APPENDIX I

NUMERICAL MODEL FOR SIMULATION OF GROUNDWATER FLOW AND SULFATE TRANSPORT IN THE VICINITY OF THE PHELPS DODGE SIERRITA TAILING IMPOUNDMENT

TASK 4 OF AQUIFER CHARACTERIZATION PLAN

REVISION 1

APPENDIX I

NUMERICAL MODEL FOR SIMULATION OF GROUNDWATER FLOW AND SULFATE TRANSPORT IN THE VICINITY OF PHELPS DODGE SEIRRITA TAILING IMPOUNDMENT

TASK 4 OF AQUIFER CHARACTERIZATION PLAN MITIGATION ORDER ON CONSENT DOCKET NO P-50-06

Prepared for:

PHELPS DODGE SIERRITA, INC.

6200 West Duval Mine Road Green Valley, Arizona

Prepared by:

HYDRO GEO CHEM, INC.

51 West Wetmore Road Tucson, Arizona 85705 (520) 293-1500

January 30, 2009

1.	INTRO	DDUCTION	1
2.	CONC 2.1 2.2 2.3	CEPTUAL SITE MODEL Hydrostratigraphy Sulfate Sources and Distribution Sulfate Transport	3 3 4 5
3.	NUMI	ERICAL MODEL SELECTION	7
4.	MODH 4.1 4.2 4.3	EL CONSTRUCTION 1 Spatial and Temporal Extents 1 Discretization 1 Boundary Conditions 1 4.3.1 No Flow Boundaries 1 4.3.2 Specified Head and Concentration Boundaries 1 Groundwater Sources and Sinks 1	9 .0 .1 .2 .2 .4
	7.7	4.4.1Mountain Front Recharge14.4.2River and Agricultural Recharge14.4.3Seepage from Tailing Impoundments14.4.4Artificial Recharge24.4.5Pumping24.4.6Evapotranspiration24.4.7Twin Buttes Mine Pit2	16 17 19 23 24 27 28
	4.5 4.6	Initial Aquifer Parameterization24.5.1Saturated Hydraulic Conductivity24.5.2Storage Coefficient and Specific Yield34.5.3Effective Porosity34.5.4Dispersivity3Initial Conditions3	28 29 30 31 31 32
5.	MODH 5.1 5.2 5.3 5.4	EL CALIBRATION 3 Calibration Criteria 3 Calibration Methodology 3 Calibration Results 3 5.3.1 Groundwater Calibration 3 5.3.2 Sulfate Concentration Calibration 3 Adjustments During Model Calibration 4	13 13 15 15 15 15 18
6.	SENS 6.1 6.2	ITIVITY ANALYSIS4 Sensitivity Analysis Procedure4 Sensitivity Analysis Results4	3 3 5

TABLE OF CONTENTS

TABLE OF CONTENTS (Continued)

7.	SUMMARY AND CONCLUSIONS			
	7.1	Model Strengths	48	
	7.2	Model Limitations	48	
		7.2.1 Spatial and Temporal Uncertainty	49	
		7.2.2 Spatial and Temporal Averaging	49	
	7.3	Conclusion	50	
8.	REFERENCES			

TABLES

- I.1 Initial and Calibrated Model Parameters
- I.2 Seepage Estimates for Tailing Impoundments
- I.3 Results of Sensitivity Analysis

FIGURES

- I.1 Site Location
- I.2 Model Extents and Well Locations
- I.3 Model Discretization
- I.4 Model Boundary Conditions
- I.5 Model Recharge Zones for 1980 [not defined in doc]
- I.6 Model Recharge Zones for 2006
- I.7 River and Agricultural Recharge Volumes
- I.8 Seepage Rate Estimates for Tailing Impoundments
- I.9 Total Pumping in Model Domain
- I.10 Saturated Hydraulic Conductivity Distribution in Model Layer 1
- I.11 Saturated Hydraulic Conductivity Distribution in Model Layer 2
- I.12 Saturated Hydraulic Conductivity Distribution in Model Layer 3
- I.13 Specific Yield Distribution in Model Domain
- I.14 Simulated Groundwater Level Contours with Measured Data for 1940 Steady-State Simulation
- I.15 Simulated versus Measured Groundwater Levels for Steady-State Simulation (1940)
- I.16 Simulated Groundwater Level Contours for the End of 2006 with Measured Groundwater Levels from First Quarter 2007
- I.17 Simulated Groundwater Level Contours for the End of 2006 with Measured Groundwater Levels from Third Quarter 2007
- I.18 Simulated versus Measured Groundwater Levels for Transient Simulation (Entire Model Domain)

FIGURES (Continued)

- I.19 Simulated versus Measured Groundwater Levels for Transient Simulation (Area of Emphasis Only)
- I.20 Simulated Average Sulfate Concentration Contours for the End of Year 2006 with Measure Sulfate Concentrations from Third Quarter 2007
- I.21 Simulated Sulfate Plume Extents for the End of Year 2006 in Upper, Middle, and Lower Model Layers

APPENDICES

- I.1 Well Locations and Pumping Rates
- I.2 Measured and Simulated Hydrographs at Select Wells
- I.3 Measured and Simulated Chemographs at Select Wells

Numerical Modeling for Simulation of GW Flow and Sulfate Transport I-iv H:\78300\78314 Numerical Model\Report\REVISED App I PDSI Modeling Report 013009.doc January 30, 2009

1. INTRODUCTION

A numerical groundwater flow and sulfate transport model was developed for the region surrounding the Phelps Dodge Sierrita, Inc. (PDSI) Tailing Impoundment (PDSTI) (Figure I.1). The model, referred to as the PDSI Regional-Scale Model (PDSIRM), was developed for Task 4 of the Work Plan (Hydro Geo Chem, Inc. (HGC), 2006) and represents basin fill aquifer conditions in the vicinity of the PDSTI for the period from 1940 to 2006. The model will be used to predict future conditions associated with potential mitigation actions being considered in the Feasibility Study to develop a Mitigation Plan pursuant to the Work Plan. The goals of the PDSIRM are to:

- Calibrate to measured groundwater levels and sulfate distributions within the model domain (1940 to 2006).
- Understand the current groundwater flow and sulfate transport dynamics at different locations near the PDSTI.
- Predict future groundwater levels and sulfate distributions in the vicinity of the PDSTI under various mitigation alternatives.

The PDSIRM is intended to be a tool for evaluating potential mitigation alternatives for the sulfate plume, where the sulfate plume is defined by aqueous sulfate concentrations in excess of 250 milligrams per liter (mg/L) that result from seepage from the PDSTI. Any use of the PDSIRM outside of this intended use may require additional aquifer characterization and model refinement.

This report describes the model development and calibration. Section 2 summarizes the conceptual site model that was the basis for model construction, Section 3 discusses model code

selection; Section 4 provides details on model construction, including model discretization, boundary conditions, sources and sinks, and initial model parameterization; Section 5 discusses model calibration for the steady state (1940) and transient (1941 to 2006) simulations; Section 6 discusses the results of a sensitivity analysis; and Section 6 discusses the strengths and limitations of the PDSIRM. Predictive simulations using the PDSIRM will be conducted as part of the Feasibility Study.

2. CONCEPTUAL SITE MODEL

The numerical model was constructed to reflect the conceptual model of the hydrostratigraphy, sulfate sources and distribution, and sulfate transport mechanisms. The conceptual site model is summarized below, and a more detailed discussion of the conceptual model is provided in Section 3 of the main body of the Aquifer Characterization Report (ACR).

2.1 Hydrostratigraphy

The conceptual model of hydrostratigraphy of the basin fill aquifer was developed based on classification and comparison of material types intercepted in boreholes and is shown in Appendix G of the ACR. The basin fill consists of coarse-grained sediment, primarily sand and gravel, with a considerable amount of variation in material types with depth and laterally. In the vicinity of the sulfate plume, the general stratigraphic sequence consists of an upper, middle, and lower zone. The upper zone of basin fill is between 200 and 600 feet thick, is predominately unsaturated, and contains sand and gravel with a high proportion of silt and clay either as discrete layers or as mixtures with the sand and gravel. The middle zone is predominately sand and gravel. Silt and clay can be locally present in the middle zone, but they do not form a significant percentage of the middle zone. The middle zone extends to bedrock in some portions of the aquifer. Where the middle zone does not extend to bedrock, it is underlain by a lower zone of basin fill that contains greater amounts of silt and clay, a lack of gravel, zones of moderate induration, and increased calcium carbonate. In general, hydraulic conductivities range between 5 and 50 feet per day (ft/day) in the upper and middle zones of the basin fill and are generally lower in the lower zone of the basin fill (see Appendix H of the ACR). There is also a general tendency for hydraulic conductivity to increase slightly from south to north, with the highest hydraulic conductivities in the northern portion of the plume (e.g., CW-7 and MO-2007-2).

The bedrock is significantly less permeable than the overlying basin fill aquifer. Hydraulic tests of existing shallow bedrock wells at the Sierrita Mine indicate that bedrock hydraulic conductivities are typically one to more than four orders of magnitude lower than for the basin fill. The highest hydraulic conductivities estimated from tests in bedrock wells are typically less than 1 ft/day, and range to as low as about 0.00001 ft/day. In contrast, hydraulic conductivities measured in the basin fill have a mean of 20 ft/day and range up to 120 ft/day (see Figure 6 and Appendix A of the ACR). Because even the highest bedrock conductivity estimates, presumably representative of more fractured rock, are significantly lower than typical basin fill conductivities, the bedrock cannot be a significant source of, or conduit for sulfate migration to the basin fill even if elevated concentrations of sulfate are present in the bedrock.

2.2 Sulfate Sources and Distribution

The primary known source of sulfate is gravity drainage of the pore water (seepage) from the PDSTI to the underling basin fill aquifer. A second source of sulfate is groundwater in the bedrock upgradient of the tailing impoundment; however, the contribution of sulfate by bedrock recharge is likely very minor compared to the seepage from the PDSTI because of the low permeability of bedrock. Potential sources of sulfate outside the PDSTI may be the tailing impoundments at other mines and recharge from the Santa Cruz River. Work conducted for the Aquifer Characterization Plan identified a zone of sulfate in excess of 100 mg/L along the Santa Cruz River channel. Groundwater monitoring indicates no commingling between the plume originating from the PDSTI and the sulfate-bearing water along the Santa Cruz River channel at this time (see Appendix B of the ACR).

The lateral distribution of sulfate in the basin fill aquifer is shown in Figure 4 of the ACR, and the extent of the sulfate plume as defined by the 250 mg/L contour is shown on Figure 1 of the ACR. Within the plume, elevated sulfate generally occurs throughout the thickness of the saturated basin fill aquifer, although the lateral and vertical distributions of sulfate on the margins of the plume can be influenced by local-scale aquifer heterogeneities and hydraulic conditions.

2.3 Sulfate Transport

Once introduced to the basin fill aquifer, sulfate is transported at the average groundwater flow velocity because it is a conservative ion and does not attenuate through adsorption or precipitation at the concentrations and conditions observed in the study area. The direction and velocity of groundwater flow and sulfate transport are determined by the prevailing hydraulic gradients and hydraulic properties of the basin fill aquifer. Sulfate-bearing seepage is intercepted through groundwater pumping within the interceptor wellfield. Currently, sulfate capture is most effective in the southern portion of the interceptor wellfield. Sulfate capture is incomplete in the northern portion of the interceptor wellfield. The impacted groundwater that is not intercepted at the interceptor wellfield flows easterly and mixes with the northerly flowing regional groundwater in the basin fill aquifer near Green Valley. The mixing of the high sulfate water originating in the PDSTI with the northerly flowing regional groundwater in the central part of the basin causes the plume to turn northward and creates a sharp front at the eastern plume boundary (ACR, Figure 4). Locally, groundwater flow and sulfate transport can be influenced by geologic heterogeneities, groundwater pumping, and recharge.

3. NUMERICAL MODEL SELECTION

MODFLOW-SURFACT version 3.0 (HydroGeologic, Inc., 1996) is the numerical code used for the PDSIRM groundwater flow and sulfate transport simulations. MODFLOW-SURFACT is based on the widely used United States Geological Survey modeling program, MODFLOW (McDonald and Harbaugh, 1988). The MODFLOW-SURFACT program incorporates several additional modules into the MODFLOW framework that are designed to increase model robustness and improve its ability to simulate complex hydrologic processes. Some advantages of MODFLOW-SURFACT that are particularly beneficial for a three-dimensional model such as the PDSIRM include:

- Improved ability to manage cell wetting and drying using a variably saturated formulation with "pseudo-soil functions". This feature is essential in a transient, multi-layer model where upper layers may de-saturate, then re-wet, as the result of pumping and recharge.
- Automatic allocation of pumping withdrawals from each layer in wells that are screened over multiple layers. This feature provides for a more correct representation of pumping.
- Automatic and adaptive time-stepping and output control. This feature increases the flexibility and efficiency of the numerical solver by adjusting the solver time stepping based on the complexity of the problem.
- Improved matrix solver. This feature adds efficiency and robustness over the standard MODFLOW solvers.

Sulfate transport was simulated in MODFLOW-SURFACT using the Total Variation Diminishing (TVD) implicit scheme. The TVD scheme constrains the solution domain of a system of partial differential equations so that values of local minima do not decrease and values of local maxima do not increase with time. This ensures that numerical solutions are physically

correct and mass conserving.

Model construction and the execution of the MODFLOW-SURFACT code were performed using Groundwater Vistas, Version 4 (Environmental Simulations, Inc., 2000) software package. Groundwater Vistas provides a visual interface for assembly, execution, and viewing of the MODFLOW family of codes.

4. MODEL CONSTRUCTION

The PDSIRM is designed to simulate the major hydrogeologic processes that influence groundwater flow and sulfate transport in the region of the PDSTI. These include regional groundwater flow, groundwater pumping, natural and artificial recharge, and evapotranspiration. A variety of sources were consulted during model development to quantify these processes. Principal sources of information included the following:

- Reports of previous groundwater flow and transport models in the vicinity of PDSTI (Travers and Mock, 1984; Hanson and Benedict, 1994; Mason and Bota, 2006; Errol L Montgomery and Associates (ELMA), 1994, 2007a).
- Arizona Department of Water Resources (ADWR).
- Water providers in the vicinity of PDSTI (e.g., Community Water Company (CWC), Farmers Investment Company (FICO)).
- Hydrogeologic information collected or compiled by HGC as part of the Aquifer Characterization Plan.
- Hydrogeologic information assembled and/or reevaluated from prior investigations (e.g., ELMA, 1987, 1995, 2007b).
- Information provided by PDSI, including sulfate concentration and groundwater level databases.

All information was synthesized under the context of the site conceptual model, discussed in Section 3 of the main body of the ACR. The conceptual model and the modeling objectives provided the basis for the construction of the PDSIRM, including the spatial and temporal extents; discretization and layering of the model domain; boundary conditions; groundwater and sulfate sources and sinks; and initial aquifer properties.

4.1 Spatial and Temporal Extents

The active portion of the PDSIRM domain covers an area of approximately 100 square miles (260 square kilometers (km²)) (Figure I.2). The active model region extends from just above West Arivaca Road on the south (Universal Transverse Mercator (UTM) 3510500) to just below Pima Mine Road on the north (UTM 3540000). From the PDSTI this region extends east about 8.5 miles (13.5 km). The area of primary emphasis for the PDSIRM is the area in the vicinity of PDSTI, including the areas surrounding the current extent of the sulfate plume. The area of primary emphasis incorporates the area bounded by about UTM 3519700 on the south to UTM 3531900 on the north and from the no flow boundary on the west to approximately UTM 503700 on the east (Figure I.2). This area of primary interest extends approximately 1,000 feet or more beyond the northern and eastern extents of the sulfate plume. Further, the area of primary interest corresponds to other modeling efforts for the PDSTI (e.g., ELMA, 1994, 2007a) and has been the focus of the aquifer characterization conducted as part of the Work Plan and reported in the ACR. Aquifer characteristics, including hydraulic properties and hydrogeologic units, outside of the area of emphasis are less characterized and, therefore, are less certain. The domain outside of the area of emphasis has less significance to simulation of sulfate plume migration because it is distant from the plume and potential mitigation actions that will be simulated to develop the Mitigation Plan. The aquifer region outside the area of primary emphasis is included in the model to reduce the sensitivity of flow and transport simulations within the area of emphasis on assumed boundary conditions.

The temporal domain of the PDSIRM is divided into three simulation periods: steady-state (1940), historic (1941 – 2007), and predictive (2007 and beyond). The steady-state

simulation of the year 1940 establishes initial groundwater levels for the PDSIRM before significant groundwater development in the area. During and prior to 1940, the Upper Santa Cruz Basin is believed to have been in a state of "dynamic equilibrium" (Mason and Bota, 2006), meaning that groundwater withdrawals matched groundwater inflows, and water levels had no long-term fluctuations. Groundwater levels from the steady-state simulation were used as the initial heads for a transient simulation of groundwater flow and sulfate transport for the period from 1941 to 2006 (historic simulation). The final heads from the historic simulation will be used as the initial heads for the predictive simulations.

4.2 Discretization

The model domain is discretized into 215 rows, 162 columns, and 3 layers (Figure I.3). Rows are oriented west to east and columns are oriented north to south. Grid cell widths and lengths range from 100 meters (m) to 400 m. The coarsest grid cell spacing (400 m by 400 m) occurs in the southern, northern, and eastern positions of the model domain, peripheral to the area of emphasis. The finest grid cell spacing (100 m by 100 m) is centered in the area of primary emphasis (Figure I.3). Placing the largest grid cells in the periphery of the model domain and decreasing the grid cell size within the area of primary interest reduced computation requirements without compromising spatial resolution within the area of primary interest. (Figure I.3).

A three-layer model was used to represent the upper, middle, and lower zones of the basin-fill aquifer that were identified during aquifer characterization (ACR, Section 3.2.1). The

three model layers are of equal thickness at a given location, with the thickness of each layer varying according to the aquifer thickness at each location. Information collected as part of the Aquifer Characterization Plan shows a coarser-grained, higher permeability zone at intermediate depths in several locations (ACR, Appendices D, E, G, and F). Results of pumping tests at nested wells (ACR, Appendix E) and depth-specific inflow velocity profiling at ESP-2 and ESP-4 wells (ACR, Appendix C) also suggest an intermediate-depth zone of relatively higher hydraulic conductivities. Layer 2 of the model generally corresponds to what was identified as the intermediate-depth zone during aquifer characterization. The top of the upper model layer (Layer 1) corresponds to the ground surface, and the bottom of the lower layer (Layer 3) corresponds to the bedrock elevation, as estimated during aquifer characterization (Section 3.3.1 of ACR and ACR, Appendix A).

4.3 Boundary Conditions

The model has two types of boundary conditions: no flow and specified head and concentration (Figure I.4). No flow cells are inactive grid cells that do not permit groundwater flow or solute transport into, or out of, the cell. Specified head and concentration boundaries are grid cells that are maintained at specified values during a stress period (defined as one year for the PDSIRM) but can vary from one stress period to another.

4.3.1 No Flow Boundaries

No flow conditions are assigned along the model boundary at locations that represent the outer edges of the basin fill aquifer (Figure I.4) and along the bottom of the lowermost layer,

representing the bedrock surface. No flow cells are considered to be outside of the model domain and represent a natural barrier to flow and transport. No flow boundaries specified at the southeastern portion of the domain correspond to the pinching out of the aquifer against the Santa Rita Mountains; those specified at the western edge of the model domain correspond to the pinching out of the aquifer against the Sierrita Mountains. Note that natural recharge along these mountain ranges was accounted for by specifying recharge to the cells immediately interior to the no flow boundaries where mountain front recharge is believed to occur (see Section 4.4.1). The no flow cells on the western edge of the model also included the pit areas of the Asarco Mission Mine and the Twin Buttes Mine which are mainly located in bedrock and which are not of primary interest for this modeling effort. Although the Twin Buttes Mine pit area was not included in the active model domain, groundwater flow into the Twin Buttes Mine pit was accounted for by specifying a constant negative groundwater flux in active cells immediately adjacent to the Twin Buttes Mine pit (ACR Section 3.4.3).

The no-flow boundary representing the aquifer bedrock surface was created from the bedrock elevation database that was developed as part of the Aquifer Characterization Plan (ACR, Appendix A). This database includes drilling data from boreholes that are located in the southern Tucson basin and that either penetrated bedrock or deep basin fill. Information sources for borehole data were the ADWR 35- and 55-series imaged records databases, the PDSI well database, PDSI borehole data, and a report by Steffen, Robertson, and Kirsten (SRK) (1985b). Bedrock elevation data were translated into a bedrock surface grid using the software package Surfer[®]. For the purpose of model stability, the total thickness of each layer of the PDSIRM was kept to a minimum of 30 m (98 feet). This stipulation required depressing bedrock elevations

along the portions of the model boundaries where the basin fill aquifer pinched out against the rise of the mountain fronts. Bedrock elevations were lowered beneath portions of the PDSTI; however no bedrock elevations under the IW wellfield were lowered. The model sensitivity to the bedrock elevation adjustments could not be formally evaluated because the adjustments were required for model stability. Any effects of the adjustments likely were compensated during calibration of hydraulic conductivities.

4.3.2 Specified Head and Concentration Boundaries

Specified head and concentration boundaries are located along the south, north, and eastern boundaries of the model (Figure I.4). These boundaries occur within, rather than at the margins of, the basin-fill aquifer. Very little groundwater level data exists along these domain boundaries. Therefore, for the period from 1940 to 1999, the values of the specified heads were initially based on a regional groundwater flow model constructed by Mason and Bota (2006) (referred to hereafter as the ADWR model). Although the ADWR model heads are simulated rather than measured, they provide a reasonable starting point for the calibration of the specified head values because they are based on a large-scale, calibrated, model of the Tucson Basin.

The initial specified boundary heads were created by digitizing the AWDR model results from each stress period (1940 to 1999). Because the ADWR model uses 0.5 mile (approximately 805 m) grid spacing, boundary heads between the ADWR grid cells were interpolated. For the period from 2000 to 2006, specified boundary heads along the north boundary were projected from groundwater level measurements made during the first and third quarters of 2007 and from the hydraulic gradients inferred from those measurements (ACR, Appendix B). The values of the specified boundary heads were adjusted during model calibration to better match historic groundwater levels measured near the specified head boundary locations.

Sulfate concentrations are also prescribed along the specified head boundaries. The specified concentration boundary conditions prescribe the sulfate concentration for groundwater flowing into the model domain. Any prescribed concentrations at outflow boundaries are ignored, and concentrations at outflow cells are determined by the code. The boundary concentrations were estimated using data from recent water quality sampling events (ACR, Appendix B). Sulfate concentrations ranging from three to 100 mg/L are specified along the southern boundary, with the highest concentrations along the Santa Cruz River channel, and the lowest concentrations near the western mountain front. A sulfate concentration of 30 mg/L is specified along the eastern boundary, and a concentration 75 mg/L is specified along the northern boundary. A water quality survey conducted in the early 1980s by the Pima Association of Governments (PAG) shows a similar spatial distribution of sulfate concentrations (PAG, 1983); therefore, the specified boundary concentrations are constant during the simulation.

4.4 Groundwater Sources and Sinks

Sources of groundwater in the PDSIRM domain are mountain front recharge, river and agricultural recharge, seepage from tailing impoundments, and artificial recharge. Groundwater sinks include pumping wells, evapotranspiration (ET), and the Twin Buttes Mine pit. All sources and sinks were modeled as transient processes, meaning that values of a specified source or sink could change throughout the simulation. MODFLOW-SURFACT uses the stress period concept for transient simulations. All processes are constant during a user-specified stress period, but can change step-wise between stress periods. The constant stress period time in the PDSIRM is one year. Sources or sinks are modeled using annual averages. Figures I.5 and I.6 show the spatial distribution of recharge sources for two representative years, 1980 and 2006, respectively.

<u>4.4.1</u> <u>Mountain Front Recharge</u>

Mountain front recharge is the contribution from mountains to the groundwater recharge in the basin fill aquifer, including infiltration from surface sources (i.e., precipitation, streamflow) and subsurface inflow from adjacent bedrock. Mountain front recharge is included along the western edge of the PDSIRM domain (Sierrita Mountains) and along the southeastern corner of the domain (Santa Rita Mountains). Initial estimates of mountain front recharge were taken from the ADWR model, which is based on recharge estimates from Hanson and Benedict (1994). The ADWR model assumed mountain front recharge to be constant in time. The volumetric recharge rates in the ADWR model corresponding to the southeastern recharge zone in the PDSIRM and the western recharge zones north and south of the PDSTI are 2,100 acre-feet per year (ac-ft/yr) along the southeastern mountain front (Santa Rita Mountains) and 7,900 (acft/yr) along the western portion of the domain (Sierrita Mountains) (Table I.1). Both of these volumetric rates are equivalent to approximately 200 gallons per minute per mile (gpm/mi). The mountain front recharge is uniformly distributed as areal recharge rates (volume/area/time) to the grid cells in Layer 1 (uppermost model layer) that are immediately inside the no flow boundary cells along the respective west and southeast fronts. A mass balance for the simulated mountain front recharge was computed to verify that the sum of the areal rates totaled the volumetric rates applied in the ADWR model.

Spatially uniform mountain front recharge rates are unlikely along the entire range of the Sierrita Mountains. The pits at the Twin Buttes Mine and PDSI Mine likely capture some mountain front recharge. Farther south, the Demetrie Wash, which runs southeast from the PDSI mill area across the southwest side of the PDSTI, likely provides greater recharge rates near the area of PDSTI than the uniform rates based on the estimates of Hanson and Benedict (1994). Little information is available to quantify the capture in the Twin Buttes pit or the contribution from the Demetrie Wash; however, consideration of these features was used to guide model calibration. For example, mountain front recharge was removed along the mountain front adjacent to and to the north of Twin Buttes Mine and was increased in the proximity of Demetrie Wash (Section 4.4 and Table I.1).

4.4.2 River and Agricultural Recharge

River recharge is defined as infiltration from the Santa Cruz River that replenishes the basin-fill aquifer, and agricultural recharge is defined as water that is applied to crops in excess of consumptive use and evaporation demand. The rates and spatial distribution of river and agricultural recharge in the PDSIRM were taken from the ADWR model. River recharge in the ADWR model is based on reports by Gallagher (1979), Keith (1981), and Webb and Betancourt

(1990) as compiled in Hanson and Benedict (1994). Agricultural recharge in the ADWR model was estimated as the product of the total volume of water used for irrigation and an irrigation inefficiency coefficient. Mason and Bota (2006) determined the spatial distribution of agricultural recharge from a number of sources, including the location of irrigation grandfathered rights and crop survey data. The ADWR model lumps the rates for river recharge and agricultural recharge because agricultural land use is centered along the Santa Cruz River. Therefore, these two sources of inflow are not distinguished from each other.

Annual river and agricultural recharge in the ADWR model increases during the period from 1940 to 1960 from about 15,000 acre-feet (ac-ft) to about 30,000 ac-ft. The increase in recharge rates generally corresponds to a decline in groundwater levels due to pumping. After 1960, annual river and agricultural recharge gradually decreases to between about 15,000 and 20,000 ac-ft/yr. The decrease is reflective of increased irrigation efficiency and urbanization of farmland (Mason and Bota, 2006). River and agricultural recharge from the ADWR model was apportioned in the PDSIRM by rediscretizing the spatial distribution of recharge in the ADWR model to match the finer grid cell spacing in the PDSIRM. The refined distribution for each stress period was then imported into the PDSIRM. The extents of recharge are much wider than the channel widths of the Santa Cruz River (Figures I.5 and I.6). The wide extent accounts for the agricultural recharge component.

The ADWR model runs only through 1999. The value of river and agricultural recharge in the PDSIRM after 1999 was set at about 15,400 ac-ft/yr, which is near the recharge volumes in the mid-1990's. Using the recharge value from the mid-1990s to approximate recharge from 2000 to 2006 is more appropriate than using a longer-term average because recharge from agriculture has declined as agricultural lands have been converted to residential developments. A comparison of the ADWR model annual recharge volumes and the recharge volumes used in the calibrated PDSIRM is shown in Figure I.7.

4.4.3 Seepage from Tailing Impoundments

Recharge due to seepage from tailing impoundments is included for the PDSTI, Esperanza Tailing Impoundment (ETI), and the Twin Buttes Tailing Impoundment (TBTI) (Figures I.5 and I.6). Seepage from Asarco Mission Mine Tailing Impoundments 7 and 8, for which estimates were not readily available, was not included in the model. Because these impoundments are adjacent to the northern model boundary, the affects of seepage from these impoundments were assumed to be accounted for in the adjacent specified head boundary to the north.

4.4.3.1 Phelps Dodge Sierrita Tailing Impoundment

PDSTI has been in operation since 1970 (Reed & Associates, 1986). Initial seepage rates for the PDSTI were taken from a water budget study conducted for the PDSTI (ELMA, 2007b). The water budget estimates the historical hydraulic loading to, and seepage from, the PDSTI using PDSI milling and slurry composition data; yearly satellite images of tailing impoundment extent and wetness; on-site pan evaporation correlated with pan evaporation estimates from nearby weather stations (to extend the period of record); historical climatological data; and moisture retention characteristics measured from soil cores taken at PDSTI. The estimated seepage rates, reported in Table I.2 and Figure I.8, show initially high seepage rates (about 10,000 ac-ft/yr) that gradually decrease through the late 1980s and then increase again in the early 1990s. The cumulative seepage volume through the PDSTI is estimated to be 252,406 ac-ft as of the end of 2006. The highest estimated seepage rate through the PDSTI (11,507 ac-ft/yr) occurred in 1972, and the lowest seepage rate through the PDSTI (2,241 ac-ft/yr) occurred in 1988. Adjustments to the seepage rate estimates were allowed during model calibration, and seepage rates in the calibrated model were about 30 to 35 percent higher than the estimates in ELMA (2007b) (Section 4.4, Table I.2). The need to increase the estimated PDSTI seepage rates for calibration does not necessarily indicate that seepage is higher, but that flow beneath the PDSTI from all the water sources needed to be increased to calibrate to measured groundwater levels and sulfate concentrations. Uncertainties in several hydrologic parameters and processes may have contributed to the need to increase the PDSTI seepage rates in the calibrated model. These parameters and processes may include mountain front recharge, bedrock underflow, aquifer and/or bedrock permeability's, and seepage from the PDSTI and ETI.

The modeled areal extent of seepage from the PDSTI increases with time, consistent with the growth of the PDSTI, as shown in images used in the development of the water budget for the PDSTI (ELMA, 2007b). These images indicate that the seepage area in the early stages of PDSTI development was concentrated toward the southeastern portion of the present-day impoundment, and gradually grew to encompass the full north-south extent of the PDSTI. The tailings construction and drainage is represented in the model by gradually increasing the recharge area of the PDSTI with time, with recharge focused on the lower half of the impoundment during the 1970's and early 1980's. After 1985, the majority of the present-day impoundment was developed, and the modeled recharge area of the PDSTI is constant after 1985. Based on the analysis of tailing samples taken from the PDSTI (ELMA, 2007b), the physical and hydrologic properties of the tailing material at the PDSTI have no substantial spatial variations. Therefore, recharge rates for the PDSTI recharge areas are spatially uniform in the model.

PDSI data show that sulfate concentrations in samples collected from the PDSTI reclaim pond between 1980 and 2006 range from less than 1,600 mg/L to as high as about 2,800 mg/L, with an average concentration of 1,956 mg/L (ELMA, 2007b). The upper concentration of sulfate in seepage is limited by its solubility, which can vary over a wide range depending on the factors such as the water temperature and other ions present in the groundwater (Snoeyink and Jenkins, 1980; Hendry et al., 1986). Nevertheless, the average sulfate concentration in the samples from the reclaim pond provides a reasonable starting estimate of the average sulfate concentration in the PDSTI seepage. The sulfate concentrations measured from samples taken from the reclaim pond have no apparent trend with time, so a constant concentration of 1,956 mg/L was specified in the PDSTI seepage water. Adjustments of this parameter were allowed during model calibration; although, a concentration of 1,956 mg/L is used in the calibrated model (Table I.1).

4.4.3.2 Esperanza Tailing Impoundment

The ETI was in operation from 1959 to 1981. High and low estimates for seepage from the ETI were estimated using a water budget methodology similar to that used for the PDSTI (ELMA, 2007c). The high and low values account for uncertainties in evaporation estimates. The calibrated model uses the high seepage estimates. These seepage volumes range from about 2,200 ac-ft/yr to about 1,000 ac-ft/yr. No tailing was delivered to the ETI during 1972 and between September 30, 1977 and February 1, 1978 (Reed & Associates, Inc., 1986). Consequently, the water balance shows no seepage for the years 1972 and 1978 (Table I.2, Figure I.8), although some seepage from the ETI probably did occur during these years due to drain-down from the previous years' applications. Drain-down seepage was not estimated in the water budget for the ETI. Therefore, the water allocation for the 1971 to 1972 and 1977 to 1978 will have some inaccuracies; although, the total water applied and total seepage over these periods balances the water budget. Any inaccuracies in the timing of water allocation during the two years do not impact the model results (Section 5).

The model recharge area for the ETI is 250 acres and is assumed to be constant with time. The ETI recharge area is positioned in the model slightly south of the actual ETI location to account for the appearance of a southeasterly overland drainage pattern that is visible in historic images and that may have channeled some infiltration to the south of the ETI. No water quality samples from ETI seepage are available, and the concentration of the seepage in ETI is specified to be the same as for the PDSTI. The Twin Buttes Mine operated from 1965 to 1983. Seepage rates from the TBTI are taken from a groundwater flow and transport model of the PDSTI vicinity (ELMA, 1994, 2007a), which was based on estimates given by SRK (1986). These seepage estimates are 4,100 ac-ft/yr from 1970 through 1976; 7,900 ac-ft/yr from 1977 though 1979; 4,720 ac-ft/yr from 1980 through 1982; and 1,360 from 1983 through 1985. The model assumes that no seepage occurs after 1985 (Figure I.8). The seepage area for the TBTI was specified as 1,900 acres and was constant with time. Seepage rates from the TBTI were not adjusted in the calibrated model.

Solute transport from the TBTI was not considered because the focus of the model is the sulfate plume from the PDSTI. Sufficient information was unavailable to provide a reliable calibration of sulfate transport from TBTI.

4.4.4 Artificial Recharge

Artificial recharge in the PDSIRM domain includes infiltration basins operated by Robson-Ranch Quail Creek (RRQC). The RRQC underground storage facility (ADWR facility number 71-58139.001) includes twelve basins, nine of which are currently in operation (Pima County, 2007). The facility is located directly south of the Green Valley Waste Water Treatment Plant (GVWWTP) and receives effluent from GVWWTP as its source for recharge water (Pima County, 2007). The RRQC facility is permitted to store up to 2,240 acre-feet annually (ADWR, 2006). In 2006, RRQC recharged an estimated 1,619 acre-feet. Recharge amounts for years prior to 2006 are based on estimates of annual recharge using RRQC recharge reports and population projections (ELMA, 2007a). The modeled recharge from the RRQC facility linearly increases from 100 acre-feet in 1970 to 1,619 ac-ft by 2006. These recharge estimates were not adjusted during model calibration.

<u>4.4.5</u> Pumping

Groundwater withdrawal by pumping is the major groundwater sink in the PDSTI region. Pumping information was taken from several sources: the ADWR model, information reported in ELMA (2007a), ADWR databases, well surveys, and local water providers. These sources are explained below, and tables of well locations and pumping volumes used in the model are provided in Appendix I.1.

The AWDR model provides pumping estimates for the entire Tucson AMA during the period from 1940 to 1999. Between 1940 and 1960, few pumping records exist, and the pumping rates for this period are based on power consumption records and crop distribution surveys (Anderson, 1972). Because these pumping estimates are not based on user records, their accuracy is uncertain (Dale Mason, personal communication, August 6, 2007). Between 1960 and 1984 more user records exist; however, many of the pumping rates and locations are still based on the estimates of Anderson (1972) using energy and crop data as well as on estimates made by Travers and Mock (1984). Pumping estimates for the period from 1940 to 1984 are assigned cadastral coordinates, but do not necessarily correspond to individual well locations. Beginning in 1984, all non-exempt well owners (i.e., well owners pumping more than 35 gallons

per minute [gpm]) have been required to report annual pumping amounts to ADWR per AMA regulations. Therefore estimates of pumping rates and locations are more accurate after 1984. Although the early-time pumping rates are uncertain, they were not adjusted during model calibration because (1) the rates have already been applied in previous calibrated models and (2) treating pumping as a calibration parameter would likely add a high level of non-uniqueness to the model calibration. The effects of the early-time pumping rates are dampened as the model simulation moves forward in time when pumping rates are more certain.

Pumping information for the period from 1971 to 2003 for PDSI wells and other wells located within the area of emphasis was obtained from pumping files used in a prior model (ELMA, 2007a). These pumping data were developed using ADWR databases, PDSI databases, and pumping rates reported by SRK (1986). Prior to 1979, few records were available, and pumping rates for 1971 to 1978 were estimated from the 1979 pumping rates.

ADWR records that were consulted to obtain pumping information were the Groundwater Site Inventory (GWSI) database, the ADWR 55-series Well Registry, and annual pumping reports submitted to ADWR by water rights owners. In these databases, and other sources of pumping records, only the annual total is reported. The average daily pumping rate was estimated by dividing the total pumping amount by the number of days in the year.

Well locations were determined from a variety of sources. Locations for CWC wells were provided by CWC, and locations for wells GV-01 and GV-02 at the GVWWTP were provided by Pima County. Other well locations within the area of emphasis, except for wells imported from the ADWR model, were determined from surveys conducted in 2007 by AMEC Infrastructure, Inc., or by AZTEC Land Surveying, Inc. Spatial coordinates for wells located on the periphery of the model domain were obtained from the ADWR GWSI database and the 55-series Well Registry.

Pumping information from the various sources was incorporated into the PDSIRM as follows:

- For the period from 1940 to 1970, pumping estimates from the ADWR model were applied exclusively. Well locations were converted from ADWR row and column coordinates to equivalent coordinates in the PDSIRM. Because the ADWR model used 0.5-mile grid spacing, wells could only be located to the nearest 0.5 mile (2,640 feet).
- For the period from 1971 to 1983, pumping rates from ELMA (2007a) were applied in the PDSIRM. Locations for the wells were taken from the HGC well location database. For wells not included in ELMA (2007a), locations and pumping rates were taken from the ADWR model, as was done for the period from 1940 to 1960.
- For the period from 1984 to 2006, pumping rates were applied from ELMA (2007a) or from the ADWR database for wells and/or years not included in the ELMA (2007a).

Figure I.9 shows the annual pumping totals for all the wells in the PDSIRM domain using the above pumping data. Pumping increases from about 12,500 ac-ft/yr in 1940 to a maximum of nearly 133,500 ac-ft/yr in 1976. After 1976, pumping totals begin to decrease to between 60,000 ac-ft/yr and 75,000 ac-ft/yr by 1985. Reduced agricultural pumping is the primary reason for the decrease in pumping after the mid-1970s (Mason and Bota, 2006). Pumping rates were not adjusted during model calibration.

MODFLOW-SURFACT can automatically allocate flow from each layer penetrated by a well based on aquifer properties and well screened intervals. For pumping obtained from the ADWR model, no information on screened intervals is available, and these wells are assumed to be fully screened over all three layers. Information on screened-intervals is taken from ELMA (2007a) for the wells included in that model. For all other wells, well-construction data is taken from the ADWR 55-series Well Registry. Some of the registry records contained detailed well construction information, while other records provided few details other than the total well depth. If screened intervals were not given in the image records, the screened interval is assumed to equal the total depth of well penetration into the aquifer.

4.4.6 Evapotranspiration

ET estimates are taken from the ADWR model, which are based on the rates and spatial distribution of Hanson and Benedict (1994). The spatial distribution of the ET zones in the AWDR model was digitized and imported into the PDSIRM. These ET zones are located near the Santa Cruz River. The potential ET rates range from 0.0023 ft/d to 0.03 ft/d with a uniform extinction depth of 25 feet. The potential ET rate is assumed constant throughout the simulation period, although the actual ET rate decreased with time due to the decline in groundwater levels. ET rates were not adjusted during model calibration.

4.4.7 <u>Twin Buttes Mine Pit</u>

The Twin Buttes Mine pit is not expected to have a major influence on the hydraulics of the basin-fill aquifer, although it may function as a weak groundwater sink (SRK, 1985a). A constant inflow of approximately 250 gpm is estimated to enter the east face of the pit at the intersection of the bedrock and the basin fill (Harold Metz (Twin Buttes Properties, Inc.), personal communication with Ned Hall (PDSI), November 16, 2007). This observation suggests that the pit does act as a sink for groundwater from the basin fill aquifer. The influence of the Twin Buttes pit is represented in the PDSIRM by including a constant negative groundwater flux at the west model boundary near the area of the pit with a total outflow rate of approximately 250 gpm.

4.5 Initial Aquifer Parameterization

Aquifer parameters include saturated hydraulic conductivity, storage coefficient, specific yield, effective porosity, and dispersivity. Initial estimates of these parameters, with the exception of dispersivity, were based on the calibrated parameters in the ADWR model and field measurements or data evaluations made as part of the Aquifer Characterization Plan. Dispersivity was estimated by model calibration. Initial and final aquifer parameters and ranges are summarized in Table I.1.
4.5.1 Saturated Hydraulic Conductivity

The saturated hydraulic conductivity (Ksat) describes the rate at which groundwater can flow under a given hydraulic gradient. Within the area of emphasis, the initial estimates of Ksat were based on information collected during the Aquifer Characterization Plan, including lithologic logs from drilling activities, pumping tests, and depth-specific sampling and inflow profiling. In addition to pumping tests conducted as part of the Aquifer Characterization Plan, hydraulic properties data for previous pumping and slug tests were compiled and evaluated (ACR, Appendix A and E). These previous tests were conducted in the IW, BW, PZ, MH, Duval, FICO, and GV wells. The evaluation of the pumping tests show a wide range in horizontal Ksat values, from less than 1 ft/d to over 100 ft/d. Estimated horizontal Ksat values were relatively higher (approximately 30 to 118 ft/d) in the area northeast of PDSTI (wells MO-2007-1, MO-2007-2, M-25, MH-26, and CW-7); whereas estimated horizontal Ksat values were relatively low (less than 1 ft/d) in the deepest wells of the well nests located east of the south half of PDSTI (MH-13, MO-2007-5, MO-2007-6). The drilling activities, pumping tests, and inflow profiling conducted as part of the Aquifer Characterization Plan do provide evidence that the aquifer is more permeable at intermediate depths in the vicinity of Green Valley; however, the increase in permeability is small (ACR, Appendix E and H). Vertical Ksat values were typically estimated to be less than 1 ft/d in hydraulic tests conducted as part of the Aquifer Characterization Plan (ACR, Appendix E). Initial values of vertical Ksat in the PDSIRM were set at 0.2 ft/d.

In the area outside the focus of the Aquifer Characterization Plan, the initial Ksat values were based on the calibrated Ksat values used in the ADWR model. Although the layer

elevations in the ADWR model do not coincide with those of the PDSIRM the differences in layer thicknesses were neglected for the estimate of initial Ksat values. The calibrated Ksat values from the ADWR model are vertically stratified, with the highest Ksat values in the upper layer (Layer 1) and the lowest values in lowest layer (Layer 3). Because only a transmissivity is specified for Layer 3 of the ADWR model, an equivalent Ksat was calculated based on the bedrock in the PDSIRM and the top of the Layer 3 in the ADWR model. Ksat values in the ADWR model range from 2 ft/d to about 300 ft/d in Layer 1, 1 ft/d to 139 ft/d in Layer 2, and from less than 1 ft/d to about 15 ft/d in Layer 3. The distribution of ADWR Ksat value was condensed into several representative intervals ranging from 1 ft/d to 50 ft/d Values greater than 50 ft/d in the ADWR model were typically in isolated areas and were assigned values equal to the adjacent cells. Vertical Ksat for each of the zones was assigned a value equal to about 10 to 30 percent of the horizontal Ksat value. The resulting Ksat distribution was then rediscretized to match the PSDIRM domain and imported into the PSDIRM. The initial Ksat values and distributions were varied during model calibration to improve the match between simulated and measured groundwater levels (Section 4.4 and Table I.1).

4.5.2 Storage Coefficient and Specific Yield

The storage coefficient (S) and specific yield (Sy) define how changes in hydraulic head affect aquifer storage of groundwater. In particular, the value of Sy describes the drainability of an unconfined aquifer and is of more importance for the PDSIRM. Initial values for S and Sy, are taken from the ADWR model. The value of S for was uniform at 0.0001. The values for Sy are spatially variable, ranging from 0.05 to 0.16. During model calibration, the values for Sy were allowed to vary between 0.02 and 0.22. This range of values for Sy is consistent with the range reported in Fetter (2001). The range of Sy values in the calibrated model was from 0.08 to 0.20. The value of S was not adjusted during model calibration (Table I.1).

<u>4.5.3</u> Effective Porosity

The effective porosity (θ s) is the fraction of the total pore volume of aquifer matrix through which groundwater actively flows. Therefore, the solute transport velocity is influenced by the effective porosity. The initial value for θ s was 0.25 and was spatially uniform throughout the model domain. Values of θ s were adjusted between 0.2 and 0.3 during model calibration (Table I.1).

<u>4.5.4</u> Dispersivity

Dispersivity (α) is a parameter that accounts for hydrodynamic dispersion. As a result of hydrodynamic dispersion, some groundwater travels faster, and some slower, than the average groundwater velocity at a particular location. This causes "spreading" of a solute at the margins of a plume by allowing some solute to travel faster and some slower than the average transport velocity. Values of α increase with increasing media heterogeneity and have been observed to be "scale-dependent", generally increasing with solute transport distance (Gelhar, 1993). Evaluation of the sulfate plume morphology, especially for the margins of the plume, based on water quality sampling data for the first and third quarters of 2007 (ACR, Appendix B) indicates very little plume dispersion has occurred. Therefore, with the exception of directly underneath

the PDSTI, the values of longitudinal, transverse, and vertical dispersivity were initially set to zero in the PDSIRM and did not need to be adjusted for calibration. This allows all modeled plume dispersion to be accounted for by the variation in aquifer properties and by any numerical dispersion inherent in the transport solution. Under the PDSTI, the vertical dispersivity is 65 feet, while longitudinal and transverse dispersivities are zero. This high vertical dispersivity beneath the PDSTI is used to facilitate movement of sulfate in the PDSTI recharge to the lower model layers, consistent with the conceptual model of sulfate migration in the PDSTI.

4.6 Initial Conditions

The initial groundwater levels for the transient (1941 to 2006) model were taken from the calibrated steady-state model. Initial sulfate concentrations were specified to follow the trends observed in the background water quality samples collected in 2007 (ACR, Appendix B): lower concentrations (> 5 mg/L to 30 mg/L) near the basin margin and a higher concentration (80 mg/L) in the middle of the basin, along the Santa Cruz River.

5. MODEL CALIBRATION

Model calibration is the process of adjusting the model input parameters to achieve reasonable matches between simulated groundwater levels and sulfate concentrations with measured values. Model calibration of groundwater levels was first conducted for a steady-state model representing conditions in 1940. Calibration of groundwater levels and sulfate concentrations was then performed for a transient model representing the period from 1941 to 2006. The calibration methodology and calibration results for the steady-state and transient simulations are discussed below.

5.1 Calibration Criteria

During model calibration, input parameters were systematically adjusted to improve the match between measured and simulated groundwater levels and sulfate concentrations. Improvement was judged both quantitatively and qualitatively. The differences between measured and simulated values (referred to as residuals) provided a quantitative evaluation of model calibration at specific "target" locations (i.e. locations where data of measured values existed). For the 1940 steady-state simulation, calibration targets were taken from those used to calibrate the ADWR model. Calibration targets for the years from 1941 through 2005 were taken from the PDSI database, ELMA (2007a), PAG (1983), Environmental Resource Consultants (ERC) (1996) and from the ADWR model. Calibration targets for the end of the year 2006 were the actual groundwater levels measured by HGC for groundwater sampling during the first and third quarters of 2007. The first and third quarters were used because

groundwater monitoring during these two quarters was the most extensive, with measurements at key locations not included in previous sampling events. These two quarters also show the differences in groundwater levels during the winter versus the summer.

A qualitative assessment of model calibration was conducted by mapping the spatial distribution of residuals and by comparing groundwater level and sulfate concentration contours created from the simulated and from measured values. Mapping residuals helped to detect spatial bias in errors, and the contour maps helped to evaluate how well the simulated groundwater levels and sulfate concentrations compared to field measurements on a large scale.

The historic groundwater levels sometimes showed variations of several feet or more within a given year and from one year to the next. Groundwater levels measured by HGC between first quarter and third quarter, 2007 could also vary several feet between measurements taken at the same location. The intra-annual variations possibly reflect increased pumping during the summer months. Simulation of these intra-annual water level fluctuations was not practical because pumping information could only be obtained as annual totals and because sub-annual stress periods would further increase simulation processing times. Therefore, simulated groundwater levels that were between target values for a given year were taken as a satisfactory match.

5.2 Calibration Methodology

Model calibration initially began for the 1940 steady-state simulation. The 1940 simulation had relatively little pumping and few calibration targets compared to the calibration years in the transient simulation. Therefore, many of the stresses and groundwater level measurements that aid in the calibration of aquifer parameters were not present in the steady-state simulation and much of the parameter estimation could only be accomplished during the calibration of the transient model. Consequently model calibration proceeded iteratively between the steady-state model and the transient model until the most satisfactory solution was reached for both.

5.3 Calibration Results

Both the initial values of parameters and their spatial distributions were varied during model calibration to better match measured groundwater levels and sulfate concentrations. The final calibrated parameter values and ranges are provided in Table I.1. Figures I.10 to I.12 show the spatial distribution of Ksat values in the three model layers, and Figure I.13 shows the spatial distribution of Sy values, which is the same in all layers.

5.3.1 Groundwater Calibration

A good agreement was achieved between measured groundwater levels and the simulated groundwater level contours for the steady-state (1940) calibration (Figure I.14), and no spatial bias is apparent in the residuals between measured and simulated values (Figure I.15).

Therefore, the calibrated steady-state model is believed to provide a reasonable initial condition for the transient groundwater flow simulation.

Simulated groundwater level contours are compared with the measured groundwater levels from the first and third quarter 2007 sampling events in Figure I.16 and Figure I.17. Contour maps of measured water level elevations for the first and third quarters of 2007 are in Appendix B and Figure 5 of the ACR, respectively. The simulated groundwater level contours demonstrate several important features of the potentiometric field estimated from measured groundwater levels, including:

- The steep hydraulic gradient emanating westward from the PDSTI, and the abrupt turn to the north of the flow field immediately downgradient (east) of the PDSTI.
- The curvature of the groundwater contours across the center of the basin.
- The groundwater level trough and flattening of the hydraulic gradient in the northwest portion of the model domain and the groundwater level rise in the northeast portion of the model domain.

Simulated groundwater contours and measured water levels show the greatest differences in the north part of the model domain in the vicinity of the apparent groundwater level trough east of the Twin Buttes Mine. The trough is defined by water levels that dip easterly from the Twin Buttes Mine, westerly from the vicinity of the Santa Cruz River near and north of Duval Mine Road, and northerly from Green Valley. The trough is evident in both the first and third quarter 2007 groundwater sampling events and appears to be a persistent feature shown to varying degrees by groundwater level maps for 1966 (Davidson, 1973) and 1982 (PAG, 1983; Murphy and Hedley, 1984). The trough in water level contours implies a zone of convergent groundwater flow toward the northwest portion of the model domain. The differences between simulated and measured water levels in the northern portion of the model could be due to differences between assumed and actual values for hydraulic properties, groundwater pumping, or recharge. Improved simulation of the groundwater levels in northern model areas would require further aquifer characterization and refinement of the conceptual model beyond the area of emphasis.

Simulated versus measured groundwater levels for all groundwater level targets used in the transient simulation are shown in Figure I.18. Highlighted in the figure are the targets for the 2007 sampling events. A similar comparison is made in Figure I.19 for the area of emphasis (inner rectangle in Figure I.2). Overall, the simulated versus measured points follow the one-to-one line, showing the ability of simulated results to match measured groundwater levels across the entire model domain. The upward deviation from the one-to-one line at the lower groundwater elevations is due to the difficulty in simulating the groundwater level depression in the northwest part of the model domain.

Appendix I.2 includes hydrographs of measured and simulated groundwater levels at several wells (refer to Figure I.2 for well locations). These hydrographs are representative of the calibration at different areas of the model domain and provide the following observations:

- Although measured groundwater levels in the southern part of the model domain show large fluctuations, the simulated results approximate the median behavior and show a particularly good match with recent measurements (Appendix I.2, Figures I.2.1 to I.2.4).
- Groundwater level time-series for wells immediately down-gradient of the PDSTI, along the IW-wellfield, show a general agreement between simulated and measured, although the absolute values can differ by several feet (Appendix I.2, Figures I.2.5 to I.2.7). Most discrepancies appear to be caused by the inability of the model to simulate steep hydraulic gradients at sub-grid locations.

• About one mile east of the PDSTI, the simulated results match the average behavior of measured points; however, individual wells can have periods where the simulated results deviate from the measured points (Appendix I.2, Figures I.2.8 to I.2.12). The reasons for the deviations are uncertain, but because the deviations at different wells show no systematic variations, they do not indicate a modeling bias in the area east of the PDSTI.

5.3.2 Sulfate Concentration Calibration

Simulated sulfate concentration contours are compared with measured sulfate concentrations from the third quarter 2007 sampling events in Figure I.20. The third quarter 2007 sampling event is used for comparison even though the model simulation was conducted only through the end of 2006 because the third quarter event provides sulfate concentration measurements at several key locations surrounding the PDSTI that were not obtainable in previous sampling events. The simulated sulfate concentration contours shown in Figure I.20 represent concentrations averaged over the upper and middle layers. These layers represent the primary flow and transport zones near the PDSTI because the permeabilities in these layers are generally higher than in the lowermost layer. The simulated sulfate concentrations in each of the three layers are shown in Figure I.21. In general, the extent of the sulfate plume is greater in the upper layer than in the lowermost layer. Appendix I.3 provides chemographs of the simulated and measured sulfate concentrations at several locations near the edge and within the interior of the plume where a time series of sulfate concentrations are available and where large changes in sulfate concentrations have occurred (Figures I.3.1 to I.3.7 of Appendix I). The simulated sulfate concentrations for these chemographs are averaged over the upper two model layers because this approximates the typical screened intervals for the wells where actual sulfate concentrations were measured. The time series of measured concentrations in these chemographs includes

measurements through the third quarter of 2007, which is beyond the simulation period. Measurements outside of the simulation period are shown as solid symbols.

The sulfate contours in Figure I.20 and the chemographs in Appendix I.3 illustrate the strengths of the transport model in representing several important features of the plume as inferred from the following water quality measurements:

- The general shape of the sulfate plume is represented, including a broad base near the PDSTI and a thinner leading edge (Figure I.20).
- The arrival time of the plume is accurately simulated at several key locations along the eastern edge of the plume (Appendix I.3, Figures I.3.1 and I.3.2).
- The northward advance of the plume is represented (Appendix I.3, Figures I.3.3 to I.3.4).
- Concentrations in the plume interior are generally well represented (Appendix I.3, Figures I.3.5 to I.3.7).

While the model reproduces the general characteristics of the sulfate plume, it is unable to match measured concentrations at every location. In particular, the simulated sulfate distribution does not match the higher sulfate concentrations measured in 2007 at the deeper wells at MO-2007-5 located at the southeastern portion of the sulfate plume. The high sulfate concentrations measured in 2007 at the MO-2007-5 wells may represent residual concentrations from a retreating plume rather than an advancing plume. This hypothesis is supported by: (1) historic measurements at CW-3 that show sulfate concentrations declining between the late 1980's and present and (2) the determination that the southern portion of the IW wellfield is now operating effectively to cut off seepage that would contribute to the southeastern portion of the plume.

The simulated plume when averaged over the upper two layers also slightly over predicts the northern extent of the plume, as inferred by water quality measurements made in 2007. The over prediction results from the model's difficulty in simulating the sharpness of the sulfate plume at its northern extent, where sulfate concentrations rapidly decrease from about 1,400 mg/L at M-20 to about 20 mg/L at the corresponding depth in MO-2007-1. This may lead to a conservative prediction (i.e., earlier arrival of predicted than measured) at the northern extent of the plume.

The inability of the model to match the sharpness of the plume front and concentrations at some point locations is likely due to aquifer heterogeneities that cannot be adequately captured in the model (e.g., localized contrasts in permeability and porosity and anisotropies in aquifer properties). These heterogeneities cannot be detected using practical aquifer characterization methods, nor can they be simulated by a regional-scale numerical model constructed with spatial zone-wise homogeneity and temporal period-wise uniformity. Therefore, the model cannot replicate aquifer heterogeneities and processes that vary at spatial and temporal scales finer than the model discretization, and the model has practical limits on its ability to predict concentrations at point locations and where rates of sources and sinks for groundwater and sulfate can change quickly, such as near the PDSTI (Section 7). However, the calibration results demonstrate that the model accurately simulates the key trends and attributes of groundwater flow and sulfate migration, giving confidence that the model can be used as a predictive tool for evaluating mitigation alternatives.

5.4 Adjustments During Model Calibration

Several adjustments to initial parameters were made during model calibration to achieve better matches between simulated and measured groundwater levels and sulfate concentrations. Table I.1 provides a comparison of initial and final parameters and ranges. The major adjustments that were made during model calibration include the following:

- A higher Ksat zone (Ksat = 36 to 89 ft/d) was created in the western portion of the model domain, extending north of PDSTI, and the specified heads along the northern boundary were lowered where the boundary intersects the higher Ksat zone.
- Mountain front recharge along the northwestern portion of the model domain (beginning at approximately the Twin Buttes Mine) was decreased and the mountain front recharge within the area of the PDSTI was increased (Section 3.4.1).
- Seepage rates in the PDSTI were increased approximately 30 to 35 percent from the rates estimated in ELMA (2007b). The need to increase the PDSTI seepage rates does not necessarily indicate that seepage is higher, but that flow beneath the PDSTI from all the water sources needed to be increased for model calibration.

The area east of the Twin Buttes Mine has a persistent zone of depressed groundwater levels, indicative of convergent groundwater flow. The means selected to simulate the depressed groundwater levels was to increase Ksat values in a zone trending north from the Twin Buttes Mine area to the northern model boundary (Figures I.11 to I.13). The Ksat values in this zone range from 36 ft/d to 89 ft/d. Although the Ksat values of the higher Ksat zone are consistent with measured Ksat values at several locations north and northeast of the PDSTI (e.g., MO-2007-02, CW-7, MH-26), the northern extent of this zone is unknown. Estimated Ksat values at some wells in the area do not corroborate (e.g., Ksat values at many of the Twin Buttes wells range from about 10 to 20 ft/d; ELMA (1987, 1995)). Therefore, establishing the higher

Ksat zone in the model and extending it to the northern model boundary is speculative, but was needed to match water level measurements in the area (PAG, 1983; ACR, Appendix B).

Mountain front recharge was adjusted as a means of lowering groundwater levels in the northwest portion of the model domain and increasing groundwater levels in the southern portion of the model domain. The changes are consistent with hydrologic features. The Twin Buttes pit likely intercepts much of the mountain front recharge in the Twin Buttes area, and mountain front recharge was set to zero after 1970 from about the Twin Buttes area to the north boundary. The Demetrie Wash may increase mountain front recharge in the vicinity of the PDSTI, and mountain front recharge was increased from about 195 ac-ft/yr/mile to about 280 ac-ft/yr/mile for about a four-mile in the general vicinity of the PDSTI.

The increases in the PDSTI seepage rates were necessary to better match groundwater levels and sulfate concentrations. As stated in Section 3.4, the increases may reflect inherent uncertainties in the seepage estimates and/or uncertainties in the model conceptualization and parameterization of other hydraulic properties and processes that contribute to flow beneath the PDSTI.

6. SENSITIVITY ANALYSIS

A sensitivity analysis was conducted for the transient (1941 to 2006) model. The objective of the sensitivity analysis was to understand the relative influence that the calibrated values of model parameters have on the simulation results.

6.1 Sensitivity Analysis Procedure

The sensitivity of the simulation results to changes in the values of model input parameters was evaluated by systematically varying parameter values and comparing the ensuing simulation results with those of the calibrated model. The values of the following parameters were adjusted as part of the sensitivity analysis:

- Saturated hydraulic conductivity (horizontal and vertical)
- Storage coefficient
- Specific yield and porosity (varied simultaneously)
- Evapotranspiration
- River recharge
- Mountain front recharge
- Seepage from the PDSTI (rate and concentration)
- Seepage from the ETI (rate and concentration)

Model sensitivity simulations were performed by varying the values of the parameter being tested while keeping the values of the other parameters constant at their final calibration values. For the parameter being tested, a simulation was run with the parameter values uniformly increased by 25 percent, followed by a simulation run with the parameter values uniformly decreased by 25 percent. The sensitivity analysis was limited to uniformly adjusting a single input parameter (i.e., multiple parameters were not simultaneously varied and a parameter was adjusted by the same percentage at all locations). For each simulation, the root mean square residual (RMSR) and mean arithmetic residual (MAR) between measured and simulated target values for the first quarter 2007 sampling event were computed and compared with the RMSR and MAR for the final calibration simulation. MAR and RMSR are defined as follows:

$$MAR = \frac{\sum_{i=1}^{n} (C_i - T_i)}{n}$$
[1]

$$RMSR = \frac{\sqrt{\sum_{i=1}^{n} (C_i - T_i)^2}}{n}$$
[2]

Where:

 C_i = residual between the calibrated model simulation and measure values for target i

 T_i = residual between the test simulation and measure values for target i

$$n$$
 = number of targets

Sensitivity was then evaluated as the arithmetic difference between the MAR (Δ MAR)

for the calibration and test simulations, and the relative percent difference in the root mean

square error (Δ RMSE) between the two simulations. The value (positive or negative) of Δ MAR indicates the average direction that the parameter change moved the groundwater levels and sulfate concentrations. The value of Δ RMSE indicates the average magnitude of that change and provides a relative measure of the least to the most sensitive parameter.

6.2 Sensitivity Analysis Results

Table I.3 summarizes the results of the sensitivity analysis. For groundwater levels at the 2007 target locations, the model is most sensitive to changes in Ksat and increases in the seepage rate in the PDSTI. Groundwater levels at target locations are influenced more by decreases in the PDSTI seepage rate than by increases in the seepage rate. Groundwater levels at target locations are moderately influenced by changes in specific yield, river recharge, and mountain front recharge. Changes in the storage coefficient, evapotranspiration, and the seepage rate in the ETI have relatively little influence on groundwater levels at the 2007 target locations.

Sulfate concentrations at the 2007 target locations are most sensitive to increases in the concentration of the seepage in the PDSTI. The sulfate concentrations are also moderately to highly sensitive to increases in the seepage rate in the PDSTI and decreases in the specific yield/porosity because these parameters affect the mass loading of sulfate and/or the rate of the sulfate plume migration. Seepage in the ETI has a modest influence on simulated sulfate concentrations. The sulfate concentrations at the 2007 target locations are less sensitive to changes in other parameters.

Numerical Modeling for Simulation of GW Flow and Sulfate Transport I-46 H:\78300\78314 Numerical Model\Report\REVISED App I PDSI Modeling Report 013009.doc January 30, 2009

7. SUMMARY AND CONCLUSIONS

The results of the model calibration for the historic simulation of groundwater levels and sulfate concentrations show the abilities of the PDSIRM to simulate the groundwater flow and sulfate plume migration within the vicinity of the PDSTI. The simulated groundwater level trends and the overall shape of the simulated groundwater levels are similar to observed trends, indicating the essential components of the aquifer hydraulics are represented. Likewise, the general shape and extents of the simulated sulfate plume matches the observed plume, demonstrating that the factors influencing plume movement are incorporated in the model construction. The time-series data (Appendices I.3) indicate that the model is capable of matching the sulfate concentrations and sulfate plume arrival at key locations.

The calibration results provide confidence in the ability of the PDSIRM to serve as a tool for predicting groundwater flow and sulfate transport in the vicinity of the PDSTI. To appropriately use this tool, however, the strengths and limitations of the model should be understood. For example, although the bulk migration of the sulfate plume is well represented, the time-series data (Appendix I.3) show that the model cannot be expected to perfectly match all measurements at particular locations. This limitation is inherent to numerical models constructed from finite characterization data and that simplify process complexities and spatial/temporal heterogeneities. Some of the strengths and limitations of the PDSIRM are discussed below.

7.1 Model Strengths

For the purposes of developing alternatives for sulfate plume mitigation down-gradient of PDSTI, this model provides several advantages over other groundwater flow and transport models developed for the region near the PDSTI. These advantages include the following:

- Large spatial extents of the model domain that reduce the influence of boundary conditions within the area of the plume.
- Long temporal extent, beginning in 1940 when the aquifer is considered to be in "dynamic equilibrium", minimizes the influence of initial aquifer conditions on future simulations.
- Integration of the most comprehensive datasets on aquifer characteristics (e.g., Ksat values and bedrock elevations).
- Calibration to both groundwater level and sulfate concentration measurements, including measurements taken as part of the Aquifer Characterization Plan.

The strengths of the PDSRIM provide confidence in simulated predictions for groundwater levels and sulfate distributions in the area surrounding PDSTI.

7.2 Model Limitations

Numerical models are an approximation of reality. As with all numerical models, the applicability and predictive ability of the PDSIRM has limits. These limitations should be understood when using the PDSIRM. Important limitations of the PDSIRM include: spatial and temporal uncertainty and spatial and temporal averaging.

7.2.1 Spatial and Temporal Uncertainty

Information on aquifer characteristics and groundwater levels used for conceptual model development and model calibration decreases away from the area of emphasis. The specified-head boundaries at the north, east, and south of the model are supported by relatively few measurements. Measurements of aquifer properties and hydrogeologic units are also sparse near the model boundaries, and projection of layer elevations outside the area of emphasis is uncertain. Consequently, the confidence in model predictions decreases away from the area of emphasis, the area immediately downgradient of the PDSTI.

The model's predictive ability farther forward in time will be partly dependent on the accuracy of projected sources and sinks. Forecasts of aquifer stresses such as pumping and recharge rates and their spatial distributions can be uncertain the farther they are projected, and differences between the forecast and actual conditions can lead to inaccuracies in model predictions.

7.2.2 Spatial and Temporal Averaging

All finite-difference and finite-element codes discretize heterogeneous and continuous processes and parameters into blocks (or nodes) of constant values. For aquifer systems of relatively uniform properties and for finely discretized models, the effect of discretization will be minimal. For heterogeneous systems with time-variable processes (pumping, river and agricultural recharge, artificial recharge, etc.), such as in the Green Valley area, model predictions will be increasingly unable to match point-scale values even though they may

satisfactorily represent average behavior. The discrepancies between point measured values and the model block averages may be important in areas of steep gradients, such as across the PDSI Interceptor Wellfield and at the margin of the plume.

The model also averages continuously changing or episodic temporal processes into discrete constant-in-time values. Such processes include seasonal river recharge and pumping that are simulated as average daily values based on a yearly total. Closely matching groundwater levels may be difficult due to temporal averaging, although simulated values should be within, or near, the range of measured values for a given simulation time period (one year for the PDSIRM).

7.3 Conclusion

The intended use of the PDSIRM is for evaluation of the effectiveness and preliminary design of mitigation actions (HGC, 2006). As with all models, the PDSIRM provides a simplistic conceptualization of a more complex natural system; however the PDSIRM is appropriately constructed and calibrated for its intended use. The model is constructed to include the geologic features of the aquifer and the principle stresses that affect groundwater levels and sulfate transport, and the model is calibrated to match the general distribution of the present groundwater levels and sulfate plume. When appropriately used, the PDSIRM can be an effective tool to evaluate the effects of various mitigation actions to be considered in the Feasibility Study.

8. **REFERENCES**

- Anderson, T. W. 1972. Electric-Analog Analysis of the Hydrologic System, Tucson basin, Pima County, Arizona. U.S. Geological Survey Hydrologic Investigations Atlas HA-713.
- Arizona Department of Water Resources (ADWR). 2006. Semi-Annual Status Report: Underground Water Storage, Savings, and Replenishment (Recharge) Program. ADWR Water Management Division. December 30, 2006.
- Davidson, E.S. 1973. Geohydrology and Water Resources of the Tucson Basin, Arizona. U.S. Geological Survey Water-Supply Paper 1939-E.
- Gallagher, B.M. 1979. Recharge Properties of the Tucson Basin Aquifer as Reflected by the Distribution of a Stable Isotope. University of Arizona, Tucson, Arizona, unpublished Masters Thesis.
- Environmental Resource Consultants (ERC). 1996. Hydrologic Investigation of Assured Water Supply for the Canoa Ranch with Effects on Cyprus Sierrita's Canoa Ranch Well Field. Prepared for Green Valley Water Company. February 1996.
- Errol L. Montgomery and Associates, Inc. (ELMA). 1987. Investigation for Assured Water Supply, Las Quintas Serenas Water Company Franchise Area and "Adjacent Lands", Pima County, Arizona. December 21, 1987.
- ELMA. 1994. Aquifer Protection Permit Application, Sierrita Operation; Cyprus Sierrita Corporation, Pima County, Arizona. September 7, 1994.
- ELMA. 1995. Distribution of Sulfate in Groundwater East from Twin Buttes Tailings Impoundments and Capture Zones for Operation of Reclamation Well RT-1, Cyprus Sierrita Corporation, Pima County, Arizona. January 31, 1995.
- ELMA. 2007a. Documentation of Groundwater Flow and Transport Model Used for Evaluation Evaluating the Current Effectiveness of the Interceptor Wellfield, Sierrita Mine, Phelps Dodge Sierrita Mine, Pima County, Arizona. August 14, 2007.
- ELMA. 2007b. Evaluation of the Current Effectiveness of the Sierrita Interceptor Wellfield, Phelps Dodge Sierrita Mine, Pima County, Arizona. November 14, 2007.
- ELMA. 2007c. Estimates Seepage Volumes from Esperanza Tailing Impoundment, Phelps Dodge Sierrita Mine, Pima County, Arizona. Electronic Spreadsheet File Provide to Hydro Geo Chem, Inc. December 19, 2007.

- Hanson, R.T. and J.F. Benedict 1994. Simulation of Ground-Water Flow and Potential Land Subsidence, Upper Santa Cruz Basin, Arizona. U.S. Geological Survey Water Resources Investigations Report 93-4196. Tucson, Arizona.
- Hendry, M. J., J. A. Cherry, and E.I. Wallick. 1986. Origin and Distribution of Sulfate in a Fractured Till in Southern Alberta, Canada. Water Resources Research, 22(1): 45-6 [As cited in: Domenico, P. A., Schwartz, F. W. 1998. Physical and Chemical Hydrogeology, 2nd Ed. John Wiley & Sons, Inc. New York.]
- Hydro Geo Chem, Inc. 2006. Work Plan to Characterize and Mitigate Sulfate with Respect to Drinking Water Supplies in the Vicinity of the Phelps Dodge Sierrita Tailings Impoundment, Pima County, Arizona. August 11, 2006.
- HydroGeologic, Inc. 1996. MODFLOW-SURFACT Software (Version 3.0) Documentation. Copyright 1996, Herndon, Virginia.
- Fetter, C. W. 2001. Applied Hydrogeology. Prentice-Hall, Inc. Upper Saddle River, New Jersey.
- Gelhar, L. W. 1993. Stochastic Subsurface Hydrology. Prentice Hall, Inc. Englewood Cliffs, New Jersey.
- Keith, S.J.S. 1981. Stream Channel Recharge in the Tucson Basin and Its Implication for Groundwater Management. University of Arizona, Tucson, Arizona, unpublished Masters Thesis.
- Mason, D.A. and L. Bota. 2006. Regional Groundwater Flow Model of the Tucson Active Management Area Tucson, Arizona: Simulation and Application. Arizona Department of Water Resources Modeling Report No. 13.
- McDonald, M.G. and A.W. Harbaugh. 1998. A Modular Three-Dimensional Finite-Difference Groundwater Flow Model: U. S. Geological Survey Techniques of Water Resources Investigations, Book 6, Chapter A.1.
- Murphy, B.A. and J.D. Hedley. 1984 Maps Showing Groundwater Conditions in the Upper Santa Cruz Basin Area, Pima, Santa Cruz, Pinal, and Cochise Counties, Arizona - 1982. Arizona Department of Water Resources Hydrologic Map Series Report Number 11.
- Pima Association of Governments (PAG). 1983. Region Wide Groundwater Quality in the Upper Santa Cruz Basin Mines Task Force Area: Report and Detailed Recommendations. September 1983.
- Pima County. 2007. The Pima County Effluent Generation and Utilization Report, Calendar Year 2006. March 31, 2007.

- Reed & Associates, Inc. 1986. Letter to Skip Hollerund, Water Permits Unit, Arizona Department of Health Services (Draft). April 2, 1986.
- Snoeyink, V. L. and D.J. Jenkins. 1980. Water Chemistry. John Wiley & Sons. New York.
- Steffen, Robertson, and Kirsten, Inc. (SRK). 1985a. Evaluation of Groundwater Flow Into Twin Buttes Pit. Correspondence from Clint Strachan and Adrian Brown to Rick Ramsier, Anamax Mining Company. August 19, 1985.
- SRK. 1985b. System Hydrogeology and Hydrology, Geochemical Work Program for Tailing Impoundments, Twin Buttes Report 85-3. November 1985.
- SRK. 1986. Predictive Modeling, a Geochemical Program for Tailings Impoundments. January 1986.
- Webb, R.H. and J.L. Betancourt. 1990. Climatic Variability and Flood Frequency of the Santa Cruz River, Pima County Arizona. U.S. Geological Survey Water Paper 2379.

Numerical Modeling for Simulation of GW Flow and Sulfate Transport I-54 H:\78300\78314 Numerical Model\Report\REVISED App I PDSI Modeling Report 013009.doc January 30, 2009 **TABLES**

TABLE I.1 Initial and Calibrated Model Parameters

Parameter or Process	Unit	Initial Value or Range	Final Value or Range	Sources for Initial Values	
Horizontal Saturated Hydraulic Conductivity (Ksat)	ft/d	1.0 - 50	1.3 - 89	Mason and Bota (2006), ACR, Appendices A, E	
Vertical Ksat	ft/d	0.2 - 3.0	0.2 - 4.1	ACR, Appendices E	
Storage Coefficient (S)	ft/ft	0.0001	0.0001	Mason and Bota (2006)	
Specific Yield (Sy)	ft/ft	0.1	0.08 - 0.20	Fetter (2001)	
Effective Porosity (θse)	ft ³ /ft ³	0.25	0.20 - 0.30	Fetter (2001)	
Dispersivity, α_L , α_T , α_V	ft	0, 0, 0	0, 0, 0 - 65	ACR, Appendix B, model calibration	
Total River + Agricultural Recharge	ac-ft/yr	14,400 - 29,900	14,600 - 37,600	Mason and Bota (2006)	
Western Mountain Front Recharge	ac-ft/yr	7,900	7,700	Mason and Bota (2006)	
Southeastern Mountain Front Recharge	ac-ft/yr	2,100	2,600	Mason and Bota (2006)	
Concentration in PDSTI Seepage	mg/L	1,956	1,956	ELMA (2007b)	

Notes:

ft/d = feet per day ft/ft = feet per feet $ft^3/ft^3 = cubic feet per cubic feet$ ac-ft/yr = acre-feet per yearmg/L = milligrams per liter

	SEEPAGE (ac-ft/yr)					
	Sierrita Tailing	Esperanza Tailing				
YEAR	Impoundment ^a	Impoundment ^b				
1959		1,735				
1960		2,312				
1961		1,920				
1962		1,906				
1963		1,817				
1964		1,548				
1965		1,481				
1966		1,639				
1967		2,190				
1968		2,155				
1969		2,013				
1970		1,738				
1971	9,389	1,499				
1972	11,507	0				
1973	10,470	1,363				
1974	9,388	2,556				
1975	7,873	1,542				
1976	9,114	1,457				
1977	8,823	1,009				
1978	10,004	0				
1979	5,852	1,422				
1980	6,149 7,005	2,273				
1901	7,095	2,720				
1902	2,402					
1903	5 121					
1904	6 051					
1986	2 508					
1987	2,000					
1988	2 241					
1989	3 341					
1990	10.664					
1991	10,507					
1992	9,271					
1993	9,987					
1994	7,587					
1995	6,601					
1996	5,327					
1997	5,119					
1998	6,072					
1999	7,893					
2000	9,356					
2001	10,024					
2002	2,859					
2003	6,065					
2004	4,655					
2005	5,777					
2006	7,467					
Total	252,406	38,294				

TABLE I.2 Seepage Estimates for Tailing Impoundments

Notes:

^a Errol L. Montgomery & Associates [ELMA] (2007b)

^b High seepage estimates from ELMA (2007c) ac-ft/yr = acre-feet per year

		Groundwater Levels		Sulfate Concentration	
Parameter	Parameter Adjustment	ΔMAR (ft)	ΔRMSR (%)	ΔMAR (mg/L)	ΔRMSR (%)
Herizentel Hydraulie Conductivity	+ 25	-9.60	10.6%	-11.7	2.92%
Honzontal Hydraulic Conductivity	- 25	13.1	13.4%	19.2	2.92%
Vertical Hydraulic Conductivity	+ 25	0.15	0.08%	1.89	0.31%
	- 25	-0.04	-0.08%	-3.08	-0.16%
Storage Coefficient	+ 25	-0.01	-0.01%	0.01	0.00%
	- 25	0.01	0.01%	0.00	0.00%
Specific Yield/Porosity	+ 25	-5.33	0.18%	64.1	-0.76%
	- 25	4.83	5.18%	-68.6	13.2%
Evapotranspiration	+ 25	0.00	0.00%	-0.03	0.01%
	- 25	-0.04	-0.05%	0.03	0.0%
River Recharge	+ 25	-4.12	2.08%	2.63	-0.25%
	- 25	6.46	4.15%	-5.21	4.15%
Mountain Front Recharge	+ 25	-5.54	3.23%	5.03	-1.60%
	- 25	-5.55	3.23%	5.02	-1.60%
PDSTI Seepage Rate	+ 25	-9.29	1.31%	-49.1	10.7%
	- 25	9.15	18.6%	56.9	0.53%
Concentration in PDSTI Seepage	+ 25	0.00	0.00	-80.4	41.2%
	- 25	0.00	0.00	80.3	-4.72%
ETI Soonago Data	+ 25	-0.33	-0.08%	-7.85	3.36%
E II Seepage Kale	- 25	0.39	0.12%	7.93	-3.26%
Concentration in ETI Seepage	+ 25	0.00	0.00%	61.0	7.96%
	- 25	0.00	0.00%	9.33	-4.84%

TABLE I.3Results of Sensitivity Analysis

Notes:

ΔMAR = Change in Mean Arithmetic Error between calibrated model and sensitivity simulation

 $\Delta RMSR = Change in Root Mean Square Error between calibrated model and sensitivity simulation$

PDSTI = Phelps Dodge Sierrita Tailing Impoundment

ETI = Esperanza Tailing Impoundment

ft = feet

mg/L = milligrams per liter

% = percent

FIGURES

APPENDIX I.1

WELL LOCATIONS AND PUMPING RATES

UTM83E	UTM83N	Pumping Rate (gpm)
496051	3511005	15
496051	3511810	15
496051	3512615	15
496855	3511005	15
496855	3511810	15
496855	3512615	15
497660	3515029	15
497660	3515833	15
498465	3515029	15
498465	3515833	15
500879	3519857	68
500879	3522271	155
500879	3523075	316
500879	3524685	93
500879	3525489	93
500879	3526294	78
500879	3527099	62
500879	3530318	16
501683	3522271	155
501683	3524685	93
501683	3525489	93
501683	3526294	78
501683	3527099	78
501683	3529513	16
501683	3530318	16
502488	3524685	78
502488	3525489	78
502488	3526294	78
502488	3527099	78
502488	3527904	101
502488	3528686	101
502488	3542388	62
502415	3543192	62
503293	3524685	78
503293	3525489	78
503270	3526294	78
503293	3527099	78
503293	3527904	101

TABLE I.1.1 Well Locations and Pumping Rates for Steady-State (1940) Simulation

UTM83E	UTM83N	Pumping Rate (gpm)
503293	3528708	101
503293	3542388	62
503293	3543192	62
504097	3529513	93
504097	3530318	93
504097	3531927	868
504097	3532732	336
504074	3535950	310
504097	3537560	139
504097	3538364	279
504097	3539169	174
504097	3539974	174
504097	3542388	62
504097	3543192	62
504902	3529513	93
504902	3530318	93
504902	3533536	336
504902	3535146	310
504902	3537560	139
504902	3539169	174
504902	3539974	174
504902	3542388	62
504902	3543192	62
505707	3536755	558
505707	3537560	78
505707	3538364	78
506511	3537560	78
506511	3538364	78

TABLE I.1.1 Well Locations and Pumping Rates for Steady-State (1940) Simulation

Notes:

Well locations and pumping rates from ADWR Model (Mason and Bota, 2006) UTM83E = Universal Transverse Mercator, North American Datum 1983, East UTM83N = Universal Transverse Mercator, North American Datum 1983, North gpm = gallons per minute

Well ID	UTM83E	UTM83N 19	41 1942	1943 1944	1945 19	946 1947	1948 1949	1950 19	51 1952	1953 1954	1955	1956 1957	1958	1959 1	960 1961	1962	1963 196	4 1965	1966	1967 19	68 1969	1970 19	071 1972	1973 197	4 1	975 1976	1977 19	78 1979	1980	1981 19	82 1983
	500400	0501100		.010					007	170 170	170	470 470						505	1000	105											
ANAMAX ANAMAX MINING COMPANY	502488 502488	3531123 0 3532732 0	0	0 0	0 0	0 0	0 0	0 0	0	4/9 4/9 0 0	4/9	4/9 4/9 0 0	0	0	0 0	0	0 0	595	421 0	0	0 5/4 0 0	0	0 0	0 0		0 0	0 0	0 0	0	0 0	0 0
ANAMAX MINING COMPANY COT:SC-024 A	502488 508121	3534341 0 3538365 0	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0	0	0 0	0	0 0	1830	604 0	176 1 0	71 521 0 0	1839 22	246 1601 0 628	2710 194 661 66	-0 5 B 6	547 1643 612 338	1365 92 495 28	23 0 35 451	799 534	874 81 536 38	16 604 30 207
CYPRUS PIMA ASSOCIATES CYPRUS/DUVAL	503293 500074	3539974 0 3521467 0	0	0 0	0 0	0 0 0	0 0	0 0	0	0 0	0	0 0	0	0 306 1	0 0 684 1193	0 1298	0 0 1379 140	0 0 1417	0 1499	0 1995 25	0 0	2505	0 0	0 0		0 0	0 0	0 0	0	0 50	05 0
D-15-13 15DCA D-16-13 34AAB - ASARCO	500074 500074	3534341 0 3539974 0	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0	0	0 0 44 44	296 317	296 29 723 103	6 296 14 428	0 673	0 506 12	0 0	0 0	0 0 50 1050	0 0 1057 28	5 2	0 0 218 303	0 0	0 0	0	0 0	0 0
D-16-13 35A	501683 501683	3539974 0 3539974 0	0	0 0	0 0	0 0	0 0	0 0	0	53 53	53	53 53	386	407 4	407 0	0	0 0	0	0	0	0 0	0 1149 9	0 0	0 0	6	0 0 730	0 0	0 0	0	0 (0 0
D-16-13 35BBB & BAB MISSION	500879	3539974 0	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0	0	0 544	2412	1984 60	9 1309	760	1014 13	99 1723	1130 11	57 1193	2275 207	6	0 2001	1728 22	09 2429	1211	863 18	53 1671
D-16-13 36 ASSIGNED USGS D-16-13 36 ASSIGNED USGS	502488	3539169 0	56	56 56	56 5	56 0 56 0	0 0	84 8) 80) 80	0 0	0	0 0	0	0	0 0	0	0 0	0	0	0	0 0	0	0 0	0 0	5	0 0	0 0) 0	0	0 0	0 0
D-16-13 36 ASSIGNED USGS D-16-13 36 ASSIGNED USGS	503293 503293	3539169 0 3539974 0	56	56 56 0 55	56 5 0 0	56 0 0 0	0 0	84 8 0 0	1 81 0	0 0	0	0 0	0	0	0 0	0	0 0	0	0	0	0 0	0	0 0	0 0		0 0	0 0	0 0	0	0 0	0 0
D-16-13 36A - 3 WELLS D-16-13 36A - 4 WELLS	503293 500074	3539974 0 3536755 0	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0	0	0 0	0	0 0	0	0	3897 0	0 3547 0 0	3301 36	61 0 0 0	1277 0 0 0		0 2864 0 0	0 0	0 0	3001 0	992 C	0 14
D-16-13 36A - CYPRUS PIMA D-16-13 36A 5 C-P	503293 501683	3539974 0 3539974 0	0	0 0	0 0	0 0	0 0	0 0	0	0 121	243	243 243	366	385 3	385 386 0 0	1399	1399 139	986	3825	0 43	0 0	0	0 3503	0 191	3 2	2148 0	619 0	0	0	0 0	55 16 0 0
D-16-13 36A ASSIGNED USGS	503293	3539974 0	49	49 49	0 4	19 0 0 0	0 0	74 6	1 61	0 0	0	0 76	0	0	0 0	0	0 0	0	0	0	0 0	0	0 0	0 0	1	0 0	0 (0 0	0	737 39	93 10
D-16-13 360DD - CYPRUS-PIMA	503293	3539169 C	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0	0	0 0	0	0 0	0	0	0		660 7	32 701	255 473	3 7	713 333	0 0	0 0	0	0 0	0
D-16-14 32A D-16-14 32B	5055707	3539974 0	43	2 23 23 23	23 2	23 45	45 45	107 13	1 151	0 87 71 159	159	87 446 159 159	93 61	98 65	65 68	68	68 68	3 103 8 68	0	0	0	0	0 0	0 0		0 0	0 0	0	0	0 0	0 0
D-16-14 32C D-17-13 01A	505707 503293	3539169 0 3538365 0	23	23 23 26 26	23 2 26 2	23 45 26 38	45 45 38 38	107 13 113 0	1 151 301	0 88 176 528	88 528	88 88 528 528	31 325	33 325 3	33 34 325 402	34 435	34 34 435 43	34 5 435	0 268	0	0 0 0 0	0	0 0	0 0 2647 0		0 0 0 2983	0 0 861 0	0 0	0 1975	0 0	0 0
D-17-13 01A - CYPRUS-PIMA D-17-13 01B	503293 502488	3538365 0 3538365 0	26	0 0 26 26	26 2	0 0	0 0 38 38	0 0	0	0 0	0	0 0	0	0 109 1	0 0	0	0 0	0 7 147	0	0	0 0	733	0 779 0 0	807 245 0 0	i3 8	816 0 0 0	0 0) 715) 0	0	0 0	22 27
D-17-13 01C	502488 503293	3537560 0 3537560 0	26	26 26 26	26 2	26 38	38 38 38 38	113 C	304	178 355	355	355 355	219	219 2	219 271	293	293 29	3 293	0	0	0 0	0	0 0	0 0		0 0	0 0	0	484	0 0	0 0
D-17-13 02A - 3 WELLS	501683	3538365 0	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0	0	0 0	0	0 0	0	0	2591 29	14 2358	2195 24	33 2329	1544 157	3 1	776 2371	1352 65	50 1296	0	0 0	0 0
D-17-13 02A - CYPRUS-PIMA D-17-13 02B - CYPRUS	501683	3538365 0	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0	0	0 0	0	0 0	0	0	0 9	71 786	732 8	11 776	515 64	5 7	790 457	0 0	0 0 0 432	0	0 0	0 0
D-17-13 10A - CYPRUS-PIMA D-17-13 12A	500074 503293	3536755 0 3536755 0	70	0 0 70 70	70 7	0 0 70 56	0 0 56 56	112 12	0 6 126	0 0 726	0 726	0 0 726 726	0 311	0 311 3	0 0 311 311	0 317	0 0 317 31	0 7 317	0	0	0 786 0 0	0 0	11 776 0 0	515 524 0 0	4 2	299 790 0 0	457 0	0 0	0	0 0	0 0
D-17-13 12B D-17-13 12C	502488 502488	3536755 0 3535951 0	70	70 70 69 69	70 7 69 6	70 55 59 55	55 55 55 55	110 12	6 126	0 0	0	0 0	0	0	0 0	0	0 0	0 635	0	0	0 0	0	0 0	0 0		0 0	0 0	0 0	0	0 0	0 0
D-17-13 12D D-17-13 13A - ANAMAX(?)	503293 503293	3535951 0 3535146 0	70	70 70 0 0	70 7	70 56 0 0	56 56 0 0	112 12	6 126	0 0	0	0 0	0	0	0 0	0	0 0	0	0	0 443	0 0	0	0 0 0 0	0 0		0 0	0 0	0 0	0	0 0	0 0
D-17-13 13B - ANAMAX(?)	502488	3535146 C	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0	0	0 0	0	0 0	0	0	443		0	0 0	0 0		0 0	0 0		0	0 0	
D-17-13 22A	500074	3533537 0	0	0 0	0 0	0 0	0 0	0 0	0	28 28	28	28 28	62	62	62 62	170	170 17	0 170	0	0		0	0 0	0 0		0 0	0 0	0	0	0 0	
D-17-13 22B D-17-13 22C	499269	3533537 0	0	0 0	0 0	0 0	0 0	0 0	0	28 28 28 28	28	28 28 28 28	62	62	62 62 62 62	170	170 17	0 170	0	0	0 0	0	0 0	0 0		0 0	0 0	0	0	0 0	0 0
D-17-13 22D D-17-13 23A	500074 501683	3532732 0 3533537 0	0	0 0	0 0	0 0	0 0	0 0	0	28 28 0 0	28	28 28 0 70	62 108	62 108 1	62 62 108 108	170 248	170 17 248 24	0 170 8 248	0	0	0 0	0	0 0	0 0		0 0	0 0	0 0	0	0 0	0 0
D-17-13 23B D-17-13 23C	500879 500879	3533537 0 3532732 0	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0 70	108	108 1 108 1	108 108 108 108	248 248	248 24 248 24	8 248 8 248	0	0	0 0	0	0 0	0 0		0 0	0 0	0 0	0	0 0	0 0
D-17-13 23D D-17-13 24A	501683 503293	3532732 0 3533537 0	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0 70	110	110 1	110 110	250	250 25	0 250	0	0	0 0	0	0 0	0 0		0 0	0 0	0	0	0 0	0 0
D-17-13 24B	502488	3533537 0	0	282 282	0 28	82 28	28 28	155 24	4 279	126 126	126	126 126	248	248 2	248 248	280	280 28	0 280	393	1010 8	98 466	521 4	83 241	65 15	3 5	540 0	0 (0 0	0	0 (0 0
D-17-13 24C D-17-13 24D	503293	3532732 0	0	0 0	0 0	0 0	20 20	0 0	0 237	0 0	0	0 0	0	0	0 0	0	0 0	0	0	0 19	98 0	0	0 0	0 0	5	540 566 540 0	434 42	0 0	0	0 (0 0
D-17-13 25A D-17-13 25B - ANAMAX	503293 502488	3531927 0 3531927 0	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0	0	0 0	0	0 0	0	0	1156	0 0	0	0 0	0 0		0 0	0 0	0 0	0	0 0	0 0
D-17-13 25CCD - ANAMAX D-17-13 25CDD - ANAMAX	503293 502488	3531123 0 3531123 0	0	0 0	0 0	0 0	0 0	0 0	0 64	0 0 91 91	0 91	0 0 91 91	0	0	0 0	0	0 0	0	0	0 1	05 0	2028	0 0	0 0	1	901 2664 0 0	0 0	0 0	0	0 0	0 0
D-17-13 35A D-17-13 35B	501683 500879	3530318 3 3530318 3	3 36 3 0	36 36 0 0	36 3 0 0	36 84 0 0	84 84 0 0	89 53 0 0	0 530	324 324 0 0	324 0	971 971 0 0	683 0	683 6 0	683 675 0 0	865 0	76 11 0 0	8 154 0	0	89 4 0	50 0 0 0	0	0 0	0 0		0 0	0 0	0 0	0	0 0	0 0
D-17-13 35C	500879 501683	3529513 3	3 73	73 73	73 7	73 167	167 167 84 84	179 0	0	0 0	0	0 0	0	0	0 0	0	0 0	0	0	0	0 0	0	0 0	0 0		0 0	0 0	0 0	0	0 0	0 0
D-17-13 36A	503293	3530318 0	0	0 0	0 0	0 0	0 0	21 6	3 77	196 196	196	196 196	161	322 3	322 412	326	251 12	4 225	0	0		0	0 0	0 0		0 0	0 (0	0 0	
D-17-13 36D D-17-13 36C	502488	3529513 C	0	0 0	0 0	0 0	0 0	21 6	3 77	195 195	195	195 195	162	162 1	162 235	326	243 12	4 229	0	1406 7	42 1248	0	0 0	0 0		0 0	0 0		0	0 0	
D-17-13 36D D-17-14 05A ASSIGNED USGS	503293 506511	3529513 0	8 23	23 23	23 2	23 0	0 0	0 0	0	196 196 0 88	196 88	196 196 88 88	161 31	33	161 234 33 34	326 34	257 12 34 34	5 <u>281</u> 34	0	0	0 0	0	0 0	0 0		0 0	0 0		0	0 0	0 0
D-17-14 05B D-17-14 05C	505707 505707	3538365 10 3537560 10	18 78 17 77	78 78 77 77	78 7 77 7	78 78 77 77	78 78 77 77	0 0 108 0	0	0 0	0	0 0	0	0	0 0	0	0 0	0	0	0	0 0	0	0 0	0 0		0 0	0 0	0 0	0	0 0	0 0
D-17-14 05D D-17-14 17B	506511 505707	3537560 10 3535146 0	18 77 0	77 77 0 0	77 7	77 77 0 0	77 77 0 0	236 10	3 118	206 206 78 78	206 78	206 206 78 78	144 78	144 1 78	144 130 78 82	78 82	78 78 82 82	8 78	0	0	0 0	0	0 0	0 0		0 0	0 0	0 0	0	0 0	0 0
D-17-14 17D D-17-14 29	506511 505707	3534341 0 3531123 6	0	0 0	0 0	0 0	0 0	0 0	118	80 157 90 178	157	157 157 178 178	157	157 1 178 1	157 166 178 188	166	166 16 188 18	6 166 8 188	0	0	0 0	0	0 0	0 0		0 0	0 0	0 0	0	0 0	0 0
D-17-14 29 ASSIGNED USGS	505707	3531927 6 2531027 6	1 45	45 45	45 4	15 45	45 45	0 4	5 45	0 0	0	0 0	0	0	0 0	0	0 0	0	0	0		0	0 0	0 0		0 0	0 (0	0 0	
D-17-14 29D ASSIGNED USGS	506511	3531327 0	1 45	45 45	45 4	45 45	45 45	0 4	5 45	0 0	0	0 0	0	0	0 0	0	0 0	0	0	0		0	0 0	0 0		0 0	0 0		0	0 0	
D-17-14 30D D-17-14 31A	504902 504902	3531123 0 3530318 8	2 59	0 0 59 59	59 5	0 0 59 59	0 0 59 59	0 0	0 3 20	0 0 8 8	0 8	0 0 8 8	6	267 2 6	267 281 6 7	257 7	257 25 7 7	7 257 7	0	0	0 0	0	0 0	0 0		0 0	0 0	0 0	0	0 0	0 0
D-17-14 31B D-17-14 31C	504097 504097	3530318 8 3529513 8	2 59 1 58	59 59 58 58	59 5 58 5	59 59 58 58	59 59 58 58	0 0	0 117	0 141 46 46	189 46	189 189 46 46	158 38	158 1 38	158 166 38 40	166 40	166 16 40 40	6 166 0 40	0	288 3	90 518 D 0	0 1	82 239 0 0	169 0 0 0		0 188	0 0	0 0	0	0 0	0 0
D-17-14 31D D-18-13 01A	504902 503293	3529513 8 3528709 0	1 58	58 58 0 0	58 5	58 58 0 0	58 58 0 0	0 8	5 98 0	39 39 0 0	39 0	39 39 0 0	32	32	32 34 0 0	34 0	34 34 0 0	34	0	0	0 0	0	0 0	0 0	0 1	0 0	0 0 627 78	0 0	0 891	0 0	0 0
D-18-13 01B D-18-13 01C	502488 502488	3528709 33 3527904 66	5 587	587 587 448 448	587 58	87 272 48 269	272 272 269 269	620 44 612 0	0 503	276 276 273 273	276	276 276	394	394 3 390 3	394 336 390 336	0	0 11	1 125	0	64 3 423 6	07 308 17 612	55 6 2198 10	3 70 60 2151	32 37	90 1	375 39	39 3 1365 7	9 0	0 891	0 0	0 0
D-18-13 01CCC Community Wtr	502488	3527904 0	0	0 0	0 0		0 0	0 0	0	0 0	0	0 0	0	0	0 0	0	0 0	0 074	0	0	0 0	0	0 0	0 33	3	340 35	35 3	5 652	0	0 0	0 0
D-18-13 02A	501683	3528709 0	45	45 45	45 4	45 69	69 69	0 34	3 392	552 552	0	0 552	158	158 1	158 144	311	311 31	1 311	0	0	0 0	0	0 0	0 0		0 0	0 0	0	0	0 0	0
D-18-13 02B D-18-13 02C	500879 500879	3528709 0 3527904 0	46	46 46 46 46	46 4	46 69 46 68	69 69 68 68	0 0	0	0 0	552	552 0	0	0	0 0	0	0 0	0	0	0	0 0	0	0 0	0 0		0 0	0 0		0	0 0	0 0
D-18-13 02D D-18-13 10AAC & ADC	501683 500074	3527904 0 3527099 0	45	45 45 0 0	45 4	45 69 0 0	69 69 0 0	1359 34 0 0	3 785	1104 1104 0 0	0	1104 1104 0 0	315 0	315 3 510 2	315 287 2195 1543	623 1681	623 62 1786 181	3 623 9 1835	0 1941	0 1995 11	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1109	0 0	0 0		0 0	0 0	0 0	0	0 0	0 0
D-18-13 11B D-18-13 11C	500879 500879	3527099 0 3526295 0	0	0 0	0 0	0 0	0 0	0 0 909 48	0 8 558	0 0 558 558	0 558	0 0 558 558	203	0 203 2	0 0 203 185	0 241	0 12 241 36	3 123 2 362	0	0	0 0	0	0 0	0 0		0 0	0 0	0 0	0	0 0	0 0
D-18-13 11D D-18-13 13B	501683 502488	3526295 0 3525490 65	252	252 252	756 75	56 845 36 0	845 845 0 343	455 49	4 565	565 565 397 397	565 397	565 565 397 397	205	205 2	205 187	244	244 24	4 <u>244</u> 1 171	0	0	0 0	0	0 0	0 0		0 0	0 0		0	0 0	0 0
D-18-13 13C	502488	3524685 0	0 0	0 0	337 33	37 344	344 344	344 52	1 595	794 794	794	794 794	420	420 4	420 383	342	513 51	3 513	0	0		0	0 0	0 0		0 0	0 (0	0 0	
D-18-13 14B	500879	3525490 31	3 339	339 339 400	339 33	39 489	489 489	677 0	822	925 925	925	925 925	720	720 7	720 656	890	890 89	0 890	0	0		0	0 0	0 0		0 0	0 0		0	0 0	
D-10-13 140 D-18-13 34D	500879 500074	3524685 37 3519857 0	o 409 0	409 409 0 0	409 40	0 0	590 590 0 0	δ15 41 0 0	0 468 0	351 351 0 0	351 0	351 351 0 0	0	2/3 2	2/3 249 0 0	338	338 33 0 0	o <u>338</u> 0	0	0	, 0 D 0	0	0 0	U 0 0 0	1	0 0	U (1251 68	, 0 31 1223	0 1405	U (1505 11	, 0 88 1256
D-18-14 06A D-18-14 06B	504902 504097	3528709 0 3528709 0	0	0 0 0 0	0 0	U 76 0 78	76 76 78 78	154 15 156 15	6 156 5 155	156 156 155 155	156 155	156 156 155 155	156 155	156 1 155 1	156 156 155 155	156 155	156 15 155 15	5 156 5 155	0	0	0 0	0	0 0 0 0	0 0		U 0 0 0	0 0	0	0	0 0	0 0
D-18-14 06C D-18-14 06D	504097 504902	3527904 0 3527904 0	0	0 0	0 0	0 77 0 77	77 77 77 77	156 15 156 15	6 156 5 155	156 156 155 155	156 155	156 156 155 155	156 155	156 1 155 1	156 156 155 155	156 155	156 15 155 15	6 156 5 155	0	0	0 0	0	0 0	0 0		0 0	0 0	0 0	0	0 0	0 0
D-18-14 08A D-19-13 03ACC - DUVAI	506511	3527099 0 3519053 0	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0	0	0 0	0	0 0	0	566 0	318 3	94 591	0 0 768 10	0 0	0 0	4 4	0 0	0 0	90 1704	0	0 0	0
D-19-13 04C	497660	3518248 0	0	0 0	0 0	0 0	0 0	0 0	0	89 89	89	89 89	0	0	0 0	0	0 0	0	0	0		0 12	0 0	0 0		0 0	0 (0 0	0	0 0) 0
D-19-13 09C	497660	3516639 0	233	233 233	233 23	33 233	233 233	233 35	0 350	1050 1050	1050	1050 1050	350	350 3	350 186	186	186 18	6 186	700	256 8	50 888	420	0 0	37 53		0 0	0 0		0	0 0	
D-19-13 10ADA - DUVAL D-19-13 10ADA - DUVAL	498465 499269	351/443 C 3517443 C	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0	0	0 0	0	0 0	0	0	0	0 0	1137	0 0	0 0	2	2239 0	0 0) 0) 0	2183	0 0	, 0) 0
D-19-13 10ADA - DUVAL D-19-13 16/DUVAL	500074 497660	3517443 0 3515834 0	130	0 0 130 130	0 0	0 0 30 130	0 0 130 130	0 0 130 0	0	0 0	0	0 0	0	0	0 0	0	0 0	0	0	0	0 0	0 18	04 1889 546 2832	1732 183 2869 289	4 3	0 2267	2142 20 2942 28	50 2127 76 2668	0 2	2066 66	50 1095 08 1506
D-19-13 16A D-19-13 16B	498465 498465	3515834 0 3515029 0	130	130 130 132 132	130 13 132 13	30 130 32 132	130 130 132 132	130 0 132 10	0 1039	0 0 1646 1646	0 1646	0 0 1646 1646	0 520	0 520 5	0 0 520 276	0 597	0 0	0 7 597	0	0 419 4	0 0	260	0 0	0 0		0 0	0 0	0 0	0	0 0	0 0

H:\78300\78314 Numerical Model\Report\ Appl_1_Tables.xls: Table I.1.2_ADW RModelWells

TABLE I.1.2
Well Locations and Pumping Rates for
Transient Simulation, taken from ADWR Model (Mason and Bota, 2006)

Well ID	UTM83E	UTM83N 1	941	1942 194	13 1944	4 1945	1946	1947	1948	1949	1950	1951 1	952 1	953 19	54 195	5 195	6 1957	1958	1959	1960	1961	1962 19	963 19	964 19	965 1966	1967	1968	1969 1	970 1	971 1972	1973	1974	1975	1976	1977	1978	1979	1980 1	981 15	982 19	983
D-19-13 16C	497660	3515029	0	130 130	0 130) 130	130	130	130	130	130	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0 (0
D-19-13 17DDD - DUVAL D-19-13 20A	496855 496855	3515029 3514225	0	0 0 64 64	0 1 64	0 64	0 64	0 64	0 64	0 64	0 128	0 385 :	0 385 (0 0 385 38	0 0 5 38	0 5 385	0 5 385	0 257	0 257	0 257	0 136	0 136 1	0 36 1	0 136	0 0 0 0	0	0	0	0 1	702 2286 0 0	6 1863 0	2089 0	2379 0	2418 0	1438 0	2466 0	2189 0	2010 1 0	0 0	08 100 0 (090
D-19-13 20B D-19-13 20C/DUVAL	496051 496051	3514225 3513420	0	64 64 64 64	4 64 1 64	64 64	64 64	64 64	64 64	64 64	128 128	381 385	381 3 385 3	381 38 385 38	1 38 5 38	1 381 5 385	381 385	424 341	424 341	424 341	225 181	135 1 136 1	35 1 36	0 1	0 0 36 286	0 537	0 389	0 732 1	0 550 1	0 0	0 2042	0 2144	0 2617	0 2992	0	0	0 147	2302 0	0 (0 0 0 C	0
D-19-13 20D D-19-13 21B	496855 497660	3513420 3514225	0	65 65 0 0	5 65 0	65	65 0	65	65 0	65 0	128 0	385 286	385 3 286 4	385 38 477 47	5 38 7 47	5 385 7 477	5 385 7 477	257	257	257 0	136	136 1 152 1	36 52 1	0 1	36 0 52 0	0 182	0 625	0 648	0 312	0 0	0	0	0	0	2301	2694 0	2279	0 2 31	178 69 33 2	<u>96 115</u> 26 2'	155 29
D-19-13 21C D-19-13 29A	497660 496855	3513420 3512615	0 41	0 0	0 60	60	0 60	0 60	0 60	0 60	0	0	46 2 0	242 24 0 0	2 24	2 242	2 242	0	0	0	0	78 0	78 7 0	78 7	78 0 0 0	0	0	0	0	0 0	0	0	0	0	0	0	0	0		0 0 0 C	0
D-19-13 29B D-19-13 29C	496051 496051	3512615 3511811	42	58 58 58 58	3 58 3 58	58	58	58	58	58 58	117	233 3	0	233 23 0 0	3 23	3 233	3 233 0	155	155	155	0	82 8	32 8 0	0 0	32 0 0 906	495	929	1110 1	0 458 1	0 0 1836 1912	2 1837	1602	2829	2569	2222	2100	1924	1575 1	491 6	0 0 42 9€	0 165
D-19-13 29D D-19-13 32 D-10-10-20D	496855	3511811	0	233 233	3 233	3 233	233	233	233	233	467	233	235 2	236 23 467 42	9 0	0	0	233	233	233	124	288 2	88 2	288 2	68 0 88 0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0 /	<u>0 0</u>	0
D-19-13-32B D-19-13-31AD D-10-12-21BC	495246	3511006	81	88 176	6 176	5 176	176	0	0	242	233	448 0	63	233 23 795 79	5 79	5 795	5 795	567	767	767	407	443 4	44 I 43 4	144 1- 143 4-	44 306 43 410	343	601	296	397	288 365	328	268	180	280	489	453	608	698 7	147 5'	90 62	j24
DUVAL CORPORATION	498465	3516639	0	0 0	0	0	0	0	0	0	0	0	0	+69 40 0 0	9 40	9 485	0	0	0	0	0	200 2 0	0 2	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0 0	0 0	0
FARMERS INVESTMENT CO	503293 503293	3524685	0	0 0	0	0	0	0	0	0	0	0	0	0 0		0	0	0	0	63	57	57 5	57 5	57 5	57 83	57	57	61	61	63 65	65	65	65	36	0	0	0	0	0 0	0 0 412 11	0
FICO - D-16-14 31A	504902	3539974	0	0 0	0	0	0	0	0	0	0	38	30	89 8	9 89	89	89	0	0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0 (0
FICO - D-16-14 31D FICO - D-16-14 31C FICO - D-16-14 31D	504097 504902	3539169	0	832 832 814 814	2 790 4 773) 790 3 773	790	1116	1058	1058	319	346 38	274 4	451 45	1 45	1 451 1 451	451	0	0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0 (0 0	0
FICO - D-17-13 13A FICO - D-17-13 13D	503293 503293	3535146	0	0 0	0	0	0	0	0	0	214	220	350	553 55	3 55	3 553	3 553	0	0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0 (0 0	0
FICO - D-17-13 24ACC FICO - D-17-13 25ABB ADD	503293 503293	3533537 3531927	0	0 0	2 106	0	0	0	0 264	100	360 165	754	58 2	252 25	2 25	2 252	2 252	0	0	0 401	0 484	0 567 5	0 95 5	0 0	0 0 32 818	0 850	0	0	0	0 0	0	0 477	0 718	0	0 627	0 758	0 838	0 727 9	0 (328 8	0 0	0
FICO - D-17-13 25CDC FICO - D-17-14 05CDA	502488 505707	3531123 3537560	0	108 108 0 0	8 103 0	3 103 0	103 0	0	0	255 0	159 0	0	0	0 0	0	0 7 207	0 7 207	996 589	430 545	570 502	781 389	622 6 382 3	19 5 24 1	537 7 168 2	10 667 50 335	610 382	686 345	681 313	879 86	0 0 60 50	0 80	0 51	0 353	0 493	0 192	0 211	0 241	0 294 3	376 3	0 0	281
FICO - D-17-14 06BCB FICO - D-17-14 06CCC	504097 504097	3538365 3537560	450 568	276 276 279 279	6 263 9 265	3 263 5 265	263 265	262 265	248 251	248 251	0	219 250	74	326 32 326 32	6 32	6 326 6 326	326 326	0	0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0 (0 0	0
FICO - D-17-14 06DDD(?) FICO - D-17-14 07A	504902 504902	3537560 3536755	574 271	429 135 147 147	5 564 7 140	4 536 0 140	536 140	530 0	502 0	502 0	0 277	656 223	77	652 65 177 17	2 65 7 17	2 652 7 177	2 652 7 177	0	0	0	0	0	0	0	0 0	0	0	0	0	0 0 0	0	0	0	0	0	0	0	0	0 (0 0	0
FICO - D-17-14 07B FICO - D-17-14 07C	504097 504097	3536755 3535951	267 271	146 146 148 148	6 139 8 141	9 139 1 141	139 141	0	0	0	0	0	0	0 0	0 0	0 7 177	0	0 355	0 231	0 218	0 341	0 310 3	0 58 2	0 249 2	0 0 90 113	0 226	0 226	0	0	0 0 281 225	0 269	0 284	0	0 552	0 417	0 279	0 337	0 473 6	0 (305 5	0 0	0 153
FICO - D-17-14 07D FICO - D-17-14 08BDD	504902 505707	3535951 3536755	271 0	147 147 0 0	7 140 0	0 140	140 0	560 0	530 0	530 0	346 0	224 0	294	177 17 294 29	7 17	7 177 4 294	7 177 I 294	614 0	682 0	404 0	418 0	392 3 0	97 3 0	360 4 0	11 413 0 0	512 0	340 0	438 0	896 :	388 335 0 0	386 0	321 0	20 0	639 0	509 0	577 0	496 0	413 5 0	28 49	90 39	.95 0
FICO - D-17-14 08CAD FICO - D-17-14 18ADC	505707 504902	3535951 1 3535146 1	965 297	0 0	0 7 671	0	0	610 617	1157 584	1157 584	700 416	424 2 756	294 2	294 29 700 70	4 29	4 294 0 700	1 294) 700	976 1286	425 1448	422 1194	329 1303	298 2 1461 10	14 3 012 8	343 5 378 9	75 531 74 1123	449 1090	262 926	337 1428	124	229 114 801 662	159 1020	109 1051	107 1142	0	0 895	0 763	0 826	0	0 (0 0 391 7	0
FICO - D-17-14 18DAD FICO - D-17-14 19ABC	504902 504902	3534341 1 3533537	092 524	595 595 286 286	5 565 6 272	5 565 2 270	565 272	623 272	591 258	590 258	1329 393	675 402	535 319	714 71 297 29	4 71 7 29	4 714 7 297	1 714 7 297	0 564	0 405	0 290	0 262	0 273 2	0 62 1	0	0 0 07 239	0 293	0	0 206	0	0 0 211 241	0 322	0	0 82	0	0	0	0	0	0 (0 0	0
FICO - D-17-14 19CBD FICO - D-17-14 30	504097 504097	3532732 3531927	653 0	357 357 0 0	7 339	9 <u>337</u> 0	339 0	339 0	321 0	321 0	420 0	477 : 0	379 3 0	354 35 0 0	4 35	4 354	i 354 0	0	0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0 (0 0	0
FICO - D-17-14 30ACD FICO - D-17-14 30ACD	503055 504902	3532226 3531927	0	0 0	0	0	0	0	0	0	66 3	0 :	376 37	319 47 32 4	9 47 7 47	9 479	9 479 47	0	0	267 23	313 27	296 1 26	85 11	161 13 101 1	326 0 15 0	483 42	1167 101	1577 1 137	453 1	145 824 100 72	1176 102	1365 119	1609 140	1293 112	691 60	764 66	764 66	837 1 73	069 99 93 F	94 80 86 7	.00
FICO - D-17-14 30BBB FICO - D-17-14 30BCC BDD	504097 504097	3531927 3531927	0	1633 163 0 0	33 155 ⁻ 0	1 1551	1551	1551	1469 0	1469 0	69 384	0 :	207 8	369 86 176 35	9 86	9 869	869	0	0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0 (0 0	0
FICO - D-17-14 30CDD FICO - D-18-13 12A	504097 503293	3531123 3527099	0	0 0	0	0	0	0	0	0	69 0	0	0	0 0	0	177	7 177	0	0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0 (0 0	0
FICO - D-18-13 12B FICO - D-18-13 12C	502488 502488	3527099	0	228 228	8 217	7 217	217	0	0	0	0	0 744	0	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0 (0 0	0
FICO - D-18-13 12D FICO - D-18-13 13ABC	503293 503293	3526295	0	228 228 95 0	8 217	7 217	217	0	0	0	0 405	0	591 C	394 39 302 80	4 39	4 394	4 394 802	1851	24 707	454	354 513	426 3 792 7	84 1 05 5	178 2 592 9	55 178 42 490	210 545	242 328	290	208	51 0 930 888	0	0 947	503 505	319 922	384 741	230 904	466	307 3 811 8	37 3	13 25	.52
FICO - D-18-13 23BAD FICO - D-18-13 23CCB	501393 500879	3523933 3523076	0	0 0	0	0	0	0	0	0	0	330	263	263 26	3 26	3 263	3 263 532	1959	1074	568	0	0 4	20 4	485 7	56 330 0 0	404	397	733	642 0	0 0	0	0	0	0	0	0	0	0	0 (0 0	0
FICO - D-18-13 24BBB FICO - D-18-13 26AAD 26ABB	501393 501683	3523933 3522271	0	0 0	0	0	0	220 579	209 548	209 548	136 578	227 636	58 3	315 31 505 50	5 31	5 315	5 315 5 505	210	1054	798 322	860 164	818 6 234 2	91 6 16 1	651 6	61 776 63 132	881	598 97	882 329	536 206	0 0	0	0	0	0	0	0	0	0	0 (0 0	0
FICO - D-18-13 26CCD FICO - D-18-13 2BCA	500879 500879	3521467 3522271 1	0	0 0 1670 167	0	0 7 1587	0	602 530	571 502	571 502	602 530	732	581 <u>1</u>	581 58 512 51	1 52	9 529	529	277	443	388 918	200	361 2 711 4	62 3 64 4	303 3 497 6	14 257 28 141	223 561	191 449	278	809 573	0 0	0	0	0	0	0	0	0	0		0 0	0
FICO - D-18-13 34ACA FICO - D-18-13 35BAB	500074 500879	3520662 3520662	319 0	490 490 0 0	0 465	5 465	465 0	166	158 752	158 752	825 1228	787 380	624 1 603 0	129 11 303 30	29 112	29 112 3 303	9 <u>1129</u> 3 303	2236 708	1160 499	1027	799 0	786 7	19 4 0	467 6 0	68 <u>277</u> 0 0	485	387 0	686	577 0	0 0	0	0	0	0	0	0	0	0	0 (0 0	0
FICO - D-18-13 35CBA FICO - D-19-13 03B	500879 499269	3519857 3519053	0	0 0 200 200	0 190	0	0 190	0 190	0 180	0 180	0 117	382 (250)	200 3	605 60 399 39	5 60 9 39	5 605 9 399	605 399	139 0	271 0	236 0	377 0	334 2 0	92 3 0	379 3 0	79 229 0 0	258 0	204 0	335 : 0	293 0	0 0 0	0	0	0	0	0	0	0	0	0 0	0 0	0
FICO: B-01 FICO: B-02	504097 504097	3534341 3531123	0	0 0 0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	285 387	314 220 346 346	209 316	233 282	23 308	0 305	0 186	0 231	0 61	0	0 (0 0	0
FICO: E-02 FICO: E-04	501683 502488	3522271 3525490	0	0 0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	324 864	224 683	153 378	97 474	236 2 497 4	10 1 41 2	160 2 299 3	76 151 65 435	166 446	198 464	244 477	247 548	0 0 0	0	0	0	0	0	0	0	0	0 0	0 0	0
FICO: E-06 FICO: S-02	501680 504902	3524946 3537560	0	0 0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	767 367	526 334	273 243	517 238	284 2 201 2	35 4 56 3	428 5 311 3	75 561 52 347	509 502	484 337	687 459	746 371	563 316 116 0	705 0	446 0	440 0	412 0	294 0	399 0	254 0	378 4 0	14 3F	84 31 0 (.10
FICO: S-08 FICO: S-10	504097 504097	3538365 3537560	0	0 0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	583 385	249 109	338 186	401 293	429 3 422 4	72 3 57 4	319 3 432 4	11 113 08 388	259 455	260 335	267 319	205	131 69 0 0	72	88 0	0	0	0	0	0	0	0 (0 0	0
FICO: S-17 FICO: S-19	495246 504841	3529513 3532023	0	0 0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	387 556	118 438	0 226	0 329	0 388 2	0 85 1	0 1	0 0 59 129	0 144	0 115	0 265	0 369	0 0 373 342	0 217	0 382	0 291	0 486	0 335	0 204	0 79	0	0 (0 0 37 10	0
FICO: S-24 FICO: S-25	504097 502233	3532732 3533248	0	0 0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	737 0	588 0	404 0	512 0	488 4 0	33 3 0	350 3 0 0	00 439 0 0	575 0	300 0	349 ·	167 · 0	453 356 0 0	415 0	439 0	414 0	257 23	198 29	201 25	183 40	80 1 31	03 9 39 (35 77 36 2	77 29
FICO: S-25 FICO: S-26	503037 503293	3533248 3535146	0	0 0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	545 390	399 180	397 293	425 410	446 3 459 5	32 2 34 4	282 3 423 4	69 208 59 182	481 453	416 454	247 449	361 360 3	335 167 220 301	110 237	170 276	69 249	438 0	560 0	476 0	762 0	580 7 0	41 68 0	88 55 0 C	54 0
FICO: S-27 FICO: S-28	504097 504902	3532732 3536755	0	0 0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	637 416	422 412	287 308	281 465	311 2 219 1	91 2 51 1	227 2 149 1	79 <u>305</u> 36 116	298 181	224 123	293 180	245	162 114 151 79	123 79	82 62	58 5	0	0	0	0	0	0 (0 0 0 (0
FICO: S-30 FICO: S-33	504902 503859	3539974 3532226	0	0 0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	419 70	326 40	345 64	0 93	0 110 8	0 30 5	0 0 55 4	0 0 45 36	0 41	0 32	0 75	0	0 0 105 96	0 61	0	0 82	0 137	0 95	0 57	0 22	0 41	0 (40 (0 0 39 3	0 37
FICO: S-35 FICO: S-36	503293 505707	3531927 3536755	0	0 0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	1211 617	849 452	610 454	791 404	992 7 405 4	95 7 02 3	702 7 358 4	61 498 34 442	820 427	908 342	597 440	986 548	506 562 233 347	552 215	654 241	311 227	285 61	147 148	98 184	145 240	256 3 230 2	27 30 294 2	03 24 73 22	45 220
FICO: S-37 FICO: S-38	504097 503293	3539169 3535146	0	0 0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0 247	0 135	268 260	466 307	439 4 419 3	48 2 02 2	264 3 221 3	40 0 38 130	0 337	0 289	68 72	352	240 233 96 119	271 131	272 149	243 0	143 0	9 0	0	0	0	0 (0 0 0 (0
FICO: S-39 FICO: S-41	504902 502488	3531927 3531123	0	0 0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	486 0	390 0	496 0	399 12	447 3 215 1	34 4 81 1	40 1- 144 1:	40 119 37 40	514 53	228 30	296 116	34 59	139 173 0 0	123 0	96 0	0	0	0	0	0	0	0 0	0 0 0 C	0
FICO: S-42 FICO: S-43	505707 503009	3536755 3537068	0	0 0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0 0	69 1 0	0 2	53 3434 0 0	298 0	235 0	370 253	364 :	267 237 462 530	252 513	296 474	210 496	135 454	256 394	98 388	0 167	0 336 4	0 (430 3	0 0	0 322
FICO: S-43 FICO: S-44	503813 503859	3537068 3530811	0	0 0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0 0 0	0	0	175 0	819 : 0	321 369 0 0	356 0	330 0	345 1171	315 1097	274 656	270 831	116 961	234 2 580 7	99 27 /41 6	78 22 389 55	24 555
FICO: S-45 FICO: S-46	504834 502647	3532831 3532239	0	0 0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0 0 0	0	195 371	1295 1705	1522 1336	937 725	1009 677	939 435	647 8 685 8	28 7f 376 8	69 61 313 65	19 555
FICO: S-48 FICO: S-49	504987 504793	3537067 3538083	0	0 0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0 0 0	0	10 79	577 488	527 382	318 246	382 288	486 533	506 6 406 5	47 6r 19 4	01 48 482 38	85 388
FICO: S-50 FICO: S-51	504991 503017	3538695 3535471	0	0 0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0 0 0	0	0	522 1285	257 1458	257 678	173 494	387 1011	254 3 877 1	25 30 121 10	02 24 042 85	43 339
FICO: S-52 FICO: S-53	504790 503453	3535663 3532635	0	0 0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0 0 0	0	3	427 1131	346 1425	335 855	290 917	388 1216	445 5 900 1	69 57 149 10	29 42 068 8f	26 360
FICO: S-55 FICO: S-56	502062 505213	3531858 3534443	0	0 0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0 0 0	0	0	0	0	0	0	0	316 4 376 4	04 3 [°] 481 4	75 30 447 3f	02 360
FICO: W-05 FICO: W-06	504902 504097	3539169 3539169	0	0 0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	254 710	293 483	229 396	0 519	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0 (0 0	0
TUCSON, CITY OF	507316	3538365	0	0 0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	176	613	529 530	561	512	335	388	477	400	361	318 3	<i>6</i> 7 1	79 30	<i>,</i> 02

TABLE I.1.2	
Well Locations and Pumping Rates for	
Transient Simulation, taken from ADWR Model (Mason and Bota, 2006)	

Notes

UTM83E = Universal Transverse Mercator, North American Datum 1983, East

UTM83N = Universal Transverse Mercator, North American Datum 1983, North

No pumping specified after 1983 All pumping units in gallons per minute (gpm)

ADWR UTM83E UTM83N 1971 1972 1973 1974 1975 1976 1977 1978 1979 1983 1987 Well ID Registration 1980 1981 1982 1984 1985 1986 1988 1989 1990 1991 1992 1993 1994 1995 1996 801179 11caa 492757 3531386 23 25cbd 634348 492757 3531386 23 23 23 1 12 1 1 1 1 1 1 1 608518 0 0 0 0 0 0 0 0 0 0 0 0 AN-2(RRQC2) 608519 0 0 0 0 1 5 5 0 503457 3527990 0 0 0 1131 1131 1131 1131 1131 1279 664 58 69 60 503353 3529320 50 50 50 50 50 50 50 50 50 50 47 39 35 0 0 501760 3525384 1332 AN-4(RRQC1) 608521 3 0 0 0 0 0 0 94 156 0 0 0 0 0 0 0 932 710 783 756 922 0 0 1167 817 9 624008 624010 0 0 0 0 1160 911 852 833 CCofGV CEMEX 501760 375 336 339 389 324 396 379 364 388 440 453 4 607815 505129 3540303 0 0 0 0 0 0 1 1 0 22 10 0 0 0 0 0 0 11 9 7 7 639904 509408 3532606 0 0 0 1 7 0 0 olgate ontSD39 0 601769 **504049** 3522942 0 0 0 0 0 0 0 604432 508795 3534015 0 0 0 0 0 0 4 2 3 2 2 0 2 2 3 2 627079 638581 0 0 0 0 0 0 0 0 0 0 0 0 2 4 0 0 0 5 5 3 0 3 9 0 0 0 0 508795 3534015 0 0 0 0 0 0 0 2 9 0 0 5 0 0 0 SD39 0 504049 3522942 0 8 7 9 137 137 137 137 137 W3 627483 500048 3523810 137 137 137 137 137 212 175 157 145 142 501234 3522497 0 0 0 187</t CW5 627484 223 269 284 293 224 268 287 254 290 316 309 404 353 348 319 366 311 627485 352 336 388 439 248 We 0 499660 3528094 0 0 0 0 0 0 0 0 0 511 456 423 285 499799 3525661 300 0 0 :W7 502546 408 0 0 0 9 428 4 543600 0 0 0 0 0 :W8 588121 **501072 3528741** 0 CW9 516216 507647 3533428 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 23 0 avis Ro 086931 502452 3523995 43 43 43 43 43 43 43 43 43 43 43 43 40 33 30 27 27 38 28 0 0 0 0 0 0 0 0 0 0 373 294 339 298 246 3 10A 11Δ 624018 191 100 245 296 294 304 500635 3520347 490 490 490 490 490 490 490 490 490 490 490 380 339 314 341 503122 3526403 1131</t 447 325 202 199 183 190 968 609 528 620 698 714 232 221 263 242 228 2 766 621 725 700 697 7 306 287 440 474 266 3 624019 624020 390 391 276 261 296 289 30b 201 770 7.1. 624 404 395 436 464 471 457 404 411 436 354 4 390 315 344 368 380 443 476 449 486 513 385 3 50 300 22 57 59 58 65 81 97 1 624022 500333 3518794 0 0 0 503328 3525727 701 701 701 0 0 0 0 0 409 319 624023 701 701 701 701 701 701 701 656 544 486 450 573 624011 502184 3524332 523 524 534 534 534 554 624012 624013 476 305 258 278 292 337 314 298 283 272 280 503086 3525553 0 <t 624014 1 1 1 1 4 6 9 8 5 243 196 146 193 172 236 216 230 219 197 1 0 624015 234 243 196 146 193 172 171 166 236 166 186 624016 153 68 162 162 156 214 SP1 623102 499970 828 828 828 828 660 543 103 277 431 266 33 0 0 0 13 20 22 1 0 0 500242 3526925 414 414 414 414 330 271 51 139 216 133 17 0 0 0 500234 3527377 828 828 828 828 660 543 103 277 431 266 33 0 0 0 SP2 623103 0 3 38 8 71 173 7 92 172 623104 1 10 9 56 47 43 ESP4 623105 **499917 3526133** 828 828 828 828 828 828 660 543 103 277 431 266 33 0 0 0 1 6 305 71 81 436 783 211 380 1 14 0 623990 801075 0 0 0 0 0 0 0 0 0 0 0 0 0 124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FICO623990 505931 3536661 0 0 0 0 0 0 0 0 0 4 0 0 0 **503396 3531617** 0 0 0 0 0 Franite 0 801401 496059 3518416 0 0 0 0 0 0 0 0 0 1 0 1 442 471 454 664 499 693 666 694 570 754 661 8 603428 603429 625711 499786 3521654 355 355 355 355 355 355 355 355 322 276 246 228 407 501568 3526181 690 690 690 690 690 690 690 690 690 690 690 690 478 442 445 478 434 458 739 689 556 572 559 0 672 798 GV2 GVINV 625711 445 448 240 266 235 192 205 241 276 220 255 501600 3526400 0 0 200 199 177 244 229 195 146 192 198 GVINV 625712 625712 0 0 0 0 0 0 0 0 0 0 0 0 0 0 601910 608525 509871 3532610 0 497798 3528469 0 1 1 803 919 ogerwerk_RL 0 0 0 0 0 0 0 0 0 1131 1131 750 1081 815 1068 1068 1068 1068 1068 1131 1131 429 336 28 686 869 608524 497919 3528485 0 0 0 0 1068 1068 1068 1068 1068 1131 1131 1131 1131 7 0 0 0 0 0 0 0 0 0 0 0 608523 498110 3528578 0 844 0 7 0 0 0 1068 1068 1068 1068 1068 1131 1131 1131 1131 926 865 10 36 127 597 1006 977 960 947 866 36 127 357 1000 077 562 1 677 624 087309 498195 3528505 0 0 0 0 1068 1068 1068 1068 1131 1131 1131 1131 1297 972 0 0 0 0 0 0 0 0 0 0 0 622 153 608528 497807 3528531 0 0 4 608526 497823 3528672 0 0 0 643 720 647 441 336 623129 496906 3521278 0 0 0 0 0 0 0 686 941 425 486 604 678 768 0 0 253 18 0 0 0 200 10 0 297 595 781 729 205 2 579 467 458 632 65 3 508237 497370 3523122 363 259 331 442 302 571 IW10 0 0 0 0 0 0 0 0 0 0 508235 497371 3523429 0 0 0 0 0 0 699 806 442 718 499 471 0 0 0 0 0 0 545555 497365 3523970 45 0 0 17 30 545556 545557 **497364 3524167** 0 **497367 3524373** 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 497373 3524567 0 0 0 0 0 15 545558 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 IW15 **497371 3524783** 0 545559 IW16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 545560 497374 3525003 0 33 2 0 21 IW17 0 0 0 0 0 545561 **497374 3525170** 0 0 0 0 0 0 545562 497374 3525343 51 IW19 623130 545563 497485 3521361 0 0 0 0 0 0 0 0 621 1031 729 513 513 710 769 469 777 524 630 309 813 851 673 436 249 333 497365 3525569 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 545564 200554 **497375 3525773** 0 **497370 3523274** 0 0 0 0 30 2 0 0 0 0 0 0 0 0 0 0 0 IW22 0 497369 3522971 497372 3522634 200555 200556 0 0 0 0 0 0 0 0 0 0 0 623131 497366 3521723 0 0 526 1049 691 287 623 659 730 510 800 687 652 439 718 666 804 537 605 85 2 0 0 0 0 0 0 201732 623132 497366 3521723 0 0 0 0 0 0 0 0 497372 3522466 0 0 0 0 0 0 0 431 913 870 485 540 625 731 491 300 395 400 383 204 663 645 688 482 636 497370 3522815 265 248 453 823 690 776 703 815 524 1002 1196 1094 1032 5 0 154 490 352 623133 0 0 0 0 0 294 545565 497381 3523709 0 623135 508238 496428 3521307 0 0 0 0 0 55 42 49 0 0 0 0 0 0 0 0 0 0 0 0 497368 3522021 784 525 705 580 497 2 0 0 0 0 652 430 712 769 421 835 0 0 0 0 0 508236 497370 3522208 0 0 0 0 0 0 275 347 340 327 431 457 470 297 210 108 0 0 0 0 32 801393 504908 3544834 0 ensen RD 0 0 0 0 0 3 3 4 4 3 3 4 0 801442 496055 3519512 0 0 20 urs 0 583888 504190 3530600 0 0 0 0 0 0 0 0 0 0 0 ewi 0 628534 505340 3535044 0 0 2 2 1 1 1 1 2 5 5 0 0 0 0 0 0 0 0 0 amb 0 0 0 0 0 0 **504207 3527782** 0 **502573 3533448** 0 608599 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 awyers 0 524178 0 0 0 0 0 0 0 0 0 0 0 0 27 32 18 23 25 28 0 0 36 42 497 45 44 0 0 0 0 0 0 osArboles 0 0 0 0 0 0 0 0 0 19 164 44 502373 50334.0 0 502467 3533753 0 501144 3539879 0 osArboles 0 0 610277 0 0 660 404 600 1461 1840 1683 676 1572 1693 1876 1964 1 607790 0 0 0 0 0 640 1178 607791 501957 3540492 0 0 0 0 0 0 0 774 509 300 142 730 927 1246 1565 1138 750 977 1197 976 529538 502754 3540495 0 0 0 0 0 0 0 0 0 0 0 0 0 0 235 785 905 945 1087 893

TABLE I.1.3 Well Locations and Pumping Rates for Transient Simulation, Taken from Various Sources^a

997	1998	1999	2000	2001	2002	2003	2004	2005	2006
35	42	31	28	37	48	37	19	0	0
1	1	1	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	261	266	0 334	0 378	0	0	326	0 357
0	0	0	0	0	0	0	0	0	0
987	840	914	888	757	794	808	908	921	1113
408	378	377	353	340	393	371	289	117	54
0	178	194	251	343	162	73	0	245	2//
0	6	17	1	2	2	2	2	2	3
3	4	3	2	2	2	2	2	2	2
0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0
199	139	131	89	85	105	0	0	0	0
371	342	103	326	401	418	221	295	252	183
0	0	0	0	0	0	0	0	0	0
+53 0	517	023	0	527	0	202	396	551	304
0	0	0	Ő	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
341	332	378	330	305	284	446	496	501 287	445
768	637	735	667	664	612	705	828	261	48
302	237	252	247	260	305	487	527	543	587
430	388	423	387	400	395	467	469	427	429
386	427	470	172	405	311	433	496	494	521 272
312	244	249	372	308	354	351	332	347	402
7	7	9	10	10	11	9	1	1	1
253	209	190	181	169	180	186	209	198	0
0	164	135	43	121	136	242	343	204	147
0	0	0	0	1	0	7	143	308	367
0	0	0	0	0	1	0	44	259	598
1	5	0	0	1	0	12	45	0	0
0	0	0	0	0	0	0	0	0	0
1	0	1	1	1	1	1	1	1	1
341	504	806	611	612	615	793	793	730	730
595	879	659	768	800	939	754	754	780	780
184	163	183	181	160	198	191	193	192	152
1	1	1	0	1	1	0	0	0	0
173	1503	390	690	817	674	553	0	0	0
0	0	0 470	0 138	0	0 55	210	0	0	0
0	0	0	0	0	0	0	0	0	0
517	348	172	19	0	0	0	0	0	0
11	1	24	28	63	14	0	0	0	0
3	564	672	252	79	234 480	412 178	392 114	403 351	256
365	58	165	494	5	839	495	596	581	289
200	305	299	338	126	64	214	138	79	135
58	24	64	0	0	13	0	73	31	23
112	92	90	102	14	0	17	22	29	41
49	31	0	0	0	0	0	0	0	9
205	169	134	95	66	67	0	83	28	9
128	80 256	55 264	37	U 135	0	0	50 170	2	8 182
98	322	460	631	812	321	417	734	712	594
69	94	111	121	42	115	162	88	78	76
218	219	106	172	130	242	217	86	160	156
0	0	0	0	0	0	0	300	201 136	490 212
0	Ő	Ő	Ő	Ő	Ő	Õ	175	241	415
259	454	634	754	856	667	486	0	0	0
0	0	0	0	0	0	0	344	713	411
510	649	639	83	221	52	517	423	15	127
79	0	169	269	141	54	4	153	135	122
0	0	0	0	0	0	0	0	0	0
0	216	125	318	231	/58	585	845 251	704	463 292
5	4	3	3	4	4	4	4	4	4
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	127	0	0	0
อ 1	2	2	2	2	2	2	2	2	2
38	32	31	32	29	32	33	32	28	29
0	0	0	0	0	0	0	0	0	0
842 476	1780	1861	1824	756	1760	1547	1416	459	1325
236	1243	1085	743	995	301	269	375	368	618

Well ID	ADWR Registration	UTM83E	UTM83N	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
M13	611139	503350	3540498	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	107	521	611	507	703	608	726	643	590	759	790	452	257	487	241	724
M14	532046	502554	3539883	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	19	473	533	833	911	645	849	648	922	799	659	361	307	409	293	717
M6 M7	607788	500542	3540494	0	0	0	0	0	0	0	0	0	0	0	0	0	517	671 832	649	926 949	781 970	532	378	205	630 796	434	176 500	84 205	137	241	346	0	0	0	0	0	0	0	0
M8	607789	501351	3540493	0	0	0	0	0	0	0	0	0	0	0	0	0	524	125	801	878	660	471	794	753	576	568	593	614	510	417	0	0	0	0	0	0	0	0	0
Madera_Highlands	624019	503285	3526162	0	0	0	0	0	0	0	0	0	0	0	0	0	93	101	132	96	60	59	184	191	232	221	263	243	229	249	176	171	164	183	144	0	0	0	0
NP1 NP2	605899	501004	3529211	81	81	81	81	81	81	81	81	81	81	76	63	56	52	32	32	35	41	39	24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NP2	605898	500909	3520046	0	0	0	0	0	0	0	0	0	0	0	0	0	0	20	27	25	20	22	21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OcotilloCommunity	801309	498963	3511412	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2	1	1	1	2	7	4	4	8	5	12	12	20	22	7	8	11	14	10	11	11	11
Olivas P1	801154	503396 503152	3531213	0	0	0	0	0	0	0	0	0	0	0	0	0	1	3	10	10	6	3	6	6	4	3	2	0	0	1	0	1	1	1	1	1	1	1	1
PDSI	611140	503554	3539892	0	0	0	0	0	0	0	0	0	0	0	0	0	40	40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
PDSI	611745	503553	3540095	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Poole	801975	495659	3519508	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	2	3	2	2	1	1	2	2	2	2	2	2	2	2	2	2	2	110	2	130	0
RchoSah WC	611144	502752	3537471	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	18	133	116	85	31	242	298	534
RT1	504946	499811	3530971	0	0	0	0	0	0	0	0	0	0	0	539	1688	2232	2294	58	0	0	0	0	0	0	0	0	796	1609	1748	1716	1610	1092	1495	1091	1069	0	0	0
S1	623111	499931	3518793	0	0	0	0	0	0	0	0	0	0	0	0	0	1232	947	1683	1566	1332	1446	862	1663	1038	787	1704	1002	1408	1776	668	748	1583	1350	964	1740	1164	1883	1443
S12	623982	505185	3532023	0	0	0	0	0	0	0	0	0	0	0	0	0	642	1077	1113	706	657	877	847	887	867	758	855	659	866	842	660	786	772	736	795	832	915	847	938
S2	623112	499133	3517459	0	0	0	0	0	0	0	0	0	0	0	0	0	2145	2025	1072	271	2028	1674	1851	2329	1267	2425	1914	2158	2569	1973	892	608	1288	1210	600	1672	1327	1409	1172
S22	623983	503660	3531621	0	0	0	0	0	0	0	0	0	0	0	0	0	432	434	458	308	277	273	270	351	322	501	404	351	302	288	221	76	305	319	262	374	448	388	466
S25 S29	623985	503037	3533248	0	0	0	0	0	0	0	0	0	0	0	0	0	308	376	906 361	299	296	236	255	347	880 311	205	223	233	200	242	204	207	391	305	317	377	363	363	944 407
S3	623113	498136	3516037	0	0	0	0	0	0	0	0	0	0	0	0	0	2318	1638	1735	1585	1671	1554	1593	1929	1123	1342	1294	1251	1809	1070	1192	1309	2147	1797	83	657	1994	1495	1640
S31	623987	505995	3537476	0	0	0	0	0	0	0	0	0	0	0	0	0	313	357	304	278	256	280	241	341	338	308	305	289	265	223	214	140	44	0	0	0	106	127	218
533 S4	623988	497344	3532226	0	583	583	583	0	0	0	583 0	583 0	583 0	0	522	466	432	433	458 822	308	1420	1567	1653	2039	322	1224	403	1031	301 976	288	1583	76 1947	2405	2200	884	2764	2444	2400	2423
S40	623991	505004	3534851	0	0	0	0	0	0	0	0	0	0	0	0	0	847	967	999	854	758	845	683	762	897	813	841	788	818	813	685	769	876	750	666	728	771	675	713
S43	623993	503813	3537068	0	0	0	0	0	0	0	0	0	0	0	0	0	527	517	526	356	520	477	458	506	370	503	461	587	539	548	513	453	575	604	515	526	618	598	539
S44 S45	623994	503859 504834	3530811	0	0	0	0	0	0	0	0	0	0	0	0	0	831 1246	1062	1135	892	747 950	819	936	977	882	1014	867	895 989	939 1032	980 834	890 915	895	1180	985	1033	1029	1175	999	1163
S46	623996	502647	3532239	0	0	0	0	0	0	0	0	0	0	0	0	0	354	508	765	803	352	770	573	811	847	533	720	696	773	606	614	438	395	571	993	756	557	501	616
S48	623997	504987	3537067	0	0	0	0	0	0	0	0	0	0	0	0	0	547	530	439	451	413	343	404	443	444	407	433	424	406	396	369	391	406	368	294	344	443	429	436
S49 S5	623998	504793 496561	3538083	0	0	0	0	0	0	0	0	0	0	0	0	0	407	254	213	342 538	329	328	347	358	371	333	255	245	253	245	206	253	243	247	245	238	2642	292	292
S50	623999	504991	3538695	0	0	0	0	0	0	0	0	0	0	0	0	0	259	396	353	154	124	0	0	0	0	0	82	88	0	0	0	0	0	0	0	0	0	90	157
S51	624000	503017	3535471	0	0	0	0	0	0	0	0	0	0	0	0	0	340	484	792	870	786	825	709	843	824	653	1001	850	791	820	712	804	891	718	544	753	888	895	832
S52 S52A	624001 534992	504790	3535663	0	0	0	0	0	0	0	0	0	0	0	0	0	354	393	385	264	296	359	873	841	865	36	352	354 45	344	<u>357</u> 51	323	357	379	387	358	65	403	316	302
S53	624002	503453	3532635	0	0	0	0	0	0	0	0	0	0	0	0	0	1186	1268	1343	1102	1092	1100	1076	1060	1175	961	985	911	852	790	785	880	819	826	791	833	986	861	1240
S54	624003	503069	3531047	1338	1338	1338	1338	1338	1338	1338	1338	1338	1338	1252	1037	926	857	933	661	716	724	557	63	0	530	733	970	1077	982	852	784	740	872	742	397	692	1091	1081	774
S55	624004	502062	3531858	000	000	000	000	000	000	000	000	0	000	025	0	462	428	315	381	1014	275	216	235	262	262	285	309	280	237	213	214	875 74	301	253	780	427	358	281	307
S6	623116	496371	3511992	0	0	0	0	Ő	0	0	0	0	0	0	0	0	0	2357	791	1459	879	1212	1192	1884	935	1653	2544	3279	2955	2480	3146	3038	1898	2585	3128	1167	1458	2269	2593
Sahuarita	534039	506745	3536662	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	8	10	10	9	10	7	8	8	19	20	15	17	17	21
Sahuarita SahVal WC	607626	502953	3536369	0	0	0	0	0	0	0	0	0	0	0	0	0	16	17	20	20	15	0	14	15	14	15	16	16	17	20	20	19	21	85	184	17	17	18	181
SC14A	619888	507765	3542928	0	0	0	0	0	0	0	0	0	0	0	0	0	429	358	382	376	334	375	312	261	254	71	273	378	4	0	0	0	0	0	0	0	0	0	0
SC20A	619894	508167	3542318	0	0	0	0	0	0	0	0	0	0	0	0	0	499	429	469	393	265	413	393	432	311	96	269	348	328	341	404	184	462	496	408	0	0	0	0
SC21A SC23A	619895	506972	3542521	0	0	0	0	0	0	0	0	0	0	0	0	0	352 526	555	387	468	327 448	452	358	305 481	209 427	331	288	402 546	432	442 502	407	323 488	342 407	437	404 382	0	0	0	0
SC24A	619898	507953	3538486	0	0	0	0	0	0	0	0	0	0	0	0	0	544	329	335	528	416	445	437	433	272	0	289	402	386	399	402	199	432	464	396	466	430	416	0
Schulz_J	622106	504900	3544035	0	0	0	0	0	0	0	0	0	0	0	0	0	3	5	1	5	7	9	0	12	16	14	26	16	21	26	47	40	39	13	16	14	14	14	14
Sedgwick_C Smith	801127 640149	505200 509102	3542928	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	2	0	0	0	5	3	0	0	22	66	11	0	32	16	1	0	0	0
Spafford_Jack	602952	495920	3518583	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0
ST5	608531	500619	3531941	0	0	0	0	0	0	87	87	87	87	81	67	60	56	59	0	67	60	47	46	55	43	56	142	157	156	93	113	147	103	93	165	36	80	54	17
ST6 ST7	608530 566940	501248 500778	3531353	0	0	0	0	73	73	73	73	73	73	68	57	50	47	60	0	50	61 0	93	78	81	92	95	36	31	52	121	100	43 78	64 107	26	56 86	24	196	243	329
SUS	605342	501863	3535970	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	30	0	0	0	0	0	76	0	0	0	0	0	0
SUS	605344	501863	3535970	0	0	0	0	0	0	0	0	0	0	0	0	0	37	37	38	39	42	56	35	45	41	48	0	33	23	52	62	70	0	0	83	82	96	96	95
ValVerde ValVerdeSub	803064	502386	3531830	0	0	0	0	0	0	0	0	0	0	0	0	0	2	4	3	12	4	3	4	5	4	4	0	4	6	0	5	5	6	6	5	5	4	- 5	- 3
VVDN_WC	602019	501674	3532142	0	0	0	0	0	0	0	0	0	0	0	0	0	0	26	28	0	21	32	25	35	32	37	47	43	48	53	50	42	45	43	51	48	47	44	41
W11	624025	499969	3520085	13	13	13	13	13	13	13	13	13	13	12	10	9	8	186	690	744	502	548	494	524	486	549	767	541	401	488	407	462	568	501	494	177	198	186	181
W12	624026	500156	3521299	921	921	921	921	921	921	921	921	921	921	862	715	638	590	601	744 612	628	545	611	644	758	737	747	0	599 602	562	691 719	462	568	557	610	602	718	669	698	575
	027024	JU14/1	JJ241J2	000	000	000	000	000	000	000	000	000	000	002	004	595	543	010	013	550	711	000	014	009	004	400	000	032	555	110	203	002	500	J40	-55	539	530	507	520

TABLE I.1.3 Well Locations and Pumping Rates for Transient Simulation, Taken from Various Sources^a

Notes ^a Arizona Department of Water Resources (ADWR) 55 Well Registry and Groundwater Site Inventory (GWSI), ELMA (2007a)

UTM83E = Universal Transverse Mercator, North American Datum 1983, East

UTM83N = Universal Transverse Mercator, North American Datum 1983, North No pumping specified from 1941 to 1970

All pumping units in gallons per minute (gpm)

APPENDIX I.2

MEASURED AND SIMULATED HYDROGRAPHS AT SELECT WELLS

H:\78300\78314 Numerical Model\HGC Model\calibration\TimeSeries2.xls: MH16G

H:\78300\78314 Numerical Model\HGC Model\calibration\TimeSeries2.xls: MH25G

APPENDIX I.3

MEASURED AND SIMULATED CHEMOGRAPHS AT SELECT WELLS

H:\78300\78314 Numerical Model\HGC Model\calibration\TimeSeries2.xls: MH13S