfate	300.0 - Ion Chromatography	НС	Initial analysis within holding time. Reanalysis was past holding time, which was required due to a QC failure during the initial analysis.
L72783-03	WG256368	Sulfate	300.0 - Ion Chromatography	НС	Initial analysis within holding time. Reanalysis was past holding time, which was required due to a QC failure during the initial analysis.
L72783-04	WG256368	Sulfate	300.0 - Ion Chromatography	НС	Initial analysis within holding time. Reanalysis was past holding time, which was required due to a QC failure during the initial analysis.
L72783-05	WG256368	Sulfate	300.0 - Ion Chromatography	HC	Initial analysis within holding time. Reanalysis was past holding time, which was required due to a QC failure during the initial analysis.
L72783-06	WG256368	Sulfate	300.0 - Ion Chromatography	HC	Initial analysis within holding time. Reanalysis was past holding time, which was required due to a QC failure during the initial analysis.
L72783-07	WG256368	Sulfate	300.0 - Ion Chromatography	HC	Initial analysis within holding time. Reanalysis was past holding time, which was required due to a QC failure during the initial analysis.
L72783-08	WG256368	Sulfate	300.0 - Ion Chromatography	HC	Initial analysis within holding time. Reanalysis was past holding time, which was required due to a QC failure during the initial analysis.
L72783-09	WG256368	Sulfate	300.0 - Ion Chromatography	HC	Initial analysis within holding time. Reanalysis was past holding time, which was required due to a QC failure during the initial analysis.
L72783-10	WG256368	Sulfate	300.0 - Ion Chromatography	HC	Initial analysis within holding time. Reanalysis was past holding time, which was required due to a QC failure during the initial analysis.
L72783-11	WG256368	Sulfate	300.0 - Ion Chromatography	НС	Initial analysis within holding time. Reanalysis was past holding time, which was required due to a QC failure during the initial analysis.
L72783-12	WG256368	Sulfate	300.0 - Ion Chromatography	НС	Initial analysis within holding time. Reanalysis was past holding time, which was required due to a QC failure during the initial analysis.
L72783-13	WG256368	Sulfate	300.0 - Ion Chromatography	НС	Initial analysis within holding time. Reanalysis was past holding time, which was required due to a QC failure during the initial analysis.
L72783-14	WG256368	Sulfate	300.0 - Ion Chromatography	НС	Initial analysis within holding time. Reanalysis was past holding time, which was required due to a QC failure during the initial analysis.
L72783-15	WG256368	Sulfate	300.0 - Ion Chromatography	HC	Initial analysis within holding time. Reanalysis was past holding time, which was required due to a QC failure during the initial analysis.

Certification Qualifiers

FMI Gold & Copper - Sierrita

ACZ Project ID: L72783

No certification qualifiers associated with this analysis

Sample Receipt

FMI Gold & Copper - Sierrita

OJ069R

ACZ Project ID: Date Received: L72783

10/31/2008

Received By:

Date Printed: 10/31/2008

		37 171	
	eceipt	AVE CHILL	
II B		NA STEEL	44-14-41

- 1) Does this project require special handling procedures such as CLP protocol?
- 2) Are the custody seals on the cooler intact?
- 3) Are the custody seals on the sample containers intact?
- 4) Is there a Chain of Custody or other directive shipping papers present?
- 5) Is the Chain of Custody complete?
- 6) Is the Chain of Custody in agreement with the samples received?
- 7) Is there enough sample for all requested analyses?
- 8) Are all samples within holding times for requested analyses?
- 9) Were all sample containers received intact?
- 10) Are the temperature blanks present?
- 11) Is the trip blank for Cyanide present?
- 12) Is the trip blank for VOA present?
- 13) Are samples requiring no headspace, headspace free?
- 14) Do the samples that require a Foreign Soils Permit have one?

YES	NO	NA
·		_

Exceptions: If you answered no to any of the above questions, please describe

N/A

Contact (For any discrepancies, the client must be contacted)

N/A

Shipping Containers

Cooler Id	Temp (°C)	Rad (µR/hr)

Client must contact ACZ Project Manager if analysis should not proceed for samples received outside of thermal preservation acceptance criteria.

Notes

Sample Receipt

FMI Gold & Copper - Sierrita

OJ069R

ACZ Project ID: Date Received:

L72783 10/31/2008

Received By:

Sample Container Preservation

SAMPLE	CLIENT ID	R < 2	G < 2	BK < 2	Y<2	YG<2	B< 2	0<2	T >12	N/A	RAD	ID
L72783-01	MO-2007-3B									Χ		
L72783-02	MO-2007-4A									Х		
L72783-03	MO-2007-4B									Х		
L72783-04	MO-2007-4C									Х		
L72783-05	DUP102208A									Х		
L72783-06	MO-2007-5B									Х		
L72783-07	MO-2007-5C									Х		
L72783-08	MO-2007-6A									Х		
L72783-09	MO-2007-6B									Х		
L72783-10	I-10									Х		
L72783-11	M-8									Х		
L72783-12	M-9									Х		
L72783-13	M-10									Х		
L72783-14	M-20									Х		
L72783-15	DUP102808A									Х		
L72783-16	ESP-1									Χ		
L72783-17	ESP-2									Х		
L72783-18	ESP-3									Χ		
L72783-19	ESP-4											

Sample Container Preservation Legend

Abbreviation	Description	Container Type	Preservative/Limits
R	Raw/Nitric	RED	pH must be < 2
В	Filtered/Sulfuric	BLUE	pH must be < 2
ВК	Filtered/Nitric	BLACK	pH must be < 2
G	Filtered/Nitric	GREEN	pH must be < 2
0	Raw/Sulfuric	ORANGE	pH must be < 2
Р	Raw/NaOH	PURPLE	pH must be > 12 *
Т	Raw/NaOH Zinc Acetate	TAN	pH must be > 12
Υ	Raw/Sulfuric	YELLOW	pH must be < 2
YG	Raw/Sulfuric	YELLOW GLASS	pH must be < 2
N/A	No preservative needed	Not applicable	
RAD	Gamma/Beta dose rate	Not applicable	must be < 250 μR/hr

* pH check p	performed by	analyst prior	to sample p	preparation
--------------	--------------	---------------	-------------	-------------

Report to: Name: B:// Dorris Company: Freeport McMoRan Sieffida E-mail: b://g_dorris@fmi, com Name: Dan Simpson Company: Hydro Geo Chem Invoice to: Name: Company: Hydro Geo Chem Telephone: 520 648 8873 E-mail: dans@hginc.com Telephone: 520 - 293-1500 Ext	133
Name: 13:11 Dorris Company: reeport McMoRan Sierrita E-mail: billy_dorris@fmi, com Copy of Report to: Name: Dan Simpson Company: Hydro Geo Chem Invoice to: Name: Company: Name: Company: Telephone: 520 648 8873 Address: 6200 W. Duyal Mine Rd Green Valley A2 85614 Telephone: 520 648 8873 E-mail: dans@hginc.com Telephone: 520 - 293-1500 Ext Address: Company: E-mail: Telephone:	133
Company: Freeport McMo Ran Sie/ita E-mail: billy_dorris@fmi, com Copy of Report to: Name: Dan Simpson Company: Hydro Geo Chem Invoice to: Name: Company: E-mail: dan 5@ hginc.com Telephone: 520 - 293-1500 Ext Address: Company: E-mail: Telephone:	133
E-mail: billy_dollis@fmi, com Telephone: 520 648 8873 Copy of Report to: Name: Dan 5 mpson Company: Hydro Geo Chem Invoice to: Name: Company: E-mail: dan 5@ hginc.com Telephone: 520 - 293-1500 Ext Address: Company: E-mail: Telephone:	133
Copy of Report to: Name: Dan 5 mp5on Company: Hydro Geo Chem Invoice to: Name: Company: E-mail: dan 5@ hginc.com Telephone: 5 20 - 29 3-1500 Ext Address: Company: E-mail: Telephone:	133
Name: Dan 5 mpson Company: Hydro Geo Chem Invoice to: Name: Company: E-mail: dan 5@ hginc.com Telephone: 5 20 - 29 3-1500 Ext Address: Company: E-mail: dan 5@ hginc.com Telephone: 5 20 - 29 3-1500 Ext Telephone:	133
Company: Hydro Geo Chem Telephone: 5 20 - 29 3 - 1500 Ext Invoice to: Address: Company: E-mail: Telephone:	133
Company: Hydro Geo Chem Telephone: 5 20 - 29 3 - 1500 Ext Invoice to: Address: Company: E-mail: Telephone:	133
Invoice to: Address: Name: Address: Company: Telephone:	
Company: E-mail: Telephone:	
Company: E-mail: Telephone:	
E-mail: Telephone:	
If sample(s) received past holding time (HT), or if insufficient HT remains to complete YES	
analysis before expiration, shall ACZ proceed with requested short HT analyses? NO	_
If "NO" then ACZ will contact client for further instruction. If neither "YES" nor "NO" is indicated, ACZ will proceed with the requested analyses, even if HT is expired, and data will be qualified.	
PROJECT INFORMATION ANALYSES REQUESTED (attach list or use quote null	mber)
Quote #:	
Project/PO #: O J Ø 69 R Reporting state for compliance testing: Sampler's Name:	
Reporting state for compliance testing:	
Sampler's Name:	
Are any samples NRC licensable material?	
SAMPLE IDENTIFICATION DATE:TIME Matrix	
MO-2007-3B 10-22-08/9:20 GW 1)	
mo-2007-4A 10-22-08/13:25 GW 1	
mo-2007-4B 10-22-08/12:50 GW 1/	
mo-2007-46 10-22-08/11:19 GW 1 D4	<u> </u>
DUP102208A 10-22-08 GW 1	
mo-2007-5B 10-23-08/11:08 GW 1 > 500 BOD	<u> </u>
mo-2007-56 10-23-08/13:17 6W /	
mo-2001-611 10-23-08/ 8-14 6-60 / 1 1 3/5	——
MO-2007-6B 10-23-08/9:25 GW 1	
	<u> </u>
I-10 10-28-08/8:30 GW 1 /	-
Matrix SW (Surface Water) • GW (Ground Water) • WW (Waste Water) • DW (Drinking Water) • SL (Sludge) • SO (Soil) • OL (Oil) · Othei
) · Othei
Matrix SW (Surface Water) • GW (Ground Water) • WW (Waste Water) • DW (Drinking Water) • SL (Sludge) • SO (Soil) • OL (Oil) · Other
Matrix SW (Surface Water) • GW (Ground Water) • WW (Waste Water) • DW (Drinking Water) • SL (Sludge) • SO (Soil) • OL (Oil	PAGE
Matrix SW (Surface Water) • GW (Ground Water) • WW (Waste Water) • DW (Brinking Water) • SL (Sludge) • SO (Soil) • OL (Oil	PAGE
Matrix SW (Surface Water) · GW (Ground Water) · WW (Waste Water) · DW (Prinking Water) · SL (Sludge) · SO (Soil) · OL (Oil) REMARKS/ SAMPLE DISCLOSURES	
Matrix SW (Surface Water) • GW (Ground Water) • WW (Waste Water) • DW (Drinking Water) • SL (Sludge) • SO (Soil) • OL (Oil	PAGE
Matrix SW (Surface Water) · GW (Ground Water) · WW (Waste Water) · DW (Brinking Water) · SL (Sludge) · SO (Soil) · OL (Oil) REMARKS/ SAMPLE DISCLOSURES UPS TRACKING # 12 867 7E4 23 1000 5994	PAGE of
Matrix SW (Surface Water) · GW (Ground Water) · WW (Waste Water) · DW (Prinking Water) · SL (Sludge) · SO (Soil) · OL (Oil) REMARKS/ SAMPLE DISCLOSURES UP5 TRACKING # 12 867 7E4 23 1000 5994 Please refer to ACZ's terms & conditions located on the reverse side of this COC. RELINQUISHED BY: DATE:TIME RECEIVED BY: DATE:T	PAGE of
Matrix SW (Surface Water) · GW (Ground Water) · WW (Waste Water) · DW (Brinking Water) · SL (Sludge) · SO (Soil) · OL (Oil) REMARKS/ SAMPLE DISCLOSURES UPS TRACKING # 1 2 867 7E4 23 1000 5994 Please refer to ACZ's terms & conditions located on the reverse side of this COC. RELINQUISHED BY: DATE:TIME RECEIVED BY: DATE:T	PAGE of

Analytical Report

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

November 21, 2008

Bill Dorris Phelps Dodge Sierrita P.O. Box 527 6200 West Duval Mine Road Green Valley, AZ 85622-0527

Cc: Dan Simpson

Project ID: OJ06DZ

ACZ Project ID: L72925- SULFATE ONLY

Bill Dorris:

Enclosed are analytical reports for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on November 07, 2008. This project was assigned to ACZ's project number, L72925. Please reference this number in all future inquiries.

At the request of Phelps Dodge Sierrita, Inc. (PDSI), this laboratory report has been prepared to contain only information specific to samples and analytes identified by PDSI as evaluated pursuant to Mitigation Order No. P-500-06 with Arizona Department of Environmental Quality. Samples and analytes unrelated to the Mitigation Order, but which may be identified on the chain of custody and sample receipt, have been reported to PDSI in a separate report.

All analyses were performed according to ACZ's Quality Assurance Plan, version 12.0. The enclosed results relate only to the samples received under L72925. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute. Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all the requirements of NELAC.

This report should be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

ACZ disposes of samples and sub-samples thirty days after the analytical results are reported to the client. That time frame has elapsed for this project. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years. Please notify your Project Manager if you have other needs. If you have any questions, please contact your Project Manager or Customer Service Representative.

Scott Habermehl has reviewed and approved this report.

S. Havenuhl

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: MH-10 ACZ Sample ID: L72925-01

Date Sampled: 11/04/08 15:00
Date Received: 11/07/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	SM4500 SO4-D	1450	*	ma/L	10	50	11/12/08 13:22	abm

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report Header Explanations

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest Limit Upper limit for RPD, in %.

Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit, typically 5 times the MDL.

QC True Value of the Control Sample or the amount added to the Spike

Rec Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

QC Sample Types	QC	Sam	ple i	Тур	es
-----------------	----	-----	-------	-----	----

AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calibration Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution

QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method or calibration procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method. Spikes/Fortified Matrix Determines sample matrix interferences, if any.

Standard Verifies the validity of the calibration.

ACZ Qualifiers (Qual)

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity.
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time.
- U The material was analyzed for, but was not detected above the level of the associated value.

The associated value is either the sample quantitation limit or the sample detection limit.

Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (5) EPA SW-846. Test Methods for Evaluating Solid Waste, Third Edition with Update III, December 1996.
- (6) Standard Methods for the Examination of Water and Wastewater, 19th edition, 1995.

Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Alkalinity as CaCo	03		SM2320B	- Titration									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255711													
WG255711PBW1	PBW	11/13/08 17:48				3.5	mg/L		- 20	20			
WG255711LCSW2	LCSW	11/13/08 17:59	WC081022-2	820.0001		790.1	mg/L	96.4	90	110			
WG255711PBW2	PBW	11/13/08 20:55				U	mg/L		- 20	20			
WG255711LCSW5	LCSW	11/13/08 21:06	WC081022-2	820.0001		795.5	mg/L	97	90	110			
L72927-03DUP	DUP	11/13/08 23:08			U	U	mg/L				0	20	RA
WG255711PBW3	PBW	11/13/08 23:13				U	mg/L		- 20	20			
WG255711LCSW8	LCSW	11/13/08 23:25	WC081113-3	820.0001		790.4	mg/L	96.4	90	110			
WG255711PBW4	PBW	11/14/08 2:07				U	mg/L		- 20	20			
WG255711LCSW11		11/14/08 2:18	WC081113-3	820.0001		791.9	mg/L	96.6	90	110			
WG255711LCSW14	LCSW	11/14/08 5:09	WC081022-2	820.0001		789.7	mg/L	96.3	90	110			
Aluminum, dissol	lved		M200.7 IC	P									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255828													
WG255828ICV	ICV	11/17/08 10:36	11080818-1	2		1.991	mg/L	99.6	95	105			
WG255828ICB	ICB	11/17/08 10:39	110000101	-		U	mg/L	00.0	-0.09	0.09			
WG255833						_				0.00			
	LFB	11/17/08 12:06	II081113 - 5	1		1.011	mg/L	101.1	85	115			
L72834-01AS	AS	11/17/08 12:59	II081113-5	1	U	1.069	mg/L	106.9	85	115			
	ASD	11/17/08 13:02	11081113-5	1	U	1.05	mg/L	105.5	85	115	1.79	20	
Antimony, dissolv	ved		M200.8 IC	:P-MS									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
	.,,,,,	7		4.5	- Jampio		00			орро.			
WG255696													
WG255696ICV	ICV	11/14/08 3:54	MS081101-2	.02		.02152	mg/L	107.6	90	110			
WG2556961CB	ICB	11/14/08 3:58				.00057	mg/L 		-0.00088	0.00088			
	LFB	11/14/08 4:09	MS081108-3	.01		.0094	mg/L	94	85	115			
	AS ASD	11/14/08 5:11 11/14/08 5:14	MS081108-3 MS081108-3	.01 .01	U	.00908	mg/L mg/L	90.8 92.7	70 70	130 130	2.07	20	
L72099-02A3D	ASD	1 1/ 14/06 5.14	IVISUO1 100-3	.01		.00927	mg/L	92.7	70	130	2.07	20	
Arsenic, dissolve	d		M200.8 IC	P-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255696													
WG255696ICV	ICV	11/14/08 3:54	MS081101-2	.05		.05309	mg/L	106.2	90	110			
WG2556961CB	ICB	11/14/08 3:58				.00059	mg/L		-0.0011	0.0011			
WG255696LFB	LFB	11/14/08 4:09	MS081108-3	.05005		.04701	mg/L	93.9	85	115			
L72899-02AS	AS	11/14/08 5:11	MS081108-3	.05005	U	.05403	mg/L	108	70	1 30			
L72899-02ASD	ASD	11/14/08 5:14	MS081108-3	.05005	U	.05384	mg/L	107.6	70	130	0.35	20	

Page 4 of 16 REPIN.01.06.05.01

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Barium, dissolv	ed		M200.7 IC	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255828													
WG255828ICV	ICV	11/17/08 10:36	11080818-1	2		1.9831	mg/L	99.2	95	105			
WG255828ICB	ICB	11/17/08 10:39				U	mg/L		-0.009	0.009			
WG255833													
WG255833LFB	LFB	11/17/08 12:06	11081113-5	.5		.4963	mg/L	99.3	85	115			
L72834-01AS	AS	11/17/08 12:59	II081113-5	.5	.064	.5765	mg/L	102.5	85	115			
L72834-01ASD	ASD	11/17/08 13:02	11081113-5	.5	.064	. 5573	mg/L	98.7	85	115	3.39	20	
Beryllium, disso	olved		M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255696													
WG255696ICV	ICV	11/14/08 3:54	MS081101-2	.05		.04997	mg/L	99.9	90	110			
WG255696ICB	ICB	11/14/08 3:58				U	mg/L		-0.00022	0.00022			
WG255696LFB	LFB	11/14/08 4:09	MS081108-3	.05005		.04386	mg/L	87.6	85	115			
L72899-02AS	AS	11/14/08 5:11	MS081108-3	.05005	U	.04901	mg/L	97.9	70	130			
L72899-02ASD	ASD	11/14/08 5:14	MS081108-3	.05005	U	.04843	mg/L	96.8	70	130	1.19	20	
Cadmium, disso	olved		M200.8 IC	CP-MS									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255696													
WG255696ICV	ICV	11/14/08 3:54	MS081101-2	.05		.05136	mg/L	102.7	90	110			
WG255696ICB	ICB	11/14/08 3:58				U	mg/L		-0.00022	0.00022			
WG255696LFB	LFB	11/14/08 4:09	MS081108-3	.05		.04509	mg/L	90.2	85	115			
L72899-02AS	AS	11/14/08 5:11	MS081108-3	.05	U	.04865	mg/L	97.3	70	130			
L72899-02ASD	ASD	11/14/08 5:14	MS081108-3	.05	U	.04805	mg/L	96.1	70	130	1.24	20	
Calcium, dissol	ved		M200.7 IC	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255828													
WG255828ICV	ICV	11/17/08 10:36	11080818-1	100		95.89	mg/L	95.9	95	105			
WG255828ICB	ICB	11/17/08 10:39				U	mg/L		-0.6	0.6			
WG255833													
WG255833LFB	LFB	11/17/08 12:06	11081113-5	67.97008		67.48	mg/L	99.3	85	115			
L72834-01AS	AS	11/17/08 12:59	II081113-5	67.97008	149	211.38	mg/L	91.8	85	115			
L72834-01ASD	ASD	11/17/08 13:02	11081113-5	67.97008	149	208.56	mg/L	87.6	85	115	1.34	20	
Chloride			SM4500C	ΉE									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255759													
WG255759ICB	ICB	11/14/08 15:14				U	mg/L		-3	3			
WG255759ICV	ICV	11/14/08 15:14	WI081106-1	54.835		60	mg/L	109.4	90	110			
WG255759LFB1	LFB	11/14/08 15:27	WI080818-2	30		32.9	mg/L	109.7	90	110			
L72922-04AS	AS	11/14/08 15:31	WI080818-2	30	6	36.8	mg/L	102.7	90	110			
L72922-05DUP	DUP	11/14/08 15:31			U	U	mg/L				0	20	F
	LFB	11/14/08 15:44	WI080818-2	30		32.1	mg/L	107	90	110			

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Chromium, disso	olved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255828													
WG255828ICV	ICV	11/17/08 10:36	11080818-1	2		1.898	mg/L	94.9	95	105			
WG255828ICB	ICB	11/17/08 10:39				U	mg/L		-0.03	0.03			
WG255833													
WG255833LFB	LFB	11/17/08 12:06	11081113-5	.5		.485	mg/L	97	85	115			
L72834-01AS	AS	11/17/08 12:59	11081113-5	.5	U	.504	mg/L	100.8	85	115			
L72834-01ASD	ASD	11/17/08 13:02	H081113-5	.5	U	.493	mg/L	98.6	85	115	2.21	20	
Cobalt, dissolved	k		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255828													
WG255828ICV	ICV	11/17/08 10:36	11080818-1	2.002		1.925	mg/L	96.2	95	105			
WG255828ICB	ICB	11/17/08 10:39				U	mg/L		- 0.03	0.03			
WG255833													
WG255833LFB	LFB	11/17/08 12:06	11081113-5	.5		.491	mg/L	98.2	85	115			
L72834-01AS	AS	11/17/08 12:59	11081113-5	.5	U	.494	mg/L	98.8	85	115			
L 7 2834-01ASD	ASD	11/17/08 13:02	11081113-5	.5	U	.484	mg/L	96.8	85	115	2.04	20	
Conductivity @2	5C		SM2510	3									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255711													
WG255711LCSW1	LCSW	11/13/08 17:49	PCN30873	1408.8		1337	umhos/cm	94.9	90	110			
WG255711LCSW4	LCSW	11/13/08 20:57	PCN30873	1408.8		1315	umhos/cm	93.3	90	110			
L72927-03DUP	DUP	11/13/08 23:08			U	U	umhos/cm				0	20	F
WG255711LCSW7	LCSW	11/13/08 23:14	PCN30873	1408.8		1304	umhos/cm	92.6	90	110			
WG255711LCSW10		11/14/08 2:08	PCN30873	1408.8		1292	umhos/cm	91.7	90	110			
WG255711LCSW13	LCSW	11/14/08 5:00	PCN30873	1408.8		1285	umhos/arr	91.2	90	110			
Copper, dissolve			M200.7 I										
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255828													
WG255828ICV	ICV	11/17/08 10:36	11080818-1	2		1.936	mg/L	96.8	95	105			
WG255828ICB	ICB	11/17/08 10:39				U	mg/L		- 0.03	0.03			
WG255833													
WG255833LFB	LFB	11/17/08 12:06	II081113-5	.5		.496	mg/L	99.2	85	115			
L72834-01AS	AS	11/17/08 12:59	II081113-5	.5	U	.515	mg/L	103	85	115			
L 7 2834-01ASD	ASD	11/17/08 13:02	11081113-5	.5	U	.499	mg/L	99.8	85	115	3.16	20	

Page 6 of 16 REPIN.01.06.05.01

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Cyanide, total			M335.4 - C	olorimet	ric w/ distil	lation							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255751													
WG255751ICV	ICV	11/14/08 12:53	WI081111-3	.3		.2818	mg/L	93.9	90	110			
WG255751ICB	ICB	11/14/08 12:54				U	mg/L	00.0	-0.015	0.015			
WG255774							· ·						
WG255774ICV	ICV	11/14/08 14:12	WI081111-3	.3		.2783	mg/L	92.8	90	110			
WG255774ICB	ICB	11/14/08 14:13				U	mg/L	02.0	-0.015	0.015			
WG255681LRB	LRB	11/14/08 14:14				Ū	mg/L		-0.015	0.015			
WG255681LFB	LFB	11/14/08 14:15	WI081111-7	.2		.1929	mg/L	96.5	90	110			
L72913-09DUP	DUP	11/14/08 14:17		_	U	U	mg/L				0	20	RA
L72921 - 01LFM	LFM	11/14/08 14:18	WI081111-7	.2	Ū	.1979	mg/L	99	90	110	-		
L72956-01DUP	DUP	11/14/08 14:28		_	.009	.0094	mg/L				4.3	20	RA
L72957-01LFM	LFM	11/14/08 14:30	WI081111-7	.2	.012	.2139	mg/L	101	90	110			
Fluoride			SM4500F-										
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255978													
WG255978ICV	ICV	11/19/08 15:32	WC081106-1	2		2.01	mg/L	100.5	95	105			
WG255978ICB	ICB	11/19/08 15:58	***************************************	_		U.	mg/L	100.0	- 0.3	0.3			
WG255978LFB2	LFB	11/19/08 18:51	WC081114-3	5		4.52	mg/L	90.4	90	110			
L72926-01AS	AS	11/19/08 19:27	WC081114-3	5	1.2	5.93	mg/L	94.6	90	110			
L72926-01DUP	DUP	11/19/08 19:40	***************************************	Ü	1.2	1.08	mg/L	04.0	30	110	10.5	20	
Iron, dissolved			M200.7 ICI										
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255828													
WG255828ICV	ICV	11/17/08 10:36	11080818-1	2		1.931	mg/L	96.6	95	105			
WG255828ICB	ICB	11/17/08 10:39	11000010-1	2		U.331	mg/L	30.0	- 0.06	0.06			
WG255833	ЮВ	11/1//00 10:55				Ü	mg/L		-0.00	0.00			
WG255833LFB	LFB	11/17/08 12:06	II081113 - 5	1		1.008	mg/L	100.8	85	115			
L72834 - 01AS	AS	11/17/08 12:06	11081113 - 5	1	U	1.048	mg/L	100.8	85	115			
L72834-01ASD	ASD	11/17/08 12:39	11081113 - 5	1	U	1.046	mg/L	104.6	85	115	3.69	20	
Lead, dissolved			M200.8 IC	P-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255876													
WG255876ICV	ICV	11/18/08 3:46	MS081101 - 2	.05		.04654	mg/L	93.1	90	110			
WG255876ICB	ICB	11/18/08 3:40	WIG001 101-2	.00		.04034 U	mg/L	55.1	- 0.00022	0.00022			
WG255876LFB	LFB	11/18/08 3:57	MS081108-3	.05		.1831	mg/L	366.2	- 0.00022	115			LA
L72899-05AS	AS	11/18/08 5:07	MS081108-3	.05	U	.04469	mg/L	300.2 89.4	70	130			LA
L72899-05ASD	ASD	11/18/08 5:18	MS081108-3	.05	U	.04533	mg/L	90.7	70 70	130	1.42	20	
LIZUSS-UUMUU	700	1 1/ 10/00 0-10	WI0001100-3	.00	U	·04000	⊞g/L	30.1	70	130	1.44	20	

REPIN.01.06.05.01 Page 7 of 16

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Magnesium, dis	solved		M200.7	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255828													
WG255828ICV	ICV	11/17/08 10:36	11080818-1	100		98.02	mg/L	98	95	105			
WG255828ICB	ICB	11/17/08 10:39				U	mg/L		-0.6	0.6			
WG255833													
WG255833LFB	LFB	11/17/08 12:06	11081113-5	49.96908		49.69	mg/L	99.4	85	115			
L72834-01AS	AS	11/17/08 12:59	11081113-5	49.96908	47.8	98.32	mg/L	101.1	85	115			
L72834-01ASD	ASD	11/17/08 13:02	11081113-5	49.96908	47.8	96.94	mg/L	98.3	85	115	1.41	20	
Manganese, dis	solved		M200.7	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255828													
WG255828ICV	ICV	11/17/08 10:36	11080818-1	2		1.903	mg/L	95.2	95	105			
WG255828ICB	ICB	11/17/08 10:39				U	mg/L		-0.015	0.015			
WG255833													
WG255833LFB	LFB	11/17/08 12:06	11081113-5	.5		.5187	mg/L	103.7	85	115			
L72834-01AS	AS	11/17/08 12:59	11081113-5	.5	.019	. 5485	mg/L	105.9	85	115			
L72834-01ASD	ASD	11/17/08 13:02	11081113-5	.5	.019	. 5306	mg/L	102.3	85	115	3.32	20	
Mercury, dissolv	rod		M245.1	$CV/\Lambda\Lambda$									
wercury, disson	veu		101243.1	CVAA									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
		Analyzed			Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
ACZID		Analyzed 11/13/08 12:09			Sample	Found	Units mg/L	Rec 104.4	Lower	Upper	RPD	Limit	Qual
ACZ ID WG255574	Туре		PCN/SCN	QC	Sample						RPD	Limit	Qual
ACZ ID WG255574 WG255574ICV	Type	11/13/08 12:09	PCN/SCN	QC	Sample	.00522	mg/L		90	110	RPD	Limit	Qual
ACZ ID WG255574 WG255574ICV WG255574ICB	Type	11/13/08 12:09	PCN/SCN	QC	Sample	.00522	mg/L		90	110	RPD	Limit	Qual
ACZ ID WG255574 WG255574 CV WG255574 CB WG255575	Type ICV ICB	11/13/08 12:09 11/13/08 12:11	PCN/SCN	QC	Sample	.00522 U	mg/L mg/L		90 -0.0006	110 0.0006	RPD	Limit	Qual
ACZ ID WG255574 WG255574ICV WG255574ICB WG255575 WG255575LRB WG255575LFB L72925-01LFM	ICV ICB LRB LFB LFM	11/13/08 12:09 11/13/08 12:11 11/13/08 13:28 11/13/08 13:30 11/13/08 13:35	PCN/SCN II081103-1 II081027-2 II081027-2	.005 .002 .002	U	.00522 U U .00207 .00207	mg/L mg/L mg/L mg/L mg/L	104.4 103.5 103.5	90 -0.0006 -0.00044 85 85	110 0.0006 0.00044 115 115			Qual
ACZ ID WG255574 WG255574 CV WG255574 CB WG255575 WG255575LRB WG255575LFB	Type ICV ICB LRB LFB	11/13/08 12:09 11/13/08 12:11 11/13/08 13:28 11/13/08 13:30	PCN/SCN II081103-1 II081027-2	.005		.00522 U U .00207	mg/L mg/L mg/L mg/L	104.4	90 -0.0006 -0.00044 85	110 0.0006 0.00044 115	RPD	Limit 20	Qual
ACZ ID WG255574 WG255574ICV WG255574ICB WG255575 WG255575LRB WG255575LFB L72925-01LFM	ICV ICB LRB LFB LFM LFMD	11/13/08 12:09 11/13/08 12:11 11/13/08 13:28 11/13/08 13:30 11/13/08 13:35 11/13/08 13:37	PCN/SCN II081103-1 II081027-2 II081027-2	.005 .002 .002 .002	U	.00522 U U .00207 .00207	mg/L mg/L mg/L mg/L mg/L	104.4 103.5 103.5	90 -0.0006 -0.00044 85 85	110 0.0006 0.00044 115 115			Qual
WG255574 WG255574 CV WG255574 CB WG255575 WG255575LRB WG255575LFB L72925-01LFM L72925-01LFMD	ICV ICB LRB LFB LFM LFMD	11/13/08 12:09 11/13/08 12:11 11/13/08 13:28 11/13/08 13:30 11/13/08 13:35 11/13/08 13:37	II081027-2 II081027-2 II081027-2 II081027-2	.005 .002 .002 .002	U	.00522 U U .00207 .00207	mg/L mg/L mg/L mg/L mg/L	104.4 103.5 103.5	90 -0.0006 -0.00044 85 85	110 0.0006 0.00044 115 115			Qual
WG255574 WG255574ICV WG255574ICB WG255575 WG255575LRB WG255575LFB L72925-01LFM L72925-01LFMD Molybdenum, di	ICV ICB LRB LFB LFM LFMD LFMD	11/13/08 12:09 11/13/08 12:11 11/13/08 13:28 11/13/08 13:30 11/13/08 13:35 11/13/08 13:37	PCN/SCN II081103-1 II081027-2 II081027-2 II081027-2 M200.7	.005 .005 .002 .002 .002	U U	.00522 U U .00207 .00207 .0021	mg/L mg/L mg/L mg/L mg/L	104.4 103.5 103.5 105	90 -0.0006 -0.00044 85 85 85	110 0.0006 0.00044 115 115 115	1.44	20	
WG255574 WG255574 CV WG255574 CB WG255575 WG255575 RB WG255575LFB L72925-01LFM L72925-01LFMD Molybdenum, di	ICV ICB LRB LFB LFM LFMD LFMD	11/13/08 12:09 11/13/08 12:11 11/13/08 13:28 11/13/08 13:30 11/13/08 13:35 11/13/08 13:37	PCN/SCN II081103-1 II081027-2 II081027-2 II081027-2 M200.7	.005 .005 .002 .002 .002	U U	.00522 U U .00207 .00207 .0021	mg/L mg/L mg/L mg/L mg/L	104.4 103.5 103.5 105	90 -0.0006 -0.00044 85 85 85	110 0.0006 0.00044 115 115 115	1.44	20	
WG255574 WG255574ICV WG255574ICB WG255575 WG255575LRB WG255575LFB L72925-01LFM L72925-01LFMD Molybdenum, di ACZ ID WG255828	ICV ICB LRB LFB LFM LFMD Sissolved	11/13/08 12:09 11/13/08 12:11 11/13/08 13:28 11/13/08 13:30 11/13/08 13:35 11/13/08 13:37	II081103-1 II081027-2 II081027-2 II081027-2 M200.7 PCN/SCN	.005 .002 .002 .002	U U	.00522 U .00207 .00207 .0021	mg/L mg/L mg/L mg/L mg/L mg/L	104.4 103.5 103.5 105	90 -0.0006 -0.00044 85 85 85 Lower	110 0.0006 0.00044 115 115 115	1.44	20	
WG255574 WG255574ICV WG255574ICB WG255575 WG255575LRB WG255575LFB L72925-01LFM L72925-01LFMD Molybdenum, di ACZ ID WG255828 WG255828ICV	ICV ICB LRB LFB LFM LFMD Type	11/13/08 12:09 11/13/08 12:11 11/13/08 13:28 11/13/08 13:30 11/13/08 13:35 11/13/08 13:37 Analyzed	II081103-1 II081027-2 II081027-2 II081027-2 M200.7 PCN/SCN	.005 .002 .002 .002	U U	.00522 U .00207 .00207 .0021 Found	mg/L mg/L mg/L mg/L mg/L mg/L	104.4 103.5 103.5 105	90 -0.0006 -0.00044 85 85 85 Lower	110 0.0006 0.00044 115 115 115 Upper	1.44	20	
WG255574 WG255574 CV WG255574 CB WG255575 WG255575 RB WG255575 LFB L72925-01 LFM L72925-01 LFMD Molybdenum, di ACZ ID WG255828 WG255828 CV WG255828 CB	ICV ICB LRB LFB LFM LFMD Type	11/13/08 12:09 11/13/08 12:11 11/13/08 13:28 11/13/08 13:30 11/13/08 13:35 11/13/08 13:37 Analyzed	II081103-1 II081027-2 II081027-2 II081027-2 M200.7 PCN/SCN	.005 .002 .002 .002	U U	.00522 U .00207 .00207 .0021 Found	mg/L mg/L mg/L mg/L mg/L mg/L	104.4 103.5 103.5 105	90 -0.0006 -0.00044 85 85 85 Lower	110 0.0006 0.00044 115 115 115 Upper	1.44	20	
WG255574 WG255574 CV WG255574 CB WG255575 CB WG255575 FB L72925-01LFM L72925-01LFMD Molybdenum, di ACZ ID WG255828 WG255828 CV WG255828 CB WG255833	ICV ICB LRB LFB LFM LFMD SSSOIVED ICV ICB	11/13/08 12:09 11/13/08 12:11 11/13/08 13:28 11/13/08 13:30 11/13/08 13:35 11/13/08 13:37 Analyzed 11/17/08 10:36 11/17/08 10:39	II081103-1 II081027-2 II081027-2 II081027-2 IM200.7 PCN/SCN II080818-1	.005 .002 .002 .002 .002	U U	.00522 U .00207 .00207 .0021 Found	mg/L mg/L mg/L mg/L mg/L mg/L	104.4 103.5 103.5 105 Rec	90 -0.0006 -0.00044 85 85 85 Lower 95 -0.03	110 0.0006 0.00044 115 115 115 105 0.03	1.44	20	

Page 8 of 16 REPIN.01.06.05.01

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Nickel, dissolved			M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255980													
WG255980ICV	ICV	11/19/08 10:45	11081119-1	2.004		1.925	mg/L	96.1	95	105			
WG255980ICB	ICB	11/19/08 10:49				U	mg/L		-0.03	0.03			
WG255980LFB	LFB	11/19/08 11:02	11081117-2	.4985		.496	mg/L	99.5	85	115			
L72922-09AS	AS	11/19/08 11:55	11081117-2	.4985	U	.499	mg/L	100.1	85	115			
L72922-09ASD	ASD	11/19/08 11:58	11081117-2	.4985	U	.508	mg/L	101.9	85	115	1.79	20	
Nitrate/Nitrite as	N		M353.2 -	H2SO4 pre	eserved								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255793													
WG255793ICV	ICV	11/14/08 18:38	WI080916-5	2.416		2.516	mg/L	104.1	90	110			
WG255793ICB	ICB	11/14/08 18:40				U	mg/L		-0.06	0.06			
WG255794													
WG255794ICV	ICV	11/14/08 19:19	WI080916-5	2.416		2.285	mg/L	94.6	90	110			
WG255794ICB	ICB	11/14/08 19:20				U	mg/L		- 0.06	0.06			
WG255794LFB1	LFB	11/14/08 19:21	WI080913-4	2		1.952	mg/L	97.6	90	110			
WG255794LFB2	LFB	11/14/08 20:00	WI080913-4	2		1.969	mg/L	98.5	90	110			
L72785-06DUP	DUP	11/14/08 20:05			.29	.31	mg/L				6.7	20	
L72785-05AS	AS	11/14/08 20:26	WI080913-4	20	9.2	30.21	mg/L	105.1	90	110			
pH (lab)			M150.1 -	Electrome	tric								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255711													
WG255711LCSW3	LCSW	11/13/08 18:01	PCN29627	6		5.9	units	98.3	90	110			
WG255711LCSW6	LCSW	11/13/08 21:08	PCN29627	6		5.88	units	98	90	110			
L72927-03DUP	DUP	11/13/08 23:08			4.9	5.07	units				3.4	20	
WG255711LCSW9	LCSW	11/13/08 23:29	PCN29627	6		5.81	units	96.8	90	110			
WG255711LCSW12	LCSW	11/14/08 2:21	PCN29627	6		5.8	units	96.7	90	110			
WG255711LCSW15	LCSW	11/14/08 5:12	PCN29627	6		5.78	units	96.3	90	110			
Potassium, disso	olved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255828													
WG255828ICV	ICV	11/17/08 10:36	11080818-1	20		20.01	mg/L	100.1	95	105			
WG255828ICB	ICB	11/17/08 10:39				U	mg/L		-0.9	0.9			
WG255833													
WG255833LFB	LFB	11/17/08 12:06	11081113-5	99.76186		102.13	mg/L	102.4	85	115			
L72834-01AS	AS	11/17/08 12:59	11081113-5	99.76186	2.9	110.87	mg/L	108.2	85	115			
L72834-01ASD	ASD	11/17/08 13:02	11081113-5	99.76186	2.9	109.44	mg/L	106.8	85	115	1.3	20	
Residue, Filterab	le (TDS) @180C	SM25400	5									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255464													
WG255464PBW	PBW	11/10/08 13:25				U	mg/L		-20	20			
WG255464LCSW	LCSW	11/10/08 13:25	PCN29990	260		264	mg/L	101.5	-20 80	120			
L72927-01DUP	DUP	11/10/08 13:25	. 0.120000	200	1330	1316	mg/L	101.0	30	.20	1.1	20	

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Selenium, disso	lved		M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255696													
WG255696ICV	ICV	11/14/08 3:54	MS081101-2	.05		.05164	mg/L	103.3	90	110			
WG255696ICB	ICB	11/14/08 3:58				U	mg/L		-0.00022	0.00022			
WG255696LFB	LFB	11/14/08 4:09	MS081108-3	.05		.04553	mg/L	91.1	85	115			
L 7 2899-02AS	AS	11/14/08 5:11	MS081108-3	.05	.0014	.06081	mg/L	118.8	70	1 30			
L72899-02ASD	ASD	11/14/08 5:14	MS081108-3	.05	.0014	.05613	mg/L	109.5	70	130	8	20	
Sodium, dissolv	ed		M200.7 IC	P									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255828													
WG255828ICV	ICV	11/17/08 10:36	11080818-1	100		100.76	mg/L	100.8	95	105			
WG255828ICB	ICB	11/17/08 10:39				U	mg/L		-0.9	0.9			
WG255833							-						
WG255833LFB	LFB	11/17/08 12:06	11081113-5	98.21624		99.32	mg/L	101.1	85	115			
WG255833LFB	LFB	11/17/08 12:06	II081113-5	98.21624		99.4	mg/L	101.2	85	115			
L72834-01AS	AS	11/17/08 12:59	II081113-5	98.21624	44.1	148.13	mg/L	105.9	85	115			
L72834-01ASD	ASD	11/17/08 13:02	11081113-5	98.21624	44.1	145.47	mg/L	103.2	85	115	1.81	20	
Sulfate			SM4500 S	SO4-D									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255619													
WG255619PBW	PBW	11/12/08 12:50				U	mg/L		- 30	30			
WG255619LCSW	LCSW	11/12/08 12:52	WC080910-2	100		105	mg/L	105	80	120			
L72927-08DUP	DUP	11/12/08 13:39			U	U	mg/L				0	20	R
Thallium, dissol	ved		M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255876													
WG255876ICV	ICV	11/18/08 3:46	MS081101 - 2	.05		.04849	mg/L	97	90	110			
WG255876ICB	ICB	11/18/08 3:50				U	mg/L		-0.00022	0.00022			
WG255876LFB	LFB	11/18/08 3:57	MS081108-3	.0501		.04355	mg/L	86.9	85	115			
L72899-05AS	AS	11/18/08 5:07	MS081108-3	.0501	U	.04499	mg/L	89.8	70	1 30			
L72899-05ASD	ASD	11/18/08 5:18	MS081108-3	.0501	U	.04547	mg/L	90.8	70	130	1.06	20	
Uranium, dissolv	ved		M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255876													
WG255876ICV	ICV	11/18/08 3:46	MS081101-2	.05		.04666	mg/L	93.3	90	110			
WG255876ICB	ICB	11/18/08 3:50				U	mg/L		- 0.00022	0.00022			
WG255876LFB	LFB	11/18/08 3:57	MS081108-3	.05		.04344	mg/L	86.9	85	115			
L72899-05AS	AS	11/18/08 5:07	MS081108-3	.05	.0171	.0641	mg/L	94	70	130			
L72899 - 05ASD	ASD	11/18/08 5:18	MS081108-3	.05	.0171	.06579	mg/L	97.4	70	1 30	2.6	20	

Inorganic QC Summary

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

ACZ Project ID: L72925

Zinc, dissolved			M200.7 IC	P									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255890													
WG255890ICV	ICV	11/18/08 16:40	11080818-1	2		1.965	mg/L	98.3	95	105			
WG255890ICB	ICB	11/18/08 16:44				U	mg/L		-0.03	0.03			
WG255890LFB	LFB	11/18/08 16:57	II081117 - 2	.5		.506	mg/L	101.2	85	115			
L72862-01AS	AS	11/18/08 17:50	11081117-2	.5	U	.522	mg/L	104.4	85	115			
L72862-01ASD	ASD	11/18/08 17:53	11081117-2	.5	U	.525	mg/L	105	85	115	0.57	20	

Inorganic Extended Qualifier Report

FMI Gold & Copper - Sierrita

ACZ Project ID: L72925

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L72925-01	WG255876	Lead, dissolved	M200.8 ICP-MS	LA	Recovery for target analyte in the control sample (LCS or LFB) exceeded the acceptance criteria. Target analyte was not detected in the sample [< MDL].
	WG255759	Chloride	SM4500CI-E	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG255711	Conductivity @25C	SM2510B	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG255774	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG255619	Sulfate	SM4500 SO4-D	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG255711	Total Alkalinity	SM2320B - Titration	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).

Certification Qualifiers

FMI Gold & Copper - Sierrita

ACZ Project ID: L72925

No certification qualifiers associated with this analysis

Sample Receipt

FMI Gold & Copper - Sierrita

OJ06DZ

ACZ Project ID: Date Received: L72925 11/7/2008

Received By:

Date Printed: 11/7/2008

Receipt Verification

- 1) Does this project require special handling procedures such as CLP protocol?
- 2) Are the custody seals on the cooler intact?
- 3) Are the custody seals on the sample containers intact?
- 4) Is there a Chain of Custody or other directive shipping papers present?
- 5) Is the Chain of Custody complete?
- 6) Is the Chain of Custody in agreement with the samples received?
- 7) Is there enough sample for all requested analyses?
- 8) Are all samples within holding times for requested analyses?
- 9) Were all sample containers received intact?
- 10) Are the temperature blanks present?
- 11) Is the trip blank for Cyanide present?
- 12) Is the trip blank for VOA present?
- 13) Are samples requiring no headspace, headspace free?
- 14) Do the samples that require a Foreign Soils Permit have one?

YES	NO	NA
		Х
Х		
		Х
Х		
Х		
Х		
Х		
Χ		
Х		
		Х
	Х	
		Х
		Х
		Х

Exceptions: If you answered no to any of the above questions, please describe

No Cyanide Trip Blank.

Contact (For any discrepancies, the client must be contacted)

The client was not contacted.

Shipping Containers

Cooler Id	Temp (°C)	Rad (μR/hr)
1905	1.1	15

Client must contact ACZ Project Manager if analysis should not proceed for samples received outside of thermal preservation acceptance criteria.

Notes

Sample Receipt

FMI Gold & Copper - Sierrita

OJ06DZ

ACZ Project ID: Date Received:

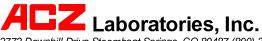
L72925 11/7/2008

u.

Received By:

Samp	le Coni	lainer	Preserv	ation
Culle			1 100019	COLUMN TO THE

SAMPLE	CLIENT ID	R < 2	G < 2	BK < 2	Y<2	YG<2	B< 2	0<2	T >12	N/A	RAD	ID
L72925-01	MH-10		Υ		Υ							


Sample Container Preservation Legend

Abbreviation	Description	Container Type	Preservative/Limits
R	Raw/Nitric	RED	pH must be < 2
В	Filtered/Sulfuric	BLUE	pH must be < 2
BK	Filtered/Nitric	BLACK	pH must be < 2
G	Filtered/Nitric	GREEN	pH must be < 2
0	Raw/Sulfuric	ORANGE	pH must be < 2
Р	Raw/NaOH	PURPLE	pH must be > 12 *
T	Raw/NaOH Zinc Acetate	TAN	pH must be > 12
Υ	Raw/Sulfuric	YELLOW	pH must be < 2
YG	Raw/Sulfuric	YELLOW GLASS	pH must be < 2
N/A	No preservative needed	Not applicable	
RAD	Gamma/Beta dose rate	Not applicable	must be < 250 μR/hr

^{*} pH check performed by analyst prior to sample preparation

Sample IDs Reviewed By:	
-------------------------	--

ACZ Laborat	ories, Inc.	しつよ	925		CHAIN	of CUSTO	YDC
2773 Downhill Drive Steamboat Spr	ings, CO 80487 (80	0) 334-549.	3				
Report to:							
Name: Bill Doms		Add	ress: 62	00 W.	Duval 1	Mine Rd 85614	
Company: Freeport McMok	Pan Sierrita	<u> </u>	Freen	Valley	AZ	85614	
E-mail: billy-dorris@ Am	i. com	Tele	phone:	520 6	18 887.	3	
Copy of Report to:							
Name: Dan Simpson	-	E-m	ail: Jar	ns@hgi	nc, com		
Name: Dan Simpson Company: Hydro Geo Cl	hem	Tele	phone:	520-29	3- 15:00	EXT 133	
Invoice to:							
Name:		Add	ress:				
Company:							
E-mail:		Tele	phone:				
If sample(s) received past holding til				plete		YES	
analysis before expiration, shall ACZ	proceed with request	ed short HT	analyses?	IN COLUMN		NO L]
If "NO" then ACZ will contact client is indicated, ACZ will proceed with the	for further instruction he requested analyses	, IT neither " even if HT i	TES" NOC. s expired.	and data w	ill be qualifie	d.	
PROJECT INFORMATION	le requested analyses	A)	ALYSES R	EQUESTED	(attach list d	r use quote nun	nber)
Quote #:			0) i			
Project/PO#: OJø6D-	7	lers	12	6 3			
Reporting state for compliance t		of Containers	1/4	2			
Sampler's Name:		ខ	'g '	250			
Are any samples NRC licensable	material?	5	94	28			
SAMPLE IDENTIFICATION	DATE:TIME	Matrix	A	2			
MH-10 11-	-4-08/15:00	GW 5	X	X	<u> </u>		
					<u> </u>		
					ļ	_	
							<u>.</u>
					<u> </u>		
			<u> </u>				
			_				<u> </u>
		ļ	-				
		<u> </u>	<u> </u>			2 (2 1) 21 (21)	
Matrix SW (Surface Water) • GW (aste Water) ·	DW (Drinkir	ng Water) · S	L (Sludge) • S	O (Soil) - OL (Oil)	Otner
REMARKS/ SAMPLE DISCLOSURE	S						
Copy of report to	, Dan Simp.	500 CO.	ntain5	only	"504" /	1250 H5	
with QC summ	nary.						PAGE
_	,						🔎
UPS TRACKING #	t 17 867 78	4 831	000 5	985			of
Please refer to A	ACZ's terms & cond	litions locat	ed on the	e reverse s			
RELINQUISHED BY:	DATE:TI			ECEIVED B		DATE:TI	IME
Wills 7. Jours			1			1110 000	ا ایم د
	11-6-08/1	5:00				111.±.0,0,	1.01
	11-6-08/19	5:00				11.4.0.00	1:0)
7.	11-6-08/1:	5:00		<u> </u>		11.4.0.00	1.5)

Analytical Report

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

November 25, 2008

Bill Dorris Phelps Dodge Sierrita P.O. Box 527 6200 West Duval Mine Road Green Valley, AZ 85622-0527

Cc: Dan Simpson

Project ID: OJ06DZ

ACZ Project ID: L72957-SULFATE ONLY

Bill Dorris:

Enclosed are analytical reports for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on November 11, 2008. This project was assigned to ACZ's project number, L72957. Please reference this number in all future inquiries.

At the request of Phelps Dodge Sierrita, Inc. (PDSI), this laboratory report has been prepared to contain only information specific to samples and analytes identified by PDSI as evaluated pursuant to Mitigation Order No. P-500-06 with Arizona Department of Environmental Quality. Samples and analytes unrelated to the Mitigation Order, but which may be identified on the chain of custody and sample receipt, have been reported to PDSI in a separate report.

All analyses were performed according to ACZ's Quality Assurance Plan, version 12.0. The enclosed results relate only to the samples received under L72957. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute. Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all the requirements of NELAC.

This report should be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

ACZ disposes of samples and sub-samples thirty days after the analytical results are reported to the client. That time frame has elapsed for this project. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years. Please notify your Project Manager if you have other needs. If you have any questions, please contact your Project Manager or Customer Service Representative.

Scott Habermehl has reviewed and approved this report.

S. Havermehl

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: MH-11 ACZ Sample ID: **L72957-01**

Date Sampled: 11/07/08 15:33

Date Received: 11/11/08
Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	SM4500 SO4-D	1560	*	mg/L	10	50	11/14/08 12:36	kah

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: EQB111008 ACZ Sample ID: **L72957-02**

Date Sampled: 11/10/08 06:50

Date Received: 11/11/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Sulfate	SM4500 SO4-D	10	В	*	mg/L	10	50	11/14/08 12:37	kah

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ Sample ID: TB111008 ACZ Sample ID: **L72957-03**

Date Sampled: 11/10/08 06:52

Date Received: 11/11/08
Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Sulfate	SM4500 SO4-D		U	*	mg/L	10	50	11/14/08 12:39	kah

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report Header Explanations

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest Limit Upper limit for RPD, in %.

Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit, typically 5 times the MDL.

QC True Value of the Control Sample or the amount added to the Spike

Rec Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

QC Sample Types	QC	Sam	ple i	Тур	es
-----------------	----	-----	-------	-----	----

AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calibration Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution

QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method or calibration procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method. Spikes/Fortified Matrix Determines sample matrix interferences, if any.

Standard Verifies the validity of the calibration.

ACZ Qualifiers (Qual)

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity.
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time.
- U The material was analyzed for, but was not detected above the level of the associated value.

The associated value is either the sample quantitation limit or the sample detection limit.

Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (5) EPA SW-846. Test Methods for Evaluating Solid Waste, Third Edition with Update III, December 1996.
- (6) Standard Methods for the Examination of Water and Wastewater, 19th edition, 1995.

Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Alkalinity as CaC	:03		SM2320B	- Titration	ı								
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255711													
WG255711PBW1	PBW	11/13/08 17:48				3.5	mg/L		- 20	20			
WG255711LCSW2	LCSW	11/13/08 17:59	WC081022-2	820.0001		790.1	mg/L	96.4	90	110			
WG255711PBW2	PBW	11/13/08 20:55				U	mg/L		- 20	20			
WG255711LCSW5	LCSW	11/13/08 21:06	WC081022-2	820.0001		795.5	mg/L	97	90	110			
WG255711PBW3	PBW	11/13/08 23:13				U	mg/L		-20	20			
WG255711LCSW8	LCSW	11/13/08 23:25	WC081113-3	820.0001		790.4	mg/L	96.4	90	110			
WG255711PBW4 WG255711LCSW11	PBW	11/14/08 2:07	WO004440.0	000 0004		U 7 04.0	mg/L	00.0	- 20	20			
L72957-03DUP	DUP	11/14/08 2:18 11/14/08 3:33	WC081113-3	820.0001	8	791.9 7.6	mg/L	96.6	90	110	5.1	20	RA
WG255711LCSW14		11/14/08 5:09	WC081022-2	820.0001	0	7.6 789.7	mg/L mg/L	96.3	90	110	Ð. I	20	rva.
Aluminum, disso	lved		M200.7 IC	DP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG256152													
	10) (44/04/00 44 57	11004440.4	0		4.050		00	05	405			
WG256152ICV	ICV	11/21/08 14:57	11081119-1	2		1.959	mg/L	98	95	105			
WG256152ICB WG256152LFB	ICB LFB	11/21/08 15:00 11/21/08 15:13	11081117-2	1		U 1.018	mg/L mg/L	101.8	-0.09 85	0.09 115			
L72957-02AS	AS	11/21/08 15:13	11081117-2	1	U	1.041	mg/L	104.1	85	115			
L72957-02ASD	ASD	11/21/08 16:12	11081117-2	1	U	1.049	mg/L	104.9	85	115	0.77	20	
		,2.,,00					9/2			.,,•			
Antimony, dissol	Type	Analyzed	M200.8 IC	QC QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG256010	-71									- 11			
	ICV	11/20/09 1:27	MC001101 2	.02		02082	ma/l	104.1	90	110			
WG256010ICV WG256010ICB	ICB	11/20/08 1:37 11/20/08 1:42	MS081101 - 2	.02		.02082 U	mg/L mg/L	104.1	- 0.00088	0.00088			
WG256010LFB	LFB	11/20/08 1:53	MS081108-3	.01		.01046	mg/L	104.6	85	115			
L72957-02AS	AS	11/20/08 2:08	MS081108-3	.01	U	.00956	mg/L	95.6	70	130			
L72957-02ASD	ASD	11/20/08 2:14	MS081108-3	.01	Ü	.00963	mg/L	96.3	70	130	0.73	20	
Arsenic, dissolve	2d		M200.8 IC	P-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
	1,760	Analyzou	1 011/0011	40	Campio	Touria	Omio	1100	Lower	орре:	I II D		Quai
WG256010													
WG256010ICV	ICV	11/20/08 1:37	MS081101 - 2	.05		.05207	mg/L	104.1	90	110			
WG256010ICB	ICB	11/20/08 1:42				U	mg/L		- 0.0011	0.0011			
WG256010LFB	LFB	11/20/08 1:53	MS081108-3	.05005		.05002	mg/L	99.9	85	115			
L72957-02AS	AS	11/20/08 2:08	MS081108-3	.05005	U	.05295	mg/L	105.8	70 7 0	130	4 70		
L72957-02ASD	ASD	11/20/08 2:14	MS081108-3	.05005	U	.05389	mg/L	107.7	70	130	1.76	20	
Barium, dissolve	d		M200.7 IC	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG256081													
WG256081ICV	ICV	11/20/08 20:11	11081119-1	2		1.9914	mg/L	99.6	95	105			
WG256081ICB	ICB	11/20/08 20:15				.0034	mg/L		- 0.009	0.009			
WG256081LFB	LFB	11/20/08 20:27	11081117-2	.5		.4934	mg/L	98.7	85	115			
L72957-02AS	AS	11/20/08 21:27	11081117-2	.5	.004	.4967	mg/L	98.5	85	115			
L72957-02ASD	ASD	11/20/08 21:31	11081117-2	.5	.004	. 5194	mg/L	103.1	85	115	4.47	20	

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Beryllium, diss	olved		M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG256010													
WG256010ICV	ICV	11/20/08 1:37	MS081101-2	.05		.05038	mg/L	100.8	90	110			
WG256010ICB	ICB	11/20/08 1:42				U	mg/L		-0.00022	0.00022			
WG256010LFB	LFB	11/20/08 1:53	MS081108-3	.05005		.04796	mg/L	95.8	85	115			
L72957-02AS	AS	11/20/08 2:08	MS081108-3	.05005	U	.05128	mg/L	102.5	70	1 30			
L72957-02ASD	ASD	11/20/08 2:14	MS081108-3	.05005	U	.05192	mg/L	103.7	70	130	1.24	20	
Cadmium, diss	olved		M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG256010													
WG256010ICV	ICV	11/20/08 1:37	MS081101-2	.05		.05	mg/L	100	90	110			
WG256010ICB	ICB	11/20/08 1:42				U	mg/L		-0.00022	0.00022			
WG256010LFB	LFB	11/20/08 1:53	MS081108-3	.05		.04869	mg/L	97.4	85	115			
L72957-02AS	AS	11/20/08 2:08	MS081108-3	.05	U	.05065	mg/L	101.3	70	130			
L72957-02ASD	ASD	11/20/08 2:14	MS081108-3	.05	U	.05088	mg/L	101.8	70	130	0.45	20	
Calcium, disso	lved		M200.7 IC	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG256081													
WG256081ICV	ICV	11/20/08 20:11	II081119 - 1	100		100.51	mg/L	100.5	95	105			
WG256081ICB	ICB	11/20/08 20:15				U	mg/L		-0.6	0.6			
WG256081LFB	LFB	11/20/08 20:27	II081117 - 2	67.97008		69.83	mg/L	102.7	85	115			
L72957-02AS	AS	11/20/08 21:27	II081117 - 2	67.97008	U	70.29	mg/L	103.4	85	115			
L72957-02ASD	ASD	11/20/08 21:31	11081117 - 2	67.97008	U	72.14	mg/L	106.1	85	115	2.6	20	
Chloride			SM45000)-E									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255842													
WG255842ICV	ICV	11/17/08 13:20	WI081106-1	54.835		53.9	mg/L	98.3	90	110			
WG255842ICB	ICB	11/17/08 13:21				U	mg/L		- 3	3			
WG255842LFB	LFB	11/17/08 13:22	WI080818-2	30		31.8	mg/L	106	90	110			
L72932-03DUP	DUP	11/17/08 13:39			12	11.6	mg/L				3.4	20	
L72932-02AS	AS	11/17/08 13:56	WI080818-2	30	65	91.1	mg/L	87	90	110			N
WG255891													
WG255891ICB	ICB	11/17/08 16:05				U	mg/L		- 3	3			
WG255891ICV	ICV	11/17/08 16:05	WI081106-1	54.835		59.7	mg/L	108.9	90	110			
WG255891LFB1	LFB	11/17/08 17:38	WI080818-2	30		31.4	mg/L	104.7	90	110			
WG255891LFB2	LFB	11/17/08 17:42	WI080818-2	30		31.7	mg/L	105.7	90	110			
L72818-02DUP	DUP	11/17/08 17:57			120	121	mg/L				8.0	20	
						120							

REPIN.01.06.05.01 Page 7 of 18

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

	lved		M200.7 I			_							
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG256081													
WG256081ICV	ICV	11/20/08 20:11	11081119-1	2		1.986	mg/L	99.3	95	105			
WG256081ICB	ICB	11/20/08 20:15				U	mg/L		-0.03	0.03			
WG256081LFB	LFB	11/20/08 20:27	11081117-2	.5		.508	mg/L	101.6	85	115			
L72957-02AS	AS	11/20/08 21:27	11081117-2	.5	U	.512	mg/L	102.4	85	115			
L72957-02ASD	ASD	11/20/08 21:31	11081117-2	.5	U	.532	mg/L	106.4	85	115	3.83	20	
Cobalt, dissolved	d l		M200.7 I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG256081													
WG256081ICV	ICV	11/20/08 20:11	11081119-1	2.002		1.952	mg/L	97.5	95	105			
WG256081ICB	ICB	11/20/08 20:15				U	mg/L		-0.03	0.03			
WG256081LFB	LFB	11/20/08 20:27	11081117-2	.5		.494	mg/L	98.8	85	115			
L72957-02AS	AS	11/20/08 21:27	11081117-2	.5	U	.507	mg/L	101.4	85	115			
L72957-02ASD	ASD	11/20/08 21:31	11081117-2	.5	U	.524	mg/L	104.8	85	115	3.3	20	
Conductivity @2	5C		SM25108	3									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255711													
WG255711LCSW1	LCSW	11/13/08 17:49	PCN30873	1408.8		1337	umhos/arr	94.9	90	110			
WG255711LCSW4	LCSW	11/13/08 20:57	PCN30873	1408.8		1315	umhos/cm	93.3	90	110			
WG255711LCSW7	LCSW	11/13/08 23:14	PCN30873	1408.8		1304	umhos/cm	92.6	90	110			
WG255711LCSW10		11/14/08 2:08	PCN30873	1408.8		1292	umhos/cm	91.7	90	110			
L72957-03DUP	DUP	11/14/08 3:33			U	U	umhos/cm				0	20	R
WG255711LCSW13	LCSW	11/14/08 5:00	PCN30873	1408.8		1285	umhos/arr	91.2	90	110			
Copper, dissolve	d		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG256081													
WG256081ICV	ICV	11/20/08 20:11	11081119-1	2		1.953	mg/L	97.7	95	105			
WG256081ICB	ICB	11/20/08 20:15				U	mg/L		- 0.03	0.03			
WG256081LFB	LFB	11/20/08 20:27	11081117-2	.5		.499	mg/L	99.8	85	115			
L72957-02AS	AS	11/20/08 21:27	11081117-2	.5	U	.501	mg/L	100.2	85	115			
				.5	U	.519		103.8		115	3.53	20	

Page 8 of 18 REPIN.01.06.05.01

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Cyanide, total			M335.4 - C	Colorimet	tric w/ distil	lation							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255751													
WG255751ICV	ICV	11/14/08 12:53	WI081111-3	.3		.2818	mg/L	93.9	90	110			
WG255751ICB	ICB	11/14/08 12:54				U	mg/L		-0.015	0.015			
WG255774													
WG255774ICV	ICV	11/14/08 14:12	WI081111-3	.3		.2783	mg/L	92.8	90	110			
WG255774ICB	ICB	11/14/08 14:13				U	mg/L		-0.015	0.015			
WG255681LRB	LRB	11/14/08 14:14				U	mg/L		-0.015	0.015			
WG255681LFB	LFB	11/14/08 14:15	WI081111-7	.2		.1929	mg/L	96.5	90	110			
L72956-01DUP	DUP	11/14/08 14:28			.009	.0094	mg/L				4.3	20	RA
L72957-01LFM	LFM	11/14/08 14:30	WI081111-7	.2	.012	. 2139	mg/L	101	90	110			
WG255962													
WG255962ICV	ICV	11/18/08 21:03	WI081111-3	.3		.2787	mg/L	92.9	90	110			
WG255962ICB	ICB	11/18/08 21:04				U	mg/L		-0.015	0.015			
WG255923LRB	LRB	11/18/08 21:05				U	mg/L		-0.015	0.015			
WG255923LFB	LFB	11/18/08 21:06	WI081111-7	.2		.1988	mg/L	99.4	90	110			
L72957-04DUP	DUP	11/18/08 21:07			U	U	mg/L				0	20	RA
L72962-01LFM	LFM	11/18/08 21:09	WI081111-7	.2	U	.2029	mg/L	101.5	90	110			
Fluoride			SM4500F-	С									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255978													
WG255978ICV	ICV	11/19/08 15:32	WC081106-1	2		2.01	mg/L	100.5	95	105			
WG255978ICB	ICB	11/19/08 15:58				U	mg/L		-0.3	0.3			
WG255978LFB2	LFB	11/19/08 18:51	WC081114-3	5		4.52	mg/L	90.4	90	110			
L72957-01DUP	DUP	11/19/08 19:48			U	U	mg/L				0	20	RA
L72957-01AS	AS	11/19/08 19:51	WC081114-3	5	U	4.75	mg/L	95	90	110			
Iron, dissolved			M200.7 IC	Р									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG256081													
WG256081ICV	ICV	11/20/08 20:11	II081119 - 1	2		1.948	mg/L	97.4	95	105			
WG256081ICB	ICB	11/20/08 20:15				U	mg/L		- 0.06	0.06			
WG256081LFB	LFB	11/20/08 20:27	II081117 - 2	1		1.007	mg/L	100.7	85	115			
L72957-02AS	AS	11/20/08 21:27	II081117 - 2	1	U	1.014	mg/L	101.4	85	115			
L72957-02ASD	ASD	11/20/08 21:31	11081117 - 2	1	U	1.053	mg/L	105.3	85	115	3.77	20	
Lead, dissolved			M200.8 IC	P-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG256010													
WG256010ICV	ICV	11/20/08 1:37	MS081101-2	.05		.04792	mg/L	95.8	90	110			
WG256010ICB	ICB	11/20/08 1:42				U	mg/L		-0.00022	0.00022			
WG256010LFB	LFB	11/20/08 1:53	MS081108-3	.05		.0472	mg/L	94.4	85	115			
L72957-02AS	AS	11/20/08 2:08	MS081108-3	.05	U	.04648	mg/L	93	70	1 30			
L72957-02ASD	ASD	11/20/08 2:14	MS081108-3	.05	U	.04727	mg/L	94.5	70	1 30	1.69	20	

REPIN.01.06.05.01 Page 9 of 18

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Project ID:	U.	JU6DZ											
Magnesium, dis	solved		M200.7	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG256081													
WG256081ICV	ICV	11/20/08 20:11	11081119-1	100		101.2	mg/L	101.2	95	105			
WG256081ICB	ICB	11/20/08 20:15				U	mg/L		-0.6	0.6			
WG256081LFB	LFB	11/20/08 20:27	11081117-2	49.96908		50.78	mg/L	101.6	85	115			
L72957-02AS	AS	11/20/08 21:27	11081117-2	49.96908	U	51.32	mg/L	102.7	85	115			
L72957-02ASD	ASD	11/20/08 21:31	11081117-2	49.96908	U	52.62	mg/L	105.3	85	115	2.5	20	
Manganese, dis	solved		M200.7	ICP									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG256081													
WG256081ICV	ICV	11/20/08 20:11	11081119-1	2		1.9519	mg/L	97.6	95	105			
WG256081ICB	ICB	11/20/08 20:15				U	mg/L		-0.015	0.015			
WG256081LFB	LFB	11/20/08 20:27	11081117-2	.5		.5271	mg/L	105.4	85	115			
L72957-02AS	AS	11/20/08 21:27	11081117-2	.5	U	.5315	mg/L	106.3	85	115			
L72957-02ASD	ASD	11/20/08 21:31	II081117 - 2	.5	U	.5509	mg/L	110.2	85	115	3.58	20	
Mercury, dissol	ved		M245.1	CVAA									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255735													
WG255735ICV	ICV	11/17/08 9:34	11081103-1	.005		.0051	mg/L	102	95	105			
WG255735ICB	ICB	11/17/08 9:36	110011001	.000		U	mg/L	102	-0.0002	0.0002			
WG255785													
WG255785LRB	LRB	11/17/08 15:03				U	mg/L		-0.00044	0.00044			
WG255785LFB	LFB	11/17/08 15:05	11081027-2	.002		.00199	mg/L	99.5	85	115			
L72805-11LFM	LFM	11/17/08 15:42	11081027-2	.002	U	.00203	mg/L	101.5	85	115			
L72805-11LFMD	LFMD	11/17/08 15:45	11081027-2	.002	U	.00201	mg/L	100.5	85	115	0.99	20	
Molybdenum, d	issolved		M200.7	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG256081													
WG256081ICV	ICV	11/20/08 20:11	11081119-1	2		2.015	mg/L	100.8	95	105			
WG256081ICB	ICB	11/20/08 20:15		_		U	mg/L	.00.0	-0.03	0.03			
WG256081LFB	LFB	11/20/08 20:27	11081117-2	.5		.507	mg/L	101.4	85	115			
L72957-02AS	AS	11/20/08 21:27	II081117 - 2	.5	U	.504	mg/L	100.8	85	115			
L72957-02ASD	ASD	11/20/08 21:31	II081117 - 2	. 5	U	.518	mg/L	103.6	85	115	2.74	20	
Nickel, dissolve	ed		M200.7	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG256238													
WG256238ICV	ICV	11/24/08 11:07	11081119-1	2.004		1.895	mg/L	94.6	95	105			
WG256238ICB	ICB	11/24/08 11:11				U	mg/L	5 1.0	-0.03	0.03			
WG256238LFB	LFB	11/24/08 11:24	II081117 - 2	.4985		.518	mg/L	103.9	85	115			
L72941-07AS	AS	11/24/08 11:44	II081117-2	.4985	.13	.658	mg/L	105.9	85	115			
L72941-07ASD	ASD	11/24/08 11:47	11081117-2	4985	.13	.659	mg/L	106.1	85	115	0.15	20	
L72957-02AS	AS	11/24/08 12:17	11081117-2	.4985	U	.549	mg/L	110.1	85	115			
L72957-02ASD	ASD	11/24/08 12:21	II081117 - 2	.4985	U	.551	mg/L	110.5	85	115	0.36	20	

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

REPIN.01.06.05.01

Nitrate/Nitrite as				H2SO4 pre									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG256136													
WG256136ICV	ICV	11/20/08 21:34	WI080916-5	2.416		2.327	mg/L	96.3	90	110			
WG256136ICB	ICB	11/20/08 21:35				U	mg/L		-0.06	0.06			
WG256136LFB1	LFB	11/20/08 21:36	WI080913-4	2		2.064	mg/L	103.2	90	110			
L72824-02AS	AS	11/20/08 21:39	WI080913-4	2	U	2.102	mg/L	105.1	90	110			
L72824-03DUP	DUP	11/20/08 21:42			U	U	mg/L				0	20	R/
WG256136LFB2	LFB	11/20/08 22:18	WI080913-4	2		1.915	mg/L	95.8	90	110			
pH (lab)			M150.1 -	Electromet	ric								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255711													
WG255711LCSW3	LCSW	11/13/08 18:01	PCN29627	6		5.9	units	98.3	90	110			
WG255711LCSW6	LCSW	11/13/08 21:08	PCN29627	6		5.88	units	98	90	110			
WG255711LCSW9	LCSW	11/13/08 23:29	PCN29627	6		5.81	units	96.8	90	110			
WG255711LCSW12	LCSW	11/14/08 2:21	PCN29627	6		5.8	units	96.7	90	110			
L72957-03DUP	DUP	11/14/08 3:33			6.1	6.18	units				1.3	20	
WG255711LCSW15	LCSW	11/14/08 5:12	PCN29627	6		5.78	units	96.3	90	110			
Potassium, disso	lved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG256081													
WG256081ICV	ICV	11/20/08 20:11	11081119-1	20		20.05	mg/L	100.3	95	105			
WG256081ICB	ICB	11/20/08 20:15				U	mg/L		-0.9	0.9			
WG256081LFB	LFB	11/20/08 20:27	II081117 - 2	99.76186		100	mg/L	100.2	85	115			
L72957-02AS	AS	11/20/08 21:27	II081117 - 2	99.76186	U	98.84	mg/L	99.1	85	115			
L72957-02ASD	ASD	11/20/08 21:31	II081117 - 2	99.76186	Ü	101.96	mg/L	102.2	85	115	3.11	20	
Residue, Filterab	TDS/	\ @180C	SM25400	•									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255680	· ·	, , , , , , , , , , , , , , , , , , ,								•			
WG255680PBW	PBW	11/12/08 10:50				U	mg/L		- 20	20			
WG255680LCSW	LCSW	11/12/08 10:51	PCN31032	260		256	mg/L	98.5	80	120			
L72957-01DUP	DUP	11/12/08 11:03	1 01101002	200	2580	2588	mg/L	30.5	00	120	0.3	20	
L72980-03DUP	DUP	11/12/08 11:14			560	570	mg/L				1.8	20	
Selenium, dissol	ved		M200.8 I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG256010													
WG256010ICV	ICV	11/20/08 1:37	MS081101 - 2	.05		.05053	mg/L	101.1	90	110			
WG256010IC8	ICB	11/20/08 1:37	WIGOUT TO 1-2	.00		.03033	mg/L	101.1	- 0.00022	0.00022			
WG256010LFB	LFB	11/20/08 1:42	MS081108-3	.05		.04692	mg/L	93.8	85	115			
	AS	11/20/08 1:55	MS081108-3	.05	U	.05001	mg/L	100	70	130			
L72957-02AS													

Inorganic QC Summary

ACZ Project ID: L72957

FMI Gold & Copper - Sierrita

Project ID: OJ06DZ

Sodium, dissolv	ed		M200.7 IC	P									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG256081													
WG256081ICV	ICV	11/20/08 20:11	11081119-1	100		101,74	mg/L	101.7	95	105			
WG256081ICB	ICB	11/20/08 20:15				U	mg/L		-0.9	0.9			
WG256081LFB	LFB	11/20/08 20:27	11081117-2	98.21624		99.42	mg/L	101.2	85	115			
L72957-02AS	AS	11/20/08 21:27	11081117-2	98.21624	U	98.61	mg/L	100.4	85	115			
L72957-02ASD	ASD	11/20/08 21:31	11081117-2	98.21624	U	101.42	mg/L	103.3	85	115	2.81	20	
Sulfate			SM4500 S	604-D									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG255763													
WG255763PBW	PBW	11/14/08 12:10				U	mg/L		-30	30			
WG255763LCSW	LCSW	11/14/08 12:11	WC080910-2	100		106	mg/L	106	80	120			
L72962-01DUP	DUP	11/14/08 12:49			10	15	mg/L				40	20	RA
Thallium, dissol	ved		M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WC25C040													
WG256010	1017												
WG256010ICV WG256010ICB	ICV	11/20/08 1:37	MS081101 - 2	.05		.04842	mg/L	96.8	90 -0.00022	110			
WG2560101CB WG256010LFB	ICB	11/20/08 1:42	MS081108-3	.0501		U 045 7 9	mg/L	01.4		0.00022			
WG256010LгБ L72957-02AS	LFB AS	11/20/08 1:53 11/20/08 2:08	MS081108-3	.0501	U	.04578 .04531	mg/L mg/L	91.4 90.4	85 70	115 130			
L72957-02ASD	ASD	11/20/08 2:14	MS081108-3	.0501	U	.0459	mg/L	91.6	70 70	130	1.29	20	
Uranium, dissolv	ved		M200.8 IC	P-MS									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG256010													
WG256010ICV	ICV	11/20/08 1:37	MS081101-2	.05		.04678	mg/L	93.6	90	110			
WG256010ICB	ICB	11/20/08 1:42				U	mg/L		-0.00022				
WG256010LFB	LFB	11/20/08 1:53	MS081108-3	.05		.04568	mg/L	91.4	85	115			
L72957-02AS	AS	11/20/08 2:08	MS081108-3	.05	U	.04573	mg/L	91.5	70	130			
L72957-02ASD	ASD	11/20/08 2:14	MS081108-3	.05	U	.04593	mg/L	91.9	70	1 30	0.44	20	
WG256089													
WG256086ICV	ICV	11/21/08 10:22	MS081101-2	.05		.05006	mg/L	100.1	90	110			
WG256086ICB	ICB	11/21/08 10:27				U	mg/L		-0.00022	0.00022			
WG256086LFB	LFB	11/21/08 10:38	MS081108-3	.05		.04444	mg/L	88.9	85	115			
L72964-01AS	AS	11/21/08 10:54	MS081108-3	.5	1.76	2.279	mg/L	103.8	70	1 30			
L72964-01ASD	ASD	11/21/08 10:59	MS081108-3	.5	1.76	2.304	mg/L	108.8	70	130	1.09	20	
Zinc, dissolved			M200.7 IC	P									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG256081													
WG256081ICV	ICV	11/20/08 20:11	11081119-1	2		1.975	mg/L	98.8	95	105			
WG256081ICB	ICB	11/20/08 20:15				U	mg/L		- 0.03	0.03			
WG256081LFB	LFB	11/20/08 20:27	11081117-2	.5		.51	mg/L	102	85	115			
L72957-02AS	AS	11/20/08 21:27	11081117-2	.5	U	.533	mg/L	106.6	85	115			
L72957-02ASD	ASD	11/20/08 21:31	11081117-2	.5	U	.53	mg/L	106	85	115	0.56	20	

FMI Gold & Copper - Sierrita

ACZ ID	WORKNIIM	PARAMETER	METHOD	ALIO	DESCRIPTION
L72957-01	WG255842	Chloride	SM4500CI-E	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG255711	Conductivity @25C	SM2510B	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG255774	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG255978	Fluoride	SM4500F-C	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG256136	Nitrate/Nitrite as N	M353.2 - H2SO4 preserved	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG255763	Sulfate	SM4500 SO4-D	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG255711	Total Alkalinity	SM2320B - Titration	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
L72957-02	WG255681	Cyanide, total	M335.4 - Manual Distillation	DA	Sample required dilution due to reactivity.
	WG256010	Uranium, dissolved	M200.8 ICP-MS	BE	Target analyte in continuing calibration blank (CCB) at or above the acceptance criteria. Target analyte was not detected in the sample [< MDL].
	WG255891	Chloride	SM4500CI-E	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG255711	Conductivity @25C	SM2510B	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG255774	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG255978	Fluoride	SM4500F-C	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG256136	Nitrate/Nitrite as N	M353,2 - H2SO4 preserved	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG255763	Sulfate	SM4500 SO4-D	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG255711	Total Alkalinity	SM2320B - Titration	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).

Inorganic Extended Qualifier Report

FMI Gold & Copper - Sierrita

ACZ Project ID: L72957

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L72957-03	WG255681	Cyanide, total	M335.4 - Manual Distillation	DA	Sample required dilution due to reactivity.
	WG256010	Uranium, dissolved	M200.8 ICP-MS	BE	Target analyte in continuing calibration blank (CCB) at or above the acceptance criteria. Target analyte was not detected in the sample [< MDL].
	WG255891	Chloride	SM4500CI-E	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG255711	Conductivity @25C	SM2510B	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG255774	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG255978	Fluoride	SM4500F-C	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG256136	Nitrate/Nitrite as N	M353.2 - H2SO4 preserved	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG255763	Sulfate	SM4500 SO4-D	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG255711	Total Alkalinity	SM2320B - Titration	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
L72957 - 04	WG255962	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).

Certification Qualifiers

FMI Gold & Copper - Sierrita

ACZ Project ID: L72957

No certification qualifiers associated with this analysis

Sample Receipt

FMI Gold & Copper - Sierrita

OJ06DZ

ACZ Project ID: Date Received: L72957 11/11/2008

Received By:

Date Printed: 11/11/2008

Receipt Verification

- 1) Does this project require special handling procedures such as CLP protocol?
- 2) Are the custody seals on the cooler intact?
- 3) Are the custody seals on the sample containers intact?
- 4) Is there a Chain of Custody or other directive shipping papers present?
- 5) Is the Chain of Custody complete?
- 6) Is the Chain of Custody in agreement with the samples received?
- 7) Is there enough sample for all requested analyses?
- 8) Are all samples within holding times for requested analyses?
- 9) Were all sample containers received intact?
- 10) Are the temperature blanks present?
- 11) Is the trip blank for Cyanide present?
- 12) Is the trip blank for VOA present?
- 13) Are samples requiring no headspace, headspace free?
- 14) Do the samples that require a Foreign Soils Permit have one?

YES	NO	NA
		Х
Х		
		Х
Х		
Х		
Х		
Х		
Х		
Х		
		Х
Х		
		Х
		X
		Х

Exceptions: If you answered no to any of the above questions, please describe

N/A

Contact (For any discrepancies, the client must be contacted)

N/A

Shipping Containers

Cooler Id	Temp (°C)	Rad (μR/hr)
2123	3.7	14

Client must contact ACZ Project Manager if analysis should not proceed for samples received outside of thermal preservation acceptance criteria.

Notes

Sample Receipt

FMI Gold & Copper - Sierrita

OJ06DZ

ACZ Project ID: Date Received:

L72957 11/11/2008

Received By:

Sample Container Preservation

SAMPLE	CLIENT ID	R < 2	G < 2	BK < 2	Y<2	YG<2	B< 2	0<2	T >12	N/A	RAD	ID
L72957-01	MH-11		Υ		Υ							
L72957-02	EQB111008		Υ		Υ							
L72957-03	TB111008		Υ		Υ							
L72957-04	TB061507-02		Υ		Υ							

Sample Container Preservation Legend

Abbreviation	Description	Container Type	Preservative/Limits
R	Raw/Nitric	RED	pH must be < 2
В	Filtered/Sulfuric	BLUE	pH must be < 2
ВК	Filtered/Nitric	BLACK	pH must be < 2
G	Filtered/Nitric	GREEN	pH must be < 2
0	Raw/Sulfuric	ORANGE	pH must be < 2
Р	Raw/NaOH	PURPLE	pH must be $> 12 *$
T	Raw/NaOH Zinc Acetate	TAN	pH must be > 12
Υ	Raw/Sulfuric	YELLOW	pH must be < 2
YG	Raw/Sulfuric	YELLOW GLASS	pH must be < 2
N/A	No preservative needed	Not applicable	
RAD	Gamma/Beta dose rate	Not applicable	must be $< 250 \mu\text{R/hr}$

^{*} pH check performed by analyst prior to sample preparation

Sample IDs Reviewed By:		
-------------------------	--	--

ACZ Labor	atories, Inc.		75	390	ベゴ	C	HAI	of C	USTO	DDY
2773 Downhill Drive Steamboar	: Springs, CO 80487 (80	0) 334	-5493	١ ح	$\frac{\mathcal{I}}{\mathcal{I}}$	·				
Report to:										
Name: Billy Dorris			Addre	ess: 6	200 L	U. DUL	aln	Tine R	6	
Company: Freeport Mo	MoRan Sierrita							5614		
E-mail: billy-dorrise	fmi.com		Telep	hone:	520	648	-887	3		
Copy of Report to:				110						
			E mai		215©	hair	· · · ·	. m		
Name: Dan Simpson Company: Hydro Geo	<u>^</u>							E×1	- 12	3
	Chem	-	Telep	none.	520.	LI	1 700	ر ۸۱	1 /	
Invoice to:										
Name:			Addre	ess:						
Company:										
E-mail:				hone:					T	
If sample(s) received past holding								YES NO		
analysis before expiration, shall . If "NO" then ACZ will contact cli								NO	L	
is indicated, ACZ will proceed wi						ita will b	e qualifi	ed.		
PROJECT INFORMATION								or use qu	ote nun	nber)
Quote #:				W						
Project/PO#: 0506	Dナ		of Containers	12	e d					
Reporting state for complian			ıtaiı	7	Dissolveo					
Sampler's Name:			ខ្ញ	nbient	13.6					
Are any samples NRC licensa	hle material?	ĺ	ō	20	\[\bar{2} \\ \bar{3} \\ \\ \alpha \\ \bar{3} \\ \\ \alpha \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	ŀ				
SAMPLE IDENTIFICATION	DATE:TIME	Matrix	*	4	2					
MH-11	11-7-08/ 15:33	6-W	5	×	×					
EQB111008	11-10-08/6:50	6W		X	×					
TB111008	11-10-08/6:52			×	X					
TBITIOGG	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
				<u> </u>						
			-	 	 				†	
									-	
				 	\vdash					
Matrix SW (Surface Water) - (GW (Ground Water) - WW (W	aste Wat	er) D	I	ing Water	r) · SL (S	Ludae) -	SO (Soil) ·	OL (Oil)	- Other
Matrix SW (Surface Water) • C		usee ma	.01, 2	(211111	9	, (-			(,	
			aata		م مار ،	"5	∧ "	rosul	t S	
Copy of report.	to Dan Simpso	(A) (C)	0/1154	′′′>	0:119	ا ر. :	Uy	76301		
with QC Si	immary.							J.		PAGE
										of
UPS TRACKING #	+128677E4	23 10	000	597	76					"
Please refer	to ACZ's terms & cond	itions	ocate	d on th	ne rever	se side	of this	COC.		
RELINQUISHED BY:					RECEIVE			D	ATE:TI	ME
Bill 7. Dons	11-10-08/	15.00		WA	7			11-11	CB 16	1:26
				-					1.6	
FRMAD050.03.05.02	White - Return with same	ole. `	Yellow	- Retair	n for you	r record	<u> Page</u>	18 of	18	

Analytical Report

December 02, 2008

Report to:

Bill Dorris

FMI Gold & Copper - Sierrita

P.O. Box 527

Green Valley, AZ 85622-0527

cc: Dan Simpson

Bill to:

Accounts Payable

FMI Gold & Copper - Sierrita

P.O. Box 2671

Phoenix, AZ 85002-2671

Project ID: OJ069R ACZ Project ID: L72783

Bill Dorris:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on October 31, 2008. This project has been assigned to ACZ's project number, L72783. Please reference this number in all future inquiries.

All analyses were performed according to ACZ's Quality Assurance Plan, version 12.0. The enclosed results relate only to the samples received under L72783. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after January 02, 2009. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years.

If you have any questions or other needs, please contact your Project Manager.

Scott Habermehl has reviewed and approved this report.

S. Havermehl

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: MO-2007-3B ACZ Sample ID: **L72783-01**

Date Sampled: 10/22/08 09:20 Date Received: 10/31/08

Sample Matrix: Ground Water

Wet Chemistry

P	arameter	EPA Method	Result	Qual	ΧQ	Units	MDL	PQL	Date	Analyst
S	Su lf ate	300.0 - Ion Chromatography	42.4	Н	*	mg/L	0.5	3	11/26/08 1:38	сср

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: MO-2007-4A ACZ Sample ID: **L72783-02**

Date Sampled: 10/22/08 13:25

Date Received: 10/31/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	40.1	H *	mg/L	0.5	3	11/26/08 2:32	сср

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: MO-2007-4B ACZ Sample ID: **L72783-03**

Date Sampled: 10/22/08 12:50 Date Received: 10/31/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	37.4	H *	mg/L	0.5	3	11/26/08 2:50	сср

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: MO-2007-4C ACZ Sample ID: *L72783-04*

Date Sampled: 10/22/08 11:19

Date Received: 10/31/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	84.9	H *	mg/L	0.5	3	11/26/08 3:08	сср

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: DUP102208A ACZ Sample ID: **L72783-05**

Date Sampled: 10/22/08 00:00

Date Received: 10/31/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	41.6	H *	mg/L	0.5	3	11/26/08 3:26	сср

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: MO-2007-5B ACZ Sample ID: *L72783-06*

Date Sampled: 10/23/08 11:08

Date Received: 10/31/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XC	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	412	H *	mg/L	5	30	11/26/08 3:44	сср

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: MO-2007-5C ACZ Sample ID: **L72783-07**

Date Sampled: 10/23/08 13:17

Date Received: 10/31/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	257	H *	mg/L	3	10	11/26/08 4:03	сср

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: MO-2007-6A ACZ Sample ID: *L72783-08*

Date Sampled: 10/23/08 08:14 Date Received: 10/31/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	18.6	H *	mg/L	0.5	3	11/26/08 4:57	сср

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: MO-2007-6B ACZ Sample ID: L72783-09

Date Sampled: 10/23/08 09:25

Date Received: 10/31/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	63.2	H *	mg/L	0.5	3	11/26/08 5:15	сср

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: I-10 ACZ Sample ID: **L72783-10**

Date Sampled: 10/28/08 08:30

Sample Matrix: Ground Water

Date Received: 10/31/08

Wet Chemistry

Parameter	EPA Method	Result	Qual X	Q Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	526	H *	mg/L	5	30	11/26/08 5:33	сср

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: M-8 ACZ Sample ID: **L72783-11**

Date Sampled: 10/28/08 11:49

Date Received: 10/31/08
Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	26.3	H *	mg/L	0.5	3	11/26/08 5:51	сср

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: M-9 ACZ Sample ID: *L72783-12*

Date Sampled: 10/28/08 14:17

Sample Matrix: Ground Water

Date Received: 10/31/08

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	74.8	H *	mg/L	0.5	3	11/26/08 6:46	сср

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: M-10 ACZ Sample ID: **L72783-13**

Date Sampled: 10/28/08 10:21 Date Received: 10/31/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	97.1	H *	mg/L	0.5	3	11/26/08 7:04	сср

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: M-20 ACZ Sample ID: *L72783-14*

Date Sampled: 10/28/08 12:30

Date Received: 10/31/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	1660	Н	*	mg/L	30	100	11/26/08 7:22	сср

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: DUP102808A ACZ Sample ID: *L72783-15*

Date Sampled: 10/28/08 00:00

Date Received: 10/31/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual X	Q Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	26.2	H *	mg/L	0.5	3	11/26/08 7:40	сср

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: ESP-1

ACZ Sample ID: **L72783-16**

Date Sampled: 10/30/08 09:36

Date Received: 10/31/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	121		mg/L	3	10	11/26/08 8:34	сср

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: ESP-2 ACZ Sample ID: **L72783-17**

Date Sampled: 10/30/08 08:57

Date Received: 10/31/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	30.1		mg/L	0.5	3	11/26/08 8:52	сср

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: ESP-3 ACZ Sample ID: **L72783-18**

Date Sampled: 10/30/08 10:10

Date Received: 10/31/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	36.8		mg/L	0.5	3	11/26/08 9:10	сср

FMI Gold & Copper - SierritaProject ID: OJ069R
Sample ID: ESP-4

ACZ Sample ID: **L72783-19**Date Sampled: 10/30/08 08:11
Date Received: 10/31/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	489		mg/L	5	30	11/26/08 9:28	сср

FMI Gold & Copper - Sierrita

Project ID: OJ069R Sample ID: DUP103008A ACZ Sample ID: **L72783-20**

Date Sampled: 10/30/08 00:00
Date Received: 10/31/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	30.0		mg/L	0.5	3	11/26/08 9:47	сср

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report Header Explanations

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest Limit Upper limit for RPD, in %.

Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit, typically 5 times the MDL.

QC True Value of the Control Sample or the amount added to the Spike

Rec Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

	QC	Samp	le Ty	ypes
--	----	------	-------	------

AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calibration Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution

QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method or calibration procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method. Spikes/Fortified Matrix Determines sample matrix interferences, if any.

Standard Verifies the validity of the calibration.

ACZ Qualifiers (Qual)

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity.
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time.
- U The material was analyzed for, but was not detected above the level of the associated value.

The associated value is either the sample quantitation limit or the sample detection limit.

Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (5) EPA SW-846. Test Methods for Evaluating Solid Waste, Third Edition with Update III, December 1996.
- (6) Standard Methods for the Examination of Water and Wastewater, 19th edition, 1995.

Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.

For a complete list of ACZ's Extended Qualifiers, please click:

http://www.acz.com/public/extquallist.pdf

FMI Gold & Copper - Sierrita ACZ Project ID: L72783

Project ID: OJ069R

Sulfate			300.0 - Ion Chromatography										
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG256365													
WG256365ICV	ICV	11/25/08 12:54	WI081031-2	50		51.41	mg/L	102.8	90	110			
WG256365ICB	ICB	11/25/08 13:12				.59	mg/L		-1.5	1.5			
WG256365ICV1	ICV	11/25/08 14:46	WI081031-2	50		50.63	mg/L	101.3	90	110			
WG256365ICB1	ICB	11/25/08 15:04				U	mg/L		-1.5	1.5			
WG256365ICV2	ICV	11/26/08 19:05	WI081031-2	50		51.23	mg/L	102.5	90	110			
WG256365ICB2	ICB	11/26/08 19:23				U	mg/L		-1.5	1.5			
WG256368													
WG256368ICV	ICV	11/26/08 0:43	WI081031-2	50		51.32	mg/L	102.6	90	110			
WG256368ICB	ICB	11/26/08 1:02				U	mg/L		- 1.5	1.5			
WG256368LFB	LFB	11/26/08 1:20	WI081125-2	30		31.1	mg/L	103.7	90	110			
L72783-01AS	AS	11/26/08 1:56	WI081125-2	30	42.4	71.37	mg/L	96.6	90	110			
L72783-01DUP	DUP	11/26/08 2:14			42.4	42.19	mg/L				0.5	20	
L72783-11AS	AS	11/26/08 6:09	WI081125-2	30	26.3	56.12	mg/L	99.4	90	110			
L72783-11DUP	DUP	11/26/08 6:27			26.3	26.35	mg/L				0.2	20	

Page 23 of 29 REPIN.01.06.05.01

Inorganic Extended **Qualifier Report**

ACZ Project ID: L72783

(800) 334-5493

FMI Gold & Copper - Sierrita

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L72783-01	WG256368		300.0 - Ion Chromatography		Initial analysis within holding time. Reanalysis was past holding time, which was required due to a QC failure during the initial analysis.
L72783-02	WG256368	Sulfate	300.0 - Ion Chromatography	НС	Initial analysis within holding time. Reanalysis was past holding time, which was required due to a QC failure during the initial analysis.
L72783-03	WG256368	Sulfate	300.0 - Ion Chromatography	НС	Initial analysis within holding time. Reanalysis was past holding time, which was required due to a QC failure during the initial analysis.
L72783-04	WG256368	Sulfate	300.0 - Ion Chromatography	НС	Initial analysis within holding time. Reanalysis was past holding time, which was required due to a QC failure during the initial analysis.
L72783-05	WG256368	Sulfate	300.0 - Ion Chromatography	HC	Initial analysis within holding time. Reanalysis was past holding time, which was required due to a QC failure during the initial analysis.
L72783-06	WG256368	Sulfate	300.0 - Ion Chromatography	HC	Initial analysis within holding time. Reanalysis was past holding time, which was required due to a QC failure during the initial analysis.
L72783-07	WG256368	Sulfate	300.0 - Ion Chromatography	HC	Initial analysis within holding time. Reanalysis was past holding time, which was required due to a QC failure during the initial analysis.
L72783-08	WG256368	Sulfate	300.0 - Ion Chromatography	HC	Initial analysis within holding time. Reanalysis was past holding time, which was required due to a QC failure during the initial analysis.
L72783-09	WG256368	Sulfate	300.0 - Ion Chromatography	HC	Initial analysis within holding time. Reanalysis was past holding time, which was required due to a QC failure during the initial analysis.
L72783-10	WG256368	Sulfate	300.0 - Ion Chromatography	HC	Initial analysis within holding time. Reanalysis was past holding time, which was required due to a QC failure during the initial analysis.
L72783-11	WG256368	Sulfate	300.0 - Ion Chromatography	НС	Initial analysis within holding time. Reanalysis was past holding time, which was required due to a QC failure during the initial analysis.
L72783-12	WG256368	Sulfate	300.0 - Ion Chromatography	НС	Initial analysis within holding time. Reanalysis was past holding time, which was required due to a QC failure during the initial analysis.
L72783-13	WG256368	Sulfate	300.0 - Ion Chromatography	НС	Initial analysis within holding time. Reanalysis was past holding time, which was required due to a QC failure during the initial analysis.
L72783-14	WG256368	Sulfate	300.0 - Ion Chromatography	НС	Initial analysis within holding time. Reanalysis was past holding time, which was required due to a QC failure during the initial analysis.
L72783-15	WG256368	Sulfate	300.0 - Ion Chromatography	HC	Initial analysis within holding time. Reanalysis was past holding time, which was required due to a QC failure during the initial analysis.

Certification Qualifiers

FMI Gold & Copper - Sierrita

ACZ Project ID: L72783

No certification qualifiers associated with this analysis

Sample Receipt

FMI Gold & Copper - Sierrita

OJ069R

ACZ Project ID: Date Received: L72783

10/31/2008

Received By:

Date Printed: 10/31/2008

		37 171	
	eceipt	AVE CHILL	
II B		NA STEEL	44-14-41

- 1) Does this project require special handling procedures such as CLP protocol?
- 2) Are the custody seals on the cooler intact?
- 3) Are the custody seals on the sample containers intact?
- 4) Is there a Chain of Custody or other directive shipping papers present?
- 5) Is the Chain of Custody complete?
- 6) Is the Chain of Custody in agreement with the samples received?
- 7) Is there enough sample for all requested analyses?
- 8) Are all samples within holding times for requested analyses?
- 9) Were all sample containers received intact?
- 10) Are the temperature blanks present?
- 11) Is the trip blank for Cyanide present?
- 12) Is the trip blank for VOA present?
- 13) Are samples requiring no headspace, headspace free?
- 14) Do the samples that require a Foreign Soils Permit have one?

YES	NO	NA
·		_

Exceptions: If you answered no to any of the above questions, please describe

N/A

Contact (For any discrepancies, the client must be contacted)

N/A

Shipping Containers

Cooler Id	Temp (°C)	Rad (µR/hr)

Client must contact ACZ Project Manager if analysis should not proceed for samples received outside of thermal preservation acceptance criteria.

Notes

Sample Receipt

FMI Gold & Copper - Sierrita

OJ069R

ACZ Project ID: Date Received:

L72783 10/31/2008

Received By:

Sample Container Preservation

L72783-01 MO-2007-3B L72783-02 MO-2007-4A L72783-03 MO-2007-4B L72783-04 MO-2007-4C L72783-05 DUP102208A L72783-06 MO-2007-5B L72783-07 MO-2007-5C L72783-08 MO-2007-6A L72783-09 MO-2007-6B L72783-10 I-10 L72783-11 M-8 L72783-12 M-9 L72783-13 M-10 L72783-14 M-20			X X X X X X X	
L72783-03 MO-2007-4B L72783-04 MO-2007-4C L72783-05 DUP102208A L72783-06 MO-2007-5B L72783-07 MO-2007-5C L72783-08 MO-2007-6A L72783-09 MO-2007-6B L72783-10 I-10 L72783-11 M-8 L72783-12 M-9 L72783-13 M-10			X X X X	
L72783-04 MO-2007-4C L72783-05 DUP102208A L72783-06 MO-2007-5B L72783-07 MO-2007-5C L72783-08 MO-2007-6A L72783-09 MO-2007-6B L72783-10 I-10 L72783-11 M-8 L72783-12 M-9 L72783-13 M-10			X X X X	
L72783-05 DUP102208A L72783-06 MO-2007-5B L72783-07 MO-2007-5C L72783-08 MO-2007-6A L72783-09 MO-2007-6B L72783-10 I-10 L72783-11 M-8 L72783-12 M-9 L72783-13 M-10			X X X	
L72783-06 MO-2007-5B L72783-07 MO-2007-5C L72783-08 MO-2007-6A L72783-09 MO-2007-6B L72783-10 I-10 L72783-11 M-8 L72783-12 M-9 L72783-13 M-10			X	
L72783-07 MO-2007-5C L72783-08 MO-2007-6A L72783-09 MO-2007-6B L72783-10 I-10 L72783-11 M-8 L72783-12 M-9 L72783-13 M-10			X	
L72783-08 MO-2007-6A L72783-09 MO-2007-6B L72783-10 I-10 L72783-11 M-8 L72783-12 M-9 L72783-13 M-10			Х	
L72783-09 MO-2007-6B L72783-10 I-10 L72783-11 M-8 L72783-12 M-9 L72783-13 M-10				
L72783-10			Χ	
L72783-11 M-8 L72783-12 M-9 L72783-13 M-10				
L72783-12 M-9 L72783-13 M-10			Х	
L72783-13 M-10			Х	
			Х	
L 72783-14 M-20			Х	
L12100-17 W-20			Х	
L72783-15 DUP102808A			Х	
L72783-16 ESP-1			Х	
L72783-17 ESP-2			Х	
L72783-18 ESP-3			Χ	
L72783-19 ESP-4				

Sample Container Preservation Legend

Abbreviation	Description	Container Type	Preservative/Limits
R	Raw/Nitric	RED	pH must be < 2
В	Filtered/Sulfuric	BLUE	pH must be < 2
BK	Filtered/Nitric	BLACK	pH must be < 2
G	Filtered/Nitric	GREEN	pH must be < 2
0	Raw/Sulfuric	ORANGE	pH must be < 2
Р	Raw/NaOH	PURPLE	pH must be > 12 *
Т	Raw/NaOH Zinc Acetate	TAN	pH must be > 12
Υ	Raw/Sulfuric	YELLOW	pH must be < 2
YG	Raw/Sulfuric	YELLOW GLASS	pH must be < 2
N/A	No preservative needed	Not applicable	
RAD	Gamma/Beta dose rate	Not applicable	must be < 250 μR/hr

* pH check p	performed by	analyst prior	to sample p	preparation
--------------	--------------	---------------	-------------	-------------

Report to: Name: B:// Dorris Company: Freeport McMoRan Sieffida E-mail: b://g_dorris@fmi, com Copy of Report to: Name: Dan Simpson Company: Hydro Geo Chem Invoice to: Name: Company: Hydro Geo Chem Telephone: 520 648 8873 E-mail: dans@hginc.com Telephone: 520 - 293-1500 Ext	133
Name: 13:11 Dorris Company: reeport McMoRan Sierrita E-mail: billy_dorris@fmi, com Copy of Report to: Name: Dan Simpson Company: Hydro Geo Chem Invoice to: Name: Company: Name: Company: Telephone: 520 648 8873 Address: 6200 W. Duyal Mine Rd Green Valley A2 85614 Telephone: 520 648 8873 E-mail: dans@hginc.com Telephone: 520 - 293-1500 Ext Address: Company: E-mail: Telephone:	133
Company: Freeport McMo Ran Sie/ita E-mail: billy_dorris@fmi, com Copy of Report to: Name: Dan Simpson Company: Hydro Geo Chem Invoice to: Name: Company: E-mail: dan 5@ hginc.com Telephone: 520 - 293-1500 Ext Address: Company: E-mail: Telephone:	133
E-mail: billy_dollis@fmi, com Telephone: 520 648 8873 Copy of Report to: Name: Dan 5 mpson Company: Hydro Geo Chem Invoice to: Name: Company: E-mail: dan 5@ hginc.com Telephone: 520 - 293-1500 Ext Address: Company: E-mail: Telephone:	133
Copy of Report to: Name: Dan 5 mp5on Company: Hydro Geo Chem Invoice to: Name: Company: E-mail: dan 5@ hginc.com Telephone: 5 20 - 29 3-1500 Ext Address: Company: E-mail: Telephone:	133
Name: Dan 5 mpson Company: Hydro Geo Chem Invoice to: Name: Company: E-mail: dan 5@ hginc.com Telephone: 5 20 - 29 3-1500 Ext Address: Company: E-mail: dan 5@ hginc.com Telephone: 5 20 - 29 3-1500 Ext Telephone:	133
Company: Hydro Geo Chem Telephone: 5 20 - 29 3 - 1500 Ext Invoice to: Address: Company: E-mail: Telephone:	133
Company: Hydro Geo Chem Telephone: 5 20 - 29 3 - 1500 Ext Invoice to: Address: Company: E-mail: Telephone:	133
Invoice to: Address: Name: Address: Company: Telephone:	
Company: E-mail: Telephone:	
Company: E-mail: Telephone:	
E-mail: Telephone:	
If sample(s) received past holding time (HT), or if insufficient HT remains to complete YES	
analysis before expiration, shall ACZ proceed with requested short HT analyses? NO	_
If "NO" then ACZ will contact client for further instruction. If neither "YES" nor "NO" is indicated, ACZ will proceed with the requested analyses, even if HT is expired, and data will be qualified.	
PROJECT INFORMATION ANALYSES REQUESTED (attach list or use quote null	mber)
Quote #:	
Project/PO #: O J Ø 69 R Reporting state for compliance testing: Sampler's Name:	
Reporting state for compliance testing:	
Sampler's Name:	
Are any samples NRC licensable material?	
SAMPLE IDENTIFICATION DATE:TIME Matrix	
MO-2007-3B 10-22-08/9:20 GW 1)	
mo-2007-4A 10-22-08/13:25 GW 1	
mo-2007-4B 10-22-08/12:50 GW 1/	
mo-2007-46 10-22-08/11:19 GW 1 D4	<u> </u>
DUP102208A 10-22-08 GW 1	
mo-2007-5B 10-23-08/11:08 GW 1 > 500 BOD	<u> </u>
mo-2007-56 10-23-08/13:17 6W /	
mo-2001-611 10-23-08/ 8-14 6-60 / 1 1 3/5	—
MO-2007-6B 10-23-08/9:25 GW 1	
	<u> </u>
I-10 10-28-08/8:30 GW 1 /	-
Matrix SW (Surface Water) • GW (Ground Water) • WW (Waste Water) • DW (Drinking Water) • SL (Sludge) • SO (Soil) • OL (Oil) · Othei
) · Othei
Matrix SW (Surface Water) • GW (Ground Water) • WW (Waste Water) • DW (Drinking Water) • SL (Sludge) • SO (Soil) • OL (Oil) · Other
Matrix SW (Surface Water) • GW (Ground Water) • WW (Waste Water) • DW (Drinking Water) • SL (Sludge) • SO (Soil) • OL (Oil	PAGE
Matrix SW (Surface Water) • GW (Ground Water) • WW (Waste Water) • DW (Brinking Water) • SL (Sludge) • SO (Soil) • OL (Oil	PAGE
Matrix SW (Surface Water) · GW (Ground Water) · WW (Waste Water) · DW (Prinking Water) · SL (Sludge) · SO (Soil) · OL (Oil) REMARKS/ SAMPLE DISCLOSURES	
Matrix SW (Surface Water) • GW (Ground Water) • WW (Waste Water) • DW (Drinking Water) • SL (Sludge) • SO (Soil) • OL (Oil	PAGE
Matrix SW (Surface Water) · GW (Ground Water) · WW (Waste Water) · DW (Brinking Water) · SL (Sludge) · SO (Soil) · OL (Oil) REMARKS/ SAMPLE DISCLOSURES UPS TRACKING # 12 867 7E4 23 1000 5994	PAGE of
Matrix SW (Surface Water) · GW (Ground Water) · WW (Waste Water) · DW (Prinking Water) · SL (Sludge) · SO (Soil) · OL (Oil) REMARKS/ SAMPLE DISCLOSURES UP5 TRACKING # 12 867 7E4 23 1000 5994 Please refer to ACZ's terms & conditions located on the reverse side of this COC. RELINQUISHED BY: DATE:TIME RECEIVED BY: DATE:T	PAGE of
Matrix SW (Surface Water) · GW (Ground Water) · WW (Waste Water) · DW (Brinking Water) · SL (Sludge) · SO (Soil) · OL (Oil) REMARKS/ SAMPLE DISCLOSURES UPS TRACKING # 1 2 867 7E4 23 1000 5994 Please refer to ACZ's terms & conditions located on the reverse side of this COC. RELINQUISHED BY: DATE:TIME RECEIVED BY: DATE:T	PAGE of

Analytical Report

December 16, 2008

Report to:

Dan Simpson

Hydro Geo Chem Inc. 51 W. Wetmore Rd.

Tucson, AZ 85705

cc: Jim Norris, Ned Hall, Bill Dorris

Bill to:

Accounts Payable

FMI Gold & Copper - Sierrita

P.O. Box 2671

Phoenix, AZ 85002-2671

Project ID: OJ03235 ACZ Project ID: L73166

Dan Simpson:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on November 20, 2008. This project has been assigned to ACZ's project number, L73166. Please reference this number in all future inquiries.

All analyses were performed according to ACZ's Quality Assurance Plan, version 12.0. The enclosed results relate only to the samples received under L73166. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after January 16, 2009. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years.

If you have any questions or other needs, please contact your Project Manager.

Scott Habermehl has reviewed and approved this report.

S. Havermehl

FMI Gold & Copper - Sierrita

Project ID: OJ03235 Sample ID: CW-3 ACZ Sample ID: **L73166-01**

Date Sampled: 10/06/08 12:25
Date Received: 11/20/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	60.1	H *	mg/L	0.5	3	12/11/08 21:22	aml

Note: This report is for additional analysis of the sample previously reported as ACZ project L72335-01.

FMI Gold & Copper - Sierrita

Project ID: OJ03235 Sample ID: NP-2 ACZ Sample ID: **L73166-02**

Date Sampled: 10/06/08 14:25

Sample Matrix: Ground Water

Date Received: 11/20/08

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	42.1	H *	ma/L	0.5	3	12/11/08 21:40	aml

Note: This report is for additional analysis of the sample previously reported as ACZ project L72335-02.

FMI Gold & Copper - Sierrita

Project ID: OJ03235 Sample ID: CW-6 ACZ Sample ID: **L73166-03**Date Sampled: 10/07/08 09:10
Date Received: 11/20/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	54.6	H *	mg/L	0.5	3	12/11/08 21:58	aml

Note: This report is for additional analysis of the sample previously reported as ACZ project L72335-03.

FMI Gold & Copper - Sierrita

Project ID: OJ03235 Sample ID: DUP100708 ACZ Sample ID: L73166-04

Date Sampled: 10/07/08 00:00

Date Received: 11/20/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	54.7	H *	mg/L	0.5	3	12/11/08 22:16	aml

Note: This report is for additional analysis of the sample previously reported as ACZ project L72335-04.

FMI Gold & Copper - Sierrita

Project ID: OJ03235 Sample ID: CW-10 ACZ Sample ID: **L73166-05**Date Sampled: 10/07/08 10:45

Date Received: 11/20/08
Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	50.3	H *	mg/L	0.5	3	12/11/08 23:11	aml

Note: This report is for additional analysis of the sample previously reported as ACZ project L72335-05.

FMI Gold & Copper - Sierrita

Project ID: OJ03235 Sample ID: CW-9 ACZ Sample ID: *L73166-06*

Date Sampled: 10/07/08 11:50

Date Received: 11/20/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	46.0	H *	mg/L	0.5	3	12/11/08 23:29	aml

Note: This report is for additional analysis of the sample previously reported as ACZ project L72335-06.

Inorganic Analytical Results

FMI Gold & Copper - Sierrita

Project ID: OJ03235
Sample ID: HAVEN GOLF

ACZ Sample ID: **L73166-07**

Date Sampled: 10/07/08 13:02 Date Received: 11/20/08

Sample Matrix: Ground Water

Wet Chemistry

Parameter	EPA Method	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography	99	Н *	ma/l	1	5	12/13/08 21:11	aml

Note: This report is for additional analysis of the sample previously reported as ACZ project L72335-07.

Arizona license number: AZ0102

Inorganic Analytical Results

FMI Gold & Copper - Sierrita

Project ID: OJ03235 Sample ID: FB100708 ACZ Sample ID: **L73166-08**

Date Sampled: 10/07/08 12:55

Sample Matrix: Ground Water

Date Received: 11/20/08

Wet Chemistry

Parameter	EPA Method	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Sulfate	300.0 - Ion Chromatography		UH	*	mg/L	0.5	3	12/12/08 0:05	aml

Note: This report is for additional analysis of the sample previously reported as ACZ project L72335-09.

Arizona license number: AZ0102

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report Header Explanations

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest Limit Upper limit for RPD, in %.

Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit, typically 5 times the MDL.

QC True Value of the Control Sample or the amount added to the Spike

Rec Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

QC Sample Types	DC S	Sami	ple i	Тур	es
-----------------	------	------	-------	-----	----

AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calibration Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution

QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method or calibration procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method. Spikes/Fortified Matrix Determines sample matrix interferences, if any.

Standard Verifies the validity of the calibration.

ACZ Qualifiers (Qual)

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity.
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time.
- U The material was analyzed for, but was not detected above the level of the associated value.

The associated value is either the sample quantitation limit or the sample detection limit.

Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (5) EPA SW-846. Test Methods for Evaluating Solid Waste, Third Edition with Update III, December 1996.
- (6) Standard Methods for the Examination of Water and Wastewater, 19th edition, 1995.

Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.

For a complete list of ACZ's Extended Qualifiers, please click:

http://www.acz.com/public/extquallist.pdf

FMI Gold & Copper - Sierrita

ACZ Project ID: L73166 Project ID: OJ03235

Sulfate			300.0 - Ion	Chroma	atography								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG257130													
WG257130ICV	ICV	12/09/08 14:20	WI081031-2	50		50.51	mg/L	101	90	110			
WG257130ICB	ICB	12/09/08 14:38				.59	mg/L		-1.5	1.5			
WG257130ICV1	ICV	12/11/08 17:09	WI081031-2	50		51.04	mg/L	102.1	90	110			
WG257130ICB1	ICB	12/11/08 17:27				U	mg/L		-1.5	1.5			
WG257130LFB	LFB	12/11/08 17:45	WI081125-2	30		30.17	mg/L	100.6	90	110			
L73166-04AS	AS	12/11/08 22:34	WI081125-2	30	54.7	81.65	mg/L	89.8	90	110			
L73166-04DUP	DUP	12/11/08 22:53			54.7	54.39	mg/L				0.6	20	
WG257130ICV2	ICV	12/13/08 14:27	WI081031-2	50		51.05	mg/L	102.1	90	110			
WG257130ICB2	ICB	12/13/08 14:45				U	mg/L		-1.5	1.5			
WG257130ICV3	ICV	12/13/08 17:52	WI081031-2	50		50.97	mg/L	101.9	90	110			
WG257130ICB3	ICB	12/13/08 18:10				U	mg/L		-1.5	1.5			
L73046-05AS	AS	12/13/08 18:46	WI081125-2	150	190	334.4	mg/L	96.3	90	110			
L73046-05DUP	DUP	12/13/08 19:04			190	198.6	mg/L				4.4	20	

ACZ Project ID: L73166

FMI Gold & Copper - Sierrita

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L73166-01	WG257130	Sulfate	300.0 - Ion Chromatography	H1	Sample analysis performed past holding time.
L73166-02	WG257130	Sulfate	300.0 - Ion Chromatography	H1	Sample analysis performed past holding time.
L73166-03	WG257130	Sulfate	300.0 - Ion Chromatography	H1	Sample analysis performed past holding time.
L73166-04	WG257130	Sulfate	300.0 - Ion Chromatography	H1	Sample analysis performed past holding time.
L73166-05	WG257130	Sulfate	300.0 - Ion Chromatography	H1	Sample analysis performed past holding time.
L73166-06	WG257130	Sulfate	300.0 - Ion Chromatography	H1	Sample analysis performed past holding time.
L73166-07	WG257130	Sulfate	300.0 - Ion Chromatography	H1	Sample analysis performed past holding time.
L73166-08	WG257130	Sulfate	300.0 - Ion Chromatography	H1	Sample analysis performed past holding time.

Certification Qualifiers

FMI Gold & Copper - Sierrita

ACZ Project ID: L73166

No certification qualifiers associated with this analysis

L73166-Relog
-172335

ACZ Labo			- 400						IAIN STC			1001	90.1	28
2773 Downhill Drive Steamboa Report to:	t Springs, CO 80487 (809)) 334-6	9493											
Dan Simpner			Addre	ee. 5'	W Wet	more Ro	i					,		
THE COLUMN TO			Addie	-30,	ucson, Az					· · · · · ·				
Company: Hydro Geo Chem, Inc. E-mail: dans@hgcino.com			Telepi	hone:	520-293	-1500 x	133							
Copy of Report to:		l ·								,				
the bloods blad Mat Cili	Dorris		E-mai	1:	jlmn@	hgcine.	com, bilit	_dorris@	gfml.com	1				
Name: Jen Norte, Ned Hair, Bill Company: HGC/FMI			Telep		520-2	93-1500	x112, 5	20-648-8	873	-				
			10.00		***									
Invoice to:	<u></u>		Addre		6200	Duval M	line Ros	d						
radiite.			Addre	188.				alley, AZ	85622					
Company: FMI F-mail: ned_hall@fmi.com			Telepi	hone:		648-8873			-					
E-mail: ned_nat@rmi.com if sample(s) received past hold	ling time (HT), or if insuff	l Icient H			compl	ete			YES	×				
analysis before expiration, sh	all ACZ proceed with req	uested	short i	HT ana	iyses?				NO	×				
If "NO" then ACZ will contact of	dient for further instruction	on. If n	either '	"YES"	nor "N	o"	néa seli	l he au	alifiad					
is indicated, ACZ will proceed PROJECT INFORMATION	with the requested analy	868, 6	ANAL	YSES	REQUE	STED	(attaci	list or	use q	uote nu	mber)			
Olas St. Ostillato														
Quote #: Siernia Suirate Project/PO #: OJ0325			ers											
Reporting state for compliance	testing: AZ		of Containers		1									
Sampler's Name: John Villinski			Š	\$04			1							
Are any samples NRC licensal			, jo	١.										
SAMPLE IDENTIFICATION	DATÉ:TÍME	Matrix					ļ		<u> </u>					
CW-3	10-6-08/12:25	GW	2	×			ļ	<u> </u>	<u> </u>					
NP-Z	10-6-08/14:57	GW	2	×	ļ	<u> </u>	ļ. <u></u>	<u> </u>						
CW-6	10-7-08/ 9:10	GW	2	×	ļ	ļ	<u> </u>	ļ	 -					
DUP100708	10-7-0X	GW	2	×				↓ —						
CW-10	10-7-08 10:45	GW	2	х	ļ	ļ		├				İ		
cw-9	10-7-08/11:50	GW	2	X		ļ	 							
HAVEN GOLIZ	10-7-08/13/02	GW	2	X		 	 	ļ		 				
BQB100708	10-2-08/15/22	GW	1	X	 	 	 	 -	┢	<u> </u>		İ		
PB100708	10-1-08/15:21	GW	1	X.	├─	 -		-						
201/0 4 - 14/21-2 (2011)	Ground Water) · WW (Waste Wate	n . DW (C	Idekise W	(ater) · Si	/Sludge) · so /s	in · OL (Oil) - Othe	r (Specif	.l	L			
	CHOOLIG ASSIST. AAAA (AASSIS AASIS	i) - Div (c	Annong C	etal) C	r (oldage	, 55 (,	. (-,					
REMARKS														
Please re RELINQUISHED BY	fer to ACZ's terms & cond		ocated	on the	e revér	se side VED B	of this	s COC.	D <i>i</i>	ATE:TI	ME	<i>6.1</i>		
1	10/8/08-	水多	1	/	NI				10-9	1-08	9.	14		
0														
]		
FRMAD050.03.05.02	White - Return with samp	ole.	Yellow	Retair	o for yo	ur reco	rds.							

APPENDIX C HYDRO GEO CHEM, INC. GROUNDWATER SAMPLING FORMS

Task No.	6.2 (of 50(GV 760			Date:	John		Ster
							VIIIns	Star
					Collected By:	Oohn	VIIIns	sler
				WELL	DATA	λ / / λ		
Well Depth (ft bis):	-	853			Time:	<u> </u>		
Casing Diameter (ii	n): _	1611	,		Point of Measure	ment:		
Static Water Level	(ft bmp):	<u> </u>	/A		GPS:			
1 Casing Volume (gals):		1		Elevation:			
3 Casing Volumes	(gals):							
		The state of the s	an Johanna Sala			osansal salahan kentalah s		
			E.	IELD SAN	IPLING DATA			
Time	Discharge Rate (gpm)	Total Discharge (gallons)	pH (SU)	Temp (°C)	Specific Conductance (µS/cm)	Color	Odor	Comment
16:25	NA	NA	7,26	248	476			
	1	/						
	and the second s							
	va edusardin servici de la comunicación de la comun							
					,			
				SAMPLE	NFORMATION			
Sample	ID	Time	Container Type	Volume	No. of Containers	Analysis Method	Preservative	Comment
CCOFE	7 V	8:25	Plastic	250 ml	γ	EPA 300.0	None	Filtered
	1	To all the same of	Plastic	250 ml	1	EPA 300.0	None	Unfiltered
Additional Comm	ents:	Puni	2 (0 00	rW.	die le	5321	seeding	<u> </u>
	E) Va	Pong	/ /n 0 =	50 10	WL	Marian Manian Marian Marian Marian Marian Marian Marian Marian Marian Ma		

Te, c) Flastic 250 III						Client:	Marian Grand Market Control	Ran Sierrita In	
Collected By: Dohn Mark CB	ask No.	6.2	and the second s			Date:	10-6-0	8	
Collected By: Tokh Villing Mark 013		(: (L)	-3			Weather:	Clear		A
WELL DATA Time:	- uni-	62				Collected By:	John Vil	Unshi /	Mark OBoy
Nell Depth (ft bis): 10 10 10 10 10 10 10 1	DWR No.	00	1 10 2			,			
Nell Depth (ft bis): 10									
Casing Diameter (in): 10					WELL	DATA			
Casing Diameter (in): 10	vell Depth (ft bis)		515			Time:	10:45		
Casing Volume (gals):	asing Diameter (in):	16"			Point of Measur	rement:	roc	
Casing Volume (gals): The Container Type Casing Volume (gals): The Container Container Color (Galor) Casing Volume (galor) Casing Volume (_	271	78		GPS:			
Casing Volumes (gals):			-333		`	Flevation:			
Time	-	·	73.00	2216			Charles and the second of the		
Time Discharge Rate (SU) CMF Conductance Color Odor Comment	Casing Volumes	(gals):	-35	7317					
Time Discharge Rate (gpm) Discharge (gallons) (SU) Conductance (µS/cm) Color Color Color (µS/cm) Col	Di ma	0 6 (()	11076	0600	(ELD SAM	PLING DATA			
		Discharge Rate	Total Discharge	pН	Temp	Conductance	Color	Odor	Comment
	12.10			1.89	77.1	958	Clam	NOW	
11:24			-		772	434		Now	
11:31 100 220 7.54 76.9 429 11 11 11:38 180 2900 7.52 77.3 429 11 11:38 180 2900 7.56 77.1 428 1(11 11:52 100 3600 7.56 77.0 429 11 11:59 100 5000 7.57 77.5 425 11 12:06 100 5000 7.57 77.5 429 11 12:13 100 4400 7.54 77.5 429 11 12:13 100 4400 7.54 77.5 428 11 12:22 100 7300 7.50 77.5 430 1(11 SAMPLE INFORMATION Sample ID Time Container Type Volume No. of Containers Method Preservative Comment CW-3 12:25 Plastic 250 ml 1 EPA 300.0 None Filtered	111014		1		76.7	406	u	U	
11:38	11:3/				76.9	429		И	
11.45			2900	7.52	77.3	- COCKETO			
11:59	11	160	3600	7.56	77.1	458	16(
13:06 100 5700 7.63 76.8 429 1 11 11 12:13 100 6400 7.59 77.5 428 1 1 1 1 1 1 1 1 1	11:52		4300	7.56	77.0				
12:06 100 5700 7.63 76.8 429 11 11 11 12:13 100 6400 7.59 77.5 428 12 12:22 100 7300 7.50 77.5 430 11 11 11 11 12:22 100 7300 7.50 77.5 430 11 11 11 11 12:22 100			5000	7.57	77.5	472	it		
12;13			5700	7.63	76.8	429			
SAMPLE INFORMATION Sample ID Time Container Type Volume No. of Containers Method Preservative Comment Countainers Method Preservative Comment No. of Containers Method No. of Containers Method No. of Containers Method No. of Containers Method No. of Containers Method No. of Comment No. of Containers Method No. of Comment No. of Comment No. of Containers Method No. of Comment No. of Comment No. of Containers Method No. of Containers Method No. of Comment No. of Containers No. of Containers Method No. of Containers No. of Containe			6400	7.54	77.5	428			
SAMPLE INFORMATION Sample ID Time Container Type Volume No. of Containers Method Preservative Comment Of Containers Method No. of Containers Method No. of Comment Of Containers Method No. of Comment Of Containers Method No. of Comment Of Containers Method No. of Comment Of Containers Method No. of Comment Of Containers Method No. of Comment Of Containers Method No. of Comment Of Containers Method No. of Comment Of Containers Method No. of Comment Of Containers Method No. of Comment Of Containers Method No. of Conta	12:22		7300		77.5	430	1(l-1	
Sample ID Time Container Type Volume No. of Containers Method Preservative Comment CW-3 Plastic 250 ml 1 EPA 300.0 None Filtered					CAMDIE	NEODMATION			
Sample ID Time Type Volume Containers Method Preservative Somment CW-3 Plastic 250 ml 1 EPA 300.0 None Filtered					SAINTLE				
Te, c) Flastic 250 IIII	Sampl	e ID	Time	1	Volume	1		Preservative	Comment
Plastic 250 ml 1 EPA 300.0 None Unfilterec	CW-3		12:25	Plastic	250 ml	1	EPA 300.0	None	Filtered/U
				Plastic	250 ml	1	EPA 300.0	None	Unfiltered
Additional Comments:	Additional Comr	ments:							

Project No.	7830000				Client:	Freeport-McM	oRan Sierrita In	ıc.
Task No.	6.2				Date:	10-7-	-08	
Well ID:	CW-	-6			Weather:	Gear		
ADWR No.	627	185			Collected By:	John	VILLES	lei
				WELL	DATA			
Well Depth (ft bis	s):	840) (Time:	8:3	5	
Casing Diameter		1611			Point of Measur	ement:	TOC	
Static Water Leve		75	6.3D		GPS:	-		
			- + 6		Elevation:			
1 Casing Volume 3 Casing Volume		1872		17m2				
3 Casing volume								
Pump	0 N P	7480	700 GPF	ALLD SAM	IPLING DATA			
Time	Discharge Rate (gpm)	Total Discharge (gallons)	pH (SU)	Temp (°C)	Specific Conductance (µS/cm)	Color	Odor	Comment
8143	700	700	7,25	76.0	404	clear	No	
8:41	7:50	4450	7.40	26.5	489	dear	no	
8:53	750	8500	7.45	268	413	clear	ho	
8:58	750	15700	7.48	26.7	426	clear	No	
9:08	750	19470	7.52	266	431	Great.		
			TOTAL	023	herge	2099	7	
			30176	V	3			
				SAMPLE II	NFORMATION			Anga Antares
Samp	ie ID	Time	Container Type	Volume	No. of Containers	Analysis Method	Preservative	Comment
CW ~6	E	9:10	Plastic	250 ml	1	EPA 300.0	None	Filtered
CW-	6	9:10	Plastic	250 ml	1	EPA 300.0	None	Unfiltered
Additional Com	ments:		has b	eer	16 760	2 hrs		
1160	DUP	W95	1-1-	\sim \odot	9:12			

Project No.	7830000				Client: F		oRan Sierrita Ir	nc.
Task No.	6.2				Date:	10-7-0		
Well ID:	CW-7				Weather:	Clear	[Sunny	1
ADWR No.	5025				Collected By:	John	Villing	h'(
	10 m2 m2 m2 m2 m2 m2 m2 m2 m2 m2 m2 m2 m2			WELL	DATA			
		1515		T		10.16		
Well Depth (ft b	ls):	1065			Time: _		-	
Casing Diamete	er (in):		,		Point of Measure	ement: <u>\</u>	00.	
Static Water Le	vel (ft bmp):	429	.80		GPS:			
1 Casing Volum	ne (gals):				Elevation:			
3 Casing Volum	nes (gals):							and the paper and paper is a real various of the paper and the paper and the paper and the paper and the paper
				IELD SAM	PLING DATA			
Time	Discharge Rate (gpm)	Total Discharge (gallons)	pH (SU)	Temp (°C)	Specific Conductance (µS/cm)	Color	Odor	Comment
				,				
				SAMPLE II	NFORMATION			
Sam	ple ID	Time	Container Type	Volume	No. of Containers	Analysis Method	Preservative	Comment
			Plastic	250 ml	1	EPA 300.0	None	Filtered
			Plastic	250 ml	1	EPA 300.0	None	Unfiltered
Additional Cor	nments:	1.)	ell ho	1560	entr	ned o	St. WC	only
					1			7

Project No.	7830000				Client: F		oRan Sierrita Inc	* :
ask No.	6.2				Date:) 8	
Vell ID:	CW- 5431	-8			Weather:	Gear John Vi		
ADWR No.	5431	500			Collected By:	John Vi	Hrnshi	
				WELL	DATA			
Well Depth (ft bis	s):	1700			Time:	10,10		
Dasing Diameter	(in):	2411			Point of Measure	ement:	TOC	
Static Water Lev	el (ft bmp):	342,	75		GPS:			
1 Casing Volume					Elevation:			
3 Casing Volume	es (gals):							
				ITI D CAN	IPLING DATA			
Time	Discharge Rate (gpm)	Total Discharge (gallons)	pH (SU)	Temp (°C)	Specific Conductance (µS/cm)	Color	Odor	Comment
								COOK MANUFACTURE (SALES ASSESSMENT OF COMPANY AND ASSESSMENT OF COMPAN
			S	SAMPLE	NFORMATION			
Samp	ole ID	Time	Container Type	Volume	No. of Containers	Analysis Method	Preservative	Comment
			Plastic	250 ml	1	EPA 300.0	None	Filtered
			Plastic	250 ml	1	EPA 300.0	None	Unfiltered
Additional Com	ments:	Wel	thas b	ren	brned	off.	WLon	W

Project No.	7830000				Client:	Freeport-McM	oRan Sierrita Ind	*.
ask No.	6.2				Date:	10-7-08	<u> </u>	
Vell ID:	CW-9				Weather:	SUMM	4	
ADWR No.	58K L	21			Collected By:	John '	Villinski	*
				WEII	DATA			
		1222				11:02		
Well Depth (ft bis	•	10001	ľ		Time:			
Casing Diameter	(in):	701	-		Point of Measure	ement:	70(
Static Water Leve	el (ft bmp):	316.	05	*	GPS:			
1 Casing Volume	(gals):	1143			Elevation:			
3 Casing Volume	s (gals):	343	09					
ρ				IEI D SAM	IPLING DATA			
Pumpon	Discharge	Total	- (%S.400)	e tour frey Africa Touri	Specific			
Time	Rate (gpm)	Discharge (gallons)	pH (SU)	Temp (°C)	Conductance (µS/cm)	Color	Odor	Comment
11:15	1500	4500	7.44	30.5	400	dear	no	reduced and resident statement and the statement
11:20	1000	9500	7.50	28-1	388	((
11:25	1000	1200	7.51	27.5	394	10	11	
11:30	1000	19500	7.48	77.3	395	11	b l	
11:35	1000	24500	7.49	28.1	394	1(1	TANAN MENANTAN MENANT
11:40	1000	29500	7.50	27.7	40395	((
11,43	1000	>7300	1.50	01:1	100/3			
				SAMPLE	NFORMATION			
Samp	ie ID	Time	Container Type	Volume	No. of Containers	Analysis Method	Preservative	Comment
	7 6	11:50	Plastic	250 ml	1	EPA 300.0	None	Filtered
CW-0			Plastic	250 ml	1	EPA 300.0	None	Unfiltered

6.2			6	-			
				Date:	10-7-0	8	
CW-	0			Weather:	Clear		
20194	82	March Company of the Alban	·	Collected By:	John Vi	Minski	
			NA/ELI	DATA			
	11110	, r	WEL		9130		
-	1190	•		-	-	TAC	
i): -	150	1		Point of Measure	ment:	<u> 10C</u>	
ft bmp):	190.	65		GPS:			
als):	1008	5		Elevation:			
gals):	3028	4					erengungsky kuntoportennakova erektora
++	~ [V	ი-ට F	IELD SAN	IPLING DATA			
	Total Discharge (gallons)	pH (SU)	Temp (°C)	Specific Conductance (µS/cm)	Color	Odor	Comment
1400	2800	7.52	31.7	374	Open	80	
1400	9800	7.58	31.0	373	1(
602	16800		30.7	383			
	-	7,57	31.0		/1	"	
	31800	7.39	30.5	380			and the second s
- 5a	mph						
			SAMPLE I	NEORMATION			
ID	Time	Container Type	Volume	No. of Containers	Analysis Method	Preservative	Comment
Ð	10:45	Plastic	250 ml	1	EPA 300.0	None	Filtered
	10:45	Plastic	250 ml	1	EPA 300.0	None	Unfiltered
	2079, in): ift bmp): igals): (gals): Discharge Rate (gpm) 1400 1400 1500	fft bmp): 190. fft bmp): 190.	1140' 16' 190.65 190.6	1140' 16' 190.65 190.6	WELL DATA Time: 16		Collected By: John Villinski

Project No.	7830000				Client: _		oRan Sierrita in	
Task No.	6.2				Date:	10-8-0	8 10-9-	υ <i>8</i>
Well ID:	G1V-1	11-64	CICH		Weather:	Sunny		
ADWR No.	603				Collected By: 🤇	John	Winster	
	Managed Control of the Control of th		CARLEY VOLUMES OF SOCIETY OF THE CONTROL OF THE CON	i i i i i i i i i i i i i i i i i i i				
				WELL	ATAC			
Well Depth (ft bl	s):	645			Time:			
Casing Diameter	(in):	16"			Point of Measure	ement:		
Static Water Lev	rel (ft bmp):	NIA	T		GPS:			-
1 Casing Volum	e (gals):	· · ·			Elevation:			
3 Casing Volum	es (gals):							
	- 2. 445.1		Martine, complete contribution	VEL (D (D)				
			i i	IELU SAM	PLING DATA			
Time	Discharge Rate (gpm)	Total Discharge (gallons)	PH (U2)	Temp (°C)	Specific Conductance (µS/cm)	Color	Odor	Comment
13:50	NA		7.25	26.6	414			
				:				
				SAMPLE	NFORMATION			
Sam	pie ID	Time	Container Type	Volume	No. of Containers	Analysis Method	Preservative	Comment
GV-01	CIVOWIL	97.20	Plastic	250 m		EPA 300.0	None	Eiltered
61-01-	GVOWID	13:50	Plastic	250 ml	7	EPA 300.0	None F	Hunfiltered
Additional Con		Over	see-In	~ (no	Heorisa	5091	1 wells	are
DSMON	w 1. 20	Cann	at 6,		2 160 te	A54	DeHanse	n for
W 21.00	-) ~~~	C C IV	<u> </u>					

Project No.	7830000				Client:	Freeport-McMc	oRan Sierrita	inc.
Task No.	6.2		HERE		Date:	10-9-	-08	-
Well ID:	6V-02	-GUDN	OIL		Weather:	Sunny		
ADWR No.	603	129			Collected By:	John	Villinsh	
				WEL	LDATA			
Well Depth (ft b	is):	560 16"	1		Time:	NA		
Casing Diamete	,	16"			Point of Measur	ement:		
Static Water Le		N/	4		GPS:			List and the second
11 Casing Volum		· t			Elevation:			
3 Casing Volum								
		Japan die Wall (See 17	v v a Cilian en availle.	-1.E.1.<		eden a Waldulette all		
		Total		TELD SAN	MPLING DATA Specific			
Time	Discharge Rate (gpm)	Discharge (gallons)	pH (SU)	Temp (°C)	Conductance (µS/cm)	Color	Odor	Comment
14.05	MA	MA	7118	24.2	599	dear	no	eurpheblackflal
				SAMPLE	INFORMATION			
Sam	pie ID	Time	Container Type	Volume	No. of Containers	Analysis Method	Preservative	Comment
GV-02-6	FUDWID	14:05	Plastic	250 m	7	EPA 300.0	None	Filtered
	in		Plastic	250 ml	-	EPA 300.0	None	Unfiltered
Additional Cor	mments:	WeV	1730	ones	ng fo	~ Ove	rseed)	ng of
-golf	courses	, Asl	c Do	ug Ho	insen of	o get	WL	-
0			The state of the s	<u> </u>				

Project No.	7830000				Client:		oRan Sierrita Ir	10.
Task No.	6.2	and the second s			Date:	\$ 10-	1-08	
Well ID:	GV-5	I-GVI 25	QUINC		Weather:	Sonn	1	
ADWR No.	2088	25			Collected By:	John V	Minslei	
				WELL	DATA			
		l – -				A 1/A		
Well Depth (ft bis	s):	650			Time:	10/14		
Casing Diameter	(in):	16 K	_		Point of Measure	ement:		
Static Water Lev	el (ft bmp):	NA	Y		GPS:			
1 Casing Volume	e (gals):				Elevation:			
3 Casing Volume	es (gals):							
			F	IEI D SAM	PLING DATA			
Time	Discharge Rate (gpm)	Total Discharge (gallons)	pH (SU)	Temp (°C)	Specific Conductance (µS/cm)	Color	Odor	Comment
PY:30	1200+	W/A	7,44	767	352	Clear	64	
		·						
pokowenia na promosta na promosta od sanata								
				SAMPLE	NFORMATION			
Samp	ole ID	Time	Container Type	Volume	No. of Containers	Analysis Method	Preservative	Comment
GV-55-G1	OZWON	14:30	Plastic	250 m	1	EPA 300.0	None	Filtered
		h. F	Plastic	250 ml	1	EPA 300.0	None	Unfiltered
Additional Com	iments:	- Well For	3 runn	reas.	for over	t seeds	s gol	f ourse

Project No.	7830000	Angelia de la companya		Client:	Freeport-McMo	oRan Sierrita I	nc.	
Task No.	6.2				Date:	10-7.	98	
Well ID:	HAVE	EN GOX	F	`	Weather:	Sunn		
ADWR No.	51	5867			Collected By:	John	Who	86
				WELL	- DATA			
Well Depth (ft bis):	500)'/		Time:	12:3	5	
Casing Diameter		14	<u> </u>		Point of Measure	ement:	NA	
Static Water Leve		Δ 1 Δ			GPS:	_		
			7,		Elevation:			
1 Casing Volume			7		Elevation.	***************************************	A STATE OF THE STA	
3 Casing Volume	s (gals):							
				FIELD SAN	IPLING DATA			
Time	Discharge Rate (gpm)	Total Discharge (gallons)	pH (SU)	Temp (°C)	Specific Conductance (µS/cm)	Color	Odor	Comment
18:40	800	A000	7.31	30.4	583			
13:45	800	8000	7.30	29.4	585			
12:50	700	12000	7.31	28%	591			
13,80	1200	24000	7,31	Zh 8	588			
			Para	me Se	(5 5 da)	ble		
				coll	cel 5a	mple		
						"		
							A A A A A A A A A A A A A A A A A A A	The second section of the section of the sect
				SAMPLE	NFORMATION			
Samp	ie ID	Time	Container Type	Volume	No. of Containers	Analysis Method	Preservative	Comment
HAVEN G	OLLIN	13:02	Plastic	250 ml	1	EPA 300.0	None	Filtered
HAVEN G	OLF	13:02	Plastic	250 ml	1	EPA 300.0	None	Unfiltered
Additional Com	Andrew Control of the	(No)	is no	5 be	mg US	ed moc	h. No	Wes
	5 5 tro							
	,000,10							

Project No.	7830000		Agrama and an anni Andria and an anni an an an an an an an an an an an an an		Client:	Freeport-McMe	oRan Sierrita	Inc.
Task No.	6.2				Date:	10-6-08	3	
- Well ID:	NP-	2			Weather:	Class.	Warn	
ADWR No.	605	898			Collected By:	Tohn Vill		ark O'Bayl
				WELL	DATA			
Well Depth (ft bis	A.	356	24 5	15	Time:	133	<u> </u>	Marie Land Entropy of Conference of Conferen
, .	•	121			Point of Measure		TOC	
Casing Diameter		V Games				-)	
Static Water Leve	el (ft bmp):	<u> </u>	. 00 3	26, CT		BANKAN ARTINIPAN KANTAN		Manusky Manusky (1994)
1 Casing Volume	(gals):	901			Elevation:			
3 Casing Volume	s (gals):	270	4					
psmpo	~ 13:39	ie fl	SPMF	IELD SAN	IPLING DATA			
Time	Discharge Rate (gpm)	Total Discharge (gallons)	pH (SU)	Temp (%)	Specific Conductance (µS/cm)	Color	Odor	Comment
13:40	40	80	7.65	75.0	412	Clean	yore a	few black po
13:45	80	480	7.63	77.4	412	clan	worl	11
13:50	70	830	7.66	77.3	911	clea	NOVE	12
13:55	60	1130	7.65	77.4	408	и	Le	l.c.
14:00	60	1430	7.67	77.0	406	1.1	£ &	.11
14:05	60	1730	7.66	77.1	404	1.8	<u> </u>	2 (1
14:40	60	2030	7.61	77.1	405	1.6	10	2 black pan
14115	60	2330	7.57	77,4	404	V.C.		1 black po
14:20	60	2730	7.57	77.3	405) (¥	3 black by
						S and the Landon States, there	3 20 A 25	
				SAMPLE	NFORMATION			
Samp	ie ID	Time	Container Type	Volume	No. of Containers	Analysis Method	Preservative	Comment
NP-2	/	14:25	Plastic	250 ml	1	EPA 300.0	None	Filtered
MP-2		14:25	Plastic	250 ml	1	EPA 300.0	None	Unfiltered
	THE RESIDENCE OF THE PARTY OF T			Participant of the second	OF STREET, STR	A TOTAL CONTRACTOR OF THE PROPERTY OF THE PROP		Management of the contract of

roject No.	7830000				Client:	Freeport-McMc	oRan Sierrita Ind	5 ,
ask No.	6.2				Date:	10-0	1-08	
vell ID:	TMM	(- <u> </u>		·	Weather:	Suns	Ny .	
DWR No.	6161	56			Collected By:	John!	VILLINS	ler
-			March State Company of the State Communicated Communicate		A Company of the Comp			
				WELL	L DATA	C 5		
ell Depth (ft bis):	50-			Time:	9:2	0	
asing Diameter	(in):	1011			Point of Measur	rement:	TOC	
tatic Water Leve	el (ft bmp):	439	68.		GPS:			
Casing Volume	(gals):	753) 1000000000000000000000000000000000000		Elevation:			
B Casing Volume	s (gals):	75	5					
Pump.		N2:32	<u></u>	IELD SAN	WPLING DATA	000	12:57	
Time	Discharge Rate (gpm)	Total Discharge (gallons)	pH (SU)	Temp (°C)	Specific Conductance (µS/cm)	Color	Odor	Comment
12:36	5	20	7.04	263	- Land V	حر جرائ به	no	
12141	5	45	798	244	280	k	И	
12142		278		Flow	- 8/1		11	
B:00	5	60	8:14	29.7	281	cloudy	, ,	
No. of Contract of								
The second secon		· · ·						
				SAMPLE	INFORMATION			
Samp	ie ID	Time	Container Type	Volume	No. of Containers	Analysis Method	Preservative	Comment
TMM-	-1	13:00	Plastic	250 m	2	EPA 300.0	None	Filtered / UN
The second secon			Plastic	250 ml	1	EPA 300.0	None	Unfiltered
Additional Comr	ments:		1		No. and Commission of Commissi			n varge myst fan it een rennemen fra ût te oeren gewyn it it keit ût jezig bekent ûnt fû.
Additional Colli			}					
				-				

roject No.	7830000				Client:	Freeport-McMo	Ran Sierrita In	С.
ask No.	6.2				Date:	10-7-0	χ	
Vell ID:	FB)	EQB			Weather:	Clear		
ADWR No.					Collected By:	Clear	enillip	<u>i</u>
•					regounded a Robert State of the Control of the Cont			
				WELL	ΤΛΤΛ			
				VVELL				
Well Depth (ft bis	s):	<u> </u>			Time:			
Dasing Diameter	(in):		and the manager of th		Point of Measur	rement:		
Static Water Leve	el (ft bmp):	$\overline{}$			GPS:			
1 Casing Volume	e (gals):		<u> </u>		Elevation:		8	
3 Casing Volume	es (gals):		<u> </u>					
				ELDGVW	IPLING DATA			
Time	Discharge Rate (gpm)	Total Discharge (gallons)	pH (SU)	Temp (°C)	Specific Conductance (µS/cm)	Color	Odor	Comment
			·					
				SAMPLE	NFORMATION			
Samı	ple ID	Time	Container Type	Volume	No. of Containers	Analysis Method	Preservative	Comment
EQ	3	12:55	Plastic	250 m	1	EPA 300.0	None	Filtered
FR		12:55	Plastic	250 m	1	EPA 300.0	None	Unfiltered
	CONTRACTOR OF THE PROPERTY OF							

APPENDIX D

TIME SERIES GRAPHS OF SULFATE CONCENTRATION AND GROUNDWATER ELEVATION

TABLE OF CONTENTS

TABLE

D.1 Sulfate Concentration and Groundwater Elevation Data

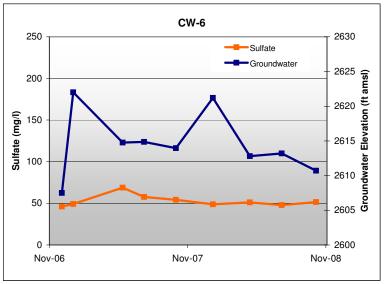
FIGURES

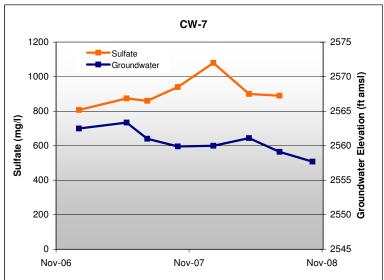
- D.1 Sulfate Concentration and Groundwater Elevation Over Time for Wells CW-6, CW-7, CW-8, and CW-9
- D.2 Sulfate Concentration and Groundwater Elevation Over Time for Wells CW-10, GV-1-GVDWID, GV-2-GVDWID, and GV-SI-GVDWID
- D.3 Sulfate Concentration and Groundwater Elevation Over Time for Wells ESP-1, ESP-2, ESP-3, and ESP-4
- D.4 Sulfate Concentration and Groundwater Elevation Over Time for Wells MO-2007-1A, MO-2007-1B, MO-2007-1C, and MO-2007-2
- D.5 Sulfate Concentration and Groundwater Elevation Over Time for Wells NP-2, MO-2007-3B, and MO-2007-3C
- D.6 Sulfate Concentration and Groundwater Elevation Over Time for Wells MO-2007-4A, MO-2007-4B, and MO-2007-4C
- D.7 Sulfate Concentration and Groundwater Elevation Over Time for Wells CW-3, MO-2007-5B, and MO-2007-5C
- D.8 Sulfate Concentration and Groundwater Elevation Over Time for Wells MO-2007-6A, MO-2007-6B, MH-28, and MH-29

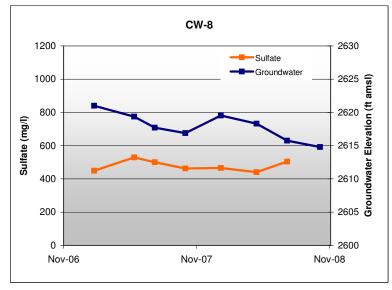
TABLE D.1 SULFATE CONCENTRATION AND GROUNDWATER ELEVATION DATA

Well ID	Date	Groundwater Elevation (ft amsl)	Sulfate (mg/L)
CW-6	12/04/06	2607.50	46.2
CW-6	01/03/07	2622.00	49.2
CW-6	05/14/07	2614.75	68.7
CW-6	07/10/07	2614.85	57.6
CW-6	10/02/07	2613.95	54.2
CW-6	01/08/08	2621.19	48.9
CW-6	04/15/08	2612.80	51.2
CW-6	07/08/08		47.9
		2613.20	
CW-6	10/07/08	2610.71	51.5
CW-7	01/03/07	2562.50	807
CW-7	05/14/07	2563.35	874
CW-7			
	07/10/07	2561.00	860
CW-7	10/02/07	2559.90	940
CW-7	01/08/08	2560.00	1080
CW-7	04/15/08	2561.10	900
CW-7	07/08/08	2559.10	890
CW-7	10/07/08	2557.70	Pump Offline
CW-8	01/24/07	2621.00	449
CW-8	05/14/07	2619.36	529
CW-8	07/10/07	2617.70	500
CW-8	10/02/07	2616.90	463
CW-8	01/08/08	2619.53	466
CW-8	04/15/08	2618.30	441
CW-8	07/08/08	2615.75	504
CW-8	10/07/08	2614.79	Pump Offline
CW-9	12/04/06	2528.30	44.5
CW-9	01/03/07	2530.10	44.9
CW-9	05/14/07	2524.90	47.8
CW-9	07/10/07	2524.10	46.7
CW-9	10/02/07	2523.60	46.4
CW-9	01/08/08	2525.48	47.3
CW-9	04/15/08	2526.30	43.7
CW-9	07/08/08	2518.70	44.1
CW-9	10/07/08	2518.25	43.5
CW-10	12/04/06	2681.75	37.2
		2691.73	
CW-10	01/24/07		48.6
CW-10	05/14/07	2672.20	52.8
CW-10	07/10/07	2669.71	51.7
CW-10		2677.65	
	10/02/07		47.7
CW-10	01/08/08	2687.55	45.3
CW-10	04/15/08	2680.55	50.8
CW-10		2665.25	50.5
	07/08/08		
CW-10	10/07/08	2677.85	48.3
GV-1-GVDWID	01/09/07	2721.35	40.9
GV-1-GVDWID	04/10/07	2724.49	43.2
GV-1-GVDWID	07/11/07	2711.35	41.5
GV-1-GVDWID	10/03/07	NM	43.8
GV-1-GVDWID	01/07/08	2720.85	45.7
GV-1-GVDWID	04/16/08	2716.85	44.1
GV-1-GVDWID	07/07/08	2711.35	45.2
GV-1-GVDWID	11/25/08	2714.35	39
GV-2-GVDWID	01/09/07	2745.17	103
GV-2-GVDWID	04/10/07	2743.50	106
GV-2-GVDWID	07/11/07	2730.02	98
GV-2-GVDWID	10/03/07	2731.15	100
GV-2-GVDWID	01/07/08	2739.85	98
GV-2-GVDWID	04/16/08	2735.52	97
GV-2-GVDWID	07/07/08	2729.42	93.2
GV-2-GVDWID	11/25/08	2730.89	93.5
GV-SI GVDWID	01/09/07		5.7
		2805.47	
GV-SI GVDWID	04/10/07	2804.25	6.6
GV-SI GVDWID	07/11/07	2802.34	6.9
GV-SI GVDWID			
	10/03/07	2798 26	6.5
	10/03/07	2798.26	6.5
GV-SI GVDWID	01/07/08	2804.90	8
GV-SI GVDWID			8 2
	01/07/08	2804.90	8
GV-SI GVDWID GV-SI GVDWID	01/07/08 04/16/08 08/14/08	2804.90 2795.10 2797.15	8 2 <0.5
GV-SI GVDWID GV-SI GVDWID GV-SI GVDWID	01/07/08 04/16/08 08/14/08 11/06/08	2804.90 2795.10 2797.15 2796.65	8 2 <0.5 5
GV-SI GVDWID GV-SI GVDWID GV-SI GVDWID ESP-1	01/07/08 04/16/08 08/14/08	2804.90 2795.10 2797.15	8 2 <0.5
GV-SI GVDWID GV-SI GVDWID GV-SI GVDWID	01/07/08 04/16/08 08/14/08 11/06/08	2804.90 2795.10 2797.15 2796.65 2599.68	8 2 <0.5 5 262
GV-SI GVDWID GV-SI GVDWID GV-SI GVDWID ESP-1 ESP-1	01/07/08 04/16/08 08/14/08 11/06/08 12/04/06 01/03/07	2804.90 2795.10 2797.15 2796.65 2599.68 2597.78	8 2 <0.5 5 262 242
GV-SI GVDWID GV-SI GVDWID GV-SI GVDWID ESP-1 ESP-1	01/07/08 04/16/08 08/14/08 11/06/08 12/04/06 01/03/07 05/14/07	2804.90 2795.10 2797.15 2796.65 2599.68 2597.78 2598.33	8 2 <0.5 5 262 242 113
GV-SI GVDWID GV-SI GVDWID GV-SI GVDWID ESP-1 ESP-1 ESP-1 ESP-1	01/07/08 04/16/08 08/14/08 11/06/08 12/04/06 01/03/07 05/14/07 07/10/07	2804.90 2795.10 2797.15 2796.65 2599.68 2597.78 2598.33 2603.76	8 2 <0.5 5 262 242 113 94
GV-SI GVDWID GV-SI GVDWID GV-SI GVDWID ESP-1 ESP-1	01/07/08 04/16/08 08/14/08 11/06/08 12/04/06 01/03/07 05/14/07	2804.90 2795.10 2797.15 2796.65 2599.68 2597.78 2598.33	8 2 <0.5 5 262 242 113
GV-SI GVDWID GV-SI GVDWID GV-SI GVDWID ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1	01/07/08 04/16/08 08/14/08 11/06/08 12/04/06 01/03/07 05/14/07 07/10/07 10/12/07	2804.90 2795.10 2797.15 2796.65 2599.68 2597.78 2598.33 2603.76	8 2 <0.5 5 262 242 113 94 110
GV-SI GVDWID GV-SI GVDWID GV-SI GVDWID ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1	01/07/08 04/16/08 08/14/08 11/06/08 12/04/06 01/03/07 05/14/07 07/10/07 10/12/07 01/23/08	2804.90 2795.10 2797.15 2796.65 2599.68 2597.78 2598.33 2603.76 2610.43 NM	8 2 <0.5 5 262 242 113 94 110
GV-SI GVDWID GV-SI GVDWID GV-SI GVDWID ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1	01/07/08 04/16/08 08/14/08 11/06/08 12/04/06 01/03/07 05/14/07 07/10/07 10/12/07 01/23/08 04/18/08	2804.90 2795.10 2797.15 2796.65 2599.68 2597.78 2598.33 2603.76 2610.43 NM	8 2 <-0.5 5 5 262 242 113 94 110 100 102
GV-SI GVDWID GV-SI GVDWID GV-SI GVDWID ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1	01/07/08 04/16/08 08/14/08 11/06/08 12/04/06 01/03/07 05/14/07 07/10/07 10/12/07 01/23/08	2804.90 2795.10 2797.15 2796.65 2599.68 2597.78 2598.33 2603.76 2610.43 NM NM	8 2 <0.5 5 262 242 113 94 110
GV-SI GVDWID GV-SI GVDWID GV-SI GVDWID ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1	01/07/08 04/16/08 08/14/08 11/06/08 12/04/06 01/03/07 05/14/07 07/10/07 10/12/07 01/23/08 04/18/08	2804.90 2795.10 2797.15 2796.65 2599.68 2597.78 2598.33 2603.76 2610.43 NM	8 2 <-0.5 5 5 262 242 113 94 110 100 102
GV-SI GVDWID GV-SI GVDWID GV-SI GVDWID ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1	01/07/08 04/16/08 08/14/08 11/06/08 12/04/06 01/03/07 05/14/07 07/10/07 10/12/07 01/23/08 04/18/08 07/25/08 10/30/08	2804.90 2795.10 2797.15 2796.65 2599.68 2597.78 2598.33 2603.76 2610.43 NM NM NM	8 2 2 <0.5 5 5 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7
GV-SI GVDWID GV-SI GVDWID GV-SI GVDWID ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1	01/07/08 04/16/08 08/14/08 11/06/08 12/04/06 01/03/07 05/14/07 07/10/07 10/12/07 01/23/08 04/18/08 07/25/08 10/30/08	2804.90 2795.10 2797.15 2796.65 2599.68 2597.78 2598.33 2603.76 2610.43 NM NM NM 2598.80 2589.06	8 2 <-0.5 5 5 262 242 113 94 110 100 102 104 121 29.6
GV-SI GVDWID GV-SI GVDWID GV-SI GVDWID ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-2 ESP-2	01/07/08 04/16/08 08/14/08 11/06/08 12/04/06 01/03/07 05/14/07 07/10/07 10/12/07 01/23/08 04/18/08 10/30/08 12/04/06 01/03/07	2804.90 2795.10 2797.15 2796.65 2599.68 2597.78 2598.33 2603.76 2610.43 NM NM NM NM 2598.80 2589.66	8 2 40.5 5 5 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7
GV-SI GVDWID GV-SI GVDWID GV-SI GVDWID ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-2 ESP-2	01/07/08 04/16/08 08/14/08 11/06/08 12/04/06 01/03/07 05/14/07 07/10/07 10/12/07 01/23/08 04/18/08 07/25/08 10/30/08	2804.90 2795.10 2797.15 2796.65 2599.68 2597.78 2598.33 2603.76 2610.43 NM NM NM 2598.80 2589.06	8 2 40.5 5 5 262 242 113 94 110 100 102 104 121 29.6
GV-SI GVDWID GV-SI GVDWID GV-SI GVDWID ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-2 ESP-2 ESP-2	01/07/08 04/16/08 08/14/08 11/06/08 12/04/06 01/03/07 05/14/07 07/10/07 10/12/07 01/23/08 04/18/08 07/25/08 10/30/08 12/04/06 01/03/07 05/14/07	2804.90 2795.10 2797.15 2796.65 2599.68 2597.78 2598.33 2603.76 2610.43 NM NM NM SP8.80 2598.80 2589.06 2589.06	8 2 40.5 5 5 262 242 113 94 110 100 102 104 121 29.6 31.3 28.4
GV-SI GVDWID GV-SI GVDWID GV-SI GVDWID ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-2 ESP-2 ESP-2 ESP-2	01/07/08 04/16/08 08/14/08 11/06/08 12/04/06 01/03/07 05/14/07 07/10/07 10/12/07 01/23/08 04/18/08 07/25/08 10/30/08 12/04/06 01/03/07 05/14/07	2804.90 2795.10 2797.15 2796.65 2599.68 2597.78 2598.33 2603.76 2610.43 NM NM NM 2598.80 2580.51 2580.51 2580.51 2583.71	8 2 <0.5 5 262 242 113 94 110 100 102 104 121 29.6 31.3 28.4 28.6
GV-SI GVDWID GV-SI GVDWID GV-SI GVDWID ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2	01/07/08 04/16/08 08/14/08 11/06/08 12/04/06 01/03/07 05/14/07 01/12/07 01/23/08 04/18/08 07/25/08 10/30/08 12/04/06 01/03/07 05/14/07 07/10/07	2804.90 2795.10 2797.15 2796.65 2599.68 2597.78 2598.33 2603.76 2610.43 NM NM NM Sept. 100 2589.06 2589.06 2589.05 2589.37 2593.35 2592.34	8 2 40.5 5 5 262 242 113 94 110 100 102 104 121 29.6 31.3 28.4 28.6 30
GV-SI GVDWID GV-SI GVDWID GV-SI GVDWID ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-2 ESP-2 ESP-2 ESP-2	01/07/08 04/16/08 08/14/08 11/06/08 12/04/06 01/03/07 05/14/07 07/10/07 10/12/07 01/23/08 04/18/08 07/25/08 10/30/08 12/04/06 01/03/07 05/14/07	2804.90 2795.10 2797.15 2796.65 2599.68 2597.78 2598.33 2603.76 2610.43 NM NM NM 2598.80 2580.51 2580.51 2580.51 2583.71	8 2 <-0.5 5 5 262 242 113 94 110 100 102 104 121 29.6 31.3 28.4 28.6
GV-SI GVDWID GV-SI GVDWID GV-SI GVDWID ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2	01/07/08 04/16/08 08/14/08 11/06/08 12/04/06 01/03/07 05/14/07 07/10/07 10/12/07 01/23/08 04/18/08 07/25/08 10/30/08 12/04/06 01/03/07 05/14/07 05/14/07 07/10/07 10/12/07	2804.90 2795.10 2797.15 2796.65 2599.68 2597.78 2598.33 2603.76 2610.43 NM NM NM 2598.80 2589.06 2589.01 2589.37 2593.35 2592.34 2594.20	8 2
GV-SI GVDWID GV-SI GVDWID GV-SI GVDWID GSP-1 ESP-1 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2	01/07/08 04/16/08 08/14/08 11/06/08 12/04/06 01/03/07 05/14/07 07/10/07 10/12/07 01/23/08 04/18/08 12/04/06 01/03/07 05/14/07 07/10/07 10/12/07 01/23/08 12/04/06 01/03/07 05/14/07 07/10/07 10/12/07 01/23/08 04/18/08	2804.90 2795.10 2797.15 2796.65 2599.68 2597.78 2598.33 2603.76 2610.43 NM NM NM 2598.80 2589.06 2589.06 2589.17 2593.35 2592.34 2594.20 2593.67	8 2 40.5 5 5 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7
GV-SI GVDWID GV-SI GVDWID GV-SI GVDWID ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-2	01/07/08 04/16/08 08/14/08 11/06/08 12/04/06 01/03/07 05/14/07 07/10/07 10/12/07 01/23/08 04/18/08 07/25/08 12/04/06 01/03/07 05/14/07 07/10/07 10/12/07 01/23/08	2804.90 2795.10 2797.15 2796.65 2599.68 2597.78 2598.33 2603.76 2610.43 NM NM NM 2598.80 2589.06 2589.06 2589.51 2593.35 2592.34 2594.20 2593.67 2593.67	8 2 40.5 5 5 262 242 113 94 110 100 102 104 121 29.6 31.3 28.4 28.6 30 30 27.6 26.8
GV-SI GVDWID GV-SI GVDWID GV-SI GVDWID GSP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-2	01/07/08 04/16/08 08/14/08 11/06/08 12/04/06 01/03/07 05/14/07 07/10/07 10/12/07 01/23/08 04/18/08 12/04/06 01/03/07 05/14/07 07/10/07 10/12/07 01/23/08 12/04/06 01/03/07 05/14/07 07/10/07 10/12/07 01/23/08 04/18/08	2804.90 2795.10 2797.15 2796.65 2599.68 2597.78 2598.33 2603.76 2610.43 NM NM NM 2598.80 2589.06 2589.06 2589.17 2593.35 2592.34 2594.20 2593.67	8 2 40.5 5 5 60.5 60.5 60.5 60.5 60.5 60.5 60
GV-SI GVDWID GV-SI GVDWID GV-SI GVDWID GSP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-2	01/07/08 04/16/08 08/14/08 11/06/08 11/06/08 12/04/06 01/03/07 05/14/07 07/10/07 10/12/07 01/23/08 04/18/08 12/04/06 01/03/07 05/14/07 07/10/07 10/12/07 01/23/08 04/18/08 01/23/08 04/18/08 04/18/08	2804.90 2795.10 2797.15 2796.65 2599.68 2597.78 2598.33 2603.76 2610.43 NM NM NM 2598.80 2580.61 2580.51 2580.51 2583.71 2593.35 2592.34 2594.20 2593.67 2593.30 2593.78	8 2 <0.5 5 262 242 113 94 110 100 102 104 121 29.6 31.3 28.4 28.6 30 30 27.6 26.8 30.1
GV-SI GVDWID GV-SI GVDWID GV-SI GVDWID GSP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-2	01/07/08 04/16/08 08/14/08 11/06/08 11/06/08 12/04/06 01/03/07 05/14/07 01/23/08 04/18/08 07/25/08 11/06/07 01/03/07 05/14/07 01/07 01/07 01/07 01/07 01/07 01/07 01/07 01/07 01/12/08 04/18/08 04/18/08 04/18/08 04/18/08 04/18/08 04/18/08 04/18/08 12/04/06	2804.90 2795.10 2797.15 2796.65 2599.68 2597.78 2598.33 2603.76 2610.43 NM NM NM 2598.80 2589.06 2589.06 2589.51 2583.71 2593.35 2592.34 2594.20 2593.67 2592.30 2589.30 2589.30	8 2 2 <0.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
GV-SI GVDWID GV-SI GVDWID GV-SI GVDWID ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-2 ESP-3 ESP-3 ESP-3	01/07/08 04/16/08 08/14/08 11/06/08 11/06/08 12/04/06 01/03/07 05/14/07 07/10/07 10/12/07 01/23/08 04/18/08 12/04/06 01/03/07 05/14/07 07/10/07 10/12/07 01/23/08 04/18/08 01/23/08 04/18/08 07/25/08 04/18/08 07/25/08	2804.90 2795.10 2797.15 2796.65 2599.68 2597.78 2598.33 2603.76 2810.43 NM NM NM 2598.80 2589.06 2580.51 2583.71 2593.35 2592.34 2594.20 2593.67 2592.30 2589.78	8 2 40.5 5 5 262 242 113 94 110 100 102 104 121 29.6 31.3 28.4 28.6 30 27.6 26.8 30.1 36.2 37.5
GV-SI GVDWID GV-SI GVDWID GV-SI GVDWID ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-2	01/07/08 04/16/08 08/14/08 11/06/08 11/06/08 12/04/06 01/03/07 05/14/07 01/23/08 04/18/08 07/25/08 11/06/07 01/03/07 05/14/07 01/07 01/07 01/07 01/07 01/07 01/07 01/07 01/07 01/12/08 04/18/08 04/18/08 04/18/08 04/18/08 04/18/08 04/18/08 04/18/08 12/04/06	2804.90 2795.10 2797.15 2796.65 2599.68 2597.78 2598.33 2603.76 2610.43 NM NM NM 2598.80 2589.06 2589.06 2589.51 2583.71 2593.35 2592.34 2594.20 2593.67 2592.30 2589.30 2589.30	8 2 2 <0.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
GV-SI GVDWID GV-SI GVDWID GV-SI GVDWID GSP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-3 ESP-3 ESP-3	01/07/08 04/16/08 08/14/08 11/06/08 11/06/08 12/04/06 01/03/07 05/14/07 07/10/07 10/12/07 01/23/08 04/18/08 07/25/08 10/30/07 05/14/07 07/10/07 10/12/07 01/12/07 01/12/07 05/14/07 07/10/07 10/12/07 01/12/07 01/12/08 04/18/08 04/18/08 04/18/08 04/18/08 04/18/08 04/18/08 04/18/08 04/18/08 04/18/08 04/18/08	2804.90 2795.10 2797.15 2796.65 2599.68 2597.78 2598.33 2603.76 2610.43 NM NM NM 2598.80 2589.06 2589.06 2589.51 2583.71 2593.35 2592.34 2594.20 2593.67 2592.34 2594.20 2593.67 2592.30 2589.78	8 2 40.5 5 5 5 6 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7
GV-SI GVDWID GV-SI GVDWID GV-SI GVDWID ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-3 ESP-3 ESP-3 ESP-3 ESP-3	01/07/08 04/16/08 08/14/08 11/06/08 12/04/06 01/03/07 05/14/07 07/10/07 10/12/07 01/23/08 04/18/08 07/25/08 12/04/06 01/03/07 05/14/07 07/10/07 10/12/07 01/23/08 04/18/08 12/04/06 01/03/07 05/14/07 07/10/07 10/12/08 04/18/08 07/25/08 12/04/06 01/03/07 05/14/07 07/10/07	2804.90 2795.10 2797.15 2796.65 2599.68 2597.78 2598.33 2603.76 2610.43 NM NM NM 2598.80 2589.06 2589.06 2589.05 2589.23 2592.34 2594.20 2593.67 2592.34 2594.20 2593.75 2592.34 2594.20 2593.75 2592.34 2594.20 2593.75 2592.34	8 2 <0.5 5 262 242 113 94 110 100 102 104 121 29.6 31.3 28.4 28.6 30 30 27.6 26.8 30.1 36.2 37.5 36.6 36.6
GV-SI GVDWID GV-SI GVDWID GV-SI GVDWID ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-3 ESP-3 ESP-3 ESP-3 ESP-3	01/07/08 04/16/08 08/14/08 11/06/08 11/06/08 12/04/06 01/03/07 05/14/07 07/10/07 10/12/07 01/23/08 04/18/08 07/25/08 10/30/08 12/04/06 01/03/07 05/14/07 07/10/07 10/12/07 01/23/08 04/18/08 07/25/08 10/30/08	2804.90 2795.10 2797.15 2796.65 2599.68 2597.78 2598.33 2603.76 2610.43 NM NM 2598.80 2589.06 2580.51 2589.06 2580.51 2583.71 2593.35 2592.34 2594.20 2593.67 2593.67 2593.67 2592.67 2593.67	8 2 <0.5 5 262 242 113 94 110 100 102 104 121 29.6 31.3 28.4 28.6 30 30 27.6 26.8 30.1 36.2 37.5 36.6 40
GV-SI GVDWID GV-SI GVDWID GV-SI GVDWID ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-3 ESP-3 ESP-3 ESP-3 ESP-3 ESP-3	01/07/08 04/16/08 08/14/08 11/06/08 11/06/08 12/04/06 01/03/07 05/14/07 01/23/08 04/18/08 07/25/08 10/30/07 05/14/07 07/10/07 01/23/08 04/18/08 07/25/08 12/04/06 01/03/07 05/14/07 07/10/07 01/23/08 04/18/08 07/25/08 12/04/06 01/03/07 05/14/07 07/10/07 01/23/08 04/18/08 07/25/08 10/30/08	2804.90 2795.10 2797.15 2796.65 2599.68 2597.78 2598.33 2603.76 2610.43 NM NM NM 2598.80 2589.06 2589.06 2589.51 2683.71 2593.35 2592.34 2594.20 2599.80 2589.75 2592.34 2594.75 2593.77 2593.77 2593.77 2593.77	8 2 2 <0.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
GV-SI GVDWID GV-SI GVDWID GV-SI GVDWID ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-3 ESP-3 ESP-3 ESP-3 ESP-3	01/07/08 04/16/08 08/14/08 11/06/08 11/06/08 12/04/06 01/03/07 05/14/07 07/10/07 10/12/07 01/23/08 04/18/08 07/25/08 10/30/08 12/04/06 01/03/07 05/14/07 07/10/07 10/12/07 01/23/08 04/18/08 07/25/08 10/30/08	2804.90 2795.10 2797.15 2796.65 2599.68 2597.78 2598.33 2603.76 2610.43 NM NM 2598.80 2589.06 2580.51 2589.06 2580.51 2583.71 2593.35 2592.34 2594.20 2593.67 2593.67 2593.67 2592.67 2593.67	8 2 <0.5 5 262 242 113 94 110 100 102 104 121 29.6 31.3 28.4 28.6 30 30 27.6 26.8 30.1 36.2 37.5 36.6 40
GV-SI GVDWID GV-SI GVDWID GV-SI GVDWID ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-1 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-2 ESP-3 ESP-3 ESP-3 ESP-3 ESP-3 ESP-3	01/07/08 04/16/08 08/14/08 11/06/08 11/06/08 12/04/06 01/03/07 05/14/07 01/23/08 04/18/08 07/25/08 10/30/07 05/14/07 07/10/07 01/23/08 04/18/08 07/25/08 12/04/06 01/03/07 05/14/07 07/10/07 01/23/08 04/18/08 07/25/08 12/04/06 01/03/07 05/14/07 07/10/07 01/23/08 04/18/08 07/25/08 10/30/08	2804.90 2795.10 2797.15 2796.65 2599.68 2597.78 2598.33 2603.76 2610.43 NM NM NM 2598.80 2589.06 2589.06 2589.51 2683.71 2593.35 2592.34 2594.20 2599.80 2589.75 2592.34 2594.75 2593.77 2593.77 2593.77 2593.77	8 2 2 <0.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

TABLE D.1 SULFATE CONCENTRATION AND GROUNDWATER ELEVATION DATA


Well ID	Date	Groundwater Elevation (ft amsl)	Sulfate (mg/L)
ESP-4	03/20/07	2606.02	393
ESP-4	05/14/07	2608.71	385
ESP-4	07/10/07	2609.80	410
ESP-4	10/12/07	2606.19	360
ESP-4	01/23/08	2608.95	520
ESP-4	04/18/08	2608.21	451
ESP-4	07/25/08	2606.47	420
ESP-4	10/30/08	2603.18	489
MO-2007-1A	08/08/07	2541.28	19.2
MO-2007-1A	10/09/07	2538.83	20
MO-2007-1A	01/24/08	2541.33	20
MO-2007-1A	04/09/08	2542.93	21
MO-2007-1A	07/14/08	2539.23	16.6
MO-2007-1A	10/17/08	2536.63	17.9
MO-2007-1B	08/02/07	2540.68	18.9
MO-2007-1B	10/09/07	2537.15	30
MO-2007-1B	01/24/08	2540.41	30
MO-2007-1B	04/09/08	2541.77	35
MO-2007-1B	07/14/08	2537.84	39.8
MO-2007-1B	10/17/08	2535.18	54.3
MO-2007-1C	07/31/07	2540.47	112
MO-2007-1C	10/09/07	2537.32	90
MO-2007-1C	01/24/08	2544.58	140
MO-2007-1C	04/09/08	2545.28	149
MO-2007-1C	07/14/08	2541.85	165
MO-2007-1C	10/21/08	2539.09	146
MO-2007-2	06/14/07	2578.59	591
MO-2007-2	08/09/07	2578.31	520
	10/09/07	2576.31	560
MO-2007-2			
MO-2007-2	01/22/08	2576.61	530
MO-2007-2	04/17/08	2577.18	473
MO-2007-2	07/14/08	2576.48	472
MO-2007-2	10/17/08	2575.29	Pump Offline
NP-2	06/04/07	2554.78	41.2
NP-2	08/13/07	2555.05	41.7
NP-2	11/06/07	2551.46	41.7
NP-2	01/11/08	2552.89	43.5
NP-2			
	04/17/08	2554.36	40
NP-2	07/11/08	2551.46	40.5
NP-2	10/09/08	2550.32	39.7
MO-2007-3B	09/10/07	2551.37	38
MO-2007-3B	10/09/07	2551.20	40
MO-2007-3B	01/21/08	2555.02	40
MO-2007-3B	04/16/08	2555.05	37
MO-2007-3B	07/14/08	2553.44	37.8
MO-2007-3B	10/22/08	2550.38	42.4
MO-2007-3C	07/05/07	2553.79	136
MO-2007-3C	10/10/07	2550.24	110
MO-2007-3C	01/21/08	2555.16	130
MO-2007-3C	04/15/08	2554.72	127
MO-2007-3C	07/14/08	2552.06	126
MO-2007-3C	10/21/08	2549.91	103
MO-2007-4A	10/09/07	2615.80	37
MO-2007-4A	01/22/08	2619.78	40
MO-2007-4A	04/16/08	2618.17	33.1
MO-2007-4A	07/17/08	2615.58	34.8
MO-2007-4A	10/22/08	2613.98	40.1
MO-2007-4B	10/11/07	2614.50	37.6
MO-2007-4B	01/07/08	2619.35	60
		2617.09	
MO-2007-4B	04/16/08		33.6
MO-2007-4B	07/18/08	2614.62	35.5
MO-2007-4B	10/22/08	2612.80	37.4
MO-2007-4C	08/16/07	2626.36	78.7
MO-2007-4C	10/12/07	2614.71	80.1
MO-2007-4C	01/22/08	2618.76	80
MO-2007-4C	04/16/08	2616.91	80
MO-2007-4C MO-2007-4C	07/18/08	2614.56	78.6
MO-2007-4C	10/22/08	2612.25	84.9
CW-3	06/06/07	2675.89	57.9
CW-3	08/10/07	2674.04	59.5
CW-3	11/06/07	2671.73	57.5
CW-3	01/11/08	2677.31	55.7
CW-3	04/15/08	2675.25	54
CW-3	07/11/08	2670.76	56.7
CW-3 MO-2007-5B	10/06/08 10/12/07	2669.93	56.2
		2675.15	402
			360
MO-2007-5B	01/07/08	2682.26	
MO-2007-5B	04/17/08	2678.13	390
MO-2007-5B	04/17/08	2678.13	390
MO-2007-5B MO-2007-5B MO-2007-5B	04/17/08 07/24/08 10/23/08	2678.13 2675.74 2672.19	390 343
MO-2007-5B MO-2007-5B MO-2007-5B MO-2007-5C	04/17/08 07/24/08 10/23/08 08/23/07	2678.13 2675.74 2672.19 2650.29	390 343 412 248
MO-2007-5B MO-2007-5B MO-2007-5B MO-2007-5C MO-2007-5C	04/17/08 07/24/08 10/23/08 08/23/07 10/13/07	2678.13 2675.74 2672.19 2650.29 2654.63	390 343 412 248 265
MO-2007-5B MO-2007-5B MO-2007-5C MO-2007-5C MO-2007-5C	04/17/08 07/24/08 10/23/08 08/23/07 10/13/07 01/07/08	2678.13 2675.74 2672.19 2650.29 2654.63 2659.82	390 343 412 248 265 280
MO-2007-5B MO-2007-5B MO-2007-5B MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-5C	04/17/08 07/24/08 10/23/08 08/23/07 10/13/07 01/07/08 04/17/08	2678.13 2675.74 2672.19 2650.29 2654.63 2659.82 2663.39	390 343 412 248 265 280 259
MO-2007-5B MO-2007-5B MO-2007-5B MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-5C	04/17/08 07/24/08 10/23/08 08/23/07 10/13/07 01/07/08 04/17/08 07/24/08	2678.13 2675.74 2672.19 2650.29 2654.63 2659.82 2663.39 2662.49	390 343 412 248 265 280 259 233
MO-2007-5B MO-2007-5B MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-5C	04/17/08 077/24/08 10/23/08 08/23/07 10/13/07 01/07/08 04/17/08 07/24/08 10/23/08	2678.13 2675.74 2672.19 2650.29 2654.63 2659.82 2663.39 2662.49 2659.88	390 343 412 248 265 280 259 233 257
MO-2007-5B MO-2007-5B MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-6A	04/17/08 077/24/08 10/23/08 08/23/07 10/13/07 01/07/08 04/17/08 07/24/08 10/23/08	2678.13 2675.74 2672.19 2650.29 2654.63 2659.82 2663.39 2662.49 2659.88 2738.89	390 343 412 248 265 280 259 233 257 26.5
MO-2007-5B MO-2007-5B MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-5C	04/17/08 077/24/08 10/23/08 08/23/07 10/13/07 01/07/08 04/17/08 07/24/08 10/23/08	2678.13 2675.74 2672.19 2650.29 2654.63 2659.82 2663.39 2662.49 2659.88	390 343 412 248 265 280 259 233 257
MO-2007-5B MO-2007-5B MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-6C MO-2007-6A	04/17/08 077/24/08 10/23/08 08/23/07 10/13/07 01/07/08 04/17/08 07/24/08 10/23/08	2678.13 2675.74 2672.19 2650.29 2654.63 2659.82 2663.39 2662.49 2659.88 2738.89	390 343 412 248 265 280 259 233 257 26.5
MO-2007-5B MO-2007-5B MO-2007-5B MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-6A MO-2007-6A MO-2007-6A	04/17/08 077/24/08 10/23/08 08/23/07 10/13/07 01/07/08 04/17/08 07/24/08 10/23/08 10/02/07 01/22/08 04/18/08	2678.13 2675.74 2672.19 2650.29 2654.63 2659.82 2663.39 2662.49 2659.88 2738.89 2740.10 2739.35	390 343 412 248 265 280 259 233 257 26.5 30 20.5
MO-2007-5B MO-2007-5B MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-6A MO-2007-6A MO-2007-6A MO-2007-6A MO-2007-6A	04/17/08 07/24/08 10/23/08 08/23/07 10/13/07 01/07/08 04/17/08 07/24/08 10/23/08 10/02/07 01/22/08 04/18/08 07/24/08	2678.13 2675.74 2672.19 2650.29 2654.63 2659.82 2663.39 2662.49 2659.88 2738.89 2740.10 2739.35 2737.56	390 343 412 248 265 280 259 233 257 26.5 30 20.5
MO-2007-5B MO-2007-5B MO-2007-5B MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-6A MO-2007-6A MO-2007-6A MO-2007-6A MO-2007-6A MO-2007-6A	04/17/08 07/24/08 10/23/08 08/23/07 10/13/07 01/07/08 04/17/08 07/24/08 10/02/07 01/22/08 04/18/08 07/24/08	2678.13 2675.74 2672.19 2650.29 2654.63 2659.82 2663.39 2662.49 2659.88 2738.89 2740.10 2739.35 2737.56	390 343 412 248 265 280 259 233 257 26.5 30 20.5 16.9 18.6
MO-2007-5B MO-2007-5B MO-2007-5B MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-6A MO-2007-6A MO-2007-6A MO-2007-6A MO-2007-6A MO-2007-6A MO-2007-6A MO-2007-6A MO-2007-6A MO-2007-6A MO-2007-6A	04/17/08 077/24/08 10/23/08 08/23/07 10/13/07 01/07/08 04/17/08 07/24/08 10/23/08 10/02/07 01/22/08 04/18/08 07/24/08 10/23/08	2678.13 2675.74 2672.19 2650.29 2654.63 2659.82 2663.39 2662.49 2659.88 2738.89 2740.10 2739.35 2737.56 2737.56 2735.52	390 343 412 248 265 280 259 233 257 26.5 30 20.5 16.9 18.6 93.6
MO-2007-5B MO-2007-5B MO-2007-5B MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-6A MO-2007-6A MO-2007-6A MO-2007-6A MO-2007-6A MO-2007-6A MO-2007-6A MO-2007-6A MO-2007-6A MO-2007-6A MO-2007-6A MO-2007-6A	04/17/08 07/24/08 10/23/08 08/23/07 10/13/07 01/07/08 04/17/08 07/24/08 10/23/08 10/02/07 01/22/08 04/18/08 07/24/08 10/23/08 10/02/07 01/22/08	2678.13 2675.74 2672.19 2650.29 2654.63 2659.82 2663.39 2662.49 2659.88 2738.89 2740.10 2739.35 2737.56 2737.56 2735.52	390 343 412 248 265 280 259 233 257 26.5 30 20.5 16.9 18.6 93.6 80
MO-2007-5B MO-2007-5B MO-2007-5B MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-6A MO-2007-6A MO-2007-6A MO-2007-6A MO-2007-6A MO-2007-6A MO-2007-6B MO-2007-6B MO-2007-6B	04/17/08 07/24/08 10/23/08 08/23/07 10/13/07 01/10/08 04/17/08 07/24/08 10/23/08 01/22/08 04/18/08 10/23/08 10/23/08 10/23/08	2678.13 2675.74 2672.19 2650.29 2654.63 2659.82 2663.39 2662.49 2659.88 2738.89 2740.10 2739.35 2737.56 2737.56 2735.52	390 343 412 248 265 280 259 233 257 26.5 30 20.5 16.9 18.6 93.6 80 90.4
MO-2007-5B MO-2007-5B MO-2007-5B MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-5C MO-2007-6A MO-2007-6A MO-2007-6A MO-2007-6A MO-2007-6A MO-2007-6A MO-2007-6A MO-2007-6A MO-2007-6A MO-2007-6A MO-2007-6A MO-2007-6A	04/17/08 07/24/08 10/23/08 08/23/07 10/13/07 01/07/08 04/17/08 07/24/08 10/23/08 10/02/07 01/22/08 04/18/08 07/24/08 10/23/08 10/02/07 01/22/08	2678.13 2675.74 2672.19 2650.29 2654.63 2659.82 2663.39 2662.49 2659.88 2738.89 2740.10 2739.35 2737.56 2737.56 2735.52	390 343 412 248 265 280 259 233 257 26.5 30 20.5 16.9 18.6 93.6


TABLE D.1
SULFATE CONCENTRATION AND GROUNDWATER ELEVATION DATA


Well ID	Date	Groundwater Elevation (ft amsl)	Sulfate (mg/L)
MH-28	11/14/06	2741.08	1860
MH-28	02/19/07	2741.08	1920
MH-28	04/17/07	2739.86	1920
MH-28	07/16/07	2739.00	1880
MH-28	10/11/07	2739.18	1950
MH-28	01/18/08	2739.46	1940
MH-28	04/08/08	2740.28	1900
MH-28	07/01/08	2740.70	1680
MH-28	10/06/08	2740.01	1910
MH-29	11/14/06	2745.10	1640
MH-29	02/19/07	2746.57	1650
MH-29	04/17/07	2746.40	1690
MH-29	07/16/07	2744.08	1650
MH-29	10/11/07	2741.23	1710
MH-29	01/18/08	2742.74	1710
MH-29	04/08/08	2742.99	1700
MH-29	07/01/08	2742.65	1730
MH-29	10/07/08	2741.63	1740

ft amsl = feet above mean sea level mg/L = milligrams per liter NM = Not Measured, Obstruction NA = Not Analyzed; pump failure

FIGURE D.1
SULFATE CONCENTRATION AND GROUNDWATER ELEVATION OVER TIME FOR WELLS
CW-6, CW-7, CW-8, AND CW-9

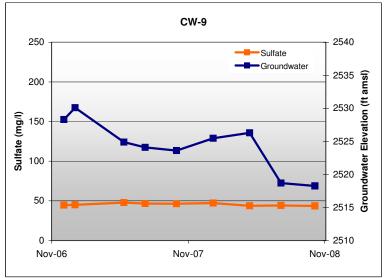
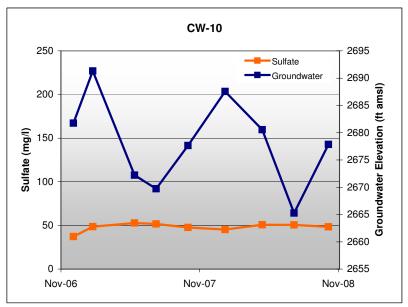
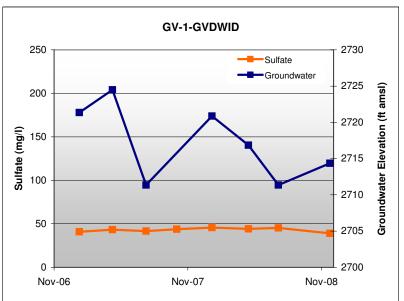
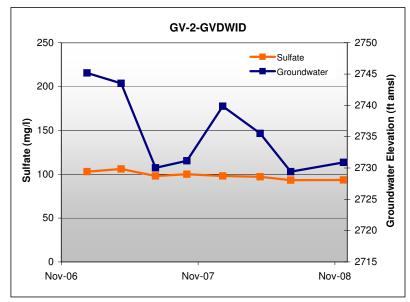





FIGURE D.2
SULFATE CONCENTRATION AND GROUNDWATER ELEVATION OVER TIME FOR WELLS
CW-10, GV-1-GVDWID, GV-2-GVDWID, AND GV-SI-GVDWID

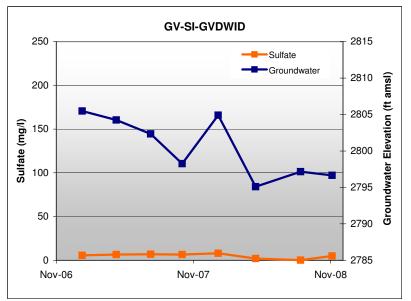
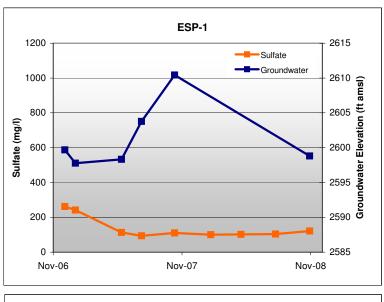
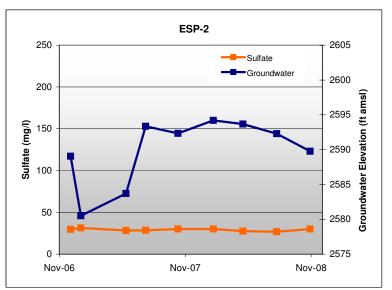
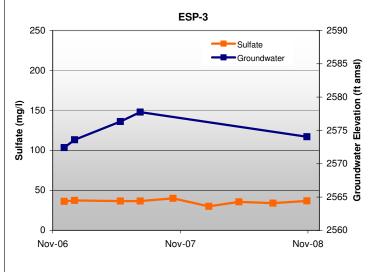





FIGURE D.3
SULFATE CONCENTRATION AND GROUNDWATER ELEVATION OVER TIME FOR WELLS
ESP-1, ESP-2, ESP-3, AND ESP-4

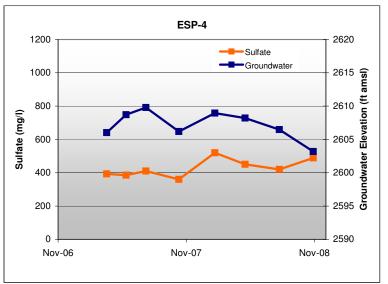
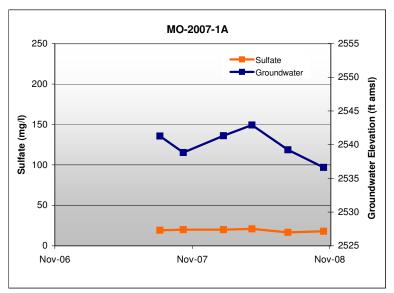
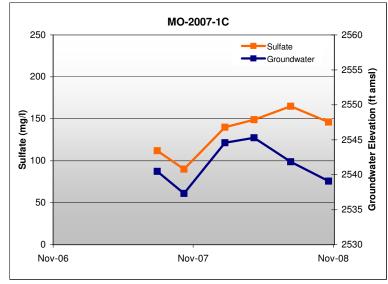




FIGURE D.4
SULFATE CONCENTRATION AND GROUNDWATER ELEVATION OVER TIME FOR WELLS
MO-2007-1A, MO-2007-1B, MO-2007-1C, AND MO-2007-2

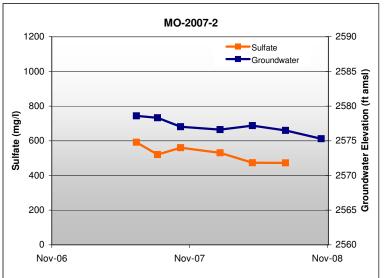
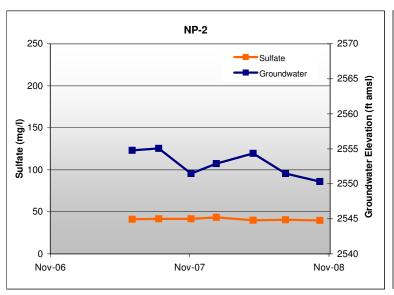
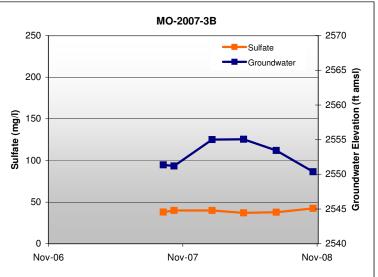




FIGURE D.5
SULFATE CONCENTRATION AND GROUNDWATER ELEVATION OVER TIME FOR WELLS
NP-2, MO-2007-3B, AND MO-2007-3C

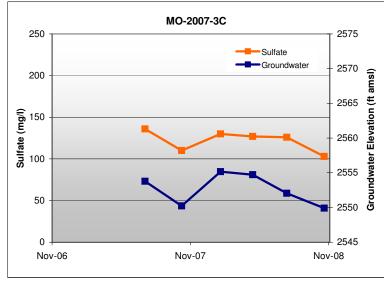
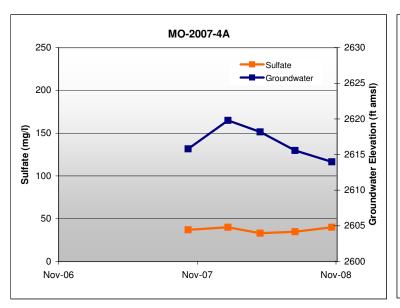
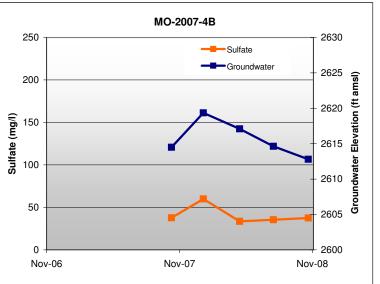




FIGURE D.6
SULFATE CONCENTRATION AND GROUNDWATER ELEVATION OVER TIME FOR WELLS
MO-2007-4A, MO-2007-4B, AND MO-2007-4C

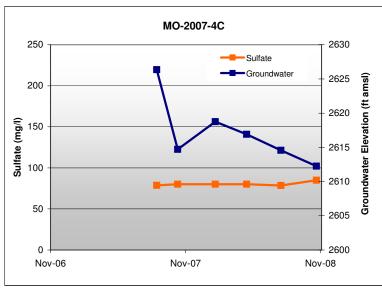
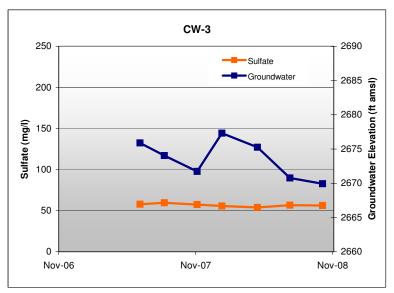
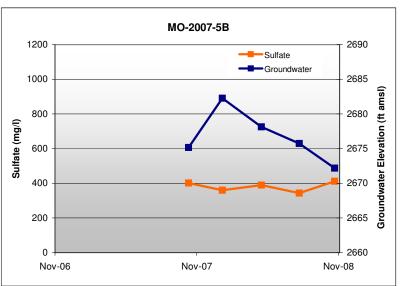




FIGURE D.7
SULFATE CONCENTRATION AND GROUNDWATER ELEVATION OVER TIME FOR WELLS
CW-3, MO-2007-5B, AND MO-2007-5C

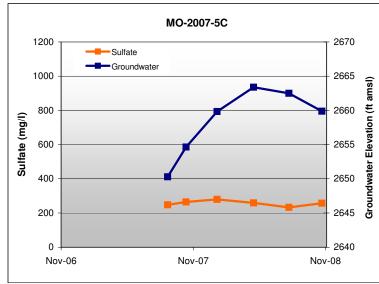
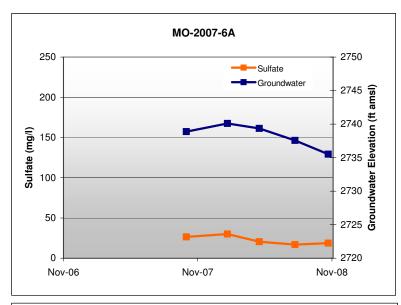
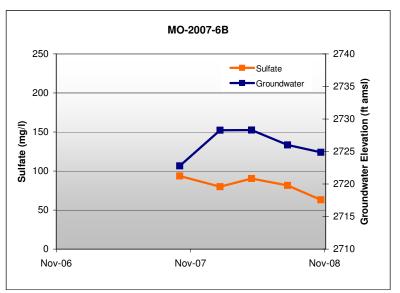
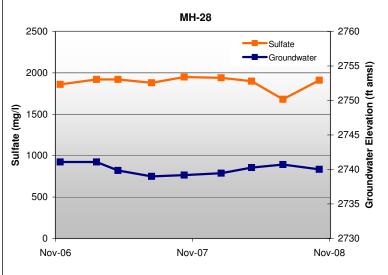
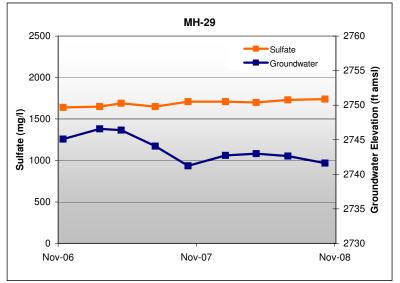






FIGURE D.8
SULFATE CONCENTRATION AND GROUNDWATER ELEVATION OVER TIME FOR WELLS
MO-2007-6A, MO-2007-6B, MH-28, AND MH-29

