

Sierrita Operations Environment, Land & Water Department 6200 W Duval Mine Road PO Box 527 Green Valley, AZ 85622-0527

August 15, 2019

Electronic Mail and Hand Delivery

Ms. Joey Pace, Project Manager Arizona Department of Environmental Quality Voluntary Remediation Program 1110 W. Washington St. Phoenix, AZ 85007

Re: Voluntary Remediation Program – VRP Site Code: 100073-03

Freeport-McMoRan Sierrita Inc., Green Valley, AZ

Revised Baseline Human Health Risk Assessment (August 2019)

Dear Ms. Pace:

Enclosed you will find the Revised Baseline Human Health Risk Assessment (BHHRA) for Freeport-McMoRan Sierrita Inc. (Sierrita) as part of the Arizona Department of Environmental Quality's (ADEQ's) Voluntary Remediation Program (VRP). This BHHRA was prepared in accordance with the VRP BHHRA Work Plan (Arcadis 2015) approved by ADEQ, and focuses solely on potential impacts associated with exposure to constituents of potential concern (COPCs; site-related constituents) detected in soil and sediment in the following two specific exposure areas (EAs):

- Former Continuous Liquid Extraction and Regeneration (CLEAR) Plant EA, which is composed of the following subareas:
 - Former CLEAR Plant
 - Former E Pond
 - Former Evaporation Pond
 - Old D Pond
- Former Esperanza Mill EA, which is composed of the following subareas:
 - Former Esperanza Mill
 - Former C Pond and C Pond Spoils
 - Former Laydown Yard
 - Former Raffinate Pond.

A revised BHHRA was originally submitted to ADEQ in November 2018. ADEQ provided additional comments in a letter to Sierrita dated March 5, 2019 and titled, *Re: Review of 2018 Revised Baseline Human Health Risk Assessment*, and recommendations in a memo from The Fehling Group, LLC to Joey Pace, ADEQ, dated May 20, 2019 and titled, *Re: Commentary on the Voluntary Remediation Program, Baseline Human Health Risk Assessment. Site Code 100073-03. Sierrita Mine, Green Valley, Arizona. June 7, 2016, Revised November 2018. Responses to these comments and recommendations were discussed with ADEQ and their consultants during a meeting on March 12, 2019 and a conference call on June 19, 2019. During the March 12, 2019 meeting, all comments from the March 5, 2019 letter were resolved except for a comment about the lack of background data comparisons to support the inclusion or exclusion of radionuclides as COPCs in the BHHRA. The May 20, 2019 memo provided detailed Site and background data evaluations (with which Sierrita generally agrees based on independent data evaluations) and recommendations regarding the use of background radionuclide data in the risk assessment. This revised BHHRA reflects the resolution with regard to the background radionuclide data, which was reached during the June 19, 2019 conference call.*

Ms. Joey Pace August 15, 2019 Page 2

Recommendations for next steps in the May 20, 2019 memo included three options. Option 1 suggested a review of the background laboratory analytical reports be performed to determine why the Ra-226 concentrations are greater than those for uranium isotopes (U-238 and U-234). Sierrita therefore conducted a review of the laboratory analytical methods and data validation reports included in the *Background Soil Assessment Report* (Arcadis 2018) and did not find any issues with the background soil sample analyses. Option 2 suggested a new background study be conducted, while Option 3 recommended a path forward incorporating the existing background soil data in the BHHRA. Option 3 suggested that Sierrita assume the U-238 and U-234 are representative of background conditions, assume the background soil data are in secular equilibrium, ignore the Ra-226 background soil sample results, and use the U-238 and U-234 data as a surrogate for Ra-226 and other radionuclides in the decay series. Sierrita chose to finalize the BHHRA in accordance with Option 3.

Statistical comparisons of the Site and background radionuclide data, as presented in the May 20, 2019 memo, support the inclusion of all sampled radionuclides as COPCs in the BHHRA. Also, in response to ADEQ comments, the contribution of all radionuclides in each naturally-occurring decay series was included in the radiological risk calculations in this revised BHHRA.

Background excess lifetime cancer risks (ELCRs) and noncancer hazard indices (HIs) were estimated to measure the incremental impacts posed by the Site. This was done to provide a comparison of the Site to background and to assist with risk management decisions. Incremental ELCRs/HIs were calculated as the total Site ELCRs/HIs based on mean exposure point concentrations (EPCs) minus background ELCRs/HIs based on mean EPCs. Consistent with Option 3 in the May 20, 2019 memo, the Ra-226 background soil sample results were not used due to the question raised about the laboratory quality of these data. Instead, the U-238 and U-234 results were used as surrogate EPCs for all members of the uranium decay series.

Based on the conclusions of the BHHRA and upon approval of the BHHRA results by the ADEQ, Sierrita intends to request an unconditional No Further Action for the two areas described above.

Please do not hesitate to contact me at (520) 393-2347 if you have any questions regarding this submittal. Thank you for your assistance and cooperation with our efforts to address environmental issues at this Site.

Sincerely,

William Hart

Sr. Environmental Specialist Freeport-McMoRan Sierrita Inc.

Copy:

David Gosen, Freeport-McMoRan Inc. Katy Brantingham, Arcadis

Enclosure:

Voluntary Remediation Program Baseline Human Health Risk Assessment, Sierrita Mine, Green Valley, Arizona (Revised August 2019)

Ms. Joey Pace August 15, 2019 Page 3

References:

Arcadis. 2018. Background Soil Assessment Report. Voluntary Remediation Program – VRP Site Code: 100073-03 Freeport-McMoRan Sierrita Inc., Green Valley, Arizona. October.

Freeport-McMoRan Sierrita Inc.

VOLUNTARY REMEDIATION PROGRAM

BASELINE HUMAN HEALTH RISK ASSESSMENT

Site Code: 100073-03

Sierrita Mine Green Valley, Arizona

June 7, 2016, Revised November 2018, Revised August 2019

BASELINE HUMAN HEALTH RISK ASSESSMENT

Sierrita Mine

Green Valley, Arizona

Prepared for:

Freeport-McMoRan Sierrita, Inc.

Prepared by:

Arcadis U.S., Inc.

410 N. 44th Street

Suite 1000

Phoenix

Arizona 85008

Tel 602 438 0883

Fax 602 438 0102

Our Ref.:

AZ001233.0018

Date:

June 7, 2016,

Revised November 2018, Revised August 2019

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Anne Thatcher

Principal Scientist/Risk Assessor

Chris Day

Principal Scientist/Risk Assessor

Julie Gillespie

Project Environmental Scientist

CONTENTS

Ac	ronyms and Abl	breviations	ix
Ex	ecutive Summa	ry	ES-1
	Site Backgroun	nd	ES-2
	Human Recep	otors and Exposure Routes	ES-2
	Key Findings .		ES-3
1	Introduction		1
2	Site Backgroun	nd	3
	2.1 Site Loca	ation and Description	3
	2.2 Environm	nental Setting	4
	2.3 Site Histo	ory and Facilities Overview	4
	2.3.1 Fo	ormer CLEAR Plant	5
	2.3.1.1	1 Work Force at the Former CLEAR Plant	5
	2.3.2 Fo	ormer Esperanza Mill	6
	2.3.2.	1 Work Force at the Former Esperanza Mill	6
	2.4 Geology	and Hydrogeology	7
	2.4.1 Si	te Geology	7
	2.4.1.1	1 Alluvial Deposits	7
	2.4.1.2	2 Basin Fill Deposits	7
	2.4.1.3	3 Bedrock Complex	7
	2.4.1.4	4 Naturally Occurring Radioactivity in Soils	8
	2.4.2 Si	te Hydrogeology	9
3	Previous Site I	Investigations	10
	3.1 Soil and	Sediment Investigations	11
	3.1.1 H	GC 2004 Investigation	11
	3.1.2 UI	RS 2008 Investigation	11
	3.1.2.1	1 Relevant Findings for Metals	12
	3.1.2.2	2 Relevant Findings for Radionuclides	12
	3.1.3 Fo	ormer CLEAR Plant Area Soil Excavation	13
	314 Fc	ormer CLEAR Plant Area Paving Project	14

		3.1.5	Bac	kground Soil Assessment	14	
	3.2	3.2 Data Gaps Investigation				
4	Guid	dance [Docui	ments Used to Conduct the Baseline Human Health Risk Assessment	16	
5	Data	a Used	to Co	onduct the Baseline Human Health Risk Assessment	17	
	5.1	Media	Con	sidered and Evaluated for the Baseline Human Health Risk Assessment	17	
	5.2	Availa	ıble S	Site Soil and Sediment Data	18	
	5.3	Data I	Usabi	ility	18	
	5.4	Expos	sure A	Areas	20	
	5.5	Identif	ficatio	on of Baseline Human Health Risk Assessment Datasets	20	
		5.5.1	Dep	oth Interval-Specific Datasets	21	
		5.5.2	For	mer CLEAR Plant Shallow Soil/Sediment Datasets	21	
		5.5.3	Han	ndling of Field Duplicate Results	21	
	5.6	Selec	tion o	of Constituents of Potential Concern	22	
	5.7	Expos	sure F	Point Concentrations	22	
		5.7.1	Soil	/Sediment Exposure Point Concentrations	22	
		5.7.2	Air I	Exposure Point Concentrations	24	
		5.7.3	Bac	kground Exposure Point Concentrations	24	
6	Ехр	osure A	Asses	ssment	25	
	6.1	Expos	sure F	Pathway Analysis	25	
		6.1.1	Sou	rces and Mechanisms of COPC Release	26	
		6.1.2	Trai	nsport Mechanisms	26	
		6.1.3	Pote	ential Receptors	27	
		6.1	.3.1	Current/Future Receptors	28	
		6.1	.3.2	Hypothetical Future Receptors	28	
		6.1.4	Pote	entially Complete Exposure Routes	29	
	6.2	Expos	sure F	Parameters	29	
		6.2.1	Rea	asonable Maximum Exposure	29	
		6.2.2	Site	-Specific Exposure	29	
	6.3	Dose	(Intal	ke) Estimation	30	
		6.3.1	Car	cinogenic Effects from Chemical COPCs	30	
		6.3.2	Non	ncarcinogenic Effects from Chemical COPCs	30	

		6.3.3 Dos	e Equations	31
		6.3.3.1	Incidental Ingestion of Soil	31
		6.3.3.2	Dermal Contact with Soil	31
		6.3.3.3	Inhalation of Fugitive Dust Particles	32
		6.3.3.4	Bioavailability of Metals	32
		6.3.4 Card	cinogenic Effects from Radionuclide COPCs	33
		6.3.4.1	Incidental Ingestion of Soil	33
		6.3.4.2	Inhalation of Fugitive Dust Particles	34
		6.3.4.3	External Exposure	34
		6.3.5 Lead	d Exposure	35
7	Tox	icity Assessr	ment	35
	7.1	Toxicity Va	lues for Carcinogenic Chemicals	36
	7.2	Toxicity Val	lues for Noncarcinogenic Chemicals	36
	7.3	Toxicity Val	lues for Radionuclides	37
8	Risl	k Characteriz	ration	37
	8.1	Excess Life	etime Cancer Risks	37
	8.2	Noncancer	Hazards	38
9	Risl	k Characteriz	ration Results	38
	9.1	ELCR and	HI Results for Current and Future Scenarios	39
		9.1.1 Curr	rent/Future Scenario – Shallow Soil/Sediment Exposures	40
		9.1.1.1	Former CLEAR Plant EA	40
		9.1.1.2	Former Esperanza Mill EA	40
		9.1.2 Futu	re Scenarios – Shallow Soil/Sediment Exposures	41
		9.1.2.1	Former CLEAR Plant EA	41
		9.1.2.2	Former Esperanza Mill EA	41
		9.1.3 Futu	re Scenarios – Shallow and Deep Soil/Sediment Exposures	42
		9.1.3.1	Former CLEAR Plant EA	42
		9.1.3.2	Former Esperanza Mill EA	42
		9.1.4 Sum	nmary of ELCRs and HIs	43
	9.2	Lead Expos	sure Evaluation	43
		921 Curr	rent/Future Scenario – Shallow Soil Exposures	44

	9.2.2 Future Scenario – Shallow Soil Exposures	44
	9.2.3 Future Scenario – Shallow and Deep Soil Exposures	45
	9.2.4 Summary of Lead Evaluation	45
10	Uncertainties Associated with the Baseline Human Health Risk Assessment	46
	10.1 Sampling and Analysis	46
	10.2 Receptors Evaluated and Potentially Complete Exposure Routes	46
	10.3 Exposure Assumptions and Intake/Dose Models	46
	10.4 Toxicity Assessment: Constituents of Potential Concern without Toxicity Values	47
11	Summary and Conclusions	47
	11.1 Summary	47
	11.1.1 Cancer Risk and Noncancer Hazard Summary	48
	11.1.2 Lead Evaluation Summary	48
	11.2 Conclusions	49
12	References	49

TABLES

5-1	Summary of	Available	Soil and	Sediment	Data for	Metals and	Radionuclides
	_						

- 5-2 Inventory of Soil and Sediment Samples
- 5-3 Soil Screening Levels Used to Select Constituents of Potential Concern
- 5-4 Statistical Summary and Selection of Chemical Constituents of Potential Concern: Former CLEAR Plant Shallow Soil/Sediment (0 to 0.5 ft bgs), Exposed Samples Only
- 5-5 Statistical Summary and Selection of Radionuclide Constituents of Potential Concern: Former CLEAR Plant Shallow Soil/Sediment (0 to 0.5 ft bgs), Exposed Samples Only
- 5-6 Statistical Summary and Selection of Chemical Constituents of Potential Concern: Former CLEAR Plant Shallow Soil/Sediment (0 to 2 ft bgs), Exposed Samples Only
- 5-7 Statistical Summary and Selection of Radionuclide Constituents of Potential Concern: Former CLEAR Plant Shallow Soil/Sediment (0 to 2 ft bgs), Exposed Samples Only
- 5-8 Statistical Summary and Selection of Chemical Constituents of Potential Concern: Former CLEAR Plant Shallow Soil/Sediment (0 to 0.5 ft bgs), All Samples
- 5-9 Statistical Summary and Selection of Radionuclide Constituents of Potential Concern: Former CLEAR Plant - Shallow Soil/Sediment (0 to 0.5 ft bgs), All Samples
- 5-10 Statistical Summary and Selection of Chemical Constituents of Potential Concern: Former CLEAR Plant Shallow Soil/Sediment (0 to 2 ft bgs), All Samples
- 5-11 Statistical Summary and Selection of Radionuclide Constituents of Potential Concern: Former CLEAR Plant Shallow Soil/Sediment (0 to 2 ft bgs), All Samples
- 5-12 Statistical Summary and Selection of Chemical Constituents of Potential Concern, Former CLEAR Plant Shallow and Deep Soil/Sediment (0 to 15 ft bgs)
- 5-13 Statistical Summary and Selection of Radionuclide Constituents of Potential Concern, Former CLEAR Plant Shallow and Deep Soil/Sediment (0 to 15 ft bgs)
- 5-14 Statistical Summary and Selection of Chemical Constituents of Potential Concern: Former Esperanza Mill Shallow Soil/Sediment (0 to 0.5 ft bgs)
- 5-15 Statistical Summary and Selection of Radionuclide Constituents of Potential Concern: Former Esperanza Mill Shallow Soil/Sediment (0 to 0.5 ft bgs)
- 5-16 Statistical Summary and Selection of Chemical Constituents of Potential Concern: Former Esperanza Mill Shallow Soil/Sediment (0 to 2 ft bgs)

- 5-17 Statistical Summary and Selection of Radionuclide Constituents of Potential Concern: Former Esperanza Mill Shallow Soil/Sediment (0 to 2 ft bgs)
- 5-18 Statistical Summary and Selection of Chemical Constituents of Potential Concern, Former Esperanza Mill Shallow and Deep Soil/Sediment (0 to 15 ft bgs)
- 5-19 Statistical Summary and Selection of Radionuclide Constituents of Potential Concern, Former Esperanza Mill Shallow and Deep Soil/Sediment (0 to 15 ft bgs)
- 5-20 Summary of Exposure Point Concentrations (Chemicals) for Soil/Sediment: Former CLEAR Plant, Exposed Samples Only
- 5-21 Summary of Exposure Point Concentrations (Radionuclides) for Soil/Sediment: Former CLEAR Plant, Exposed Samples Only
- 5-22 Summary of Exposure Point Concentrations (Chemicals) for Soil/Sediment: Former CLEAR Plant, All Samples
- 5-23 Summary of Exposure Point Concentrations (Chemicals) for Soil/Sediment: Former Esperanza Mill
- 5-24 Summary of Exposure Point Concentrations (Radionuclides) for Soil/Sediment: All Exposure Areas
- 6-1 Human Health Exposure Parameters
- 6-2 Dermal Absorption Parameters
- 7-1 Human Health Toxicity Values for Chemical COPCs
- 7-2 Radionuclide Physical Constants and Carcinogenicity Slope Factors
- 9-1 Summary of Calculated Excess Lifetime Cancer Risks and Noncancer Hazard Indices based on 95% UCLs: Former CLEAR Plant Exposure Area
- 9-2 Summary of Calculated Excess Lifetime Cancer Risks and Noncancer Hazard Indices based on 95% UCLs: Former Esperanza Mill Exposure Area
- 9-3 Summary of Calculated Excess Lifetime Cancer Risks and Noncancer Hazard Indices based on Mean EPCs: Former CLEAR Plant Exposure Area, Background, and Incremental Cancer Risks and Hazard Indices
- 9-4 Summary of Calculated Excess Lifetime Cancer Risks and Noncancer Hazard Indices based on Mean EPCs: Former Esperanza Mill Exposure Area, Background, and Incremental Cancer Risks and Hazard Indices

FIGURES

1-1	Site Location Map
2-1	Site Features Map
5-1	Exposure Areas Evaluated in the Baseline Human Health Risk Assessment
5-2a	Soil and Sediment Sample Locations in the Former CLEAR Plant Exposure Area
5-2b	Soil and Sediment Sample Locations in the Former CLEAR Plant Exposure Area
5-2c	Soil and Sediment Sample Locations in the Former CLEAR Plant Exposure Area
5-3	Soil and Sediment Sample Locations in the Former Esperanza Mill Exposure Area
6-1	Human Health Conceptual Site Model

APPENDICES

- A. Soil and Sediment Data Used to Conduct the Baseline Human Health Risk Assessment
- B. ProUCL 5.1 Input and Output Files (ProUCL input files are provided electronically on CD)
- C. Excess Lifetime Cancer Risk and Hazard Index Calculations (Chemicals) using 95% UCL EPCs
- D. Excess Lifetime Cancer Risk Calculations (Radionuclides) using 95% UCL EPCs
- E. Lead Model Output
- F. Hypothetical Future Resident Evaluation
- G. Background Risk Calculations using Mean EPCs
- H. Excess Lifetime Cancer Risk and Hazard Index Calculations (Chemicals) using Mean EPCs
- I. Excess Lifetime Cancer Risk Calculations (Radionuclides) using Mean EPCs
- J. Summary and Response Intentions for Comments on the Baseline Human Health Risk Assessment

ACRONYMS AND ABBREVIATIONS

ABS_{GI} gastrointestinal absorption factor

ACF area correction factor
ADD average daily dose

ADEQ Arizona Department of Environmental Quality

ADHS Arizona Department of Health Services

AES atomic emission spectroscopy

ALM Adult Lead Model

APP Aquifer Protection Permit

A.R.S. Arizona Revised Statutes

Arcadis U.S., Inc.

ATSDR Agency for Toxic Substances and Disease Registry

BC Brown and Caldwell

bgs below ground surface

BHHRA baseline human health risk assessment

CalEPA California Environmental Protection Agency

CDC United States Department of Health and Human Services' Centers

for Disease Control and Prevention

CFR Code of Federal Regulations

CLEAR Continuous Liquid Extraction and Regeneration

cm² square centimeters

COI constituent of interest

COPC constituent of potential concern

cRfC chronic reference concentration

cRfD chronic reference dose

CSM conceptual site model

CVAA cold vapor atomic absorption

DEUR declaration of environmental use restriction

EA exposure area

EC exposure concentration

ED exposure duration

ELCR excess lifetime cancer risk

ELMA Errol L. Montgomery and Associates

EPC exposure point concentration

°F degrees Fahrenheit

FCX Freeport-McMoRan Copper and Gold, Inc.

Ft feet

ft amsl feet above mean sea level

GPL groundwater protection levels

GSF gamma shielding factor

HI hazard index

HQ hazard quotient

ICP inductively coupled plasma

IRIS Integrated Risk Information System

IUR inhalation unit risk

kg kilogram(s)

kg/mg kilogram(s) per milligram

LADD lifetime average daily dose

LCS/LCSD laboratory control sample/laboratory control sample duplicate

m³/kg cubic meter(s) per kilogram

mg/kg milligram(s) per kilogram

mg/kg-day milligram(s) per kilogram per day

mg/m³ milligram(s) per cubic meter

MRL minimal risk level

MS mass spectrometry

MS/MSD matrix spike/matrix spike duplicate

ND not detected

nr-SRL non-residential soil remediation level

NFA no further action

OEHHA Office of Environmental Health Hazard Assessment

OSF oral slope factor

PbB blood lead

pCi/g picoCuries per gram

PEF particle emission factor

PPRTV Provisional Peer-Reviewed Toxicity Value

PRG Preliminary Remediation Goal

QAPP Quality Assurance Project Plan

QC quality control

Ra-226 radium-226

Ra-228 radium-228

RAGS Risk Assessment Guidance for Superfund

RBA relative bioavailability

RfC reference concentration

RfD reference dose

RME reasonable maximum exposure

RPD relative percent difference

r-SRL residential soil remediation level

SAP Sampling and Analysis Plan

Sierrita Freeport-McMoRan Sierrita, Inc.

Site Freeport-McMoRan Sierrita Copper Mine, Green Valley, Arizona

SPLP synthetic precipitation leaching procedure

SRE Screening Risk Evaluation

sRfC subchronic reference concentration

sRfD subchronic reference dose

SRL Arizona Soil Remediation Level

SSCR Soil and Sediment Characterization Report

STI Sierrita Tailings Impoundment

Th-232 thorium-232 U-235 uranium-235 U-238 uranium-238

UCL upper confidence limit of the mean concentration

URS URS Corporation
USC Upper Santa Cruz

USEPA United States Environmental Protection Agency

μg/dL micrograms per deciliter

μg/m³ micrograms per cubic meter

VRP Voluntary Remediation Program

XRF x-ray fluorescence

EXECUTIVE SUMMARY

Arcadis U.S., Inc. (Arcadis) has prepared this Baseline Human Health Risk Assessment (BHHRA) on behalf of Freeport-McMoRan Sierrita Inc. (Sierrita) for the Freeport-McMoRan Sierrita Copper Mine, Green Valley, Arizona (the Site) as part of the Arizona Department of Environmental Quality's (ADEQ's) Voluntary Remediation Program (VRP). The results of the BHHRA will be used in the risk management decision making process for the Site, and the outcome of the BHHRA will be in compliance with risk-based remedial goals of Arizona Revised Statutes (A.R.S.) §49-175(B).

This BHHRA was prepared in accordance with the VRP BHHRA Work Plan (Arcadis 2015a) approved by ADEQ, and in accordance with the letter entitled *Summary and Response Intentions for Comments on the Baseline Human Health Risk Assessment, Freeport Sierrita Inc., 6200 W. Duvall Mine Rd., Green Valley, Arizona, VRP Site Code:* 100073-03 submitted to ADEQ on December 19, 2017. This letter summarized the ADEQ's August 18, 2016 comments to the BHHRA dated June 7, 2016. This letter also documented Sierrita's intent to respond or not respond to each comment in the revised BHHRA report, which was submitted to ADEQ in November 2018.

The BHHRA was most recently revised to address additional comments provided by ADEQ in a letter to Sierrita dated March 5, 2019 and titled, *Re: Review of 2018 Revised Baseline Human Health Risk Assessment*, and recommendations provided in a memo from The Fehling Group, LLC to Joey Pace, ADEQ, dated May 20, 2019 and titled, *Re: Commentary on the Voluntary Remediation Program, Baseline Human Health Risk Assessment. Site Code 100073-03. Sierrita Mine, Green Valley, Arizona. June 7, 2016, Revised November 2018. Responses to these comments and recommendations were discussed with ADEQ and their consultants during a meeting held on March 12, 2019 and a conference call on June 19, 2019. During the March 12, 2019 meeting, all comments from the March 5, 2019 letter were resolved except for a comment about the lack of background data comparisons to support the inclusion or exclusion of radionuclides as constituents of potential concern (COPCs; site-related constituents) in the BHHRA. The May 20, 2019 memo provided detailed Site and background data evaluations (with which Sierrita generally agrees based on independent data evaluations) and recommendations regarding the use of background radionuclide data in the risk assessment. This revised BHHRA reflects the resolution with regard to the background data, which was reached during the June 19, 2019 conference call.*

The BHHRA focuses solely on potential impacts associated with exposure to constituents of potential concern detected in soil and sediment in the following two specific exposure areas (EAs):

- Former Continuous Liquid Extraction and Regeneration (CLEAR) Plant EA, which is composed of the following subareas:
 - Former CLEAR Plant
 - Former E Pond
 - Former Evaporation Pond
 - Old D Pond
- Former Esperanza Mill EA, which is composed of the following subareas:

- Former Esperanza Mill
- Former C Pond and C Pond Spoils
- Former Laydown Yard
- Former Raffinate Pond.

The former Rhenium Ponds area was historically investigated for environmental impacts, however in a meeting with ADEQ on September 30, 2016, Sierrita requested the removal of the ponds from the VRP since the facilities are part of an active aquifer protection permitted facility. Therefore, the former Rhenium Ponds were not evaluated in this BHHRA.

The objective of the BHHRA is to determine whether there are any potential human health risks associated with current and hypothetical future land uses within the above listed EAs. As described in the Final VRP Soil and Sediment Characterization Report (SSCR; URS Corporation [URS] 2012), the subareas comprising these EAs were identified as the focus of VRP site investigations because they are:

- Facilities that ceased operation and/or were closed prior to implementation of Sierrita's Aquifer Protection Permit (APP) No. P-101679.
- Selected operations exempt from regulation under the APP.
- Operations identified as "to be closed" under the APP.
- Active operations with the potential to release mining-related constituents to groundwater.
- Areas with the potential to have uranium impacts to groundwater.

This BHHRA was prepared consistent with United States Environmental Protection Agency (USEPA) and ADEQ risk assessment guidelines.

Site Background

Sierrita operates an open pit mine and mineral concentration facility located in Pima County, approximately 6 miles northwest of Green Valley, Arizona. Green Valley lies approximately 25 miles south of Tucson, Arizona. The mine produces copper products and co-products of molybdenum and rhenium. Sierrita operations include conventional crushing and flotation followed by differential flotation, leaching and roasting of molybdenum disulfide, rhenium recovery, molybdenum disulfide production and packaging, molybdenum trioxide production and packaging, leach stockpiles, and solution extraction/electrowinning facilities. The mine is capable of producing up to 250 million pounds of copper and 25 million pounds of molybdenum annually.

Human Receptors and Exposure Routes

Consistent with USEPA and ADEQ risk assessment guidelines, soil and sediment data were used to estimate excess lifetime cancer risks (ELCRs) and noncancer hazards (in the form of hazard indices [HIs]) to human receptors currently or in the future. In accordance with the ADEQ-approved BHHRA Work Plan, the BHHRA does not address the potential for exposure to site-related constituents in groundwater or surface water, as groundwater is not currently being used for potable purposes at the Site, nor is it expected to be a potable water source in the future. The basin fill aquifer is the main source of

groundwater to water wells in Green Valley (ELMA 2001). The basin fill aquifer occurs east of Demetrie Wash and is not present in the Sierrita pit or plant areas and therefore is not expected to be impacted via the leaching pathway. Surface water drainage features/washes are typically dry at the Site, only containing stormwater for short durations during precipitation events.

The following human receptors were evaluated, as applicable, at each EA:

- Current/future outdoor commercial/industrial worker.
- Hypothetical future construction worker.
- Hypothetical future adolescent trespasser.

Sample depth interval specific datasets were used to evaluate potential receptor exposures at each EA. Shallow soil/sediment datasets (0 to 0.5 feet below ground surface [bgs] or 0 to 2 feet bgs) were used to evaluate potential exposures of outdoor commercial/industrial workers and adolescent trespassers. A shallow and deep soil/sediment dataset (0 to 15 ft bgs) was used to evaluate potential exposures of construction workers, as well as for exposure of future outdoor commercial/industrial workers and adolescent trespassers based on the assumption of a hypothetical future development scenario where soil/sediment up to 15 ft bgs may be excavated and redistributed across the surface of each EA.

The Site is an active open pit mine and mineral concentration facility and, although it is highly unlikely it will ever be redeveloped for residential use, hypothetical future resident receptors were also evaluated for both EAs specifically to address potential unrestricted future land use for the property. In accordance with A.R.S. §R49-152(B,C) (as cited in the ADEQ-approved BHHRA Work Plan), the hypothetical future resident evaluation is the basis for determining whether a "declaration of environmental use restriction" is required for commercial/industrial land use, or whether unrestricted land use may be suitable for the Site. Details and results of the hypothetical future resident evaluation for both EAs are presented in Appendix F.

As part of this BHHRA, potentially complete exposure routes were evaluated for on-site receptors, including incidental soil/sediment ingestion, dermal contact with soil/sediment, and inhalation of fugitive dust particulates. External exposure to ionizing radiation was also evaluated.

USEPA and ADEQ recommended default parameters were used to evaluate reasonable maximum exposure (RME) for each of the receptor scenarios, consistent with regulatory guidance. In addition, a separate evaluation of potential outdoor commercial/industrial worker exposures was conducted using site-specific parameters. The site-specific parameters are based on actual worker activities at the Sierrita mine and are considered more representative of potential exposures under the current and foreseeable future land uses at each EA than are the default RME assumptions.

Key Findings

The key findings of this BHHRA are provided below. The results of the ELCR and HI calculations for each EA are summarized in the following table.

Former CLEAR Plant Exposure Area					
	Shallow Soil/Sediment	Shallow and Deep Soil/Sediment			
Current Scenario					
RME Outdoor Commercial/Industrial Worker	ELCR = 2×10 ⁻⁴ ; HI=0.3				
Site-Specific Outdoor Commercial/Industrial Worker	ELCR = 8×10 ⁻⁵ ; HI=0.3				
Future Scenario	,				
RME Outdoor Commercial/Industrial Worker	ELCR = 2×10 ⁻⁴ ; HI=0.2	ELCR = 2×10 ⁻⁴ ; HI=0.2			
Site-Specific Outdoor Commercial/Industrial Worker	ELCR = 8×10 ⁻⁵ ; HI=0.2	ELCR = 9×10 ⁻⁵ ; HI=0.2			
Hypothetical Construction Worker		ELCR = 8×10 ⁻⁶ ; HI=0.6			
Hypothetical Adolescent Trespasser	ELCR = 2×10 ⁻⁶ ; HI=0.04	ELCR = 2×10 ⁻⁶ ; HI=0.03			
Former Esperanza Mill Exposure Area					
	Shallow Soil/Sediment	Shallow and Deep Soil/Sediment			
Current Scenario					
RME Outdoor Commercial/Industrial Worker	ELCR = 2×10 ⁻⁴ ; HI=0.3				
Site-Specific Outdoor Commercial/Industrial Worker	ELCR = 9×10 ⁻⁵ ; HI=0.3				
Future Scenario					
RME Outdoor Commercial/Industrial Worker	ELCR = 2×10 ⁻⁴ ; HI=0.3	ELCR = 2×10 ⁻⁴ ; HI=0.2			
Site-Specific Outdoor Commercial/Industrial Worker	ELCR = 9×10 ⁻⁵ ; HI=0.3	ELCR = 8×10 ⁻⁵ ; HI=0.2			
Hypothetical Construction Worker		ELCR = 8×10 ⁻⁶ ; HI=0.9			
Hypothetical Adolescent Trespasser	ELCR = 2×10 ⁻⁶ ; HI=0.07	ELCR = 2×10 ⁻⁶ ; HI=0.05			

Note:

-- Not applicable.

RME Reasonable maximum exposure.

Lead was identified as a COPC for the former CLEAR Plant and former Esperanza Mill EAs and was evaluated using the USEPA Adult Lead Model (ALM). Based on the ALM, exposure to lead in

soil/sediment at the former CLEAR Plant EA or the former Esperanza Mill EA is not likely to result in adverse health effects in current/future outdoor commercial/industrial workers, future trespassers, or future construction workers.

The calculated ELCRs based on RME parameters for the current/future outdoor commercial/industrial worker at the former CLEAR Plant EA and the former Esperanza Mill EA are 2×10⁻⁴, which is slightly above the Arizona Administrative Code (R18-7-206) and USEPA target cancer risk range of 1×10⁻⁶ to 1×10⁻⁴. The ELCRs based on RME parameters for the hypothetical future trespasser and construction worker receptors are within the target cancer risk range. The cumulative HIs are less than the target of 1 for both EAs.

The calculated ELCRs based on site-specific parameters for the current/future outdoor commercial/industrial workers at the former CLEAR Plant EA and former Esperanza Mill EA are lower than the RME based ELCRs and are within the target cancer risk range. The cumulative HIs based on site-specific parameters for the current/future outdoor commercial/industrial workers are less than the target of 1 for both EAs.

The ELCRs for receptors at the former CLEAR Plant EA and former Esperanza Mill EA are attributable to arsenic and radionuclides (primarily radium-226 [Ra-226] and thorium-232 [Th-232]) in soil/sediment. The calculated cancer risk from radionuclides at the former CLEAR Plant EA and former Esperanza Mill EA accounts for between 85% (adolescent trespasser) and 99% (outdoor commercial/industrial worker) of the total calculated receptor-specific ELCR. The noncancer hazards for receptors at the former CLEAR Plant EA are attributable to arsenic and copper in soil/sediment, and at the former Esperanza Mill EA are due to arsenic and molybdenum in soil/sediment.

Because COPCs are present in background areas, people who may visit the Site may also visit other areas where the same COPCs are present. In accordance with USEPA guidance (2002), background ELCRs and HIs were estimated to measure the incremental impacts posed by the Site. This is done to provide a comparison of the Site to nearby areas and to assist with risk management decisions. Total risks/HIs are those associated with the Site data. Background risks/HIs are those associated with exposures of the same receptors to metal concentrations and radionuclide activity at locations other than the Site. The only difference between the total risks/HIs and the background risks/HIs are the concentrations/activities of the COPCs. Incremental risks/HIs are total risks/HIs minus background risks/HIs.

In general, background radiological risks are similar to Site risks for the former CLEAR Plant EA and former Esperanza Mill EA. After taking into account background impacts, incremental risks for all receptor groups who may be exposed to Site media are below or within the USEPA target risk range of 1×10⁻⁶ to 1×10⁻⁴. Furthermore, all incremental ELCRs and HIs for metals are below or on the low end of the thresholds for cancer and noncancer effects. This indicates that adverse effects to human health are not expected. These conclusions are based on a robust dataset and a scientifically defensible process that can support risk management decisions for this Site.

1 INTRODUCTION

Arcadis U.S., Inc. (Arcadis) prepared this Baseline Human Health Risk Assessment (BHHRA) on behalf of Freeport-McMoRan Sierrita Inc. (Sierrita) for the Sierrita Copper Mine, Green Valley, Arizona (the Site; Figure 1-1). Arcadis conducted the BHHRA as part of the Arizona Department of Environmental Quality's (ADEQ's) Voluntary Remediation Program (VRP) to conservatively evaluate whether residual concentrations of Site-related constituents in soil and sediment pose adverse health effects to current and hypothetical future site users in two exposure areas (EAs). The results of the BHHRA will be used in the risk management decision making process for the Site.

The BHHRA was developed based on the results of previous site investigations, evaluation of anticipated site uses (including historical, current, and long-term future land uses), and applicable agency guidance and laws. The risk assessment approach and methodology follow the VRP BHHRA Work Plan (Arcadis 2015a), which was initially submitted to ADEQ on February 28, 2013. ADEQ provided comments on that initial BHHRA Work Plan in a letter dated November 18, 2014. The BHHRA Work Plan was revised; dated April 24, 2015 based on the November 18, 2014 ADEQ comments; and subsequently approved by the ADEQ on May 13, 2015.

This BHHRA was prepared in accordance with the letter entitled *Summary and Response Intentions for Comments on the Baseline Human Health Risk Assessment, Freeport Sierrita Inc., 6200 W. Duvall Mine Rd., Green Valley, Arizona, VRP Site Code:* 100073-03 submitted to ADEQ on December 19, 2017. This letter summarized the ADEQ's August 18, 2016 comments to the BHHRA dated June 7, 2016. This letter (provided in Appendix J) also documented Sierrita's intent to respond or not respond to each comment in the revised BHHRA report, which was submitted in November 2018.

The BHHRA was most recently revised to address additional comments provided by ADEQ in a letter to Sierrita dated March 5, 2019 and titled, *Re: Review of 2018 Revised Baseline Human Health Risk Assessment*, and recommendations provided in a memo from The Fehling Group, LLC to Joey Pace, ADEQ, dated May 20, 2019 and titled, *Re: Commentary on the Voluntary Remediation Program, Baseline Human Health Risk Assessment. Site Code 100073-03. Sierrita Mine, Green Valley, Arizona. June 7, 2016, Revised November 2018. Responses to these comments and recommendations were discussed with ADEQ and their consultants during a meeting held on March 12, 2019 and a conference call on June 19, 2019. During the March 12, 2019 meeting, all comments from the March 5, 2019 letter were resolved except for a comment about the lack of background data comparisons to support the inclusion or exclusion of radionuclides as constituents of potential concern (COPCs; site-related constituents) in the BHHRA. The May 20, 2019 memo provided detailed Site and background data evaluations (with which Sierrita generally agrees based on independent data evaluations) and recommendations regarding the use of background radionuclide data in the risk assessment. This revised BHHRA reflects the resolution with regard to the background data, which was reached during the June 19, 2019 conference call.*

In accordance with the Work Plan, the BHHRA relies on soil and sediment data collected during field activities performed from 2004 through 2015. The BHHRA evaluates a current/future on-site outdoor commercial/industrial worker, a future on-site construction worker, and a future on-site trespasser for all identified potentially complete exposure pathways, as described in the human health conceptual site model (CSM; see Section 6).

Although it is highly unlikely that the Site will ever be redeveloped for residential use, hypothetical future resident receptors were also evaluated specifically to address potential unrestricted future land use for the property. Per the Arizona Revised Statutes (A.R.S.)§R49-152(B,C) (as cited in the ADEQ-approved BHHRA Work Plan), the hypothetical future resident evaluation is the basis for determining whether a "declaration of environmental use restriction" is required for commercial/industrial land use, or whether unrestricted land use may be suitable for the Site. Details and results of the hypothetical future resident evaluation are presented in an appendix to this BHHRA.

The BHHRA does not address the potential for exposure to Site-related constituents in groundwater or surface water, as groundwater within the facility is not being withdrawn for potable purposes or other use and is not accessible to third parties for any use, nor is it expected to be a potable water source in the future. The principal hydrogeologic units at the Site include the alluvial aquifer, the basin fill aquifer, and the bedrock hydrostratigraphic unit. The basin fill aquifer is the main source of groundwater to water wells in Green Valley (ELMA 2001) and depth to water ranges from approximately 250 to 425 ft bgs. The basin fill aquifer occurs east of Demetrie Wash and is not present in the Sierrita pit or plant areas and is not threatened by any impacts to groundwater beneath the Site. Surface water-groundwater interactions were described in the VRP Groundwater Investigation Report (Arcadis 2013b). Additionally, groundwater is either captured by the mine dewatering or Sierrita tailings impoundment interceptor well field and reused in the mine processes. Surface water drainage features are typically dry at the Site, only containing stormwater for short durations during precipitation events.

The remainder of this BHHRA is organized as follows:

Section 2 - Site Background. Provides background information about the Site, including site history, existing facilities, regional and site-specific geology, and hydrogeology.

Section 3 - Previous Investigations and Remedial Activities. Describes previous site investigations and summarizes the relevant findings.

Section 4 - Guidance Documents Used to Conduct the BHHRA. Lists the guidance documents used to develop the approach and methods used in the BHHRA.

Section 5 - Data Used to Conduct the BHHRA. Presents the data used to conduct the BHHRA, identifies the specific exposure areas (EAs) evaluated, and discusses the methods used to estimate constituent concentrations to which a human receptor might be exposed.

Section 6 - Exposure Assessment. Describes the basis for evaluation of certain human receptors and potentially complete exposure routes, as well as methods used to estimate route-specific doses.

Section 7 - Toxicity Assessment. Presents the toxicity values used to estimate impacts to human receptors, including information on the sources of toxicity values, as well as specific approaches used to evaluate certain constituents.

Section 8 - Risk Characterization. Discusses specific methods used to evaluate the potential for adverse human health effects, including the estimation of excess lifetime cancer risks (ELCRs) and calculation of noncancer hazard indices (HIs).

Section 9 - Risk Assessment Results. Presents the results of the BHHRA.

Section 10 - Uncertainties Associated with the BHHRA. Summarizes the key assumptions used in this BHHRA and how each may have affected the results.

Section 11 - Summary and Conclusions. Summarizes the outcome of the BHHRA.

Section 12 - References. Lists the literature cited in this report.

This BHHRA is followed by tables and figures. Supporting information is provided in the appendices, as follows:

Appendix A. Soil and Sediment Data Used to Conduct the Baseline Human Health Risk Assessment.

Appendix B. ProUCL 5.1 Input and Output Files.

Appendix C. Excess Lifetime Cancer Risk and Hazard Index Calculations (Chemicals) using 95% UCL EPCs.

Appendix D. Excess Lifetime Cancer Risk Calculations (Radionuclides) using 95% UCL EPCs.

Appendix E. Lead Model Output.

Appendix F. Hypothetical Future Resident Evaluation.

Appendix G. Background Risk Calculations using mean EPCs.

Appendix H. Excess Lifetime Cancer Risk and Hazard Index Calculations (Chemicals) using mean EPCs.

Appendix I. Excess Lifetime Cancer Risk Calculations (Radionuclides) using mean EPCs.

Appendix J. Summary and Response Intentions for Comments on the BHHRA.

2 SITE BACKGROUND

This section describes the site setting and existing facilities, current and historical site operations, regional and site-specific geology, and hydrogeology.

2.1 Site Location and Description

Sierrita operates an open pit mine and mineral concentration facility located in Pima County, approximately 6 miles northwest of Green Valley, Arizona (Figure 1-1). Green Valley lies approximately 25 miles south of Tucson, Arizona. The mine produces copper products and co-products of molybdenum and rhenium. Sierrita operations include conventional crushing and flotation followed by differential flotation, leaching and roasting of molybdenum disulfide, rhenium recovery, molybdenum disulfide production and packaging, molybdenum trioxide production and packaging, leach stockpiles, and solution extraction/electrowinning facilities. The mine is capable of producing up to 250 million pounds of copper and 25 million pounds of molybdenum annually (ADEQ 2011).

Figure 2-1 shows the general features and facilities at the Site. The Sierrita property consists of three open pits (Sierrita-Esperanza pit, a molybdenum satellite pit, and the Ocotillo pit), a 115,000 ton-per-day concentrator, two molybdenum roasting plants, the rhenium plant, an oxide and low-grade sulfide ore stockpile leaching operation, a copper sulfate plant, and associated support facilities and historical facilities, some of which have been closed and reclaimed.

2.2 Environmental Setting

The mine is situated on the southeast flank of the Sierrita Mountain Range, approximately 7 miles northwest of the Santa Cruz River. Elevations at the Site range from approximately 5,000 feet above mean sea level (ft amsl) on the west side of the Site to approximately 3,000 ft amsl on the east side, as shown on Figure 1-1.

The climate is typical for an arid region, with a wide range in daily temperatures and monsoonal type precipitation patterns. The Western Regional Climate Center reports that the average daily maximum temperature at Green Valley is 84 degrees Fahrenheit (°F), while the average daily minimum temperature is 54°F. Average annual precipitation is 10.86 inches. These statistics were based on a reporting period from 1988 through 2012. The monthly average pan evaporation rates range from 3.25 inches in January to 14.9 inches in June (URS 2008a).

More than one third of the annual precipitation occurs during the months of July and August, and these rain events can produce short, intense downpours; strong winds; and flash floods. Groundwater at Sierrita is derived primarily from mountain front recharge, recharge from ephemeral streamflow, and seepage from the Sierrita Tailings Impoundment (STI; Errol L. Montgomery and Associates [ELMA] and Dames and Moore 1994).

The surface water regime of the Site is divided into four major surface water drainage basins, each associated with one of the four major washes that drain the Site: Demetrie, Amargosa, Esperanza, and Tinaja Washes. The locations of the washes are shown on Figure 2-1. An unnamed drainage (Unnamed Wash) connects with the Tinaja Wash south of the Esperanza Wash. Amargosa, Esperanza, and Tinaja Washes discharge into Demetrie Wash, which is an ephemeral tributary to the Santa Cruz River.

2.3 Site History and Facilities Overview

Mining in the area around Green Valley started in the late 1800s (Freeport-McMoRan Copper & Gold Inc. [FCX] 2011b). At the Sierrita mine, underground mining began in 1907, and open-pit mining began in 1957 (FCX 2011a). The existing 4,316-acre Sierrita Tailings Impoundment (APP No. P-101679) has been used as a final tailings repository since the 1970s (FCX 2011b).

This BHHRA focuses on the potential for exposure to constituents in soil and sediment at two facility areas at the Sierrita mine: 1) the former Continuous Liquid Extraction and Regeneration (CLEAR) Plant and 2) the former Esperanza Mill. These two EAs encompass nine subareas identified as the focus of VRP site investigations (URS 2012) because they are:

- Facilities that ceased operation and/or were closed prior to implementation of Sierrita's APP.
- Selected operations exempt from regulation under the APP.
- Operations identified as "to be closed" under the APP.
- Active operations with the potential to release mining-related constituents to groundwater.
- Areas with the potential to have uranium impacts to groundwater.

A brief description of each facility is provided in the sections below. Information provided below was taken from the Final VRP SSCR (URS 2012) and the VRP Groundwater Investigation Report (Arcadis 2013b).

2.3.1 Former CLEAR Plant

The CLEAR Plant was historically located in the north-central portion of the Sierrita property (see Figure 2-1). The former CLEAR Plant produced metallic copper from 1977 to 1983 and was demolished in 1995. Copper was initially leached from copper concentrate slurry, which was produced from sodium and potassium chloride brines and sodium hydroxide and ferric chloride reagents. The leached solution was processed through two mixing reactors and a thickener before producing a pregnant solution. The pregnant solution was circulated in electrolytic tanks, and the resulting precipitated copper was filtered, washed, dried, and stored until sold.

The former CLEAR Plant subarea encompasses approximately 60 acres and includes a number of associated impoundments, including the former E Pond, the former Evaporation Pond, and the Old D Pond. The former E Pond is an inactive, backfilled pond. This pond was an unlined impoundment historically used to contain surface water runoff and possibly process solutions from upset conditions at the former CLEAR Plant. The former Evaporation Pond was a lined impoundment that received spent copper solution containing chloride. The Old D Pond was an unlined pond that reportedly received process solutions from the former CLEAR Plant operation. These solutions were recycled and possibly concentrated various constituents including metals and radionuclides. Runoff from the closed CLEAR Plant and Copper Sulfate areas is now contained in the New D Pond, an APP-permitted non-stormwater impoundment.

The topography of the former CLEAR Plant area generally slopes eastward and is incised by north-south and east-west trending drainages. The western portion is cut into granodiorite bedrock, and the remaining area is covered with fill ranging from a few inches to approximately 25 feet (ft) in thickness. The easternmost portion of the plant area, near Demetrie Wash, is undisturbed and sparsely covered with native vegetation. A large portion of the plant area is covered with gravel or crushed rock, and buried concrete slabs are known to exist below the gravel.

The former CLEAR Plant area is currently used as 1) a training center; 2) an asset recovery yard to store used equipment, machinery, and vehicles; 3) contractor offices and materials storage; 4) a metal fabrication shop; and 5) Sierrita's "Central Accumulation" building, currently used to store environmental sampling supplies and manage hazardous waste. The former CLEAR Plant building is currently used for storage of miscellaneous materials, such as used computers and office equipment, and as a training center. The Crystal Plant is located in the southernmost building, which manufactures copper sulfate pentahydrate, a product that may be sold as fertilizer, pesticide, foot bath, and animal feed.

2.3.1.1 Work Force at the Former CLEAR Plant

Indoor workers (inside at the contractor offices and Crystal Plant) may be present in the former CLEAR Plant area for 8-hour days 5 days a week. Employee training, which takes place indoors at the training center, occurs periodically. Outdoor worker activities, such as storing/retrieving equipment and supplies, typically occur only on an as-needed basis (i.e., less than 8 hours per day).

2.3.2 Former Esperanza Mill

The former Esperanza Mill covers roughly 128 acres in the central portion of the Sierrita property (see Figure 2-1) and includes the former C Pond and C Pond Spoils, former Raffinate Pond, and former Laydown Yard. The former mill processed sulfide ore from 1959 through 1981 (Hydro Geo Chem, Inc. [HGC] 2008) and included a mill, two thickeners, and a raw water pond. Tailings from the mill were conveyed through a pipeline to the Esperanza Tailings Impoundment, located approximately 0.5 mile southeast of the former mill.

The topography of the former mill area slopes gently to the east-southeast. Amargosa Wash borders the mill area to the south, and Demetrie Wash borders the mill area to the east. The Duval Canal Extension trends west-to-east along the north side of the former mill area. The northwestern portion of the area is cut into bedrock with fill extending eastward. A drainage channel extends from near the base of the former thickeners and trends southeast across the former mill area. Numerous work/storage shops, office buildings, and equipment storage areas are located in the northwest portion of the former mill area.

The former C Pond and C Pond Spoils are located within the easternmost portion of the former mill area, near the northwest corner of the confluence of Demetrie and Amargosa Washes. The former C Pond was an unlined pond used to contain surface runoff from the Sierrita Mill, overflow from the old Duval Canal during storm events, and runoff from the Sierrita crusher dust collector area, which had high concentrations of copper. During operations, sediments that accumulated in the former C Pond were periodically dredged, and spoils were placed on the east and west sides of the current Duval Canal Extension (C Pond Spoils). Currently, the former C Pond area is being used by Sierrita for pilot water treatment plants.

The former Raffinate Pond is an inactive, unlined, and backfilled pond located within the central portion of the former Esperanza Mill area. This pond was used in association with a Precipitation Plant (now removed), which was located immediately southeast of the former Esperanza Mill. Its use ended when Raffinate Pond No. 3 was constructed. The former Raffinate Pond collected surface water runoff from the western portion of the former Esperanza Mill and contained some water most of the year. The central portion of the former Raffinate Pond currently supports a cover of vegetation. Granodiorite bedrock outcrops at the surface along the southwest side of the former pond. The north and east sides of the pond are currently bordered by fill material.

The former Laydown Yard is located in the central portion of the former Esperanza Mill area and was used from the 1960s until the mill was demolished in 2005. During that time, the Laydown Yard was used to store equipment, new drums, and salvage materials from decommissioned site facilities. A subcontractor removed and salvaged the drums and other equipment. The former Laydown Yard is currently used by a contractor for their mobile office and a few pieces of mobile equipment.

2.3.2.1 Work Force at the Former Esperanza Mill

Outdoor workers (general labor crew) convene in the former Esperanza Mill area each morning and disperse throughout the Site (which includes other portions of the Sierrita mine facility). A road maintenance crew may potentially work in the area performing grading, paving, and other maintenance duties. These activities occur as needed. Outdoor workers also work in the Laydown Yard, rental yard, or

other outdoor areas. They travel in and out of those areas, as well as indoors and other areas of the Sierrita mine facility, on a daily basis.

2.4 Geology and Hydrogeology

This section summarizes the regional and site-specific geology and hydrogeology, as described in the VRP Groundwater Investigation Report (Arcadis 2013b).

2.4.1 Site Geology

Sierrita is located in the Basin and Range physiographic province, on the west margin of the Santa Cruz Basin and along the east flank of the Sierrita Mountains (ELMA 2001, ELMA and Dames and Moore 1994). The principal geologic/hydrogeologic units at the Site include the alluvial deposits, the basin fill deposits, and the bedrock complex. The lithology of each of the principal geologic units at the Site is described below.

2.4.1.1 Alluvial Deposits

Unconsolidated Quaternary and late Tertiary deposits cover most of the eastern base (the piedmont) of the Sierrita Mountains. The term "piedmont" is used in the Esperanza Mill Quadrangle (Spencer et al. 2003) and refers to the area east of the immediate mine area. The alluvium was deposited by larger streams that originated in the mountains and then was reworked by smaller streams that originate on the piedmont. Alluvial deposits occur as thin, discontinuous deposits throughout the Site, typically within natural drainage channels including Demetrie Wash, Amargosa Wash, Esperanza Wash, and Tinaja Wash. However, there are unconsolidated deposits across the mine site that overlie bedrock; the soil and sediment samples were collected from the unconsolidated deposits (Arcadis 2013b). The deposits consist of coarse-grained, unconsolidated silty sand and gravel of Quaternary age. Based on investigation work from 2001, the thickness of the alluvial deposits ranges from 0 to 30 feet (ELMA 2001).

2.4.1.2 Basin Fill Deposits

At the Site, basin fill deposits occur generally east of Demetrie Wash, trending from the northwest and extending east below the tailings impoundments, and are not present in the Sierrita pit or plant areas. The basin fill deposits are Tertiary to Quaternary in age and consist of poorly consolidated sand, gravel, silt, and clay in varying proportions. The thickness of the basin fill deposits increases to the east up to more than 1,000 feet near the southeast corner of the Sierrita Tailings Impoundment (ELMA 2001).

2.4.1.3 Bedrock Complex

The Sierrita-Esperanza deposit is composed of igneous rocks; the oldest in the area are the Ox Frame Volcanics. The Ox Frame Volcanics were intruded by the Harris Ranch Quartz Monzonite, which was overlain by the Demetrie Volcanics. Later intrusive rocks, including the Ruby Star Granodiorite, intruded the existing volcanic and intrusive rocks and formed a large batholith. The bedrock complex consists of several formations, including the Tinaja Peak Formation, the Pantano Formation, the Tertiary Intrusives,

Ruby Star Granodiorite, Demetrie Volcanics, Harris Ranch Quartz Monzonite, and Ox Frame Volcanics. These formations are discussed in detail in the VRP SSCR and Addendum (URS 2012; Arcadis 2013a).

2.4.1.4 Naturally Occurring Radioactivity in Soils

In Arizona, uranium is often found in minerals associated with porphyry copper deposits (USEPA 1990a, 1999, 2008), and it most commonly occurs in granitic rocks associated with Precambrian outcrops and Laramide intrusives (ADEQ 1989). The porphyry copper deposit at the Sierrita mine is part of the Laramide physiographic province, and in the vicinity of the Sierrita mine, the bedrock units include a variety of silica-rich igneous units (see Arcadis 2013b for a summary of the individual units). In the Sierrita area, there appears to be a band of uranium-bearing minerals that runs across the Sierrita Mountains, and uranium has been found in minerals associated with a number of mines in the region (USEPA 1999).

Quaternary alluvium consists of soils and sediments generated from weathered bedrock material. Alluvial sediments in the Sierrita area are generated through erosion of the exposed bedrock of the Sierrita Mountains. Eroded material is transported downslope by gravity (rock falls and other mass movements) and by rain events, which can transport large quantities of sedimentary materials. These materials are deposited in low-lying and flat areas on the valley floor. Because alluvial sediments are derived from bedrock material, their mineralogical and chemical composition are similar to their bedrock source. In the Sierrita area, gullies, washes, and shallow, low-lying areas accumulate sediment from large geographic stretches of upslope, exposed bedrock from different formations and geologic units, creating sedimentological variability. Because the alluvial sediments are derived from local bedrock, it is expected that they contain comparable levels of metals and radiological materials as is seen in the Ruby Star Granodiorite, Tinaja Peak Formation, and the Harris Ranch Quartz Monzonite.

A background soil assessment (Arcadis 2018) evaluated alluvial and bedrock samples collected from an area identified as representative of background environments near the Site. Ra-226, Ra-228, U-235, and U-238 results from the background soils showed activities in pCi/g that were comparable to those encountered in both the regional bedrock (Ruby Star Granodiorite, Tinaja Peak Formation, and Harris Ranch Quartz Monzonite) and Site EAs (Former CLEAR Plant and Esperanza Mill). Additionally, total uranium concentrations in mg/kg from the background soils also showed concentrations comparable to the Site EAs, and the average background soil total uranium concentration of 2.67 mg/kg fell within the range of natural uranium reported in Arizona by the USGS (ADEQ 1991) of 1.10-3.40 mg/kg uranium (see table below).

Source	Uranium (mg/kg)	
Background soils	2.67	
USGS Arizona Average	2.1	
USGS Arizona Maximum	3.4	
USGS Arizona Minimum	1.1	

Ra-226, Ra-228 and total uranium concentrations were greater in the bedrock samples than in alluvial samples, showing that the presence of these constituents in alluvial materials is likely due to their provenance as eroded radium- and uranium-bearing bedrock material (Arcadis 2018).

Based on comments provided by ADEQ, an evaluation of secular equilibrium was conducted for the Site and background soil data. The evaluation indicated that the U-238, U-234 and Ra-226 activities from the former CLEAR Plant and former Esperanza Mill areas are in secular equilibrium; however, the background data are not. The background uranium activity ratio (U-234/U-238) averaged 1.0 for all samples collected shallower than two ft bgs; deeper samples were not analyzed for isotopic uranium. ADEQ suggested a review of the background laboratory analytical reports be performed to determine why the background Ra-226 concentrations are greater than those for uranium isotopes (U-238 and U-234). Sierrita therefore conducted a review of the laboratory analytical methods and data validation reports included in the *Background Soil Assessment Report* (Arcadis 2018) and did not find any issues with the background soil sample analyses. Regardless, ADEQ recommended that Sierrita ignore the Ra-226 background soil sample results, and use the U-238 and U-234 data as a surrogate for Ra-226 and other radionuclides in the decay series (see Section 5.7.3).

2.4.2 Site Hydrogeology

Sierrita is located in the Upper Santa Cruz (USC) Basin and Range Lowlands Hydrogeologic Province. The USC Basin is a north-trending alluvial valley drained by the Santa Cruz River (ELMA and Dames and Moore 1994). The Sierrita Mountains are a contributing source of mountain-front recharge to the basin. The Santa Cruz River to the east of the Site is the main surface water drainage. The Santa Cruz River is located approximately 2 miles due east from the eastern boundary of the STI. The principal hydrogeologic units at the Site include the alluvial aquifer, the basin fill aquifer, and the bedrock hydrostratigraphic unit. The hydrogeology of each of the principal units at the Site is described in detail in the Groundwater Investigation Report (Arcadis 2013b).

3 PREVIOUS SITE INVESTIGATIONS

Sierrita submitted an application to enter the Arizona VRP on June 19, 2007 to evaluate certain operations and constituents that are not considered by other regulatory programs, such as the Mitigation Order on Consent, Docket No. P-50-06 and the Sierrita area-wide APP No. P-101679. The characterization goal for the VRP was to assess potential impacts to soil, sediment, and groundwater from historical and active mine operations. The constituents of interest (COIs) for the Site are trace metals and radiological constituents (uranium and radium isotopes). COIs have been identified in previous reports as constituents detected in soil at concentrations higher than non-residential soil remediation levels (nr-SRLs) or groundwater protection levels (GPLs; URS 2012, Arcadis 2013a and 2013b).

As stated in Section 1, the BHHRA relies on soil and sediment data collected during field activities performed from 2004 through 2015. The following documents related to previous site investigations were reviewed to compile and verify the soil and sediment data used to conduct this BHHRA:

- Soil, Surface Water, and Groundwater Sampling in the CLEAR Plant and Esperanza Mill Areas,
 Prepared for Freeport-McMoRan Sierrita Inc., Green Valley, Arizona. April 2008 (HGC 2008)
- Voluntary Remediation Program Investigation Work Plan (URS 2008a)
- Voluntary Remediation Program Investigation Quality Assurance Project Plan (URS 2008b)
- Voluntary Remediation Program Soil and Sediment Characterization Report, Freeport-McMoRan Sierrita Inc., Green Valley, Arizona. Final. December 2012 (URS 2012)
- Voluntary Remediation Program Former CLEAR Plant Area Soil Excavation and Tier I Screening Risk Evaluation Report, Sierrita Mine, Green Valley, Arizona. January 2013 (Arcadis 2013c)
- Voluntary Remediation Program Addendum to the Soil and Sediment Characterization Report,
 Freeport-McMoRan Sierrita Inc., Green Valley, Arizona. August 2013 (Arcadis 2013a)
- Voluntary Remediation Program Groundwater Investigation Report, Sierrita Mine, Green Valley, Arizona. December 2013 (Arcadis 2013b)
- Voluntary Remediation Program Data Gaps Work Plan, Sierrita Mine, Green Valley, Arizona. June 2015 (Arcadis 2015b)
- Former CLEAR Plant Area Paving Project Soil Excavation and Tier I Screening Risk Evaluation Report, Sierrita Mine, Green Valley, Arizona. July 2015 (Arcadis 2015c)
- Background Soil Assessment Report. Voluntary Remediation Program VRP Site Code: 100073-03
 Freeport-McMoRan Sierrita Inc., Green Valley, Arizona. October (Arcadis 2018)

The remainder of this section briefly summarizes the previous site investigations and relevant findings.

3.1 Soil and Sediment Investigations

3.1.1 HGC 2004 Investigation

From August through October 2004, HGC performed a screening level assessment of environmental conditions in the vicinity of the former CLEAR Plant and former Esperanza Mill. The field investigation included the collection of 54 surface soil samples from 0 to 3 inches below ground surface (bgs) and 39 subsurface soil samples at depths up to 15 feet bgs from 14 backhoe trenches (HGC 2008). Soil samples were initially screened for paste pH (a measure of the potential for soil samples to generate acid solutions), which was used to determine if the sample should be submitted for total metals analysis (HGC 2008). Soil samples were selected for laboratory analysis based on their potential to generate acid, because of an anomalous appearance due to copper or iron oxide mineralization, or to provide comprehensive geospatial coverage (HGC 2008).

In total, 12 surface soil and 24 subsurface soil samples from the former CLEAR Plant area, and 12 surface soil and 12 subsurface soil samples from the former Esperanza Mill area (including the Former C Pond, Former Raffinate Pond and the Former Laydown Yard), were submitted for laboratory analysis of metals and acid-base potential. Detected constituent concentrations were compared to the Arizona Soil Remediation Levels (SRLs) for non-residential land use (Arizona Administrative Code Title 18). The HGC (2008) report indicated that arsenic in soil exceeded the non-residential SRL (nr-SRL) throughout the former CLEAR Plant and former Esperanza Mill areas; however, there was no apparent spatial pattern to arsenic concentrations with respect to historical facilities. Additionally, arsenic concentrations were not necessarily elevated with respect to naturally occurring concentrations in some portions of Arizona and the United States (HGC 2008). Copper was the only other metal detected at concentrations greater than the nr-SRL. The copper concentration in one soil sample was greater than its nr-SRL; this sample was described as being pyritic with a greenish color similar to concentrate.

3.1.2 URS 2008 Investigation

Following the Site's acceptance into the VRP, Sierrita retained URS to prepare and implement a site investigation work plan to characterize soil, sediment, and groundwater at the mine. The investigation activities were conducted by URS, in accordance with the VRP Investigation Work Plan (URS 2008a) and the Addendum to Sampling and Analysis Plan & Quality Assurance Project Plan (SAP & QAPP Addendum; URS 2008b). Both plans were approved by the ADEQ.

The VRP soil and sediment investigation was conducted between June and November 2008 at three general areas and nine subareas: 1) former CLEAR Plant area, including the former plant, former E Pond, former Evaporation Pond, and Old D Pond; 2) former Esperanza Mill area, including the former mill, former C Pond and C Pond Spoils, former Raffinate Pond, and former Laydown Yard; and 3) the STI, which includes the former Rhenium Ponds. The objective of field activities was to assess potential releases of COIs from the specified subareas (URS 2012).

As indicated in the SSCR (URS 2012), the COIs analyzed during the VRP characterization were selected based on a review of groundwater constituents monitored or regulated under Sierrita's APP permit, historical groundwater quality data for the Sierrita mine, and current and historical mining processes and

operations. The soil and sediment COIs include mining-related metals (e.g., antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, manganese, mercury, molybdenum, nickel, selenium, thallium, and zinc), total uranium, uranium isotopes (uranium-234 [U-234], uranium-235 [U-235], and uranium-238 [U-238]), and radium isotopes (radium-226 [Ra-226] and radium-228 [Ra-228]). Many of the COIs also naturally occur in soils, rock, and groundwater at non-mineralized and mineralized mine sites.

3.1.2.1 Relevant Findings for Metals

URS (2012) presented and evaluated the combined analytical results for metals in soil and sediment samples collected by HGC in 2004 and as part of the VRP investigation in 2008. One hundred fifty four soil samples were analyzed from 52 soil borings advanced to the bedrock surface, and 36 sediment samples were collected and analyzed from 18 locations. Detected constituent concentrations were compared to the Arizona SRLs and Groundwater Protection Levels (GPLs). Non-residential SRLs for the following constituents were exceeded in at least one soil sample at each of these subareas:

- Arsenic, copper, and lead at the former CLEAR Plant
- Arsenic at the Old D Pond
- Arsenic at the former Esperanza Mill
- Arsenic and lead at the former C Pond and C Pond Spoils
- · Arsenic and copper at the former Raffinate Pond, and
- Arsenic, lead, and molybdenum at the former Laydown Yard.

As part of the SSCR investigation, the 95 percent upper confidence limit of the mean concentration (95% UCL) was calculated for the above listed constituents using the soil data from each subarea. The 95% UCL concentrations were then also compared to the nr-SRLs. The only COI for which 95% UCLs were still greater than the nr-SRL was arsenic at the former CLEAR plant, former Esperanza Mill, former Raffinate Pond, and former Laydown Yard. The SSCR (URS 2012) recommended that site-specific background concentrations and/or soil remediation standards be developed for arsenic.

Antimony and lead were the only metals detected at concentrations greater than their respective GPLs. Antimony exceeded the GPL in the former CLEAR Plant and former Esperanza Mill subareas. Lead exceeded its GPL in the former CLEAR plant, former C Pond and C Pond Spoils, former Raffinate Pond, and former Laydown Yard (URS 2012). The calculated 95% UCL concentrations were less than corresponding GPLs, except for lead at the former Laydown Yard. However, all detected lead concentrations were less than the alternative GPL (25,556 milligrams per kilogram [mg/kg]) calculated based on site-specific total and synthetic precipitation leaching procedure (SPLP) lead data (URS 2012). No further action was recommended for soil with regard to groundwater protection.

3.1.2.2 Relevant Findings for Radionuclides

Arcadis (2013a) reported the results of the soil and sediment investigation for radionuclides. Uranium and radium isotopes were detected in samples from each subarea. The SSCR Addendum (Arcadis 2013a) did

not include a comparison of detected activities to human health risk-based screening levels but indicated that the presence of radionuclides in subarea soils is consistent with the highly mineralized area. The unconsolidated deposits and parent bedrock complex at the Sierrita mine, which contains Ruby Star Granodiorite as well as quartz monzonite porphyry, contain natural levels of radioactivity. The SSCR Addendum noted that rock core samples collected as part of the groundwater investigation (described below) revealed uranium concentrations up to 19 mg/kg in the granodiorite bedrock and at 35 mg/kg in the monzonite bedrock (Arcadis 2013a). Radium-226 activity in the granodiorite has been measured at concentrations up to 5.8 picoCuries per gram (pCi/g) and in the monzonite at up to 11 pCi/g. The SSCR Addendum deferred further evaluation of the soil and sediment radionuclide data to this BHHRA.

To provide additional information relevant to naturally occurring radionuclides in area soil and sediments, a background soil assessment was conducted as outlined in the approved Background Soil Assessment Work Plan (Arcadis 2017). Details are provided in the 2018 Background Soil Assessment Report (Arcadis 2018) and a brief summary of the study results is provided in Section 3.1.5 of this BHHRA.

3.1.3 Former CLEAR Plant Area Soil Excavation

On May 1 and 2, 2012, Arcadis collected 51 soil samples to support construction of a new training facility building on a 1.3-acre area located north of the former CLEAR Plant building (Arcadis 2013c). Previous investigation in the former CLEAR Plant area had partially defined areas of potential impacts in the surface and subsurface soils. The objectives of the soil excavation sampling were to obtain additional information to support a No Further Action (NFA) determination for soil in the area affected by construction, or to provide analytical data in support of a Declaration of Environmental Use Restriction (DEUR).

Discrete soil samples were collected from the building excavations and parking lot areas to be paved. Based on the previously collected data from the former CLEAR Plant area, the samples were only analyzed for arsenic, copper, and lead. Samples were collected from 0 to 6 inches bgs using either a disposable plastic scoop or a hand auger. Dry soil samples were sieved, field-screened using a handheld x-ray fluorescence (XRF) analyzer, and then packaged for laboratory analysis. Eight of the 51 soil samples were collected from excavated and stockpiled soils, but their analytical results are not relevant, as the materials are not representative of concentrations in residual soils. Thirty-five discrete samples were packaged for laboratory analysis based on XRF results.

Supplemental soil sampling was conducted on May 11 and 21, 2012 in proposed locations that had not been sampled on May 1 and 2, from over-excavated areas where material had since been removed, and from areas where initial soil samples had concentrations above the residential SRL (r-SRL). An additional 38 soil samples were collected using the same methods described above.

Arsenic and lead were detected at concentrations in soil greater than their respective r-SRLs and nr-SRLs. Lead was also detected at concentrations above its GPL. Copper was detected at concentrations greater than its r-SRL but less than the nr-SRL, and there is no GPL available for copper. A Tier 1 Screening Risk Evaluation (SRE) was performed using analytical results from the residual soil samples. The Tier 1 SRE demonstrated that 95% UCL concentrations for all three metals were below the available SRLs and GPLs; therefore, no further action was recommended.

3.1.4 Former CLEAR Plant Area Paving Project

Between May 19 and June 19, 2015, 29 soil samples were collected in support of constructing two paved areas in the former CLEAR Plant area. The paved areas occupy approximately 0.9 acre (0.27 acre and 0.63 acre) located north and southwest of the former CLEAR Plant building, along the western edge of the former CLEAR plant subarea defined in the SSCR (URS 2012).

Two soil samples were collected from a leach field in the southern paving area at 3.5 feet bgs using a hand auger. Eight surface soil samples from the northern paving area and 17 surface soil samples from the southern paving area were collected immediately following the excavation and grading of the areas to be paved. These samples were collected at randomly determined locations within a grid placed over the graded area. Surface soil samples were collected using a disposable plastic scoop and were immediately packaged for laboratory analysis. Two additional discretionary samples were collected from the northern paving area after encountering and excavating visually impacted soils. Grid samples were submitted for laboratory analysis of arsenic, copper, and lead. Approximately ten percent of the 25 grid samples (i.e., 3 samples), the two discretionary soil samples, and the two leach field samples were submitted for analysis of an extended list of metals constituents (antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, manganese, molybdenum, nickel, selenium, thallium, uranium, and zinc).

Arsenic was detected at concentrations in soil greater than its r-SRL and nr-SRL; however, arsenic concentrations in all samples were less than its GPL. Copper was detected at concentrations greater than its r-SRL but less than its nr-SRL, and there is no GPL available for copper. Detected lead concentrations were below both the r-SRL and nr-SRL, but the lead concentration in one sample was above its GPL. A Tier 1 SRE was performed using analytical results from the paving area samples. The Tier 1 SRE demonstrated that 95% UCL concentrations for all three metals were below the available SRLs and GPLs; therefore, no further action was recommended.

3.1.5 Background Soil Assessment

A background soil investigation was conducted in 2018 in accordance with the ADEQ approved work plan (Arcadis 2017). The goal of the assessment was to investigate whether elevated COPC (i.e., antimony, arsenic, copper, lead, molybdenum, U-235/238 and Ra-226/228) concentrations detected in the former CLEAR Plant and former Esperanza Mill areas are naturally derived or from mining/milling, or other anthropogenic sources. The objectives of this work were to 1) assess material from the surface down to the competent bedrock interface, in the unsaturated zone, for variation in concentrations of COPCs with depth and lithology; and 2) link COPC concentrations in soil to regional background trends and/or provide evidence of isolated elevated soil COPC concentrations away from known mining and milling impacts.

This work provided a technical basis for the occurrence of elevated concentrations of COPCs in soil at the Sierrita Mine. The report concluded that the alluvium thickness, depth to bedrock and alluvial materials observed in the background area were comparable to the former CLEAR Plant and former Esperanza Mill areas. Therefore from a geological perspective, the areas sampled in this background assessment represent a good match for comparison.

A total of 52 soil samples were collected from separate depth intervals for the background assessment. All samples were collected from the unsaturated zone as groundwater was not encountered in any of the boreholes. Summary statistics for background soils are provided in the table below.

Constituent	Depth (ft bgs)	Number of Samples	Frequency of Detection	Mean of Detections	Minimum Detection	Maximum Detection
	0-0.5	13	100%	2.3	1.2	4
Arsenic (mg/kg)	0-15	50	100%	1.7	0.48	4.5
	0-0.5	13	100%	245	53	710
Copper (mg/kg)	0-15	50	100%	181	7.6	710
	0-0.5	13	100%	6.0	4.3	8.7
Lead (mg/kg)	0-15	50	100%	4.5	0.78	8.7
Molybdenum	0-0.5	13	100%	48	1.2	270
(mg/kg)	0-15	50	100%	20	0.93	270
	0-0.5	13	100%	2.8	0.67	5
Uranium (mg/kg)	0-15	50	100%	2.8	0.67	8
	0-0.5	13	100%	2.0	1.27	3.09
Radium-226 (pCi/g)	0-15	50	100%	2.3	0.95	9.1
	0-0.5	13	100%	1.85	1.2	2.84
Radium-228 (pCi/g)	0-15	50	100%	1.68	0.97	2.84
Uranium-238	0-0.5	13	100%	1.53	0.9	2.54
(pCi/g)	0-15	13	100%	1.53	0.9	2.54
Uranium-235	0-0.5	13	46%	0.092	0.077	0.111
(pCi/g)	0-15	13	46%	0.092	0.077	0.111

As described in Section 2.4.1, based on comments received from ADEQ on March 5, 2019 and May 20, 2019 and resolution reached during the June 19, 2019 conference call, ADEQ requested that the background Ra-226 values not be used herein and recommended that the background uranium isotope results (i.e., U-238 and U-234) be substituted as a surrogate, as further discussed in Section 5.7.1 below.

3.2 Data Gaps Investigation

A revised Data Gaps Work Plan (Arcadis 2015b) was submitted to the ADEQ in June 2015. The objective of the data gaps investigation was to collect the remaining data identified by the ADEQ and Sierrita to complete site characterization for the VRP (Arcadis 2015b). During a meeting on August 3, 2017, the decision was made by ADEQ that the groundwater investigation and sampling work that was identified to be conducted in the Data Gaps Work Plan was no longer required by the VRP.

The Data Gaps Work Plan also proposed that confirmation soil samples be collected from the former CLEAR Plant and former Raffinate Pond, where antimony concentrations in previously collected soil samples exceeded the GPL. Five soil samples were collected from the former CLEAR Plant EA, and two samples from the former Esperanza Mill EA in June 2016. The samples were collected at a depth of 0.25 ft bgs and submitted for laboratory analysis of total antimony and SPLP in order to derive a site-specific GPL for antimony. The range of detected antimony concentrations was 1.8 mg/kg to 120 mg/kg, which is below the Arizona nr-SRL of 410 mg/kg for antimony.

No other soil or sediment sampling was proposed as part of the data gaps investigation. COI concentrations in soil are not expected to significantly vary on a short-term temporal basis; therefore, no temporal data needs were identified for the soil data collection program.

4 GUIDANCE DOCUMENTS USED TO CONDUCT THE BASELINE HUMAN HEALTH RISK ASSESSMENT

The methods and approach for the BHHRA are based primarily on the following (but not limited to) Arizona and USEPA risk assessment guidance documents:

- Deterministic Risk Assessment Guidance (Arizona Department of Health Services [ADHS] 2003)
- Risk Assessment Guidance for Superfund (RAGS), Volume 1: Human Health Evaluation Manual, Part A (U.S. Environmental Protection Agency [USEPA] 1989)
- RAGS, Volume 1: Human Health Evaluation Manual, Part E, Supplemental Guidance for Dermal Risk Assessment (USEPA 2004)
- RAGS, Volume I: Human Health Evaluation Manual, Part F, Supplemental Guidance for Inhalation Risk Assessment (USEPA 2009a)
- Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites (USEPA 2002)
- ProUCL Version 5.1. User Guide (USEPA 2015a)
- ProUCL Version 5.1. Technical Guide (USEPA 2015b)
- Guidelines for Exposure Assessment (USEPA 1992)
- Exposure Factors Handbook (USEPA 1997, 2011)
- Guidelines for Carcinogen Risk Assessment (USEPA 2005)
- OSWER Directive 9285.7-53, Human Health Toxicity Values in Superfund Risk Assessments (USEPA 2003a)
- Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors (USEPA 2014a)
- Frequently Asked Questions About Update of Standard Default Exposure Factors (USEPA 2014b)
- Soil Screening Guidance for Radionuclides: Technical Background Document (USEPA 2000)
- Preliminary Remediation Goals for Radionuclides. User's Guide (USEPA 2014c).

5 DATA USED TO CONDUCT THE BASELINE HUMAN HEALTH RISK ASSESSMENT

This section discusses the media considered and evaluated, data used, data usability review performed for the data used, definition of EAs, identification of BHHRA datasets, selection of constituents of potential concern (COPCs) for each EA, and derivation of media-specific exposure point concentrations (EPCs) for each EA.

5.1 Media Considered and Evaluated for the Baseline Human Health Risk Assessment

Based on former site operations, previous environmental investigations have focused on potential impacts to soil, sediment, and groundwater. This BHHRA evaluates the potential for adverse human health effects from exposure to site-related constituents in soil and sediment. The available soil and sediment data were combined into a single dataset, termed "soil/sediment", because the sediment samples were collected from inactive, backfilled ponds or drainage courses that are dry for most of the year. As a result, the potential for human exposure to soil or sediment is the same.

As discussed in the ADEQ approved BHHRA Work Plan (Arcadis 2015a), the potential for adverse human health effects from exposure to groundwater was not evaluated in this BHHRA because groundwater is not currently being used for potable purposes at the Site, nor is it expected to be used as a potable water source in the future. Additionally, groundwater is either captured by the pit dewatering or Sierrita tailings impoundment interceptor well field and is also monitored under the Arizona Aquifer Protection Permit program.

Similarly, surface water was not evaluated because it occurs in on-site drainages only for short durations after precipitation events and is not currently being used for industrial or potable water purposes. In addition, surface water drainage features are typically avoided during and immediately following storm events due to the potential for flash flooding. Finally, the site-related metals are not volatile and are relatively immobile in soil/sediment.

Based on these site conditions, human receptors may be exposed to site-related metals in on-site soil/sediment and fugitive dust. In addition, as discussed in the SSCR Addendum (Arcadis 2013b), the unconsolidated deposits and parent bedrock complex at the Sierrita mine contain natural levels of radioactivity at concentrations and activities consistent with a highly mineralized area. Radionuclides were detected in on-site soil/sediment samples collected as part of the VRP soil and sediment investigation in 2008. Therefore, human receptors may be exposed to radionuclides in addition to the site-related metals.

In 2018, Arcadis completed a background assessment to investigate whether elevated concentrations of metals and radionuclide activity identified at the Site are naturally derived or from mining/milling, or other anthropogenic sources. The results of the assessment indicate that radionuclide (e.g., Ra-226, Ra-228, U-235, and U-238) activities are comparable to those encountered in both the regional bedrock and Site EAs. Ra-226, Ra-228, and total uranium increase with depth and show higher activities/concentrations in bedrock than in alluvial samples. This reflects their natural origin in bedrock material.

5.2 Available Site Soil and Sediment Data

The following soil and sediment data were used to conduct the BHHRA.

- Total metals data from soil samples collected by HGC in 2004 (HGC 2008)
- Total metals and radionuclide data from soil and sediment samples collected by URS in 2008 (URS 2012; Arcadis 2013a)
- Total metals data from soil samples collected in 2012 to support construction of the new training facility near the former CLEAR Plant building (Arcadis 2013c), with the exception of data from stockpiled soils that have since been removed from the Site
- Total metals data from soil samples collected in 2015 to support construction of two paving areas near the former CLEAR Plant building (Arcadis 2015c).

Table 5-1 provides a summary of the available soil/sediment data, including the number of soil and sediment samples collected during each previous site investigation and their selected analyses. Table 5-1 also provides information on sample collection methods and analytical methods in order to facilitate the data review described below.

5.3 Data Usability

Laboratory analytical data used in this BHHRA were subject to a review to verify the data completeness, accuracy, and ultimately the data usability. The key components of the data review are consistent with USEPA (1989, 1992) risk assessment guidance and include:

- Spatial to ensure that each EA is adequately characterized and data are representative of potential current and future exposures
- Sample size and density to ensure that EPCs calculated for an exposure area are sufficiently robust and representative of potential current and future exposures
- Temporal applicability to ensure that data used in the risk assessment are representative of current conditions
- Overall data quality ascertained through data verification and/or validation
- Evaluation of data qualifiers specifically with respect to data rejected by the analytical laboratory or during data validation.

Sierrita evaluated the appropriateness of sample locations, adequacy of site characterization (relative to nature and extent), and comprehensiveness of the data collected to date. As part of the exercise, Sierrita evaluated data needed for the risk assessment, constituents that may drive quantitative calculations of risk (e.g., arsenic), and any potential gaps in the data collected to date as they relate to the ability to complete the BHHRA report. Potential data gaps include bioavailability data to assist with the analysis of arsenic. As stated in Section 3.2, concentrations of metals and radionuclides in soil are not expected to significantly vary on a short-term basis; therefore, no temporal data needs were identified for the soil data collection program.

The selection of sample locations contributes to representativeness of the analytical data. Judgmental or biased sampling results in a greater likelihood that analytical data are adequately protective of potential current and future exposures. Most soil and sediment sample locations were chosen based on professional judgment and were biased toward areas identified as potential sources of site-related COIs. Soil samples submitted for laboratory analysis by HGC in 2004 were selected based on their potential to generate acid solutions. In 2008, URS collected judgmental soil samples based on previous sampling results (e.g., locations where COI concentrations in HGC samples exceeded nr-SRLs). Sediment samples were collected from areas of probable sediment accumulation (URS 2012). In 2013, Arcadis collected confirmation soil samples from areas where analytical results from the initial sampling event to support construction of the new training facility revealed metals concentrations greater than r-SRLs; however, for logistical or safety reasons, no additional excavation of material took place.

Gridded sampling also contributes to representativeness of the analytical data. In 2008, URS collected soil samples at randomly selected grid nodes from a system of 200-square-foot grid units placed over the former CLEAR Plant area and former Esperanza Mill area. Gridded collection of soil samples was conducted by Arcadis in 2013 and 2015 as part of the paving of areas in the CLEAR Plant to ensure adequate spatial coverage and collection of a sufficient number of samples to consider the dataset representative for use in the evaluation of potential current and future exposures.

Table 5-1 contains information on the soil and sediment sampling and analytical methods used during different investigations. A variety of sampling methods has been used, including surficial soil sampling using plastic trowels, disposable plastic scoops, and hand augers; backhoe bucket sample collection; and Macrocore sampling from soil and sediment borings installed using direct-push techniques and Geoprobe® tooling. While sampling methods and selected laboratories have varied, the requested analytical methods for metals have remained the same across different investigations (USEPA Method 6020 inductively coupled plasma-mass spectrometry [ICP-MS] or USEPA Method 6010 inductively coupled plasma-atomic emission spectroscopy [ICP-AES], and USEPA Method 7471A cold vapor atomic absorption [CVAA] for mercury). This contributes to the comparability of data from different site investigations.

Soil samples collected by Arcadis to support construction of the new training facility and associated paving areas in the former CLEAR Plant area were evaluated to assess the quality and reliability of the metals data. Laboratory results were subject to Level II data validation per the USEPA Functional Guidelines for Inorganic Data Review, in accordance with criteria specified in the VRP QAPP (URS 2008b). The Level II data validation included a review of the chain of custody and sample receipt, holding times, method blanks, matrix spike/matrix spike duplicate (MS/MSD) recoveries and relative percent difference (RPD), field duplicate RPD, laboratory control sample/laboratory control sample duplicate (LCS/LCSD) recoveries and RPD, and package completeness. Overall, the results were considered usable, and project data objectives specified in the QAPP were met. Analytical results for two soil samples collected to support construction of the new training facility were qualified "J" (estimated) due to the RPD between field duplicate sample pairs being above acceptable limits. Additionally, copper results for 14 soil samples were qualified "J" (estimated) due to MS/MSD recovery being above acceptable limits. The uranium result in one sample collected for the paving areas project was also qualified due to MS/MSD criteria not being met. No analytical results were rejected as a result of data validation. Data validation summaries are provided in Arcadis 2013a and Arcadis 2015c.

It was assumed that historical data quality assessments (i.e., data validation) performed by previous consultants were accurate, and no additional assessments were completed by Arcadis. HGC (2008) indicates that an internal laboratory QC review was performed on their soil data. URS (2012) describes the 100% data verification and 10% Level II data validation performed for the VRP investigation. A data verification memo and summary table, along with data validation reports, are presented in appendices to the SSCR (URS 2012). Overall, all URS data were determined to be usable, with a proportion of the data qualified per Arizona Data Qualifiers, Revision 3.0, September 20, 2007 (URS 2012).

5.4 Exposure Areas

The specific EAs evaluated in this BHHRA, which are consistent with those assessed by URS in 2011 (URS 2012), are listed below:

- Former CLEAR Plant EA, composed of the following subareas:
 - Former CLEAR Plant
 - Former E Pond
 - Former Evaporation Pond
 - Old D Pond
- Former Esperanza Mill EA, composed of the following subareas:
 - Former Esperanza Mill
 - Former C Pond and C Pond Spoils
 - Former Raffinate Pond
 - Former Laydown Yard.

The former Rhenium Ponds area was historically investigated for environmental impacts; however, in the meeting at ADEQ on September 30, 2016, Sierrita requested the removal of the ponds from the VRP since the facilities are part of an active aquifer protection permitted facility. Therefore, the former Rhenium Ponds were not evaluated in this BHHRA.

Figure 5-1 shows the relative locations of the former CLEAR Plant EA and former Esperanza Mill EA. Figures 5-2 through 5-3 show the locations of soil and sediment (if applicable) samples collected at each subarea.

5.5 Identification of Baseline Human Health Risk Assessment Datasets

The following sections describe how the EA-specific datasets were developed for this BHHRA and the handling of field duplicate sample results. Table 5-2 provides an inventory of the soil and sediment samples for each EA, including location subarea, sample depth, applicable dataset(s), and additional sample descriptor. The analytical results of soil and sediment samples used to conduct the BHHRA are presented in Appendix A.

5.5.1 Depth Interval-Specific Datasets

Soil and sediment samples were also grouped into three separate sample intervals (two shallow intervals and one shallow and deep interval) for this BHHRA as follows:

- The shallow soil/sediment interval (0 to 0.5 feet bgs or 0 to 2 feet bgs) datasets were developed to evaluate potential human exposure assuming the continuation of current activities/operations at the Site (i.e., current scenario). In accordance with the BHHRA Work Plan, only one shallow soil/sediment depth interval was evaluated for each EA. The shallow depth range was selected by calculating the total risk posed by the site-related COPCs for both the 0 to 0.5 feet bgs and 0 to 2 feet bgs soil depth intervals and selecting the shallow depth interval with the highest COPC EPCs.
- The shallow and deep soil/sediment interval (0 to 15 feet bgs) dataset was developed to evaluate hypothetical future human exposure to account for potential excavation and redistribution of soil/sediment during on-site development activities (e.g., construction of commercial/industrial structures [i.e., hypothetical future scenario]). This depth interval was also used to evaluate a hypothetical future unrestricted land use scenario, as addressed in Appendix F. Soil and sediment samples with a top or starting sample depth shallower than the bottom or ending depth of the depth interval defined above were included in the dataset for a specific depth interval. As such, a sample with a top depth of 0 foot bgs was included in all three depth-specific datasets; a sample with a top depth of 0.5 foot bgs, 1 foot bgs, or 1.5 feet bgs was included in all except the 0- to 0.5-foot bgs dataset; and a sample with a top depth of 2 feet bgs or greater was only included in the 0- to 15-foot bgs dataset.

5.5.2 Former CLEAR Plant Shallow Soil/Sediment Datasets

In 2012, discrete soil samples were collected from excavations for a new training facility building and associated parking lot areas within the former CLEAR Plant EA. Additional paved areas occupying approximately 0.9 acre were constructed in 2015. Ninety-two samples were identified as being either currently covered with pavement or a building. Therefore, separate shallow soil/sediment datasets were created for the former CLEAR Plant EA to evaluate current and hypothetical future conditions. The current scenario dataset consists of samples that are currently not covered by pavement or buildings (i.e., the soil is exposed and the potential for exposure to receptors exists). The hypothetical future scenario dataset consists of all samples collected from the CLEAR Plant EA. Table 5-2 presents the samples used in each dataset.

Separate current and future scenario shallow soil/sediment datasets were not required for the former Esperanza Mill EA. Soil samples were not collected from beneath buildings or pavement in these areas.

5.5.3 Handling of Field Duplicate Results

In accordance with the QAPP Addendum prepared for the Site (URS 2008b) and the ADEQ-approved BHHRA Work Plan (Arcadis 2015a), any field duplicate collected as part of site investigations considered in this BHHRA was treated as a quality control (QC) sample and was not used to characterize the Site (i.e., the parent sample result was used regardless of the duplicate result). Therefore, the parent analytical result was considered representative of that sample and constituent. Relative percent

difference between parent and duplicate results have been evaluated in previous reports (URS 2012, Arcadis 2013a,c).

5.6 Selection of Constituents of Potential Concern

The selection of COPCs focuses the BHHRA on the site-related constituents that are most likely to present human health risks. COPCs were selected on an EA-specific basis consistent with the ADEQ-approved BHHRA Work Plan. Constituents detected in at least one soil or sediment sample were considered COPCs unless one of the following criteria was met:

- For metals, the highest detected concentration in soil and sediment was less than the corresponding nr-SRL.
- For radionuclides, the highest reported activity in soil and sediment was less than the corresponding USEPA Preliminary Remediation Goal (PRG; USEPA 2014c), when available.
- The constituent was detected in less than 5 percent of the soil/sediment samples, and no "hotspots" were identified. ADHS (2003) defines hotspots as areas yielding one or more samples that contain constituent concentrations that exceed the relevant SRL by a factor of 10 or more.

Constituents that were not eliminated by the criteria listed above were selected as COPCs for evaluation in this BHHRA for each EA.

Table 5-3 presents the Arizona SRLs and USEPA PRGs used to select COPCs in soil/sediment at the Site. Tables 5-4 through 5-19 provide the results of the COPC selection process for each EA. These tables also provide summary statistics, including the number of detections, number of samples, frequency of detection, minimum and maximum reporting limits and detected concentrations, location of maximum detected concentration, mean detected concentration for each detected constituent, and applicable depth interval (0 to 0.5 foot bgs or 0 to 2 feet bgs and 0 to 15 feet bgs). In addition, Tables 5-4 through 5-19 provide the 95% UCL, if calculable, as discussed in Section 5.7 for constituents identified as COPCs. The following COPCs were identified for each EA:

- Former CLEAR Plant EA arsenic, copper, lead, Ra-226, Ra-228, U-235, and U-238
- Former Esperanza Mill EA arsenic, lead, molybdenum, Ra-226, Ra-228, U-235, and U-238

5.7 Exposure Point Concentrations

An EPC is the COPC concentration to which a hypothetical receptor might be exposed through potentially complete exposure routes. The sections below describe the basis for the established EPCs in soil/sediment and outdoor air.

5.7.1 Soil/Sediment Exposure Point Concentrations

To estimate exposure to COPCs in soil/sediment, the concentration term in the risk equation was calculated as the average of the concentration that could be contacted at the exposure point or points over the exposure period (USEPA 1989, 1992). The EPC is defined as "the arithmetic average of the concentration that is contacted over the exposure period" (USEPA 1989). The 95% UCL is defined as the value that, when calculated repeatedly for randomly drawn subsets of data, equals or exceeds the true

mean 95% of the time (USEPA 1992). Use of the 95% UCL (as representative of the average concentration) is recommended instead of the maximum concentration because it is highly unlikely that a receptor will be exposed to a single (e.g., maximum) concentration over the entire exposure duration. Rather, a receptor will likely be exposed to a range of concentrations in the EA, from not detected to the maximum concentration, over the entire exposure period. In the event that a UCL exceeds the maximum detected concentration, the maximum concentration was used to represent the EPC.

USEPA recommends caution in the use of UCLs for small datasets (e.g., fewer than four detects or 10 total samples) because the performance of the various methods may not be reliable in these cases (USEPA 2013b). Typically, at least five detected concentrations and 10 total samples are necessary to calculate UCLs on the mean concentration (i.e., 95% UCLs; USEPA 2013a). If sufficient data (i.e., at least eight samples with at least five detected concentrations) were available, a conservatively based 95% UCL was estimated using the USEPA-released statistical software ProUCL Version 5.1 (ProUCL 5.1) (USEPA 2015a, 2015b, 2015c). ProUCL 5.1 employs statistical methods to evaluate both full environmental datasets without not detected (ND) values and datasets with below detection limit or ND values (also known as left-censored datasets) without the use of proxy values. Based on the results of ProUCL analyses, the lesser of the UCL (if calculated) or maximum detected concentration of a COPC was selected as the EPC (USEPA 1989). Where ProUCL 5.1 recommended two or more potential 95% UCLs, the estimate that best represented the data set was selected based on the most appropriate 95% UCL method. The multiple UCL selection process is documented in the BHHRA tables (e.g., see Table 5-24). In the event of insufficient data, the maximum detected concentration was used in place of a 95% UCL. ProUCL output results of COPCs for both EAs are presented in Appendix B.

The contribution of all radionuclides in each naturally-occurring decay series was included in the cancer risk calculations. The 95% UCLs calculated by ProUCL were used as EPCs for the radionuclides for which site-specific data are available, and as surrogate EPCs for all of the subsequent radionuclides in their respective decay series, up to the next radionuclide with site-specific data available. As summarized above in Section 5.6, the radionuclides identified as COPCs for both EAs are Ra-226, Ra-228, U-235, and U-238. U-238 and Ra-226, along with U-234 for which site-specific data are also available, are members of the uranium decay series. Ra-228 is in the thorium decay series, and U-235 is the long-lived parent in the actinium decay series. Therefore, to evaluate cancer risk from exposure to radionuclides in the uranium series, the 95% UCL for U-238 was used for U-238 and its daughters thorium-234 and proactinium-234; the 95% UCL for U-234 was used for U-234 and thorium-230; and the 95% UCL for Ra-226 was used for Ra-226 and all the remaining decay products in the series. For the thorium series, it was assumed the long-lived parent (thorium-232 [Th-232]) is in secular equilibrium with its daughter, Ra-228, and all subsequent radionuclides in the series.

EPCs were initially developed for three soil/sediment depth intervals (two shallow intervals and one shallow and deep interval) for each receptor scenario; however, only two soil depth intervals (one shallow interval and one shallow and deep interval) were evaluated for each EA (see Section 5.5). The rationale for calculating EPCs over multiple depth intervals is to capture the variable sampling depths of the soil dataset, and to meet requirements of A.R.S. § 49-152, which identify up to 15 feet of soil as "surface soil". Evaluating a 0 to 15 ft bgs depth is consistent with the ADEQ-approved BHHRA Work Plan (Arcadis 2015a). As a conservative measure, only the shallow depth range (either 0 to 0.5 ft bgs or 0 to 2 ft bgs)

with the highest COPC EPCs was selected as the shallow soil depth range used in the BHHRA. The shallow soil depth intervals selected for each EA are presented in Tables 5-20 through 5-24.

In addition, to address ADEQ comment K20 (Appendix H), soil only EPCs were also calculated for the 0 to 15 ft bgs dataset to eliminate any potential bias via the inclusion of the sediment data into a single soil/sediment dataset. As a conservative measure, the two EPCs (one based on the soil and sediment dataset and the other based on the soil only dataset) were compared and the highest EPC for each COPC was selected for the shallow and deep soil/sediment depth interval and used in the BHHRA.

Tables 5-20 through 5-24 present the EPCs for COPCs in soil/sediment for the selected shallow soil/sediment depth intervals and the shallow and deep soil/sediment depth intervals.

5.7.2 Air Exposure Point Concentrations

The inhalation of constituents adsorbed to airborne soil dust particles is a potentially complete exposure pathway for all receptors evaluated in this BHHRA. Potential exposure to COPCs adsorbed to soil particles and released to air from wind erosion or during soil invasive activities was evaluated using particulate emission factors (PEFs). In accordance with the ADEQ-approved BHHRA Work Plan (Arcadis 2015a), a default PEF value was used (ADHS 2003) for all receptors in this BHHRA.

5.7.3 Background Exposure Point Concentrations

The presence of naturally-occurring COPCs was incorporated into the BHHRA through reference area soil sampling and subsequent background EPC calculation. As discussed in Section 3.1.5, a background study was conducted in 2018 to investigate whether COPC concentrations detected in the former CLEAR Plant and former Esperanza Mill areas are naturally derived or from mining/milling, or other anthropogenic sources. The background soil data were used to calculate background risks/HIs in this BHHRA, and incremental risks/HIs were calculated as the total Site risks/HIs minus background risks/HIs. For this exercise, the arithmetic means of detected concentrations were used as the EPCs for both the Site and background datasets.

Background mean concentrations were calculated using the background soil dataset and ProUCL 5.1. Similar to the Site datasets discussed in Section 5.5.1, background datasets for shallow soil intervals (0 to 0.5 feet bgs or 0 to 2 feet bgs) were evaluated. The table below shows a comparison of COPC background mean concentrations for the two shallow soil depth intervals.

Constituent	Arsenic (mg/kg)	Copper (mg/kg)	Lead (mg/kg)	Molybdenum (mg/kg)	Ra-226 (pCi/g)	Ra-228 (pCi/g)	U-238 (pCi/g)	U-235 (pCi/g)
0-0.5 ft Interval	2.3	245	6.0	48	2.0	1.9	1.5	0.09
0-2 ft Interval	1.9	210	5.2	32	2.0	1.7	1.4	0.10

The background means for the 0 to 0.5 feet bgs interval are higher than those for the 0 to 2 feet bgs interval for all COPCs except U-235 where the difference is minimal (approximately 11% percent).

Therefore, the means for the 0 to 0.5 feet bgs interval were used as shallow soil EPCs to determine the contribution of background to the total risks and hazards calculated based on the Site EPCs. This interval is consistent with the interval used for the Site EPCs (i.e., 0 to 0.5 ft bgs). ProUCL output results for background soils are presented in Appendix G.

As described in Section 5.7.1, the contribution of all radionuclides in each naturally-occurring decay series was included in the background radiological risk calculations. The mean concentrations calculated by ProUCL were used as EPCs for the radionuclides for which site-specific data are available, and as surrogate EPCs for all of their decay products, up to the next radionuclide with site-specific data available. The exception to this EPC substitution process is that the Ra-226 mean concentrations were not used due to a question raised about the laboratory quality of these data in the May 20, 2019 memo. In this case, only the background mean concentrations for U-238 and U-234 were used as EPCs or surrogate EPCs for all members of the uranium decay series.

6 EXPOSURE ASSESSMENT

Exposure assessment is the process of identifying potential receptors and estimating the type and magnitude of potential human exposure to COPCs at the Site. It includes information regarding the models and parameters necessary to estimate human exposure through ingestion, dermal absorption, inhalation, and other exposure routes evaluated (e.g., external exposure to ionizing radiation). Figure 6-1 presents the human health CSM for the Site and illustrates the potential sources of COPCs in soil/sediment, release and transport mechanisms, potential exposure media, and exposure routes for potential human receptor populations (described in more detail below). The following exposure pathway analysis describes each component of the human health CSM in more detail.

6.1 Exposure Pathway Analysis

An exposure pathway is a mechanism by which receptors may come into contact with site-related COPCs. USEPA (1989) describes a complete exposure pathway in terms of four components:

- 1. Source and mechanism of COPC release (e.g., discharge of process wastewaters to unlined surface impoundments)
- 2. Retention or transport medium (e.g., soil or sediment)
- 3. Receptor at a point of potential exposure to an impacted medium (e.g., outdoor commercial/industrial workers)
- 4. Complete exposure route (e.g., incidental ingestion) at the point of exposure.

If any of these four components is not present, a potential exposure pathway is considered incomplete and is not evaluated further in this BHHRA. Each of the complete or potentially complete exposure pathways identified in Figure 6-1 was quantitatively evaluated in this BHHRA.

6.1.1 Sources and Mechanisms of COPC Release

The sources and mechanisms of COPC release at the Site are related to processing activities that historically occurred within each EA, which include:

- · Historical processes used to refine ore
- Storage of reagents and other solutions
- Accidental spills.

6.1.2 Transport Mechanisms

All of the above listed processes have contributed to deposition of site-related constituents onto surface soils and sediments. Constituents present in the surface may also migrate downward into deeper soils through leaching and to other locations on site through transport of wind-blown dust and surface runoff. The vertical transport of COPCs is driven by precipitation, which occurs during the wet season (mid-June through September), when rapid pulses of water move into the alluvium. Constituent transport in sediment of natural drainage channels at the Site is likewise limited to the wet season and/or significant precipitation events, when flushing occurs (Arcadis 2015a). Finally, constituent concentrations present between 0 and 15 ft bgs may be redistributed during future construction/development activities should they occur at either of the EAs. Inclusion of sediment data in this 0 to 15 ft bgs dataset was evaluated initially as a conservative approach, as future construction/development activities are not likely to occur in the on-site drainage features. However, to address the ADEQ comment (Comment K20; Appendix H) that the inclusion of sediment samples may be influencing the soil/sediment EPCs, soil only EPCs were calculated for the 0 to 15 ft bgs dataset. The following table provides the COPC-specific soil/sediment UCLs and the soil only UCLs, and presents the selected UCL that was used as the EPC for the 0 to 15 ft bgs dataset.

Former Clear Plant EA

	Soil/Sediment All Samples	All Samples All Samples	
COPC	0-15 ft bgs	0-15 ft bgs	0-15 ft bgs
Antimony	5.11	6.91	6.91
Arsenic	8.86	9.99	9.99
Copper	6495	7390	7390
Lead	183.1	209.3	209.3
Molybdenum	375.6	502.6	502.6
Radium-226	2.41	2.58	2.58
Radium-228	2.42	2.52	2.52
Uranium-234	2.78	3.07	3.07

Former Clear Plant EA

COPC	Soil/Sediment All Samples 0-15 ft bgs	Soil Only All Samples 0-15 ft bgs	Selected UCL All Samples 0-15 ft bgs	
Uranium-235	0.16	0.19	0.19	
Uranium-238	2.87	3.15	3.15	

Former Esperanza Mill EA

	Soil/Sediment All Samples	Soil Only All Samples	Selected UCL All Samples	
COPC	0-15 ft bgs	0-15 ft bgs	0-15 ft bgs	
Antimony	4.64	4.63	4.64	
Arsenic	12.63	12.85	12.85	
Copper	4658	4603	4658	
Lead	132.6	132.2	132.6	
Molybdenum	1440	1335	1440	
Uranium	5.89	7.17	7.17	

Radium-226	2.43	2.42	2.43
Radium-228	2.48	2.51	2.51
Uranium-234	2.69	2.71	2.71
Uranium-235	0.116	0.120	0.120
Uranium-238	2.74	2.76	2.76

As a conservative measure, the higher of the two EPCs (one based on the soil/sediment dataset, and the other based on the soil only dataset) was selected for use in the risk calculations for the hypothetical future scenario.

6.1.3 Potential Receptors

Human receptors evaluated in the BHHRA were chosen based on the current and potential future uses of an EA. Given that the Site is an active mine, the reasonably expected current and future receptors include on-site outdoor commercial/industrial workers, future on-site construction workers, and future on-site trespassers. Further description of each receptor and the basis for selection are discussed below.

6.1.3.1 Current/Future Receptors

The only on-site receptors identified based on the current and most likely future land use of the Site are outdoor commercial/industrial workers, who may be exposed to COPCs present in shallow soil/sediment and particulates in outdoor air when they are storing equipment and supplies at the former CLEAR Plant EA or performing maintenance work and other routine activities at the former Esperanza Mill EA.

As noted earlier in Section 2.3, buildings (used for training and storage) currently exist in the former CLEAR Plant EA. An indoor commercial/industrial worker was not evaluated, primarily because the vapor intrusion pathway (which could contribute significantly to indoor impacts) is incomplete for the two EAs, as only metals are chemical COPCs. Radionuclides, including Ra-226, were also identified as COPCs; therefore, the potential for radon gas generation was considered. Ra-226 activity detected in soil/sediment at the Site is relatively low, with 95% UCLs ranging from 2.41 pCi/g (former CLEAR Plant EA) to 2.43 pCi/g (former Esperanza Mill EA), and may be associated with ambient conditions. These Ra-226 UCLs, which were used as EPCs in this BHHRA, are lower than the 5 pCi/g Ra-226 cleanup criterion established by the USEPA for surface soil at sites with residual radioactive contamination (USEPA 1990b, 40 Code of Federal Regulations [CFR] Part 192). The USEPA criterion of 5 pCi/g was intended to limit gamma radiation exposure and to limit the risk from inhalation of radon decay products in houses built on land containing radioactive tailings. Based on these considerations, the indoor air pathway was not evaluated further.

Because radionuclides are identified as COPCs, potential indoor-related exposures (exposure while in commercial buildings) were evaluated in this BHHRA. If potential impacts estimated for an outdoor commercial/industrial worker (who is expected to be in contact with COPCs in soils/particulates in air throughout the duration of employment) are below agency threshold levels of concern, then it is assumed that impacts will be even lower for an indoor commercial/industrial worker due to the shielding effects of buildings.

6.1.3.2 Hypothetical Future Receptors

Based on the unlikely event that the Site is redeveloped in the future, the following hypothetical future receptors were evaluated:

- Future On-site Outdoor Commercial/Industrial Worker Future outdoor worker exposure is expected to be the same as that for the current outdoor worker exposure discussed in Section 6.1.3.1.
- Future On-site Construction Worker A future on-site construction worker was selected because this worker may be exposed to COPCs in the unlikely event that the Site is redeveloped.
- Future On-site Trespasser¹ A future on-site trespasser was selected because a person could
 illegally access the property in the future and potentially be exposed to COPCs in soil/sediment. For

arcadis.com

¹ Trespassing is not a viable current exposure scenario, considering the Sierrita mine is privately owned and operated. Access to the Site is strictly controlled, and the Site is not accessible to the public. Under these conditions, a current trespasser exposure scenario is not realistic or practical for making risk management decisions. However, for the former CLEAR Plant EA, trespasser exposure was also evaluated using the current (exposed soil/sediment) dataset in the event that someone could access the Site prior to redevelopment (pavement and vacant buildings remain on site).

the purpose of the BHHRA, it is anticipated that, if chronic trespassing were to occur at the Site in the future, it would more likely involve an adolescent aged individual rather than an adult. Therefore, an adolescent trespasser was evaluated under a hypothetical future exposure scenario.

6.1.4 Potentially Complete Exposure Routes

Potential receptors may be exposed to COPCs in soil/sediment through the following exposure routes:

- Incidental ingestion
- Dermal contact
- External exposure (i.e., ionizing radiation)
- Inhalation of particulates (e.g., alpha particles or wind-blown dust particles).

6.2 Exposure Parameters

6.2.1 Reasonable Maximum Exposure

Consistent with ADHS (2003) guidance, potential human receptors were evaluated under reasonable maximum exposure (RME) scenarios based on an appropriate combination of central tendency and upper-bound exposure parameters. The RME evaluation results in risk estimates that exceed central tendency exposure scenarios in all cases. The "high end" exposure estimate or RME is defined as the highest exposure that is reasonably expected to occur at a site but that is still within the range of possibility (USEPA 1989). Such a focus on RME scenarios provides an additional measure of health protectiveness.

Human health exposure parameters for each receptor evaluated in this BHHRA are presented in Table 6-1. The RME parameters provided in this table reflect ADHS- and USEPA-recommended values for chronic and subchronic exposures.

6.2.2 Site-Specific Exposure

Table 6-1 also presents site-specific parameters that were used in a separate evaluation of potential outdoor commercial/industrial worker exposures. The site-specific parameters consider actual worker activities and are more representative of potential exposures under the current and foreseeable future land uses at each EA than are the RME parameters.

Typically, outdoor workers do not spend an entire 8-hour workday within the former CLEAR Plant EA or former Esperanza Mill EA. Instead, they travel in and out of these EAs, as well as indoors and other areas of the Sierrita mine facility, throughout the day. An exposure time of 4 hours per day was therefore used in the site-specific evaluation of potential outdoor worker exposures at the former CLEAR Plant EA and former Esperanza Mill EA. All other exposure parameters were the same as used for the RME evaluation.

6.3 Dose (Intake) Estimation

For incidental ingestion and dermal contact with soil/sediment, when evaluating exposure to potential carcinogens, lifetime average daily doses (LADDs) were calculated by averaging exposure over an expected 78-year lifespan. When evaluating exposure to noncarcinogens, doses were estimated as average daily doses (ADDs), calculated as the average exposure for the time the receptor is assumed to be exposed to the COPC. Radionuclide exposures were calculated using the USEPA approach (USEPA 2000; 2014c). Exposures were calculated using the equations recommended by USEPA (1989, 2004) for the potentially complete routes identified in the CSM (Figure 6-1) using the exposure parameters summarized in Table 6-1.

The following sections describe the methods and inputs used to calculate LADDs for carcinogenic COPCs and ADDs for noncarcinogenic COPCs.

6.3.1 Carcinogenic Effects from Chemical COPCs

For chemical constituents with potential carcinogenic effects, the LADD is an estimate of potential daily intake over the course of a lifetime. In accordance with USEPA (1989), the LADD is calculated by averaging the assumed exposure during the receptor's entire lifetime (assumed to be 78 years). For incidental ingestion and dermal exposure, the LADD for each constituent via each route of exposure is multiplied by the oral slope factor (OSF; adjusted by the gastrointestinal absorbance factor [ABS_{GI}] for dermal exposures) to estimate the incremental lifetime cancer risk due to exposure to that constituent via that route of exposure. Consistent with USEPA RAGS Part F (2009a) an inhalation exposure concentration (EC) in place of an LADD was calculated to evaluate inhalation of fugitive dust particles in outdoor air.

6.3.2 Noncarcinogenic Effects from Chemical COPCs

The ADD is an estimate of a receptor's potential daily intake from incidental ingestion and dermal contact with constituents in soil with potential noncarcinogenic effects. The ADD does not represent a true average because the assumptions used to derive it do not represent "averages." In fact, they overestimate the average exposure. According to USEPA (1989), the ADD should be calculated by averaging over the period of time for which the receptor is assumed to be exposed (averaging time = exposure duration [ED] for potential noncarcinogenic risk), not the lifetime. For incidental ingestion and dermal contact with soil exposure routes, the ADD for each constituent via each route of exposure is compared to the respective chronic reference dose (cRfD; adjusted by the ABS_{GI} for dermal exposures) to estimate the potential hazard quotient (HQ) due to exposure to that constituent via that route of exposure. Consistent with USEPA RAGS Part F (2009), an EC, in place of an ADD, was calculated to evaluate inhalation of fugitive dust particles.

If the ED is less than 7 years of a person's lifetime (i.e., for the hypothetical future construction worker), the ADD or EC represents a subchronic exposure, and subchronic toxicity values were used in place of chronic toxicity values (USEPA 1989).

The following sections present the equations used for chemical COPC dose calculations in this BHHRA for both on-Site and background soils.

6.3.3 Dose Equations

6.3.3.1 Incidental Ingestion of Soil

The doses of chemical COPCs associated with incidental ingestion of soil were calculated as follows: Equation 6-1:

Dose =
$$\frac{C_{soil} \times CF \times IR_s \times EF \times ED \times RBA}{AT_n \text{ or } AT_c \times BW}$$

Where:

Dose = ADD or LADD (milligrams per kilogram per day [mg/kg day])

 C_{soil} = COPC EPC in soil (mg/kg)

CF = conversion factor (1×10⁻⁶ kilograms per milligram [kg/mg])

IR_s = soil ingestion rate (milligrams per day)

EF = exposure frequency (days per year)

ED = exposure duration (years)
RBA = relative bioavailability.

AT_n = averaging time for noncarcinogens (days; ED (years) × 365 days per year)

AT_c = averaging time for carcinogens (days; lifetime (78 years) × 365 days per year)

BW = body weight (kilograms [kg])

6.3.3.2 Dermal Contact with Soil

Absorbed doses of chemical COPCs associated with dermal contact with soil were calculated as follows:

Equation 6 2:
$$Dose = \frac{C_{soil} \times CF \times SSA \times SAR \times ABS_d \times EF \times ED}{AT_n \text{ or } AT_c \times BW}$$

Where:

Dose = ADD or LADD (mg/kg day) C_{soil} = COPC EPC in soil (mg/kg)

CF = conversion factor $(1 \times 10^{-6} \text{ kg/mg})$

SSA = exposed skin surface area (square centimeters [cm²])
SAR = soil-to-skin adherence rate (milligrams per cm² per day)

ABS_d = dermal absorption factor (unitless; Table 6-2)

EF = exposure frequency (days per year)

ED = exposure duration (years)

AT_n = averaging time for noncarcinogens (days; ED (years) \times 365 days per year)

AT_c = averaging time for carcinogens (days; lifetime (78 years) \times 365 days per year)

BW = body weight (kg)

6.3.3.3 Inhalation of Fugitive Dust Particles

Doses associated with the inhalation of chemical COPCs associated with fugitive dust particles from outdoor air were calculated as follows:

Equation 6-3:

$$EC = \frac{C_{ambient_air} \times ET \times EF \times ED}{AT_{n} \text{ or } AT_{c}}$$

Equation 6-4:

$$C_{ambient_air} = \frac{C_{soil}}{PEF}$$

Where:

and:

EC = exposure concentration (milligrams per cubic meter [mg/m³])

 $C_{ambient_air}$ = COPC EPC in ambient air (mg/m³)

ET = exposure time (hours per day)

EF = exposure frequency (days per year)

ED = exposure duration (years)

 AT_c = averaging time for carcinogens (hours; lifetime [78 years] x 365 days per year x 24

hours per day)

AT_n = averaging time for noncarcinogens (hours; ED [years] × 365 days per year × 24 hours

per day)

C_{soil} = COPC EPC in soil (mg/kg)

PEF = particulate emission factor (cubic meter(s) per kilogram [m³/kg])

Toxicity values used, along with the chemical COPC doses estimated above, are discussed in Section 7.

6.3.3.4 Bioavailability of Metals

Oral bioavailability reflects the amount of a constituent absorbed into the body following ingestion. The typical assumption when calculating risks to humans is that oral bioavailability is 100%. In the case of lead and arsenic, however, numerous studies that have measured site-specific oral bioavailability indicate that, especially for mine-related materials, the relative bioavailability of lead and arsenic is often much lower than 100% (e.g., Bradham et al. 2011; Drexler and Brattin 2007; USEPA 2010; Casteel et al. 1997; Freeman et al. 1993).

In this BHHRA, bioavailability of all COPCs, with the exception of lead and arsenic, was conservatively set at 100%. The USEPA model used to evaluate lead exposures assumes 30% oral bioavailability (USEPA 2003c). The arsenic oral dose from exposure through incidental ingestion of soil was adjusted using a relative bioavailability (RBA) factor of 0.4 (or 40 percent). This 40 percent RBA is the 'most likely' RBA value from a triangular distribution developed as part of the ADEQ-approved Ajo/Bisbee risk assessment conducted by Brown and Caldwell (BC) (BC 2009). The dataset used to develop that distribution consisted of reported *in vivo* studies on 35 samples from 15 separate sites, including mining

and smelting sites (Damian Applied Toxicology LLC, 2015). The same arsenic RBA was subsequently applied in an ADEQ-approved risk assessment for a similar site in Douglas, Arizona (BC 2013), and in the ADEQ-approved risk assessment to support the development of soil remediation levels at the former United Verde copper smelter near Clarkdale, Arizona (Damian Applied Toxicology LLC, 2015). Based on the similarity in constituents of interest and type of activities at these sites (i.e., potential exposure to arsenic [and other metals] in soils at former mining/smelting facilities), the RBA value of 40 percent is considered appropriate for the evaluation of arsenic exposure at the Sierrita mine as well.

6.3.4 Carcinogenic Effects from Radionuclide COPCs

Unlike chemicals, radionuclide exposure is typically expressed in units of activity (e.g., picoCuries) per unit of the exposure medium, rather than mass per unit. Only the carcinogenic effects of radionuclides are considered. Dose equations are provided in the following sections for the exposure pathways evaluated in this BHHRA: direct ingestion of soil, inhalation of fugitive dusts, and external exposure to penetrating radiation (i.e., gamma radiation and X-rays). Dermal absorption is considered an insignificant exposure pathway for radionuclides and generally is not evaluated (USEPA 2000). Radioactive half-lives and decay constants required for calculating radionuclide exposure doses are from the USEPA PRG Summary Table (USEPA 2014c). For external radiation exposure, required parameters include an area correction factor (ACF) and gamma shielding factor (GSF), which were developed using USEPA guidance (USEPA 2000).

The following sections present the equations used for radionuclide COPC dose calculations in this BHHRA for both on-Site and background soils.

6.3.4.1 Incidental Ingestion of Soil

The doses of radionuclide COPCs associated with incidental ingestion of soil were calculated as follows: Equation 6-6:

Dose (pCi) =
$$\frac{EC \times IR_s \times EF \times ED \times [1 - exp(-\lambda \times ED)]}{(CF \times ED \times \lambda)}$$

Where:

Dose = dose due to internal exposure (pCi)

EC = exposure concentration (pCi/g)

IR_s = ingestion rate of soil (mg/day)

EF = exposure frequency (days/year)

ED = exposure duration (years)

CF = units conversion factor of 10^3 (g/kg)

 λ = decay constant (1/year)

The fraction intake of impacted soil from the Site and background for the ingestion of radionuclides in soil was set at 1 to account for 100 percent of soil exposure coming from either the Site or background areas.

6.3.4.2 Inhalation of Fugitive Dust Particles

Doses associated with the inhalation of radionuclide COPCs associated with fugitive dust particles from outdoor air were calculated as follows:

Equation 6-7:

Dose (pCi) =
$$\frac{\text{EC} \times \text{CF} \times \text{InhR} \times \text{ET} \times \text{CF} \times \text{EF} \times \text{ED} \times [1 - exp(-\lambda \times \text{ED})]}{(\text{PEF} \times \text{ED} \times \lambda)}$$

Where:

Dose = dose due to internal exposure (pCi)

EC = exposure concentration (pCi/g)

CF = units conversion factor of 10^3 (g/kg)

 λ = decay constant (1/year)

CF = conversion factor (0.042 days /hr)

EF = exposure frequency (days/year)

ED = exposure duration (years)

ET = exposure time (hrs/day)

InhR = inhalation rate (m^3/day)

PEF = Particulate emission factor (m³/kg)

6.3.4.3 External Exposure

Doses associated with external exposure to radionuclide COPCs were calculated as follows:

Equation 6-8:

```
Dose (pCi )
= \frac{\text{EC} \times \text{ACF} \times [(\text{ET}_o \times \text{CF} \times \text{GSF}_o) + (\text{ET}_i \times \text{CF} \times \text{GSF}_i)] \times \text{EF} \times \text{ED} \times [1 - exp(-\lambda \times \text{ED})]}{365 \text{ days/year} \times \text{ED} \times \lambda}
```

Where:

Dose = dose due to external exposure (pCi)

EC = exposure concentration (pCi/g)

ACF = area correction factor for source area (unitless)

 λ = decay constant (1/year)

CF = conversion factor (0.042 days /hr)

EF = exposure frequency (days/year)

ED = exposure duration (years)

 ET_0 = exposure time, outdoor (hrs/day)

 ET_i = exposure time, indoor (hrs/day)

GSF_o = gamma shielding factor, outdoor (unitless)

GSF_i = gamma shielding factor, indoor (unitless)

Toxicity values used, along with the radionuclide COPC doses estimated above, are discussed in Section 7.

6.3.5 Lead Exposure

USEPA's Adult Lead Methodology and Adult Lead Model (USEPA 2003b, 2003c, 2009b) were used to evaluate the potential for adverse health effects from exposure to lead in soil and sediment at the Site.

Exposure to lead is typically evaluated in terms of the increase in blood lead (PbB) concentrations following exposure. The United States Department of Health and Human Services' Centers for Disease Control and Prevention (CDC) and the Agency for Toxic Substances and Disease Registry (ATSDR) have designated, and the USEPA has adopted, 10 micrograms per deciliter (μ g/dL) as a PbB concentration of concern to protect sensitive populations (e.g., neonates, infants, and children). This PbB level of concern is the basis of the USEPA Regional Screening Levels of 400 and 800 mg/kg for a typical residential and commercial/industrial exposure, respectively (USEPA 2019). CDC released an updated endpoint for blood lead of 5 μ g/dL; however, USEPA has not yet adopted it for use in risk assessment. The USEPA's stated goal for lead is that children have no more than a 5% probability of exceeding a PbB concentration of 10 μ g/dL. As such, this level is assumed to also provide protection for adults.

For adult workers exposed to lead, the ALM was used to predict PbB concentrations and estimate the probability that target PbB concentrations are exceeded. The ALM may also be used to evaluate exposure to lead for the hypothetical future adolescent trespasser by modifying exposure parameter values (e.g., exposure frequency, soil ingestion rate) input to the model. With the ALM, concern is for a fetus that may be carried by an exposed pregnant female, with the assumption that the results apply to both exposed females and males as well. Default estimates were used for the statistical measures of PbB, including the 95th percentile PbB concentration in fetus, fetal/maternal PbB ratio (Rfetal/maternal), biokinetic slope factor, geometric standard deviation on the population mean PbB concentration (GSDi), and baseline PbB concentration. Default values were also used for exposure parameters such as the lead absorption fraction and averaging time.

USEPA-recommended methods and standard parameters were used (e.g., arithmetic mean as the EPC) to run the ALM.

7 TOXICITY ASSESSMENT

The USEPA derives numerical toxicity values for use in risk assessments. Because the impacts associated with exposure to carcinogens are assessed differently than the hazards associated with exposure to noncarcinogens, the toxicity values for carcinogenic health effects and for noncarcinogenic health effects are derived using different assumptions and methods. This section discusses toxicity values used to assess potential carcinogenic risk and noncarcinogenic hazards for this BHHRA. Tables 7-1 and 7-2 present the toxicity values used to evaluate carcinogenic and noncarcinogenic effects for the oral, dermal, and inhalation exposure routes for chemical COPCs, and the slope factors used to evaluate carcinogenic effects for oral, inhalation, and external exposure routes for radionuclide COPCs.

7.1 Toxicity Values for Carcinogenic Chemicals

The current approach to carcinogenic risk assessment used by USEPA (2005) and other United States regulatory agencies assumes, without confirmatory studies, that exposure to any carcinogen poses a finite probability, however small, of producing a carcinogenic response. OSFs are used in this BHHRA to estimate potential cancer risk and represent the upper-bound probability of carcinogenic response per unit daily intake of a substance throughout a lifetime. OSFs are used to assess risks associated with oral and dermal exposures. Inhalation unit risks (IURs) are used in this BHHRA to estimate potential cancer risk and represent the upper-bound probability of carcinogenic response per unit (1 micrograms per cubic meter [µg/m³] in air) of a substance throughout a lifetime. OSFs and IURs were used in this BHHRA to assess the ELCR for each receptor and were selected from the following sources (listed in order of priority):

- USEPA Integrated Risk Information System (IRIS; USEPA 2015b)
- USEPA Provisional Peer-Reviewed Toxicity Values (PPRTVs; USEPA 2015d)
- California Environmental Protection Agency (CalEPA) Unit Risk and Cancer Potency Factors (Office of Environmental Health Hazard Assessment [OEHHA] 2009)
- USEPA Health Effects Assessment Summary Tables (USEPA 2015e).

7.2 Toxicity Values for Noncarcinogenic Chemicals

Noncarcinogenic toxicity values (reference doses [RfDs] and reference concentrations [RfCs]) are applied in this BHHRA to estimate the potential noncancer hazards associated with chemical exposure. In contrast to the default non-threshold assumption used to assess carcinogenic risk, noncarcinogenic effects are assumed by most regulatory agencies, including USEPA, to exhibit a biological or toxicological threshold below which adverse effects are not expected.

Following USEPA (1989, 2015c) guidance, cRfDs are used in this BHHRA to assess potential noncarcinogenic hazards for receptors with EDs greater than 7 years. RfDs are used to assess hazards associated with oral and dermal exposures. Chronic reference concentrations (cRfCs) for inhalation are used in this BHHRA to assess potential noncarcinogenic hazards by the inhalation exposure route. Subchronic reference doses (sRfDs) are used in this BHHRA to assess potential noncarcinogenic hazards for adult receptors with EDs less than 7 years (e.g., hypothetical future construction worker), and subchronic reference concentrations (sRfCs) are used to assess potential inhalation noncarcinogenic hazards. Whenever an sRfD or sRfC was unavailable, then (in order of preference) either intermediate minimal risk levels (MRLs)² developed by the ATSDR (ATSDR 2014) or the cRfD or cRfC was used. Therefore, for some COPCs the subchronic toxicity values are the same as for the chronic toxicity values (e.g., molybdenum).

Chronic and subchronic noncancer RfDs and RfCs used in this BHHRA were selected consistent with USEPA's (2003a) recommended hierarchy as follows:

-

² The intermediate MRLs were developed for exposure ranging from 15 to 364 days. In this BHHRA, intermediate MRLs were only used for hypothetical future construction workers, for which the ED was 1 year and the EF was 250 days per year.

- Tier 1 USEPA's (2015b) IRIS
- Tier 2 USEPA's (2015d) PPRTVs
- Tier 3 other USEPA and non-USEPA toxicity values (e.g., CalEPA [2015], ATSDR [2014], USEPA's Health Effects Assessment Summary Tables [USEPA 2015e]).

7.3 Toxicity Values for Radionuclides

USEPA classifies all radionuclides as "Group A" or known human carcinogens, based on their property of emitting ionizing radiation and on the extensive weight of evidence provided by epidemiological studies of radiogenic cancers in humans (USEPA 2001; 2014c). Human health risks are evaluated based on the radiotoxicity, rather than on the chemical toxicity, of each radionuclide present (an exception is uranium, where both radiotoxicity and chemical toxicity are normally evaluated; USEPA 2001). Cancer slope factors for radionuclides were obtained from the USEPA PRG Summary Table (USEPA 2014c). As seen in Table 7-2, "Adult Only Soil Ingestion" slope factors were used to evaluate trespasser and worker exposure. "Soil Ingestion" slope factors are lifetime values appropriate for evaluating hypothetical future residential exposure at the Site.

8 RISK CHARACTERIZATION

Risk characterization integrates the exposure assessment and toxicity information. The cancer risk and/or noncancer hazard was calculated for each COPC and for each medium and potentially complete exposure route.

To assist with risk management decisions, ELCRs and HIs were calculated using EPCs based on 95% UCL concentrations, and then both total and background ELCRs and HIs were estimated using EPCs based on arithmetic mean concentrations to determine incremental impacts associated with exposure to COPCs at the former CLEAR Plant and former Esperanza Mill areas. All results were compared to ADEQ allowable risk and hazard thresholds, which are described below.

8.1 Excess Lifetime Cancer Risks

An ELCR was calculated for each constituent identified by ADHS (AAC Title 18 Chapter 7 Appendix B) or USEPA as a potential carcinogen.

The ELCR for incidental ingestion and dermal contact with soil was estimated as shown in the following equation:

Equation 8-1a (metals): ELCR = CSF × LADD

Equation 8-1b (radionuclides, oral only): ELCRo = CSFo × Dose

Equation 8-2 was used to determine the ELCR associated with inhalation of fugitive dust particles in ambient air:

Equation 8-2a (metals): ELCR = $IUR \times EC$

Equation 8-2b (radionuclides): ELCR = CSFi × Dose

Equation 8-3 was used to determine the ELCR associated with external exposure of radionuclides:

Equation 8-3 (radionuclides):

The total ELCR was calculated by summing the risk for each carcinogen over all exposure media and exposure routes. The cumulative ELCR for each receptor was compared to the target risk range (i.e., 1×10⁻⁶ to 1×10⁻⁴) established by the Arizona Administrative Code (R18-7-206) and USEPA (1990b) for excess lifetime cancer risks.

8.2 Noncancer Hazards

An HQ was calculated for all chemical COPCs. The HQ is the ratio of the estimated dose from exposure to a constituent in a particular medium to the dose that is not expected to result in adverse noncancer health effects.

The HQ for incidental ingestion and dermal contact is:

$$HQ = \frac{ADD}{RfD}$$

Equation 8-5 was used to determine the HQ for inhalation exposures to fugitive dust particles in ambient air:

Equation 8-5:
$$HQ = \frac{EC}{RfC}$$

The total HI was calculated by summing the HQs for each noncarcinogen over all exposure media and exposure routes. If the HI exceeds a value of 1, the possibility exists for a noncarcinogenic hazard. The HI is not a mathematical prediction of the severity or incidence of the effects, but rather indicates that a hazard may exist. ADHS (2003) and USEPA (1989) recommend that the total HI not exceed a value of 1. If the resulting total HI is greater than 1, it may be recalculated by summing only HQs for constituents with a similar mechanism of action or toxic endpoints (USEPA 1989).

9 RISK CHARACTERIZATION RESULTS

This section presents the estimated ELCRs and HIs from COPCs in soil/sediment for each receptor at the two EAs evaluated in this BHHRA. The results for each EA are presented in Tables 9-1 and 9-2. Exposure and receptor-specific estimated ELCR and HI tables are presented in Appendix C (Excess Lifetime Cancer Risk and Hazard Index Calculations [Chemicals] using 95% UCLs) and Appendix D (Excess Lifetime Cancer Risk Calculations [Radionuclides] using 95% UCLs). The results are also discussed in Section 9.1.

Because COPCs are present in background areas, people who may visit the Site may also visit other areas where the same COPCs are present. In accordance with USEPA guidance (2002), background ELCRs and HIs were estimated to measure the incremental impacts posed by the Site. This is done to provide a comparison of the Site to nearby areas and to assist with risk management decisions. Total risks/HIs are those associated with the Site data. Background risks/HIs are those associated with

exposures of the same receptors to metal concentrations and radionuclide activity at locations other than the Site. The only difference between the total risks/HIs and the background risks/HIs are the concentrations/activities of the COPCs. Incremental risks/HIs are total risks/HIs minus background risks/HIs. The arithmetic means of detected concentrations were used as the EPCs for both the Site and background datasets to provide an estimate of the central tendency for incremental risks/HIs. Exposure and receptor-specific background ELCR and HI calculations are presented in Appendix G (Background Risk Calculations using Mean EPCs), Appendix H (Excess Lifetime Cancer Risk and Hazard Index Calculations [Chemicals] using Mean EPCs) and Appendix I (Excess Lifetime Cancer Risk Calculations [Radionuclides] using Mean EPCs). Background and incremental risks and HIs are presented in Tables 9-3 (former CLEAR Plant EA) and 9-4 (former Esperanza Mill EA).

Results of the ALM used to evaluate the potential for adverse health effects from exposure to lead are presented in Appendix E and summarized in Section 9.2.

9.1 ELCR and HI Results for Current and Future Scenarios

This section presents the results of the BHHRA by EA under the current and future scenarios.

ELCR and HI results are summarized in the following table:

Former C	LEAR Plant Exposure Area					
	Shallow Soil/Sediment	Shallow and Deep Soil/Sediment				
Current Scenario						
RME Outdoor Commercial/Industrial Worker	ELCR = 2×10 ⁻⁴ ; HI=0.3					
Site-Specific Outdoor Commercial/Industrial Worker	ELCR = 8×10 ⁻⁵ ; HI=0.3					
Future Scenario						
RME Outdoor Commercial/Industrial Worker	ELCR = 2×10 ⁻⁴ ; HI=0.2	ELCR = 2×10 ⁻⁴ ; HI=0.2				
Site-Specific Outdoor Commercial/Industrial Worker	ELCR = 8×10 ⁻⁵ ; HI=0.2	ELCR = 9×10 ⁻⁵ ; HI=0.2				
Hypothetical Construction Worker		ELCR = 8×10^{-6} ; HI=0.6				
Hypothetical Adolescent Trespasser	ELCR = 2×10 ⁻⁶ ; HI=0.04	ELCR = 2×10 ⁻⁶ ; HI=0.03				
Former Es	speranza Mill Exposure Area					
	Shallow Soil/Sediment	Shallow and Deep Soil/Sediment				
Current Scenario						
RME Outdoor Commercial/Industrial Worker	ELCR = 2×10 ⁻⁴ ; HI=0.3					
Site-Specific Outdoor Commercial/Industrial Worker	ELCR = 9×10 ⁻⁵ ; HI=0.3					

Future Scenario		
RME Outdoor Commercial/Industrial Worker	ELCR = 2×10 ⁻⁴ ; HI=0.3	ELCR = 2×10 ⁻⁴ ; HI=0.2
Site-Specific Outdoor Commercial/Industrial Worker	ELCR = 9×10 ⁻⁵ ; HI=0.3	ELCR = 8×10 ⁻⁵ ; HI=0.2
Hypothetical Construction Worker		ELCR = 8×10 ⁻⁶ ; HI=0.9
Hypothetical Adolescent Trespasser	ELCR = 2×10 ⁻⁶ ; HI=0.07	ELCR = 2×10 ⁻⁶ ; HI=0.05

Notes:

-- Not applicable.

RME Reasonable maximum exposure.

9.1.1 Current/Future Scenario – Shallow Soil/Sediment Exposures

9.1.1.1 Former CLEAR Plant EA

- The cumulative ELCR for the RME outdoor commercial/industrial worker is 2×10⁻⁴, which is slightly above the target risk range (1×10⁻⁶ to 1×10⁻⁴) for excess lifetime cancer risks. The ELCR is attributable to arsenic and radionuclides (primarily Ra-226 and Th-232) in shallow soil/sediment, with the cancer risk from radionuclides accounting for 95% of the total ELCR. The cumulative HI for the RME outdoor commercial/industrial worker is 0.3, which is below the target HI (1) for noncancer effects. The noncancer hazard is due to arsenic and copper in shallow soil/sediment.
- The cumulative ELCR for the site-specific outdoor commercial/industrial worker is 8×10⁻⁵, which is within the target risk range (1×10⁻⁶ to 1×10⁻⁴) for excess lifetime cancer risks. The ELCR is attributable to arsenic and radionuclides, with the cancer risk from radionuclides accounting for 91% of the total ELCR. The cumulative HI for the site-specific outdoor commercial/industrial worker is 0.3, which is below the target HI (1) for noncancer effects.

9.1.1.2 Former Esperanza Mill EA

- The cumulative ELCR for the RME outdoor commercial/industrial worker is 2×10⁻⁴, which is slightly above the target risk range (1×10⁻⁶ to 1×10⁻⁴) for excess lifetime cancer risks. The ELCR is attributable to arsenic and radionuclides (primarily Ra-226 and Th-232) in shallow soil/sediment, with the cancer risk from radionuclides accounting for 97% of the total ELCR. The cumulative HI for the RME outdoor commercial/industrial worker is 0.3, which is below the target HI (1) for noncancer effects. The noncancer hazard is due to arsenic and molybdenum in shallow soil/sediment.
- The cumulative ELCR for the site-specific outdoor commercial/industrial worker is 9×10⁻⁵, which is within the target risk range (1×10⁻⁶ to 1×10⁻⁴) for excess lifetime cancer risks. The ELCR is attributable to arsenic and radionuclides, with the cancer risk from radionuclides accounting for 94% of the total ELCR. The cumulative HI for the site-specific outdoor commercial/industrial worker is 0.3, which is below the target HI (1) for noncancer effects.

9.1.2 Future Scenarios – Shallow Soil/Sediment Exposures

9.1.2.1 Former CLEAR Plant EA

- The cumulative ELCR for the RME outdoor commercial/industrial worker is 2×10⁻⁴, which is slightly above the target risk range (1×10⁻⁶ to 1×10⁻⁴) for excess lifetime cancer risks. The cumulative HI for the RME outdoor commercial/industrial worker is 0.2, which is below the target HI (1) for noncancer effects.
- The cumulative ELCR for the site-specific outdoor commercial/industrial worker is 8×10⁻⁵, which is within the target risk range (1×10⁻⁶ to 1×10⁻⁴) for excess lifetime cancer risks. The cumulative HI for the site-specific outdoor commercial/industrial worker is 0.2, which is below the target HI (1) for noncancer effects.
- The cumulative ELCR for the adolescent trespasser is 2×10⁻⁶, which is at the lower end of the target risk range (1×10⁻⁶ to 1×10⁻⁴) for excess lifetime cancer risks. The cumulative HI for the adolescent trespasser is 0.04, which is below the target HI (1) for noncancer effects.
- A second future scenario was evaluated for the trespasser using the current scenario shallow soil/sediment dataset (i.e., exposed soil/sediment) in the event that an adolescent trespasser could access the former CLEAR Plant EA while vacant prior to redevelopment (current pavement and buildings remain). For this scenario, the cumulative ELCR for the adolescent trespasser is 2×10⁻⁶, which is at the lower end of the target risk range (1×10⁻⁶ to 1×10⁻⁴) for excess lifetime cancer risks. The cumulative HI for the adolescent trespasser is 0.06, which is below the target HI (1) for noncancer effects.

The ELCRs for the outdoor commercial/industrial worker and adolescent trespasser are attributable to arsenic and radionuclides (primarily Ra-226 and Th-232) in shallow soil/sediment. The calculated cancer risk from radionuclides accounts for between 92% (adolescent trespasser) and 98% (outdoor commercial/industrial worker) of the total calculated receptor-specific ELCR. The noncancer hazards for all receptors are due to arsenic and copper in shallow soil/sediment.

9.1.2.2 Former Esperanza Mill EA

- The cumulative ELCR for the RME outdoor commercial/industrial worker is 2×10⁻⁴, which is slightly above the target risk range (1×10⁻⁶ to 1×10⁻⁴) for excess lifetime cancer risks. The cumulative HI for the RME outdoor commercial/industrial worker is 0.3, which is below the target HI (1) for noncancer effects.
- The cumulative ELCR for the site-specific outdoor commercial/industrial worker is 9×10⁻⁵, which is within the target risk range (1×10⁻⁶ to 1×10⁻⁴) for excess lifetime cancer risks. The cumulative HI for the site-specific outdoor commercial/industrial worker is 0.3, which is below the target HI (1) for noncancer effects.
- The cumulative ELCR for the adolescent trespasser is 2×10⁻⁶, which is at the lower end of the target risk range (1×10⁻⁶ to 1×10⁻⁴) for excess lifetime cancer risks. The cumulative HI for the adolescent trespasser is 0.07, which is below the target HI (1) for noncancer effects.

The ELCRs for all three receptors are attributable to arsenic and radionuclides (primarily Ra-226 and Th-232) in shallow soil/sediment. The calculated cancer risk from radionuclides accounts for between 85% (adolescent trespasser) and 97% (outdoor commercial/industrial worker) of the total calculated receptor-specific ELCR. The noncancer hazards are due to arsenic and molybdenum in shallow soil/sediment.

9.1.3 Future Scenarios – Shallow and Deep Soil/Sediment Exposures

9.1.3.1 Former CLEAR Plant EA

- The cumulative ELCR for the RME outdoor commercial/industrial worker is 2×10⁻⁴, which is slightly above the target risk range (1×10⁻⁶ to 1×10⁻⁴) for excess lifetime cancer risks. The cumulative HI for the RME outdoor commercial/industrial worker is 0.2, which is below the target HI (1) for noncancer effects.
- The cumulative ELCR for the site-specific outdoor commercial/industrial worker is 9×10^{-5} , which is within the target risk range (1×10^{-6} to 1×10^{-4}) for excess lifetime cancer risks. The cumulative HI for the site-specific outdoor commercial/industrial worker is 0.2, which is below the target HI (1) for noncancer effects.
- The cumulative ELCR for the adolescent trespasser is 2×10⁻⁶, which is at the lower end of the target risk range (1×10⁻⁶ to 1×10⁻⁴) for excess lifetime cancer risks. The cumulative HI for the outdoor commercial/industrial worker is 0.03 which is below the target HI (1) for noncancer effects.
- The cumulative ELCR for the construction worker is 8×10⁻⁶, which is within the target risk range (1×10⁻⁶ to 1×10⁻⁴) for excess lifetime cancer risks. The cumulative HI for the construction worker is 0.6, which is below the target HI (1) for noncancer effects.

The ELCRs for all receptors are attributable to arsenic and radionuclides (primarily Ra-226 and Th-232) in shallow and deep soil/sediment. The calculated cancer risk from radionuclides accounts for between 92% (adolescent trespasser) and 99% (outdoor commercial/industrial worker) of the total calculated receptor-specific ELCR. The noncancer hazards are due to arsenic and copper in shallow and deep soil/sediment.

9.1.3.2 Former Esperanza Mill EA

- The cumulative ELCR for the RME outdoor commercial/industrial worker is 2×10⁻⁴, which is slightly above the target risk range (1×10⁻⁶ to 1×10⁻⁴) for excess lifetime cancer risks. The cumulative HI for the RME outdoor commercial/industrial worker is 0.2, which is below the target HI (1) for noncancer effects.
- The cumulative ELCR for the site-specific outdoor commercial/industrial worker is 8×10⁻⁵, which is within the target risk range (1×10⁻⁶ to 1×10⁻⁴) for excess lifetime cancer risks. The cumulative HI for the site-specific outdoor commercial/industrial worker is 0.2, which is below the target HI (1) for noncancer effects.
- The cumulative ELCR for the adolescent trespasser is 2×10⁻⁶, which is at the lower end of the target risk range (1×10⁻⁶ to 1×10⁻⁴) for excess lifetime cancer risks. The cumulative HI for the adolescent trespasser is 0.05, which is below the target HI (1) for noncancer effects.

• The cumulative ELCR for the construction worker is 8×10⁻⁶, which is within the target risk range (1×10⁻⁶ to 1×10⁻⁴) for excess lifetime cancer risks. The cumulative HI for the construction worker is 0.9, which is below the target HI (1) for noncancer effects.

The ELCRs for all receptors are attributable to arsenic and radionuclides (primarily Ra-226 and Th-232) in shallow and deep soil/sediment. The calculated cancer risk from radionuclides accounts for between 89% (adolescent trespasser) and 98% (outdoor commercial/industrial worker) of the total calculated receptor-specific ELCR. The noncancer hazards are due to arsenic and molybdenum in shallow and deep soil/sediment.

9.1.4 Summary of ELCRs and HIs

The calculated ELCRs based on RME parameters for the current/future outdoor commercial/industrial worker are 2×10⁻⁴, which is slightly above the Arizona Administrative Code (R18-7-206) and USEPA target cancer risk range of 1×10⁻⁶ to 1×10⁻⁴. The ELCRs based on RME parameters for the hypothetical future trespasser and construction worker receptors are within the target cancer risk range. The cumulative HIs are less than the target of 1 for both EAs.

The calculated ELCRs based on site-specific parameters for the current/future outdoor commercial/industrial workers at the former CLEAR Plant EA and former Esperanza Mill EA are lower than the RME based ELCRs and are within the target cancer risk range. The cumulative HIs based on site-specific parameters for the current/future outdoor commercial/industrial workers are less than the target of 1 for both EAs.

The ELCRs for receptors at the former CLEAR Plant EA and former Esperanza Mill EA are attributable to arsenic and radionuclides in soil/sediment. The calculated cancer risk from radionuclides at the former CLEAR Plant EA and former Esperanza Mill EA accounts for between 85% (adolescent trespasser) and 99% (outdoor commercial/industrial worker) of the total calculated receptor-specific ELCR. The noncancer hazards for receptors at the former CLEAR Plant EA are attributable to arsenic and copper in soil/sediment, and at the former Esperanza Mill EA are due to arsenic and molybdenum in soil/sediment.

As discussed previously, metals and radionuclides are naturally present in soils in and around Sierrita Mine, and therefore cancer risks and non-cancer hazards based on background concentrations and activity were also estimated. Background and incremental ELCRs and HIs associated with exposure to metals and radionuclides in soils are summarized in Tables 9-3 and 9-4 for the former CLEAR Plant and former Esperanza Mill EA, respectively. The incremental ELCRs for receptors at both EAs are less than or within the target risk range (1×10⁻⁶ to 1×10⁻⁴) for excess lifetime cancer risks, and the incremental HIs are below the target HI (1) for noncancer effects.

9.2 Lead Exposure Evaluation

Lead was identified as a COPC in soil and sediment at the former CLEAR Plant and former Esperanza Mill EAs. USEPA's ALM (USEPA 2003b, 2003c, 2009b) was used to evaluate the potential for adverse health effects from exposure to lead in soil and sediment. The ALM worksheets are provided in Appendix E. The tables below summarize the results of the lead evaluation by EA using RME parameters for all receptors under the current and future scenarios.

9.2.1 Current/Future Scenario – Shallow Soil Exposures

Former CLEAR Plant EA

Exposure Medium	Receptor Population	EPC _{Pb}	PbB _{adult,central}	PbB _{fetal,0.95}	Probability PbB _{fetal} >10μg/dL (%)
Shallow Soil/Sediment (0-0.5 ft bgs)	Outdoor Commercial/ Industrial Worker	87	0.9	2.0	0.0007

Former Esperanza Mill EA

Exposure Medium	Receptor Population	EPC _{Pb}	PbB _{adult,central}	PbB _{fetal,0.95}	Probability PbB _{fetal} >10μg/dL (%)
Shallow Soil/Sediment (0-2 ft bgs)	Outdoor Commercial/ Industrial Worker	116	0.9	2.2	0.001

9.2.2 Future Scenario – Shallow Soil Exposures

Former CLEAR Plant

Exposure Medium	Receptor Population	EPC _{Pb}	PbB _{adult,central}	PbB _{fetal,0.95} (µg/dL)	Probability PbB _{fetal} >10μg/dL (%)
Shallow Soil/Sediment (0-0.5 ft bgs), All sample locations	Outdoor Commercial/ Industrial Worker	136	1.0	2.4	0.002
Shallow Soil/Sediment (0-0.5 ft bgs), All sample locations	Adolescent Trespasser	136	0.6	1.5	0.00007
Shallow Soil/Sediment (0-0.5 ft bgs), Exposed sample locations only	Adolescent Trespasser	87	0.6	1.5	0.00005

Former Esperanza Mill

Exposure Medium	Receptor Population	EPC _{Pb} (mg/kg)	PbB _{adult,central}	PbB _{fetal,0.95} (µg/dL)	Probability PbB _{fetal} >10µg/dL (%)
Shallow Soil/Sediment (0-2 ft bgs)	Adolescent Trespasser	116	0.6	1.5	0.00006

9.2.3 Future Scenario – Shallow and Deep Soil Exposures

Former CLEAR Plant

Exposure Medium	Receptor Population	EPC _{Pb}	PbB _{adult,central}	PbB _{fetal,0.95} (µg/dL)	Probability PbB _{fetal} >10μg/dL (%)
Shallow and Deep Soil/Sediment (0-15 feet bgs)	Outdoor Commercial/ Industrial Worker	113.5	0.9	2.2	0.001
	Adolescent Trespasser	113.5	0.6	1.5	0.00006
	Construction Worker	113.5	1.8	4.3	0.1

Former Esperanza Mill

					Probability
	Receptor	EPC_Pb	PbB _{adult,central}	PbB _{fetal,0.95}	PbB _{fetal} >10µg/dL
Exposure Medium	Population	(mg/kg)	(µg/dL)	(µg/dL)	(%)
Shallow and Deep Soil/Sediment (0-15 feet bgs)	Outdoor Commercial/ Industrial Worker	117	0.9	2.2	0.001
	Adolescent Trespasser	117	0.6	1.5	0.00006
	Construction Worker	117	1.9	4.4	0.1

9.2.4 Summary of Lead Evaluation

Based on the results of the ALM, exposure to lead in soil/sediment at the former CLEAR Plant and former Esperanza Mill EAs are not likely to result in adverse health effects in current/future outdoor commercial/industrial workers, future trespassers, or future construction workers.

10 UNCERTAINTIES ASSOCIATED WITH THE BASELINE HUMAN HEALTH RISK ASSESSMENT

This section discusses uncertainties associated with the BHHRA. The BHHRA was conducted to evaluate the potential for adverse health effects associated with exposure to COPCs at the Site. To this end, the assumptions used in this BHHRA reflect estimates based on upper-bound exposure (or RME) estimates. Because standard default assumptions for the potential receptors were used, the risk estimates and HIs calculated for the BHHRA are not absolute and are conservative overestimates of true risks. This section discusses key uncertainties associated with conducting the BHHRA and the potential impacts on the outcome.

10.1 Sampling and Analysis

The selection of COPCs was based upon the results of the sampling and analytical program established for the Site. The factors that contribute to uncertainties associated with the identification of COPCs are inherent in the data collection and data evaluation processes, including appropriate sample locations, adequate sample quantities, laboratory analyses, data validation, and treatment of validated sample results.

A comparison of maximum detected concentrations to ADEQ nr-SRLs for chemicals and highest reported activity to USEPA PRGs for radionuclides was conducted. Constituents with maximum concentrations below their respective screening levels were not carried through the assessment. It is unlikely that this screening would have excluded constituents that would be of concern, based on the conservative exposure assumptions and toxicity criteria that are the basis of the screening levels. Although following this methodology does not provide a quantitative risk estimate for all constituents, it focuses the assessment on the constituents accounting for the greatest potential for risk, and the overall cumulative risk estimates would not be expected to be greater than these conservative screening values.

10.2 Receptors Evaluated and Potentially Complete Exposure Routes

Arcadis conducted a comprehensive assessment of potential human receptors that are likely to be present at the Site. Based on potential use scenarios and future plans for the Site, other possible receptors are unlikely to be more potentially exposed to site-related COPCs than the receptors evaluated in this BHHRA. Exposure pathways considered complete were evaluated for these receptors.

10.3 Exposure Assumptions and Intake/Dose Models

The exposure assessment relied on several different exposure intake assumptions, many of which were based on statistical analyses of human populations. An RME is the "highest exposure that is reasonably expected to occur at the Site" (USEPA 1989). In some cases, EPCs were based on maximum detected concentrations, which will result in an overestimate of the ELCR and/or HI.

To address ADEQ comment K20 (Appendix H), soil only EPCs were calculated for the 0 to 15 ft bgs dataset to eliminate any potential bias via the inclusion of the sediment data into a single soil/sediment dataset. As a conservative measure, the two EPCs (one based on the soil and sediment dataset and the other based on the soil only dataset) were compared and the highest EPC for each COPC was selected

for the shallow and deep soil/sediment depth interval and used in the BHHRA. Using the soil only EPCs may result in an overestimate of ELCRs and/or HIs since the sediment samples were collected from intermittent drainage swales that are typically dry and would not limit or prevent potential future exposure.

The evaluation of both site-specific and RME scenarios reduces the amount of uncertainty associated with the BHHRA, as the BHHRA provides a range of potential exposures based on a more realistic exposure and a high-end (maximum) exposure. For the site-specific scenario, the exposure time for workers was adjusted to a more reasonable 4 hours per day as they do not spend an entire 8-hour workday within the former CLEAR Plant EA or former Esperanza Mill EA. However, there is uncertainty associated with this exposure time since workdays for individual workers vary, and therefore this site-specific ET may over or under estimate the ELCR and/or HI.

10.4 Toxicity Assessment: Constituents of Potential Concern without Toxicity Values

RfCs are not available for some of the COPCs identified (i.e., copper, lead and molybdenum). Because USEPA (2009, 2015f) no longer allows extrapolating oral toxicity values to inhalation toxicity values, HQs for the inhalation exposure route could not be estimated for these COPCs. The inability to estimate inhalation HQs for COPCs lacking RfCs is likely to result in an underestimate of the HI.

It is important to note that toxicity values used to conduct this BHHRA were derived using methods that are designed to overestimate toxicity, resulting in an overestimate of ELCRs and/or HIs.

11 SUMMARY AND CONCLUSIONS

11.1 Summary

This BHHRA was conducted to evaluate potential risks to human health under current and future exposure scenarios. Available data were reviewed, and it was determined that potential receptors may be exposed to constituents present in soil/sediment at the Site. Two EAs (former CLEAR Plant and former Esperanza Mill) based on current and potential future scenarios were identified, datasets for each EA were compiled, and COPCs were selected:

- Former CLEAR Plant EA arsenic, copper, lead, Ra-226, Ra-228, U-235, and U-238
- Former Esperanza Mill EA arsenic, lead, molybdenum, Ra-226, Ra-228, U-235, and U-238

Following COPC selection, EPCs were calculated. An exposure evaluation was completed, and specific receptors and potentially complete exposure pathways and routes were evaluated.

Potential cancer risks and noncancer hazards were characterized by estimated ELCRs and HIs for the potentially complete exposure routes for current and future receptors. Lead was evaluated separately using the ALM. Results are discussed below.

11.1.1 Cancer Risk and Noncancer Hazard Summary

Tables 9-1 and 9-2 summarize the ELCRs and HIs for each of the receptors evaluated at the Site in this BHHRA. The risks and hazards shown in Tables 9-1 and 9-2 are cumulative for each exposure scenario, summed across all COPCs and exposure routes.

The calculated ELCRs based on RME parameters for the current and future outdoor commercial/industrial worker at the former CLEAR Plant EA and the former Esperanza Mill EA are 2×10⁻⁴, which is slightly above the Arizona Administrative Code (R18-7-206) and USEPA target risk range of 1×10⁻⁶ to 1×10⁻⁴. The ELCRs based on RME parameters for the hypothetical future trespasser and construction worker receptors are within the target cancer risk range. The cumulative HIs are less than the target of 1 for both EAs.

The calculated ELCRs based on site-specific parameters for the current/future outdoor commercial/industrial workers at the former CLEAR Plant EA and former Esperanza Mill EA are lower than the RME based ELCRs and are within the target cancer risk range. The cumulative HIs based on site-specific parameters for the current/future outdoor commercial/industrial workers are less than the target of 1 for both EAs.

The ELCRs for receptors at the former CLEAR Plant EA and former Esperanza Mill EA are attributable to arsenic and radionuclides (primarily Ra-226 and Th-232) in soil/sediment. The calculated cancer risk from radionuclides at the former CLEAR Plant EA and former Esperanza Mill EA accounts for between 85% (adolescent trespasser) and 99% (outdoor commercial/industrial worker) of the total calculated receptor-specific ELCR. The noncancer hazards for receptors at the former CLEAR Plant EA are attributable to arsenic and copper and at the former Esperanza Mill EA are due to arsenic and molybdenum in soil/sediment.

In accordance with USEPA guidance (2002a), background ELCRs and HIs were also estimated to evaluate the incremental impacts from metals and radionuclides posed by the Site. This is done to provide a comparison of the Site to nearby areas and to assist with risk management decisions. Total risks/HIs are those associated with the Site data. Background risks/HIs are those associated with exposures of the same receptors to metal concentrations and radionuclide activity at locations other than the Site. The only difference between the total risks/HIs and the background risks/HIs are the concentrations/activities of the COPCs. Incremental risks/HIs are total risks/HIs minus background risks/HIs.

In general, background radiological risks are similar to Site risks for both EAs. Once background impacts are accounted for, incremental risks from radionuclides for all receptor groups who may be exposed to Site soils are negligible or on the low end of the USEPA target risk range of 1×10⁻⁶ to 1×10⁻⁴. Furthermore, all incremental ELCRs and HIs for metals are below or on the low end of the thresholds for cancer and noncancer effects.

11.1.2 Lead Evaluation Summary

Lead was identified as a COPC for the former CLEAR Plant and former Esperanza Mill EAs. Based on the results of the ALM, exposure to lead in soil/sediment at the former CLEAR Plant and former

Esperanza Mill EAs is not likely to result in adverse health effects in current/future outdoor commercial/industrial workers, future trespassers, or future construction workers.

11.2 Conclusions

Potential cancer risks calculated in this BHHRA based on RME parameters for the current/future scenario (i.e., outdoor commercial/industrial workers) at both EAs are slightly above the target cancer risk range (1×10⁻⁶ to 1×10⁻⁴) established by the USEPA and the Arizona Administrative Code (R18-7-206). Cancer risks based on RME parameters for the hypothetical future trespassers and construction workers at both EAs are within the target cancer risk range, and the cumulative HIs are less than the target HI of 1.

Potential cancer risks calculated in this BHHRA based on site-specific parameters for the current/future outdoor commercial/industrial workers at both EAs are lower than the RME based ELCRs and are within the target ELCR range for cancer risks (1×10⁻⁶ to 1×10⁻⁴). The cumulative HIs based on site-specific parameters for the current/future outdoor commercial/industrial workers are less than the target HI of 1 for both EAs.

The ELCRs are attributable to arsenic and radionuclides (primarily Ra-226 and Th-232) in soil/sediment, with radionuclides contributing between 85% (adolescent trespasser) and 99% (outdoor commercial/industrial worker) of the total calculated receptor-specific ELCR. The noncancer hazards are attributable to arsenic, copper, and molybdenum in soil/sediment.

Trace metals, including arsenic, copper, and molybdenum, as well as radionuclides, are naturally present in soils in this part of Arizona. To estimate the contribution of background metal concentrations and radionuclide activity to the Site cancer risks and non-cancer hazards, background ELCRs and HIs for all receptors were calculated based on mean EPCs and subtracted from Site ELCRs and HIs, also calculated based on mean EPCs. The incremental ELCRs for receptors at both EAs are less than or within the target risk range (1×10⁻⁶ to 1×10⁻⁴) for excess lifetime cancer risks, and the incremental HIs are below the target HI (1) for noncancer effects.

12 REFERENCES

- Arizona Department of Environmental Quality (ADEQ). 1989. Radionuclides in groundwater and their occurrences in Arizona, paper presented by Robin Jenkins at Arizona Hydrological Society annual symposium, Water Quality and Water Quantity Issues into the 1990s Adaptation to Current Realities, Casa Grande, AZ, September 1989.
- ADEQ. 1991. Evaluation of Background Metals Concentrations in Arizona Soils. Prepared by The Earth Technology Corporation. June.
- ADEQ. 2011. Significant Amendment to Aquifer Protection Permit No. P-101679, Place ID No. 1567, LTF 52973. Authorized by Michael A. Fulton, Director, Water Quality Division, Arizona Department of Environmental Quality, Signed September 20th, 2011.
- Arizona Department of Health Services (ADHS). 2003. Deterministic Risk Assessment Guidance. Arizona Department of Health Services.

- Arcadis. 2013a. Addendum to the Soil and Sediment Characterization Report. Prepared for Freeport-McMoRan Sierrita Operations, Green Valley, Arizona. Voluntary Remediation Program VRP Site Code: 100073-03. August 14.
- Arcadis. 2013b. Groundwater Investigation Report. Prepared for Freeport-McMoRan Sierrita Operations, Green Valley, Arizona. Voluntary Remediation Program VRP Site Code: 100073-03. December.
- Arcadis. 2013c. Voluntary Remediation Program Former CLEAR Plant Area Soil Excavation and Tier I Screening Risk Evaluation Report. Prepared for Freeport-McMoRan Sierrita Operations, Green Valley, Arizona. January 2013.
- Arcadis. 2015a. Voluntary Remediation Program (VRP) Baseline Human Health Risk Assessment Work Plan. Prepared for Freeport-McMoRan Sierrita Operations, Green Valley, Arizona. April 24, 2015.
- Arcadis. 2015b. Voluntary Remediation Program (VRP) Data Gaps Work Plan. Prepared for Freeport-McMoRan Sierrita Operations, Green Valley, Arizona. Voluntary Remediation Program VRP Site Code 100073-03. September.
- Arcadis. 2015c. Former CLEAR Plant Area Paving Project Soil Excavation and Tier I Screening Risk Evaluation Report. Prepared for Freeport-McMoRan Sierrita Operations, Green Valley, Arizona. July.
- Arcadis. 2017. Background Soil Assessment Work Plan. Voluntary Remediation Program VRP Site Code: 100073-03 Freeport-McMoRan Sierrita Inc., Green Valley, Arizona. October.
- Arcadis. 2018. Background Soil Assessment Report. Voluntary Remediation Program VRP Site Code: 100073-03 Freeport-McMoRan Sierrita Inc., Green Valley, Arizona. October.
- Arizona Administrative Code. Title 18, Environmental Quality, Chapter 7. Department of Environmental Quality Remedial Action, Appendix A, Soil Remediation Levels, March 31, 2009, Appendix A made by final rulemaking at 13 A.A.R. 971, effective May 5, 2007 (Supp. 07-1).
- Arizona Geological Survey (AZGS). 2002. Arizona Uranium Levels. Data acquired by US Department of Energy (DOE) National Uranium Resource Evaluation (NURE). Distributed by USGS. Map compiled by AZGS, 2002.
- Agency for Toxic Substances and Disease Registry (ATSDR). 2014. Minimum Risk Levels. Available at: http://www.atsdr.cdc.gov/mrls/mrllist.asp. January.
- Bradham, K.D., K.G. Scheckel, C.M. Nelson, P.E. Seales, G.E. Lee, M.F. Hughes, B.W. Miller, A. Yeow, T. Gilmore, S. Harper, and D.J. Thomas. 2011. Relative bioavailability and bioaccessibility and speciation of arsenic in contaminated soils. Environ. Health Perspect. 119:1629-1634.
- Brown and Caldwell (BC). 2009. Human Health Risk Assessment. Site-Specific Soil Remediation Levels for Arsenic, Copper, and Manganese at Ajo and Bisbee, Arizona. Phoenix, Arizona.
- BC. 2013. Human Health Risk Assessment. Site-Specific Soil Remediation Levels for Arsenic, Copper, and Lead at Douglas Reduction Works. Douglas, Arizona.
- CalEPA. 2015. Office of Environmental Health Hazard Assessment. Toxicity Criteria Database. Available at: http://oehha.ca.gov/tcdb/index.asp.

- Casteel, S.W., L.D. Brown, M.E. Dunsmore, C.P. Weis, G.M. Henningsen, E. Hoffman, W.J. Brattin, and T.L. Hammon. 1997. Relative bioavailability of arsenic in mining wastes. United States Environmental Protection Agency, Region 8, Denver, CO.
- Conoco. 1981. Rock Geochemistry in Mineral Exploration: Study Area 1. Sierrita Batholith, Pima Co., Arizona-Progress Report 2, Research Report 1240-3-2-81.
- Damian Applied Toxicology, LLC. 2015. Human Health Risk Assessment to Support Site-Specific Remediation Levels for Arsenic, Copper, and Lead at the United Verde Soil Program. Prepared for Freeport Minerals Corporation, Phoenix, Arizona.
- Drexler, J.W. and W.J. Brattin. 2007. An in Vitro Procedure for Estimation of Lead Relative Bioavailability: With Validation. Human and Ecological Risk Assessment, 13: 383–401.
- Errol L. Montgomery and Associates (ELMA) and Dames and Moore. 1994. Aquifer Protection Permit Application, Sierrita Operation, Cyprus Sierrita Corporation, Pima County, AZ, Volume I. September.
- ELMA. 2001. Additional Characterization of Hydrogeologic Conditions Aquifer Protection Permit Application No. 101679, Sierrita Mine, Phelps Dodge Sierrita, Inc. Pima County, Arizona. January.
- Freeman, G.B., J.D. Johnson, J.M. Killinger, S.C. Liao, A.O. Davis, M.V. Ruby, R.L. Chaney, S.C. Lovre, and P.D. Bergstrom. 1993. Bioavailability of arsenic in soil impacted by smelter activities following oral administration in rabbits. Fundam. Appl. Toxicol. 21:83-88.
- Freeport-McMoRan Copper & Gold (FCX). 2011a. Sierrita Mine Site Overview. Available online at: http://www.fcx.com/operations/USA_Arizona_Sierrita.htm. Accessed on March 22, 2011.
- FCX. 2011b. Sulfate Information at Sierrita. Available at: http://www.fcx.com/envir/pdf/fast_facts/sierrita_sulfate_info_Jun09.pdf. Accessed March 22, 2011.
- Griffith, G.E., Omernik, J.M., Johnson, C.B., and Turner, D.S. 2014. Ecoregions of Arizona (poster): U.S. Geological Survey Open-File Report 2014-1141, with map, scale 1:1,325,000. Available at: http://dx.doi.org/10.3133/ofr20141141.
- Herrmann, M.A. 2001. Episodic magmatism and hydrothermal activity, Pima Mining District, Arizona. Masters Thesis, University of Arizona, 2001.
- Hydro Geo Chem Inc. (HGC). 2008. Soil, Surface Water, and Groundwater Sampling in the CLEAR Plant and Esperanza Mill Areas. As referenced in URS Corporation. 2011. Voluntary Remediation Program (VRP) Soil and Sediment Characterization Report, Freeport-McMoRan Sierrita Inc., Green Valley, Arizona. Final. March.
- Office of Environmental Health Hazard Assessment (OEHHA). 2009. Hot Spots Unit Risk and Cancer Potency Values. Available at: http://oehha.ca.gov/air/hot_spots/pdf/CPFs042909.pdf. California Environmental Protection Agency, Office of Environmental Health Hazard Assessment.
- Spencer, J.E., C.A. Ferguson, S.M. Richard, and A. Youberg. 2003. Geologic Map of the Esperanza Mill 7½ Quadrangle, Pima County, Arizona. Arizona Geological Survey, Digital Geologic Map DGM-33. November.

- URS Corporation (URS). 2008a. Voluntary Remediation Program (VRP) Investigation Work Plan, Volumes I and II, Freeport-McMoRan Sierrita Inc., Green Valley, Arizona. April.
- URS. 2008b. Addendum to Sampling and Analysis Plan & Quality Assurance Project Plan (QAPP), Voluntary Remediation Program (VRP), Freeport-McMoRan Sierrita Inc., Green Valley, Arizona. September.
- URS. 2012. Voluntary Remediation Program (VRP) Soil and Sediment Characterization Report, Freeport-McMoRan Sierrita Inc., Green Valley, Arizona. Final. December.
- U.S. Environmental Protection Agency (USEPA). 1989. Risk Assessment Guidance for Superfund, Volume I, Human Health Evaluation Manual (Part A). EPA/540/1 89 002. U.S. Environmental Protection Agency.
- USEPA. 1990a. Report to Congress on Special Wastes from Mineral Processing. EPA/530-SW-90-070C, July 17, 1990.
- USEPA. 1990b. National Oil and Hazardous Substances Pollution Contingency Plan (NCP), 40 Code of Federal Regulations (CFR), Part 300.400. U.S. Environmental Protection Agency. September.
- USEPA. 1992. Guidelines for Exposure Assessment. EPA/600/Z 92/001. U.S. Environmental Protection Agency, Risk Assessment Forum, Washington, DC. May.
- USEPA. 1997. Exposure Factors Handbook. EPA/600/P 95/002Ba. U.S. Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment.
- USEPA. 1999. Technologically Enhanced Naturally Occurring Radioactive Materials in the Southwestern Copper Belt of Arizona. EPA 402-R-99-002.
- USEPA. 2000. Soil Screening Guidance for Radionuclides: Technical Background Document. Office of Emergency and Remedial Response and Office of Radiation and Indoor Air. Washington, DC. OSWER No. 9355.4-16. Available at: http://www.epa.gov/superfund/health/contaminants/radiation/radssg.htm
- USEPA. 2001. Health Effects Assessment Summary Tables (HEAST) User's Guide: Radionuclide Carcinogenicity. EPA/540/R-97/036. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, DC. April.
- USEPA. 2002. Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites. OSWER 9285.6 10. U.S. Environmental Protection Agency, Office of Emergency and Remedial Response.
- USEPA. 2003a. OSWER Directive 9285.7 53, Human Health Toxicity Values in Superfund Risk Assessments. Memo from Michael B. Cook. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. December. Available at: http://www.epa.gov/oswer/riskassessment/pdf/hhmemo.pdf
- USEPA. 2003b. Adult Lead Model (ALM) Spreadsheet. Available at:

 http://www.epa.gov/oswer/riskassessment/tools.htm. EPA-540-R-03-001. OSWER 9285.7-54. U.S.
 Environmental Protection Agency, Technical Review Workgroup for Lead, Adult Lead Committee.
 U.S. Environmental Protection Agency. January.

- USEPA. 2003c. Recommendations of the Technical Review Workgroup for Lead for an Approach to Assessing Risks Associated with Adult Exposure to Lead in Soil. EPA-540-R-03-001. U.S. Environmental Protection Agency. January.
- USEPA. 2004. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual, Part E, Supplemental Guidance for Dermal Risk Assessment. EPA/540/R/99/005. U.S. Environmental Protection Agency, Office of Emergency and Remedial Response.
- USEPA. 2005. Guidelines for Carcinogen Risk Assessment. EPA/650/P-03/001F. March.
- USEPA. 2008. Technical Report on Technologically Enhanced Naturally Occurring Radioactive Materials from Uranium Mining, Volume 1: Mining and Reclamation Background. USEPA Office of Radiation and Indoor Air Radiation Protection Division (6608J), previously published on-line and printed as Vol. 1 of EPA 402-R-05-007, January 2006, Updated June 2007 and printed April 2008 as EPA 402-R-08-005.
- USEPA. 2009a. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). EPA-540-R-070-002 OSWER 9285.7-82. U.S. Environmental Protection Agency, Office of Emergency and Remedial Response Toxic Integration Branch. January.
- USEPA. 2009b. Update of the Adult Lead Methodology's Default Baseline Blood Lead Concentration and Geometric Standard Deviation Parameter. OSWER 9200.2-82. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. June 2009 Update to the ALM.
- USEPA. 2010. Relative bioavailability of arsenic in soils at 11 hazardous waste sites using an in vivo juvenile swine method. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Bioavailability Subcommittee of the Technical Review Workgroup. OSWER Directive 9200.0-76. June.
- USEPA. 2011. Exposure Factors Handbook 2011 Edition (Final). U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-09/052F, 2011.
- USEPA 2014a. Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors. OSWER Directive 9200.1-120. Office of Solid Waste and Emergency Response. February 6.
- USEPA 2014b. Frequently Asked Questions (FAQs) About Update of Standard Default Exposure Factors (OSWER Directive 9285.6-03, dated February 6, 2014). Office of Solid Waste and Emergency Response. May 9.
- USEPA. 2014c. Preliminary Remediation Goals for Radionuclides. Available at: epaprgs.ornl.gov/radionuclides/. U.S. Environmental Protection Agency, Office of Superfund and Oak Ridge National Laboratory. November.
- USEPA. 2015a. ProUCL Version 5.1 User Guide. Prepared by Lockheed Martin Environmental Services for U.S. Environmental Protection Agency, Office of Research and Development. September.
- USEPA. 2015b. ProUCL Version 5.1 Technical Guide. EPA/600/R-07/041. U.S. Environmental Protection Agency, Office of Research and Development. September.

- USEPA. 2015c. ProUCL Version 5.1. Available at: http://www.epa.gov/osp/hstl/tsc/software.htm. U.S. Environmental Protection Agency. September.
- USEPA. 2015d. Provisional Peer Reviewed Toxicity Values. Available at: http://hhpprtv.ornl.gov/quickview/pprtv.php.
- USEPA. 2015e. Health Effects Assessment Summary Tables. Available at: http://epaheast.ornl.gov/heast.php.
- USEPA. 2015f. Regional Screening Level Table, Frequently Asked Questions (November 2014).

 Available at: http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/faq.htm#FAQ24.

 Last updated March 3.
- USEPA. 2019. Regional Screening Levels (RSLs) Generic Tables. May 2019. Available at: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables.

TABLES

Table 5-1 Summary of Available Soil and Sediment Data for Metals and Radionuclides Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

Report Reference	Sampling Period	Investigation Area	No. / Type Samples [1]	No. Locations	Sample Depths	Sampling Methods	Sieved?	Laboratory	Analysis and Analyt	ical Method
HGC (2008)	August - October 2004	Former CLEAR Plant	12 Surficial Soil	12 locations	0-0.25 ft bgs	plastic trowel	All soil samples were	ACZ Laboratories,	Metals via	EPA Method 6020 ICP-MS
1100 (2000)	August - October 2004	offiler CLLART Flant	17 Subsurface Soil	12 locations	6 ft bgs	plastic trowel		Steamboat	or	EPA Method 6010B ICP-AES
			7 Subsurface Soil	8 trench locations	> 6 and < 15 ft bgs	backhoe bucket		Springs, CO	Mercury via	EPA Method 7471A CVAA
		Former Esperanza Mill		9 locations	0-0.25 ft bgs	plastic trowel	prior to sample analysis.	Springs, CO	INICICUI y VIA	LFA Welliod 747 IA CVAA
		l offiler Esperanza ivilli	5 Subsurface Soil		< 6 ft bgs	plastic trowel	+			
			1 Subsurface Soil		> 6 and < 15 ft bgs	backhoe bucket	1			
		Former C Pond	1 Surficial Soil	1 location	0-0.25 ft bgs	plastic trowel	+			
		Pormer C Porid	1 Subsurface Soil		< 6 ft bgs	plastic trowel	4			
			1 Subsurface Soil	i trench location	> 6 and < 15 ft bgs		4			
		Farmer Deffinate Dand		4 lanation		backhoe bucket	4			
		Former Raffinate Pond	1 Surficial Soil	1 location	0-0.25 ft bgs	plastic trowel	 			
		E L Vand	3 Subsurface Soil	1 trench location	≤ 6 ft bgs	plastic trowel	4			
			1 Subsurface Soil	4.1	> 6 and <u><</u> 15 ft bgs	backhoe bucket	4			
		Former Laydown Yard	1 Surficial Soil	1 location	0-0.25 ft bgs	plastic trowel				
URS (2012);	Luca Navambar 2000	Former CLEAR Plant	27 Gridded Soil	40 la satiana	to 47 ft have	Only and and invent having	No	A 0.7 L also materials	Matalavia	EPA Method 6020 ICP-MS
	June - November 2008	Former CLEAR Plant		10 locations	up to 17 ft bgs	Soil and sediment borings	INO	ACZ Laboratories,		
ARCADIS (2013a)			15 Biased Soil		up to 20 ft bgs	installed using direct push		Steamboat	or ·	EPA Method 6010B ICP-AES
		<u> </u>	20 Sediment	10 locations	0-1.5, 1.5-3.0 ft bgs	techniques and Geoprobe		Springs, CO	Mercury via	EPA Method 7471A CVAA
		Former E Pond	5 Biased Soil		up to 7 ft bgs	tooling. Samples were			Lead via	EPA Method 1312 SPLP
		Former Evaporation Pond			up to 7 ft bgs	collected using disposable			and	EPA Method 6020 ICP-MS
		Old D Pond	7 Biased Soil	3 locations	up to 7 ft bgs	acetate liners within a Macro-			Chromium +6 via	EPA Method 7196A
			12 Sediment	6 locations	0-1.5, 1.5-3.0 ft bgs	core sampler. Samples from				(colorimetric)
		Former Esperanza Mill	26 Gridded Soil		up to 11 ft bgs	the Former Raffinate Pond		Paragon Analytics,	Isotopic uranium	ASTM Method D3972
			2 Biased Soil		0-1.0, 1.0-3.0 ft bgs	were collected using stainless		Inc., Fort Collins,		(alpha spectroscopy)
		Former C Pond and	3 Gridded Soil		up to 5.5 ft bgs	steel hand auger, due to		CO	Radium-226 via	EPA Method 903.1
		C Pond Spoils	36 Biased Soil		up to 17 ft bgs	Geoprobe access issues.				(radon emanation)
		Former Raffinate Pond	12 Biased Soil	5 locations	up to 7 ft bgs				Radium-228 via	EPA Method 9320/904.0M
			4 Sediment	2 locations	0-1.5, 1.5-3.0 ft bgs					(gas flow proportional counting)
		Former Laydown Yard	15 Biased Soil	4 locations	up to 16 ft bgs				and	EPA Method 901.1M
ARCADIS (2013c)	May 2012	Former CLEAR Plant	35 Initial Soil (count does not	43 locations	6 inches bgs	Disposable plastic scoop;	No. 12 mesh sieve was	SVL Analytical,	Arsenic, copper, and	Field screened using portable
		Soil excavation for new	include excavated samples)			Samples from the parking lot	used to remove large	Inc., Kellogg, ID	lead	handheld XRF analyzer;
		training facility building				area and building pad were	rocks and debris from dry			EPA Method 6010B
			38 Confirmation Soil			collected with hand auger.	soil samples.			
				38 locations	6 inches bgs					
ARCADIS (2015c)	May - June 2015	Former CLEAR Plant	25 Gridded Samples	25 locations	6 inches bgs	Disposable plastic scoop	No	SVL Analytical,	Select metals via	EPA Method 6010B ICP-AES
, ,		Paving Areas	2 Biased Samples	2 locations	6 inches bgs	Disposable plastic scoop]	Inc., Kellogg, ID	or	EPA Method 6020A ICP-MS
	1	1	2 Biased Samples	2 locations	3.5 ft bgs	Hand auger			Mercury via	EPA Method 7471 CVAA

Notes

[1] Sample counts do not include field duplicates or excavated samples.

CVAA = cold-vapor atomic absorption.

EPA = United States Environmental Protection Agency.

ft bgs = feet below ground surface.

ICP-AES = inductively coupled plasma-atomic emission spectroscopy.

ICP-MS = inductively coupled plasma-mass spectroscopy.

mm = millimeters.

SPLP = synthetic precipitation leaching procedure.

Table 5-2 Inventory of Soil and Sediment Samples Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

	1		ı	1			T		1	
Exposure Area	Location SubArea	Sample ID	Alternative ID for Figures	Medium	Sample Date	Metals Analysis	Radionuclide Analysis	Depth (ft bgs)	Applicable Data Set(s)	Sample Descriptor [a]
Former CLEAR Plant	Former CLEAR Plant	CP-1 081304		Soil	8/13/2004	√		0-0.25	0-0.5, 0-2, 0-15	
									, . ,	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-2 081304		Soil	8/13/2004	√		0-0.25	0-0.5, 0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-3 081304		Soil	8/13/2004	· ·		0-0.25	0-0.5, 0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-5 081304		Soil	8/13/2004	-		0-0.25	0-0.5, 0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-7 081304		Soil	8/13/2004	✓ ✓		0-0.25	0-0.5, 0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-9 081304		Soil	8/13/2004		-	0-0.25	0-0.5, 0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-13 081304		Soil	8/13/2004	√	-	0-0.25	0-0.5, 0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-14 081304		Soil	8/13/2004	✓		0-0.25	0-0.5, 0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-15 081304		Soil	8/13/2004	✓	-	0-0.25	0-0.5, 0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-16 081304		Soil	8/13/2004	✓		0-0.25	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CP-19 081304		Soil	8/13/2004	✓		0-0.25	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CP-21 081304		Soil	8/13/2004	✓		0-0.25	0-0.5, 0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-T-1-18IN 100404	-	Soil	10/4/2004	✓		1.5	0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-T-1-2 100404	-	Soil	10/4/2004	✓		2	0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-T-1-4 100404		Soil	10/4/2004	✓		4	0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-T-1-8 100404	-	Soil	10/4/2004	✓		8	0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-T-2-10 100404		Soil	10/4/2004	✓		10	0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-T-2-2 100404		Soil	10/4/2004	✓		2	0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-T-2-7 100404	-	Soil	10/4/2004	✓		7	0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-T-2-B-6 100404	-	Soil	10/4/2004	✓		6	0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-T-2-7BL 100404		Soil	10/4/2004	✓		7	0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-T-2-C-6 100404		Soil	10/4/2004	✓		6	0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-T-4-1.5C 100404		Soil	10/4/2004	✓		1.5	0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-T-4-14 100404	-	Soil	10/4/2004	✓		14	0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-T-4-18IN 100404		Soil	10/4/2004	✓		1.5	0-2. 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-T-4-2.5 100404		Soil	10/4/2004	✓		2.5	0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-T-5-1.5 100404		Soil	10/4/2004	√		1.5	0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-T-5-3 100404		Soil	10/4/2004	√		3	0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-T-5-6 100404		Soil	10/4/2004	✓		6	0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-T-6-2 100404		Soil	10/4/2004	√		2	0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-T-6-4 100404		Soil	10/4/2004	√		4	0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-T-6-6 100404		Soil	10/4/2004	√		6	0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-T-3-6 100504		Soil	10/5/2004	· ✓		0.5	0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CP-T-3-8 100504	_	Soil	10/5/2004	· ·		8	0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CP-T-3-8IN 100504		Soil	10/5/2004	· ·		0.75	0-2. 0-15	paved/developed paved/developed
Former CLEAR Plant	Former CLEAR Plant	CP-JS-02-0-1 07112008		Soil	7/11/2008	· ·	√	0-1	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CP-JS-02-1-3 07112008		Soil	7/11/2008	· ·	· ·	1-3	0-2. 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CP-M04-0-1 07112008	-	Soil	7/11/2008	· ·	sample iar broken	0-1	0-0.5, 0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-M04-0-1_07112008 CP-M04-1-2.5 07112008		Soil	7/11/2008	√	sample jai broken ✓	1-2.5	0-2, 0-15	
	_	_	+			√	· ·			exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-M04-5-5.4_07112008		Soil	7/11/2008	✓	✓ ✓	5-5.4	0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-M06-0-1_07112008	-	Soil	7/11/2008	· ·		0-1	0-0.5, 0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-M06-1-3_07112008		Soil	7/11/2008		√ ✓	1-3	0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-N08-0-1_07112008	-	Soil	7/11/2008	√	•	0-1	0-0.5, 0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-N08-10-11_07112008		Soil	7/11/2008	✓	sample jar broken	10-11	0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-N08-1-3_07112008	-	Soil	7/11/2008	✓	√	1-3	0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-N08-5-7_07112008		Soil	7/11/2008	✓	✓	5-7	0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-003-0-1_07112008		Soil	7/11/2008	✓	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-003-1-3_07112008		Soil	7/11/2008	✓	✓	1-3	0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-009-0-1_07112008	-	Soil	7/11/2008	✓	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-009-10-12_07112008		Soil	7/11/2008	✓	✓	10-12	0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-O09-1-3_07112008		Soil	7/11/2008	✓	✓	1-3	0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-O09-5-7_07112008		Soil	7/11/2008	✓	✓	5-7	0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-JS-03-0-1_07142008		Soil	7/14/2008	✓	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-JS-03-1-3_07142008		Soil	7/14/2008	✓	✓	1-3	0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-JS-03-5-7_07142008		Soil	7/14/2008	✓	✓	5-7	0-15	exposed at surface

Page 1 of 7

Table 5-2 Inventory of Soil and Sediment Samples Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

Exposure Area	Location SubArea	Sample ID	Alternative ID for Figures	Medium	Sample Date	Metals Analysis	Radionuclide Analysis	Depth (ft bgs)	Applicable Data Set(s)	Sample Descriptor [a]
Former CLEAR Plant	Former CLEAR Plant	CP-JS-01-0-1_07152008		Soil	7/15/2008	✓	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
ormer CLEAR Plant	Former CLEAR Plant	CP-JS-01-10-12_07152008		Soil	7/15/2008	✓	✓	10-12	0-15	exposed at surface
ormer CLEAR Plant	Former CLEAR Plant	CP-JS-01-1-3_07152008		Soil	7/15/2008	✓	✓	1-3	0-2, 0-15	exposed at surface
ormer CLEAR Plant	Former CLEAR Plant	CP-JS-01-5-7_07152008		Soil	7/15/2008	✓	✓	5-7	0-15	exposed at surface
ormer CLEAR Plant	Former CLEAR Plant	CP-P04-0-1_07152008	-	Soil	7/15/2008	✓	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-P04-1-3_07152008	-	Soil	7/15/2008	✓	✓	1-3	0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-P05-0-1_07152008	-	Soil	7/15/2008	✓	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
ormer CLEAR Plant	Former CLEAR Plant	CP-P05-1-3_07152008		Soil	7/15/2008	✓	✓	1-3	0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-SD-01-0-1.5_07162008		Sediment	7/16/2008	✓	✓	0-1.5	0-0.5, 0-2, 0-15	exposed at surface
ormer CLEAR Plant	Former CLEAR Plant	CP-SD-01-1.5-3.0_07162008	-	Sediment	7/16/2008	✓	✓	1.5-3.0	0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-SD-02-0-1.5_07162008		Sediment	7/16/2008	✓	✓	0-1.5	0-0.5, 0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-SD-02-1.5-3.0_07162008	-	Sediment	7/16/2008	✓	✓	1.5-3.0	0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-SD-03-0-1.5_07162008		Sediment	7/16/2008	✓	✓	0-1.5	0-0.5, 0-2, 0-15	exposed at surface
ormer CLEAR Plant	Former CLEAR Plant	CP-SD-03-1.5-3.0_07162008	-	Sediment	7/16/2008	✓	✓	1.5-3.0	0-2, 0-15	exposed at surface
ormer CLEAR Plant	Former CLEAR Plant	CP-SD-05-0-1.5_07162008		Sediment	7/16/2008	✓	✓	0-1.5	0-0.5, 0-2, 0-15	exposed at surface
ormer CLEAR Plant	Former CLEAR Plant	CP-SD-05-1.5-3.0_07162008	-	Sediment	7/16/2008	✓	✓	1.5-3.0	0-2, 0-15	exposed at surface
ormer CLEAR Plant	Former CLEAR Plant	CP-SD-06-0-1.5_07162008		Sediment	7/16/2008	✓	✓	0-1.5	0-0.5, 0-2, 0-15	exposed at surface
ormer CLEAR Plant	Former CLEAR Plant	CP-SD-06-1.5-3.0_07162008		Sediment	7/16/2008	✓	✓	1.5-3.0	0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-SD-04-0-1.5_07172008		Sediment	7/17/2008	✓	✓	0-1.5	0-0.5, 0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-SD-04-1.5-3.0_07172008		Sediment	7/17/2008	✓	✓	1.5-3.0	0-2, 0-15	exposed at surface
ormer CLEAR Plant	Former CLEAR Plant	CP-P07-0-1_07172008		Soil	7/17/2008	✓	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
ormer CLEAR Plant	Former CLEAR Plant	CP-P07-1-3_07172008		Soil	7/17/2008	✓	✓	1-3	0-2, 0-15	exposed at surface
ormer CLEAR Plant	Former CLEAR Plant	CP-P07-5-7_07172008		Soil	7/17/2008	✓	✓	5-7	0-15	exposed at surface
ormer CLEAR Plant	Former CLEAR Plant	CP-SD-07-0-1.5_07232008		Sediment	7/23/2008	✓	sample jar broken	0-1.5	0-0.5, 0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-SD-07-1.5-3.0_07232008		Sediment	7/23/2008	✓	✓	1.5-3.0	0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-P12-0-1_07232008	-	Soil	7/23/2008	✓	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-P12-1-3_07232008	-	Soil	7/23/2008	✓	✓	1-3	0-2, 0-15	exposed at surface
ormer CLEAR Plant	Former CLEAR Plant	CP-Q09-0-1_07232008	-	Soil	7/23/2008	✓	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-Q09-1-3_07232008	-	Soil	7/23/2008	✓	✓	1-3	0-2, 0-15	exposed at surface
ormer CLEAR Plant	Former CLEAR Plant	CP-SD-08-0-1.5_07282008		Sediment	7/28/2008	✓	sample jar broken	0-1.5	0-0.5, 0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-SD-08-1.5-3.0_07282008	-	Sediment	7/28/2008	✓	sample jar broken	1.5-3.0	0-2, 0-15	exposed at surface
ormer CLEAR Plant	Former CLEAR Plant	CP-SD-09-0-1.5_07282008		Sediment	7/28/2008	✓	√	0-1.5	0-0.5, 0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-SD-09-1.5-3.0_07282008	-	Sediment	7/28/2008	✓	√	1.5-3.0	0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-SD-10-0-1.5_07282008		Sediment	7/28/2008	√	sample jar broken	0-1.5	0-0.5, 0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-SD-10-1.5-3.0_07282008	-	Sediment	7/28/2008	✓	√	1.5-3.0	0-2, 0-15	exposed at surface
ormer CLEAR Plant	Former CLEAR Plant	CP-JS-04-0-1_08272008		Soil	8/27/2008	✓	√	0-1	0-0.5, 0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-JS-04-10-12_08272008		Soil	8/27/2008	· ·	√	10-12	0-15	exposed at surface
ormer CLEAR Plant	Former CLEAR Plant	CP-JS-04-1-3_08272008		Soil	8/27/2008	√	√	1-3	0-2, 0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CP-JS-04-5-7_08272008		Soil	8/27/2008	· ·	✓	5-7	0-15	exposed at surface
Former CLEAR Plant	Former CLEAR Plant	CPS-SWW-D2.5-01_20120501	24	Soil	5/1/2012	√		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CPF-AW-D3-01_20120501	6	Soil	5/1/2012	√	-	surface (0)	0-0.5, 0-2, 0-15	paved/developed
ormer CLEAR Plant	Former CLEAR Plant	CPF-AW-D4-02_20120501	3	Soil	5/1/2012	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CPF-AW-SWE-D1.5-01_20120501	5	Soil	5/1/2012		-	surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CPF-AW-SWW-D2-01_20120501	4	Soil	5/1/2012	√		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CPS-D5-06_20120501	39	Soil	5/1/2012	√		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CPS-SWS-D2.5-01_20120501	38	Soil	5/1/2012	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
ormer CLEAR Plant	Former CLEAR Plant	CPS-SWS-D2.5-02_20120501	33	Soil	5/1/2012			surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CPS-SWS-D2.5-03_20120501	30	Soil	5/1/2012	√		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CPF-AE-D3-01_20120502	14	Soil	5/2/2012	√		surface (0)	0-0.5, 0-2, 0-15	paved/developed
ormer CLEAR Plant	Former CLEAR Plant	CPF-AE-D3-02_20120502	13	Soil	5/2/2012	√		surface (0)	0-0.5, 0-2, 0-15	paved/developed
ormer CLEAR Plant	Former CLEAR Plant	CPF-AE-D3-03_20120502	19	Soil	5/2/2012	√		surface (0)	0-0.5, 0-2, 0-15	paved/developed
ormer CLEAR Plant	Former CLEAR Plant	CPF-AE-D3-04_20120502	20	Soil	5/2/2012	√		surface (0)	0-0.5, 0-2, 0-15	paved/developed
ormer CLEAR Plant	Former CLEAR Plant	CPF-AE-SWE-D1.5-01_20120502	16	Soil	5/2/2012	√		surface (0)	0-0.5, 0-2, 0-15	paved/developed
ormer CLEAR Plant	Former CLEAR Plant	CPF-AE-SWE-D1.5-02_20120502	21	Soil	5/2/2012	√		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CPF-AE-SWW-D1.5-02_20120502	18	Soil	5/2/2012	✓		surface (0)	0-0.5, 0-2, 0-15	paved/develo

Page 2 of 7

Table 5-2 Inventory of Soil and Sediment Samples Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

Exposure Area	Location SubArea	Sample ID	Alternative ID for Figures	Medium	Sample Date	Metals Analysis	Radionuclide Analysis	Depth (ft bgs)	Applicable Data Set(s)	Sample Descriptor [a]
			ga.oo		Date	Allalysis	Allalysis	(it bgs)		į įūj
ormer CLEAR Plant	Former CLEAR Plant	CPF-AW-SWE-D1.5-02 20120502		Soil	5/2/2012	✓		surface (0)	0-0.5. 0-2. 0-15	paved/developed
ormer CLEAR Plant	Former CLEAR Plant	CPF-AW-SWE-D2.5-02 20120502		Soil	5/2/2012	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
ormer CLEAR Plant	Former CLEAR Plant	CPF-AW-D4-05 20120502	1	Soil	5/2/2012	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
ormer CLEAR Plant	Former CLEAR Plant	CPP-AE-S-01_20120502	64	Soil	5/2/2012	✓		6 inches bgs (0)	0-0.5, 0-2, 0-15	paved/developed
ormer CLEAR Plant	Former CLEAR Plant	CPP-AE-S-02 20120502	65	Soil	5/2/2012	✓			0-0.5, 0-2, 0-15	paved/developed
ormer CLEAR Plant	Former CLEAR Plant	CPP-AE-S-03 20120502	66	Soil	5/2/2012	✓		6 inches bgs (0)	0-0.5, 0-2, 0-15	paved/developed
ormer CLEAR Plant	Former CLEAR Plant	CPP-AE-S-04 20120502	67	Soil	5/2/2012	✓		0 ()	0-0.5, 0-2, 0-15	paved/developed
ormer CLEAR Plant	Former CLEAR Plant	CPP-AN-S-01 20120502	59	Soil	5/2/2012	✓		6 inches bgs (0)		paved/developed
Former CLEAR Plant	Former CLEAR Plant	CPP-AN-S-02 20120502	60	Soil	5/2/2012	✓		6 inches bgs (0)		paved/developed
Former CLEAR Plant	Former CLEAR Plant	CPP-AN-S-03 20120502	61	Soil	5/2/2012	✓			0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CPP-AN-S-04 20120502	62	Soil	5/2/2012	✓		6 inches bgs (0)		paved/developed
ormer CLEAR Plant	Former CLEAR Plant	CPP-AW-S-01 20120502	69	Soil	5/2/2012	✓		6 inches bgs (0)		paved/developed
Former CLEAR Plant	Former CLEAR Plant	CPP-AW-S-02_20120502	70	Soil	5/2/2012	✓		6 inches bgs (0)		paved/developed
ormer CLEAR Plant	Former CLEAR Plant	CPP-AW-S-03_20120502	71	Soil	5/2/2012	✓		6 inches bgs (0)		paved/developed
Former CLEAR Plant	Former CLEAR Plant	CPP-AW-S-04 20120502	72	Soil	5/2/2012	✓		6 inches bgs (0)		paved/developed
ormer CLEAR Plant	Former CLEAR Plant	CPS-SWE-D2.5-01 20120502	40	Soil	5/2/2012	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CPS-SWS-D4-04 20120502	28	Soil	5/2/2012	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	RCP-16-D2.5-01 20120502	56	Soil	5/2/2012	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	RCP-T-3-D0.5-01 20120502	57	Soil	5/2/2012	✓		surface (0)	0-0.5. 0-2. 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CPB-S-02 20120511	51	Soil	5/11/2012	✓		6 inches bgs (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CPB-S-03 20120511	52	Soil	5/11/2012	✓			0-0.5, 0-2, 0-15	paved/developed
ormer CLEAR Plant	Former CLEAR Plant	CPB-S-04 20120511	53	Soil	5/11/2012	✓			0-0.5, 0-2, 0-15	paved/developed
ormer CLEAR Plant	Former CLEAR Plant	CPB-S-05 20120511	54	Soil	5/11/2012	✓			0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CPB-S-06 20120511	55	Soil	5/11/2012	✓		6 inches bgs (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CPF-AE-D2-06 20120511	23	Soil	5/11/2012	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CPF-AE-D3-05 20120511	15	Soil	5/11/2012	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CPF-AE-SWE-D1.5-03 20120511	17	Soil	5/11/2012	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CPF-AE-SWW-D1-04 20120511	22	Soil	5/11/2012	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CPF-AE-SWW-D2-03 20120511	12	Soil	5/11/2012	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CPF-AW-D2-05_20120511	7	Soil	5/11/2012	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CPF-AW-SWE-D0.5-04 20120511	9	Soil	5/11/2012	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CPF-AW-SWE-D2.5-03 20120511	2	Soil	5/11/2012	✓		surface (0)	0-0.5. 0-2. 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CPF-AW-SWW-D0.75-04 20120511	10	Soil	5/11/2012	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CPF-AW-SWW-D1-03 20120511	8	Soil	5/11/2012	✓		surface (0)	0-0.5. 0-2. 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CPP-AE-S-05 20120511	68	Soil	5/11/2012	✓		6 inches bgs (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CPP-AN-S-05 20120511	63	Soil	5/11/2012	✓		6 inches bgs (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CPS-SWN-D2-01 20120511	27	Soil	5/11/2012	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
ormer CLEAR Plant	Former CLEAR Plant	CPS-SWN-D2-02 20120511	29	Soil	5/11/2012	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CPS-SWN-D2-03_20120511	31	Soil	5/11/2012	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
ormer CLEAR Plant	Former CLEAR Plant	CPS-SWN-D2-04 20120511	36	Soil	5/11/2012	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CPS-SWN-D3.5-05_20120511	35	Soil	5/11/2012	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CPS-SWS-D2.5-07 20120511	34	Soil	5/11/2012	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
ormer CLEAR Plant	Former CLEAR Plant	CPS-SWS-D2-05_20120511	37	Soil	5/11/2012	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
ormer CLEAR Plant	Former CLEAR Plant	CPS-SWS-D4.5-06_20120511	32	Soil	5/11/2012	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
ormer CLEAR Plant	Former CLEAR Plant	CPS-SWS-D4.5-08 20120511	26	Soil	5/11/2012	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
ormer CLEAR Plant	Former CLEAR Plant	CPS-SWW-D2.5-02 20120511	25	Soil	5/11/2012	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
ormer CLEAR Plant	Former CLEAR Plant	CPF-AN-D1-01 20120511	50	Soil	5/11/2012	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
ormer CLEAR Plant	Former CLEAR Plant	CPF-AN-SWN-D0.5-05 20120511	49	Soil	5/11/2012	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
ormer CLEAR Plant	Former CLEAR Plant	CPF-AN-SWN-D1.5-02 20120511	43	Soil	5/11/2012	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CPF-AN-SWN-D1.5-04 20120511	47	Soil	5/11/2012	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
ormer CLEAR Plant	Former CLEAR Plant	CPF-AN-SWN-D1-01 20120511	41	Soil	5/11/2012	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CPF-AN-SWN-D1-03 20120511	45	Soil	5/11/2012	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CPF-AN-SWS-D0.5-02 20120511	44	Soil	5/11/2012	· ✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
ormer CLEAR Plant	Former CLEAR Plant	CPF-AN-SWS-D0.5-03 20120511	46	Soil	5/11/2012	·		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CPF-AN-SWS-D0.5-04 20120511	48	Soil	5/11/2012	/		surface (0)	0-0.5, 0-2, 0-15	paved/developed

Page 3 of 7

Table 5-2 Inventory of Soil and Sediment Samples Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

				1	1		1	T	1	
Exposure Area	Location SubArea	Sample ID	Alternative ID for Figures	Medium	Sample Date	Metals Analysis	Radionuclide Analysis	Depth (ft bgs)	Applicable Data Set(s)	Sample Descriptor [a]
Farmer CL FAD Diam	F OLEAD DIt	DOD T 2 DO 5 02 20420544	50	0-11	F/44/0040		I	f (O)	0.05.00.045	I
Former CLEAR Plant	Former CLEAR Plant	RCP-T-3-D0.5-02_20120511	58	Soil	5/11/2012	√		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CPF-AN-SWS-D0.5-05_20120521	42	Soil	5/21/2012	√		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CP-NPA-S-01_20150528		Soil	5/28/2015	√		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CP-NPA-S-02_20150528		Soil	5/28/2015	-		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CP-NPA-S-03_20150528		Soil	5/28/2015	√		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CP-NPA-S-04_20150528		Soil	5/28/2015	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CP-NPA-S-05_20150528		Soil	5/28/2015	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CP-NPA-S-06_20150528		Soil	5/28/2015	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CP-NPA-S-07_20150528		Soil	5/28/2015	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CP-NPA-S-08_20150528		Soil	5/28/2015	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CP-NPA-S-09_20150528		Soil	5/28/2015	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CP-NPA-S-10_20150528		Soil	5/28/2015	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CP-SPA-S-1_20150609		Soil	6/9/2015	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CP-SPA-S-2_20150609		Soil	6/9/2015	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CP-SPA-S-3_20150609		Soil	6/9/2015	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CP-SPA-S-4_20150609		Soil	6/9/2015	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CP-SPA-S-5_20150609		Soil	6/9/2015	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CP-SPA-S-6_20150609		Soil	6/9/2015	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CP-SPA-S-7_20150609		Soil	6/9/2015	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CP-SPA-S-8_20150609		Soil	6/9/2015	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CP-SPA-S-9_20150609		Soil	6/9/2015	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CP-SPA-S-10_20150609		Soil	6/9/2015	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CP-SPA-S-11 20150609		Soil	6/9/2015	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CP-SPA-S-12 20150609		Soil	6/9/2015	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CP-SPA-S-13 20150609		Soil	6/9/2015	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CP-SPA-S-14 20150609		Soil	6/9/2015	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CP-SPA-S-15_20150609		Soil	6/9/2015	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CP-SPA-S-16 20150609		Soil	6/9/2015	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CP-SPA-S-17_20150609		Soil	6/9/2015	✓		surface (0)	0-0.5, 0-2, 0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CP-SPA-SL-E-D3.5-01		Soil	6/19/2015	✓		3.5	0-15	paved/developed
Former CLEAR Plant	Former CLEAR Plant	CP-SPA-SL-W-D3.5-01		Soil	6/19/2015	✓		3.5	0-15	paved/developed
Former CLEAR Plant	Former E Pond	E-JS-01-0-1 07142008		Soil	7/14/2008	✓	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
Former CLEAR Plant	Former E Pond	E-JS-01-1-3_07142008		Soil	7/14/2008	✓	✓	1-3	0-2, 0-15	exposed at surface
Former CLEAR Plant	Former E Pond	E-JS-01-5-7 07142008		Soil	7/14/2008	√	✓	5-7	0-15	exposed at surface
Former CLEAR Plant	Former E Pond	E-JS-02-0-1 07142008		Soil	7/14/2008	✓	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
Former CLEAR Plant	Former E Pond	E-JS-02-1-3 07142008		Soil	7/14/2008	✓	✓	1-3	0-2. 0-15	exposed at surface
Former CLEAR Plant	Former Evaporation Pond	EV-JS-01-0-1 07142008		Soil	7/14/2008	· ✓	· ✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
Former CLEAR Plant	Former Evaporation Pond	EV-JS-01-1-3 07142008		Soil	7/14/2008	·	· ✓	1-3	0-2. 0-15	exposed at surface
Former CLEAR Plant	Former Evaporation Pond	EV-JS-01-5-7 07142008		Soil	7/14/2008	· ·	· ·	5-7	0-15	exposed at surface
Former CLEAR Plant	Former Evaporation Pond	EV-JS-02-0-1 07142008		Soil	7/14/2008	· /	· ·	0-1	0-0.5, 0-2, 0-15	exposed at surface
Former CLEAR Plant	Former Evaporation Pond	EV-JS-02-0-1_07142008		Soil	7/14/2008	· ·	· ·	1-3	0-2, 0-15	exposed at surface
Former CLEAR Plant	Former Evaporation Pond	EV-JS-02-1-3_07142008		Soil	7/14/2008	· ·	· ·	5-7	0-15	exposed at surface
Former CLEAR Plant	Old D Pond	_			7/14/2008	· ·	√	0-1.5	0-0.5, 0-2, 0-15	
Former CLEAR Plant	Old D Pond	OD-SD-01-0-1.5_07282008		Sediment	7/28/2008	· ·	√	1.5-3.0	0-0.5, 0-2, 0-15	exposed at surface
		OD-SD-01-1.5-3.0_07282008		Sediment		· ·	· ·		, ,	exposed at surface
Former CLEAR Plant	Old D Pond	OD-SD-02-0-1.5_07282008		Sediment	7/28/2008	· ·	✓	0-1.5	0-0.5, 0-2, 0-15	exposed at surface
Former CLEAR Plant	Old D Pond	OD-SD-02-1.5-3.0_07282008		Sediment	7/28/2008	✓	✓	1.5-3.0	0-2, 0-15	exposed at surface
Former CLEAR Plant	Old D Pond	OD-SD-03-0-1.5_07282008		Sediment	7/28/2008		✓	0-1.5	0-0.5, 0-2, 0-15	exposed at surface
Former CLEAR Plant	Old D Pond	OD-SD-03-1.5-3.0_07282008		Sediment	7/28/2008	√	·	1.5-3.0	0-2, 0-15	exposed at surface
Former CLEAR Plant	Old D Pond	OD-SD-04-0-1.5_07282008		Sediment	7/28/2008	-	✓	0-1.5	0-0.5, 0-2, 0-15	exposed at surface
Former CLEAR Plant	Old D Pond	OD-SD-04-1.5-3.0_07282008		Sediment	7/28/2008	✓	√	1.5-3.0	0-2, 0-15	exposed at surface
Former CLEAR Plant	Old D Pond	OD-JS-01-0-1_07292008		Soil	7/29/2008	√	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
Former CLEAR Plant	Old D Pond	OD-JS-01-1-3_07292008	**	Soil	7/29/2008	√	✓	1-3	0-2, 0-15	exposed at surface
Former CLEAR Plant	Old D Pond	OD-JS-02-0-1_07292008		Soil	7/29/2008	√	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
Former CLEAR Plant	Old D Pond	OD-JS-02-1-3_07292008		Soil	7/29/2008	√	✓	1-3	0-2, 0-15	exposed at surface
Former CLEAR Plant	Old D Pond	OD-JS-02-5-7_07292008		Soil	7/29/2008	✓	✓	5-7	0-15	exposed at surface

Page 4 of 7

Table 5-2 Inventory of Soil and Sediment Samples Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

Exposure Area	Location SubArea	Sample ID	Alternative ID for Figures	Medium	Sample Date	Metals Analysis	Radionuclide Analysis	Depth (ft bgs)	Applicable Data Set(s)	Sample Descriptor [a]
	-								•	
ormer CLEAR Plant	Old D Pond	OD-SD-05-0-1.5_07292008		Sediment	7/29/2008	✓	✓	0-1.5	0-0.5, 0-2, 0-15	exposed at surface
ormer CLEAR Plant	Old D Pond	OD-SD-05-1.5-3.0_07292008		Sediment	7/29/2008	✓	✓	1.5-3.0	0-2, 0-15	exposed at surface
ormer CLEAR Plant	Old D Pond	OD-SD-06-0-1.5_07292008		Sediment	7/29/2008	✓	✓	0-1.5	0-0.5, 0-2, 0-15	exposed at surface
ormer CLEAR Plant	Old D Pond	OD-SD-06-1.5-3.0_07292008		Sediment	7/29/2008	✓	✓	1.5-3.0	0-2, 0-15	exposed at surface
ormer CLEAR Plant	Old D Pond	OD-JS-03-0-1_08272008		Soil	8/27/2008	✓	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
ormer CLEAR Plant	Old D Pond	OD-JS-03-1-3_08272008		Soil	8/27/2008	✓	no radionuclide data	1-3	0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former C Pond	EM-26 081304		Soil	8/13/2004	✓		0-0.25	0-0.5, 0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former C Pond	EM-T-4-10 100504		Soil	10/5/2004	✓		10	0-15	exposed at surface
ormer Esperanza Mill	Former C Pond	EM-T-4-6 100504		Soil	10/5/2004	✓		6	0-15	exposed at surface
ormer Esperanza Mill	Former C Pond	C-JS-01-0-1_08012008		Soil	8/1/2008	✓	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former C Pond	C-JS-01-1-3_08012008		Soil	8/1/2008	✓	✓	1-3	0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former C Pond	C-JS-02-0-1_08012008		Soil	8/1/2008	✓	sample jar broken	0-1	0-0.5, 0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former C Pond	C-JS-02-1-3_08012008		Soil	8/1/2008	✓	✓	1-3	0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former C Pond	C-JS-02-5-7_08012008		Soil	8/1/2008	✓	✓	5-7	0-15	exposed at surface
ormer Esperanza Mill	Former C Pond	C-JS-03-0-1_08042008		Soil	8/4/2008	✓	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former C Pond	C-JS-03-10-12_08042008		Soil	8/4/2008	✓	✓	10-12	0-15	exposed at surface
ormer Esperanza Mill	Former C Pond	C-JS-03-1-3_08042008		Soil	8/4/2008	✓	✓	1-3	0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former C Pond	C-JS-03-5-7_08042008		Soil	8/4/2008	✓	✓	5-7	0-15	exposed at surface
Former Esperanza Mill	Former C Pond	C-JS-04-0-1_08052008		Soil	8/5/2008	✓	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former C Pond	C-JS-04-10-12_08052008		Soil	8/5/2008	✓	✓	10-12	0-15	exposed at surface
ormer Esperanza Mill	Former C Pond	C-JS-04-1-3_08052008		Soil	8/5/2008	✓	✓	1-3	0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former C Pond	C-JS-04-5-7_08052008		Soil	8/5/2008	✓	✓	5-7	0-15	exposed at surface
ormer Esperanza Mill	Former C Pond	C-JS-05-0-1_08052008		Soil	8/5/2008	✓	no radionuclide data	0-1	0-0.5, 0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former C Pond	C-JS-05-1-3_08052008		Soil	8/5/2008	✓	✓	1-3	0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former C Pond Spoils	CS-JS-01-0-1_08042008		Soil	8/4/2008	✓	sample jar broken	0-1	0-0.5, 0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former C Pond Spoils	CS-JS-01-10-12_08042008		Soil	8/4/2008	✓	✓	10-12	0-15	exposed at surface
ormer Esperanza Mill	Former C Pond Spoils	CS-JS-01-1-3_08042008		Soil	8/4/2008	✓	✓	1-3	0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former C Pond Spoils	CS-JS-01-5-7_08042008		Soil	8/4/2008	✓	✓	5-7	0-15	exposed at surface
ormer Esperanza Mill	Former C Pond Spoils	CS-JS-02-0-1_08042008		Soil	8/4/2008	✓	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former C Pond Spoils	CS-JS-02-10-11_08042008		Soil	8/4/2008	✓	✓	10-11	0-15	exposed at surface
ormer Esperanza Mill	Former C Pond Spoils	CS-JS-02-1-3_08042008		Soil	8/4/2008	✓	✓	1-3	0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former C Pond Spoils	CS-JS-02-5-7_08042008		Soil	8/4/2008	✓	✓	5-7	0-15	exposed at surface
ormer Esperanza Mill	Former C Pond Spoils	CS-JS-03-0-1_08052008		Soil	8/5/2008	✓	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former C Pond Spoils	CS-JS-03-10-12_08052008		Soil	8/5/2008	✓	✓	10-12	0-15	exposed at surface
ormer Esperanza Mill	Former C Pond Spoils	CS-JS-03-1-3_08052008		Soil	8/5/2008	✓	✓	1-3	0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former C Pond Spoils	CS-JS-03-5-7_08052008		Soil	8/5/2008	✓	✓	5-7	0-15	exposed at surface
ormer Esperanza Mill	Former C Pond Spoils	EM-U25-0-1_08062008		Soil	8/6/2008	✓	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former C Pond Spoils	EM-U25-1-3_08062008		Soil	8/6/2008	✓	✓	1-3	0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former C Pond Spoils	EM-U25-5-5.5_08062008		Soil	8/6/2008	✓	✓	5-5.5	0-15	exposed at surface
ormer Esperanza Mill	Former C Pond Spoils	CS-JS-04-0-1_08062008		Soil	8/6/2008	✓	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former C Pond Spoils	CS-JS-04-1-3_08062008		Soil	8/6/2008	✓	✓	1-3	0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former C Pond Spoils	CS-JS-04-5-7_08062008		Soil	8/6/2008	✓	✓	5-7	0-15	exposed at surface
ormer Esperanza Mill	Former C Pond Spoils	CS-JS-05-0-1_08272008		Soil	8/27/2008	✓	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former C Pond Spoils	CS-JS-05-1-3_08272008		Soil	8/27/2008	✓	✓	1-3	0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former C Pond Spoils	CS-JS-06-0-1_08272008		Soil	8/27/2008	✓	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former C Pond Spoils	CS-JS-06-1-3_08272008		Soil	8/27/2008	✓	no radionuclide data	1-3	0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former Esperanza Mill	EM-3 081304		Soil	8/13/2004	✓		0-0.25	0-0.5, 0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former Esperanza Mill	EM-4 081304		Soil	8/13/2004	✓		0-0.25	0-0.5, 0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former Esperanza Mill	EM-5 081304		Soil	8/13/2004	✓		0-0.25	0-0.5, 0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former Esperanza Mill	EM-10 081304		Soil	8/13/2004	✓		0-0.25	0-0.5, 0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former Esperanza Mill	EM-13 081304		Soil	8/13/2004	✓		0-0.25	0-0.5, 0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former Esperanza Mill	EM-14 081304		Soil	8/13/2004	✓		0-0.25	0-0.5, 0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former Esperanza Mill	EM-17 081304		Soil	8/13/2004	✓		0-0.25	0-0.5, 0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former Esperanza Mill	EM-18 081304		Soil	8/13/2004	✓		0-0.25	0-0.5, 0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former Esperanza Mill	EM-21 081304	1	Soil	8/13/2004	✓		0-0.25	0-0.5, 0-2, 0-15	exposed at surface

Page 5 of 7

Table 5-2 Inventory of Soil and Sediment Samples Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

Exposure Area	Location SubArea	Sample ID	Alternative ID for Figures	Medium	Sample Date	Metals Analysis	Radionuclide Analysis	Depth (ft bgs)	Applicable Data Set(s)	Sample Descriptor [a]
	•									
ormer Esperanza Mill	Former Esperanza Mill	EM-T-2-2 100504		Soil	10/5/2004	✓		2	0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former Esperanza Mill	EM-T-2-2.5 100504		Soil	10/5/2004	✓		2.5	0-15	exposed at surface
ormer Esperanza Mill	Former Esperanza Mill	EM-T-2-B-18 100504		Soil	10/5/2004	✓		1.5	0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former Esperanza Mill	EM-T-3-12 100504		Soil	10/5/2004	✓		12	0-15	exposed at surface
ormer Esperanza Mill	Former Esperanza Mill	EM-T-3-4 100504		Soil	10/5/2004	✓		4	0-15	exposed at surface
ormer Esperanza Mill	Former Esperanza Mill	EM-T-3-6 100504		Soil	10/5/2004	✓		6	0-15	exposed at surface
ormer Esperanza Mill	Former Esperanza Mill	EM-C22-0-1_07292008		Soil	7/29/2008	✓	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former Esperanza Mill	EM-C22-1-3_07292008		Soil	7/29/2008	✓	✓	1-3	0-2, 0-15	exposed at surface
Former Esperanza Mill	Former Esperanza Mill	EM-C22-5-7_07292008		Soil	7/29/2008	✓	sample jar broken	5-7	0-15	exposed at surface
ormer Esperanza Mill	Former Esperanza Mill	EM-E24-0-1_07292008		Soil	7/29/2008	✓	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former Esperanza Mill	EM-E24-1-3_07292008		Soil	7/29/2008	✓	✓	1-3	0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former Esperanza Mill	EM-E24-5-7_07292008		Soil	7/29/2008	✓	sample jar broken	5-7	0-15	exposed at surface
Former Esperanza Mill	Former Esperanza Mill	EM-H22-0-1_07302008		Soil	7/30/2008	✓	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former Esperanza Mill	EM-H22-1-3_07302008		Soil	7/30/2008	✓	✓	1-3	0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former Esperanza Mill	EM-H22-5-7_07312008		Soil	7/31/2008	✓	✓	5-7	0-15	exposed at surface
ormer Esperanza Mill	Former Esperanza Mill	EM-K24-0-1_07312008		Soil	7/31/2008	✓	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
Former Esperanza Mill	Former Esperanza Mill	EM-K24-1-3_07312008		Soil	7/31/2008	✓	✓	1-3	0-2, 0-15	exposed at surface
Former Esperanza Mill	Former Esperanza Mill	EM-K24-5-7_07312008		Soil	7/31/2008	✓	✓	5-7	0-15	exposed at surface
Former Esperanza Mill	Former Esperanza Mill	EM-JS-01-0-1_08012008	-	Soil	8/1/2008	✓	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former Esperanza Mill	EM-JS-01-1-3_08012008	-	Soil	8/1/2008	✓	✓	1-3	0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former Esperanza Mill	EM-M26-0-1_08012008		Soil	8/1/2008	✓	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former Esperanza Mill	EM-M26-1-3_08012008		Soil	8/1/2008	✓	✓	1-3	0-2, 0-15	exposed at surface
Former Esperanza Mill	Former Esperanza Mill	EM-M26-5-7_08012008		Soil	8/1/2008	✓	✓	5-7	0-15	exposed at surface
Former Esperanza Mill	Former Esperanza Mill	EM-N29-0-1_08062008		Soil	8/6/2008	✓	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
Former Esperanza Mill	Former Esperanza Mill	EM-N29-1-3_08062008		Soil	8/6/2008	✓	✓	1-3	0-2, 0-15	exposed at surface
Former Esperanza Mill	Former Esperanza Mill	EM-X26-0-1_08062008		Soil	8/6/2008	✓	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
Former Esperanza Mill	Former Esperanza Mill	EM-X26-1-3_08062008		Soil	8/6/2008	✓	✓	1-3	0-2, 0-15	exposed at surface
Former Esperanza Mill	Former Esperanza Mill	EM-X26-5-7_08062008		Soil	8/6/2008	✓	✓	5-7	0-15	exposed at surface
Former Esperanza Mill	Former Esperanza Mill	EM-G27-0-1_08072008		Soil	8/7/2008	✓	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former Esperanza Mill	EM-G27-1-3_08072008		Soil	8/7/2008	✓	✓	1-3	0-2, 0-15	exposed at surface
Former Esperanza Mill	Former Esperanza Mill	EM-P24-0-1_08072008		Soil	8/7/2008	✓	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
Former Esperanza Mill	Former Esperanza Mill	EM-P24-10-11_08072008	-	Soil	8/7/2008	✓	✓	10-11	0-15	exposed at surface
Former Esperanza Mill	Former Esperanza Mill	EM-P24-1-3_08072008		Soil	8/7/2008	✓	✓	1-3	0-2, 0-15	exposed at surface
Former Esperanza Mill	Former Esperanza Mill	EM-P24-5-7_08072008		Soil	8/7/2008	✓	✓	5-7	0-15	exposed at surface
ormer Esperanza Mill	Former Laydown Yard	EM-20 081304		Soil	8/13/2004	✓		0-0.25	0-0.5, 0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former Laydown Yard	EM-JS-02-0-1_08012008		Soil	8/1/2008	✓	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former Laydown Yard	EM-JS-02-1-3_08012008		Soil	8/1/2008	✓	✓	1-3	0-2, 0-15	exposed at surface
Former Esperanza Mill	Former Laydown Yard	EM-JS-08-0-1_08122008		Soil	8/12/2008	✓	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former Laydown Yard	EM-JS-08-10-12_08122008		Soil	8/12/2008	✓	✓	10-12	0-15	exposed at surface
ormer Esperanza Mill	Former Laydown Yard	EM-JS-08-1-3_08122008		Soil	8/12/2008	✓	✓	1-3	0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former Laydown Yard	EM-JS-08-5-7_08122008		Soil	8/12/2008	✓	✓	5-7	0-15	exposed at surface
ormer Esperanza Mill	Former Laydown Yard	EM-JS-06-0-1_08132008		Soil	8/13/2008	✓	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former Laydown Yard	EM-JS-06-10-11_08132008		Soil	8/13/2008	✓	✓	10-11	0-15	exposed at surface
ormer Esperanza Mill	Former Laydown Yard	EM-JS-06-1-3_08132008		Soil	8/13/2008	✓	✓	1-3	0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former Laydown Yard	EM-JS-06-5-7_08132008		Soil	8/13/2008	✓	✓	5-7	0-15	exposed at surface
ormer Esperanza Mill	Former Laydown Yard	EM-JS-07-0-1_08132008		Soil	8/13/2008	✓	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former Laydown Yard	EM-JS-07-10-12_08132008		Soil	8/13/2008	✓	✓	10-12	0-15	exposed at surface
ormer Esperanza Mill	Former Laydown Yard	EM-JS-07-1-3_08132008		Soil	8/13/2008	✓	✓	1-3	0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former Laydown Yard	EM-JS-07-5-7_08132008		Soil	8/13/2008	✓	✓	5-7	0-15	exposed at surface
ormer Esperanza Mill	Former Raffinate Pond	EM-9 081304		Soil	8/13/2004	✓	-	0-0.25	0-0.5, 0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former Raffinate Pond	EM-T-1-1.5 100504		Soil	10/5/2004	✓		1.5	0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former Raffinate Pond	EM-T-1-13 100504		Soil	10/5/2004	✓		13	0-15	exposed at surface
ormer Esperanza Mill	Former Raffinate Pond	EM-T-1-2 100504		Soil	10/5/2004	✓		2	0-2, 0-15	exposed at surface
ormer Esperanza Mill	Former Raffinate Pond	EM-T-1-6 100504		Soil	10/5/2004	✓		6	0-15	exposed at surface
ormer Esperanza Mill	Former Raffinate Pond	RA-JS-01-0-1_08072008		Soil	8/7/2008	✓	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface

Page 6 of 7

Table 5-2 Inventory of Soil and Sediment Samples Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

Exposure Area	Location SubArea	Sample ID	Alternative ID for Figures	Medium	Sample Date	Metals Analysis	Radionuclide Analysis	Depth (ft bgs)	Applicable Data Set(s)	Sample Descriptor
				L		,		(9-/		
Former Esperanza Mill	Former Raffinate Pond	RA-JS-01-1-3_08072008		Soil	8/7/2008	✓	✓	1-3	0-2, 0-15	exposed at surface
Former Esperanza Mill	Former Raffinate Pond	RA-JS-01-5-7_08072008		Soil	8/7/2008	✓	✓	5-7	0-15	exposed at surface
Former Esperanza Mill	Former Raffinate Pond	RA-JS-03-0-1_08072008		Soil	8/7/2008	✓	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
Former Esperanza Mill	Former Raffinate Pond	RA-JS-03-1-3_08072008	-	Soil	8/7/2008	✓	✓	1-3	0-2, 0-15	exposed at surface
Former Esperanza Mill	Former Raffinate Pond	RA-JS-04-0-1_08072008		Soil	8/7/2008	✓	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
Former Esperanza Mill	Former Raffinate Pond	RA-JS-04-1-2.5_08072008		Soil	8/7/2008	✓	✓	1-2.5	0-2, 0-15	exposed at surface
Former Esperanza Mill	Former Raffinate Pond	RA-JS-05-0-1_08072008	-	Soil	8/7/2008	✓	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
Former Esperanza Mill	Former Raffinate Pond	RA-JS-05-1-3_08072008	-	Soil	8/7/2008	✓	✓	1-3	0-2, 0-15	exposed at surface
Former Esperanza Mill	Former Raffinate Pond	RA-JS-02-0-1_08112008		Soil	8/11/2008	✓	✓	0-1	0-0.5, 0-2, 0-15	exposed at surface
Former Esperanza Mill	Former Raffinate Pond	RA-JS-02-1-3_08112008	-	Soil	8/11/2008	✓	✓	1-3	0-2, 0-15	exposed at surface
Former Esperanza Mill	Former Raffinate Pond	RA-JS-02-5-7_08112008	-	Soil	8/11/2008	✓	no radionuclide data	5-7	0-15	exposed at surface
Former Esperanza Mill	Former Raffinate Pond	RA-SD-01-0-1.5_08112008		Sediment	8/11/2008	✓	✓	0-1.5	0-0.5, 0-2, 0-15	exposed at surface
Former Esperanza Mill	Former Raffinate Pond	RA-SD-01-1.5-3.0_08112008		Sediment	8/11/2008	✓	✓	1.5-3.0	0-2, 0-15	exposed at surface
Former Esperanza Mill	Former Raffinate Pond	RA-SD-02-0-1.5_08112008		Sediment	8/11/2008	✓	✓	0-1.5	0-0.5, 0-2, 0-15	exposed at surface
Former Esperanza Mill	Former Raffinate Pond	RA-SD-02-1.5-3.0_08112008		Sediment	8/11/2008	✓	✓	1.5-3.0	0-2, 0-15	exposed at surface

Notes

Sample inventory does not include field duplicates or excavated samples.

[a] Descriptor of "exposed at surface" indentifies samples used to evaluate current conditions. All samples, including those with descriptor "paved/developed", are used to evaluate hypothetical future exposure scenarios.

The future scenario assumes areas currently covered with pavement or buildings are no longer covered after hypothetical future redevelopment.

BHHRA = Baseline Human Health Risk Assessment.

ft bgs = feet below ground surface.

N/A - Not available.

Table 5-3 Soil Screening Levels Used to Select Constituents of Potential Concern Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

			Constituent	Selected Soil Scree	ening Level [c,d]
Constituent [a]		CASRN	Class [b]	(mg/kg) or (pCi/g)	Surrogate
Inorganics					
Antimony		7440-36-0	nc	4.10E+02	_
Arsenic		7440-38-2	ca, nc	1.00E+01	_
Barium		7440-39-3	nc	1.70E+05	_
Beryllium		7440-41-7	ca, nc	1.90E+03	_
Cadmium		7440-43-9	ca, nc	5.10E+02	_
Chromium		7440-47-3	nc	1.00E+06	Chromium III
Cobalt		7440-48-4	ca, nc	1.30E+04	_
Copper		7440-50-8	nc	4.10E+04	_
Lead		7439-92-1	ca, nc	8.00E+02	_
Manganese		7439-96-5	nc	3.20E+04	_
Mercury		7487-94-7	nc	3.10E+02	_
Molybdenum		7439-98-7	nc	5.10E+03	_
Nickel		7440-02-0	nc	2.00E+04	_
Selenium		7782-49-2	nc	5.10E+03	_
Thallium		7440-28-0	nc	6.70E+01	_
Uranium		7440-61-1	nc	2.00E+02	_
Zinc		7440-66-6	nc	3.10E+05	_
Radionuclides					
Radium-226	+D	Ra-226	_	2.10E-02	_
Radium-228	+D	Ra-228	_	1.30E-01	_
Uranium-234		U-234	_	2.80E+01	_
Uranium-235	+D	U-235	_	3.00E-01	_
Uranium-238	+D	U-238	-	1.40E+00	_

Notes:

[a] All detected constituents are presented.

[b] Constituent Class: "ca" indicates carcinogenic effects; "nc" indicates noncarcinogenic effects.

[c] The selected screening levels for inorganic constituents are the ADEQ's Non-Residential Soil Remediation Levels (nrSRLs). 2007. Available online at:

http://apps.azsos.gov/public_services/Title_18/18-07.pdf.

[d] Screening levels for radiological constituents are the USEPA's Preliminary Remediation Goals (PRGs) for Radionuclides (USEPA 2014c). PRGs for the composite worker were used. Available online at: epa- prgs.ornl.gov/radionuclides/.

"+D" (plus daughters) indicates branches in the decay chain.

Ra-226: Rn-222, Po-218, Pb-214+At-218, Bi-214, Po-214+Tl-210

Ra-228: Ac-228 U-235: Th-231

U-238: Th234, Pa-234m+Pa234

-: not available or not applicable.

ADEQ: Arizona Department of Environmental Quality. CASRN: Chemical Abstracts Service Registry Number.

mg/kg: milligram(s) per kilogram. pCi/g: picoCurie(s) per gram.

USEPA: United States Environmental Protection Agency.

Table 5-4 Statistical Summary and Selection of Chemical Constituents of Potential Concern: Former CLEAR Plant - Shallow Soil/Sediment (0 to 0.5 ft bgs), Exposed Samples Only Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita

Sierrita Mine, Green Valley, Arizona

	Freque	ncy of Det	ection	Reporti	ng Limits		tected ntrations	Sample Identification of Maximum		itial Screening	Is Maximum Concentration >	Is Constituent a	
Constituent [a]		,		Min	- Max	Min	- Max	Concentration	Lev	el [b]	10x nrSRL?	СОР	C? [c]
	No. of Detects	No. of Sample	(%)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(Sample Date)	(mg/kg)	Surrogate	(YES/no)	(YES/no)	Rationale
Inorganics													
Antimony	32	/ 46	70	1.00E+00	- 1.00E+00	2.00E-01	- 6.60E+01	CP-2 081304(8/13/2004)	4.10E+02	_	no	no	BSL
Arsenic	46	/ 46	100	_		1.10E+00	- 1.66E+02	CP-2 081304(8/13/2004)	1.00E+01	_	YES	YES	ASL
Barium	36	/ 36	100	_		6.71E+01	- 6.54E+02	CP-JS-01-0-1_07152008(7/15/2008)	1.70E+05	_	no	no	BSL
Beryllium	43	/ 46	94	1.00E+00	- 1.00E+00	1.10E-01	- 1.30E+00	CP-JS-01-0-1_07152008(7/15/2008)	1.90E+03	_	no	no	BSL
Cadmium	16	/ 46	35	2.00E+00	- 2.00E+00	4.80E-01	- 2.49E+01	CP-9 081304(8/13/2004)	5.10E+02	_	no	no	BSL
Chromium	46	/ 46	100	_		3.00E+00	- 5.80E+01	CP-5 081304(8/13/2004)	1.00E+06	Chromium III	no	no	BSL
Cobalt	41	/ 41	100	_		4.00E+00	- 7.60E+01	CP-1 081304(8/13/2004)	1.30E+04	_	no	no	BSL
Copper	46	/ 46	100	_		2.07E+02	- 5.93E+04	CP-9 081304(8/13/2004)	4.10E+04	_	no	YES	ASL
Lead	46	/ 46	100	_		4.00E+00	- 1.82E+03	CP-2 081304(8/13/2004)	8.00E+02	_	no	YES	ASL
Manganese	46	/ 46	100	_		7.10E+01	- 5.87E+02	CP-9 081304(8/13/2004)	3.20E+04	_	no	no	BSL
Mercury	9	/ 46	20	4.00E-02	- 2.00E-01	5.00E-02	- 6.20E-01	CP-2 081304(8/13/2004)	3.10E+02	_	no	no	BSL
Molybdenum	46	/ 46	100	_		1.50E+01	- 3.02E+03	CP-2 081304(8/13/2004)	5.10E+03	_	no	no	BSL
Nickel	46	/ 46	100	_		3.00E+00	- 6.40E+01	CP-5 081304(8/13/2004)	2.00E+04	_	no	no	BSL
Selenium	45	/ 46	98	6.70E-01	- 6.70E-01	2.30E-01	- 5.00E+01	CP-2 081304(8/13/2004)	5.10E+03	_	no	no	BSL
Thallium	46	/ 46	100	_		1.00E-01	- 5.20E+00	CP-2 081304(8/13/2004)	6.70E+01	_	no	no	BSL
Uranium	36	/ 36	100	_		1.45E+00	- 7.57E+00	OD-SD-03-0-1.5_07282008(7/28/2008)	2.00E+02	_	no	no	BSL
Zinc	46	/ 46	100	_		2.60E+01	- 6.21E+03	CP-9 081304(8/13/2004)	3.10E+05	_	no	no	BSL

Notes:

[a] All detected constituents are presented.

[b] Refer to Table 5-3 for screening level selection.

[c] Constituents detected at a maximum concentration above their screening level (ASL) are designated as COPCs unless the frequency of detection (FOD) is less than or equal to 5%. However, constituents detected in hotspots (at a maximum concentration greater than 10x the respective screening level) were designated as COPCs regardless of the detection frequency (HTSPT). Constituents with maximum detected concentrations below the screening levels (BSL) are not designated as COPCs.

-: not available or not applicable. mg/kg: milligram(s) per kilogram.

%: percent. min: minimum. COPC: constituent of potential concern. min: minimum. No.: number.

ft bgs: feet below ground surface. nrSRL: non-residential Soil Remediation Level.

max: maximum.

Statistical Summary and Selection of Radionuclide Constituents of Potential Concern: Former CLEAR Plant - Shallow Soil/Sediment (0 to 0.5 ft bgs), Exposed Samples Only Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

	Freque	ncy of Dete	ction	Report	ing Limits	Detected Co	ncentrations	Sample Identification of Maximum	Composite Worker PRG for	Is Maximum Concentration		stituent a
Constituent [a]	110440	, 0. 2010	01.01.	Min	- Max	Min	- Max	Concentration	Soil [b]	> 10x PRG?	СОР	C? [c]
	No. of No. of (%) Detects Samples		(%)	(pCi/g)	(pCi/g) (pCi/g) (pC		(pCi/g)	(Sample Date)	(pCi/g)	(YES/no)	(YES/no)	Rationale
Radionuclides												
Radium-226	31	/ 32	97	8.40E-01	- 8.40E-01	4.30E-01	- 3.50E+00	OD-JS-02-0-1_07292008(7/29/2008)	2.10E-02	YES	YES	ASL
Radium-228	32	/ 32	100	_		1.20E+00	- 7.60E+00	CP-009-0-1_07112008(7/11/2008)	1.30E-01	YES	YES	ASL
Uranium-234	32	/ 32	100	_		9.80E-01	- 3.90E+00	OD-SD-05-0-1.5_07292008(7/29/2008)	2.80E+01	no	no	BSL
Uranium-235	23	/ 32	72	3.90E-02	- 1.90E-01	6.30E-02	- 3.10E-01	OD-SD-03-0-1.5_07282008(7/28/2008)	3.00E-01	no	YES	ASL
Uranium-238	32	32	100			1.10E+00	- 4.00E+00	EV-JS-01-0-1_07142008(7/14/2008), OD-SD-03-0-1.5_07282008(7/28/2008)	1.40E+00	no	YES	ASL

Notes:

- [a] Only detected constituents are presented.
- [b] Refer to Table 5-3 for screening level selection.

[c] Constituents detected at a maximum concentration above their screening level (ASL) are designated as COPCs unless the frequency of detection (FOD) is less than or equal to 5%. However, constituents detected in hotspots (at a maximum concentration greater than 10x the respective screening level) were designated as COPCs regardless of the detection frequency (HTSPT). Constituents with maximum detected concentrations below the screening levels (BSL) are not designated as COPCs.

-: not available or not applicable.%: percent.

min: minimum. No.: number.

COPC: constituent of potential concern.

pCi/g: picoCurie(s) per gram.

ft bgs: feet below ground surface.

PRG: preliminary remediation goal.

max: maximum.

ARCADIS 1 of 1

Table 5-6 Statistical Summary and Selection of Chemical Constituents of Potential Concern: Former CLEAR Plant - Shallow Soil/Sediment (0 to 2 ft bgs), Exposed Samples Only Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita

Sierrita Mine, Green Valley, Arizona

	Frequer	ncv of	Detection	on -	Report	ing	Limits			ted rations	Sample Identification of		esidential	Is Maximum Concentration >		stituent a
Constituent [a]		,			Min	-	Max	Min	-	Max	Maximum Concentration	Screenii	ng Level [b]	10x nrSRL?	СОР	C? [c]
	No. of Detects		No. of amples	(%)	(mg/kg)		(mg/kg)	(mg/kg)		(mg/kg)	(Sample Date)	(mg/kg)	Surrogate	(YES/no)	(YES/no)	Rationale
Inorganics																
Antimony	47	/	86	55	1.00E+00	-	2.00E+00	2.00E-01	-	6.60E+01	CP-2 081304(8/13/2004)	4.10E+02	_	no	no	BSL
Arsenic	89	/	89	100	_	-	_	7.00E-01	-	1.66E+02	CP-2 081304(8/13/2004)	1.00E+01	_	YES	YES	ASL
Barium	72	/	72	100	_	-	_	4.11E+01	-	6.54E+02	CP-JS-01-0-1_07152008(7/15/2008)	1.70E+05	_	no	no	BSL
Beryllium	79	/	89	89	1.00E+00	-	1.00E+00	1.10E-01	-	1.30E+00	CP-JS-01-0-1_07152008(7/15/2008)	1.90E+03	_	no	no	BSL
Cadmium	23	1	86	27	2.00E+00	-	2.00E+00	4.80E-01	-	2.49E+01	CP-9 081304(8/13/2004)	5.10E+02	_	no	no	BSL
Chromium	86	1	86	100	_	-	_	2.00E+00	-	4.70E+02	CP-T-4-18IN 100404(10/4/2004)	1.00E+06	Chromium III	no	no	BSL
Cobalt	77	1	77	100	_	-	_	3.00E+00	-	7.60E+01	CP-1 081304(8/13/2004)	1.30E+04	_	no	no	BSL
Copper	89	/	89	100	_	-	_	2.70E+01	-	5.93E+04	CP-9 081304(8/13/2004)	4.10E+04	_	no	YES	ASL
Lead	89	/	89	100	_	-	_	1.20E+00	-	1.82E+03	CP-2 081304(8/13/2004)	8.00E+02	_	no	YES	ASL
Manganese	86	/	86	100	_	-	_	7.10E+01	-	7.59E+02	CP-T-4-18IN 100404(10/4/2004)	3.20E+04	_	no	no	BSL
Mercury	13	1	86	15	4.00E-02	-	2.00E-01	4.00E-02	-	6.20E-01	CP-2 081304(8/13/2004)	3.10E+02	_	no	no	BSL
Molybdenum	89	/	89	100	_	-	_	2.00E+00	-	3.02E+03	CP-2 081304(8/13/2004)	5.10E+03	_	no	no	BSL
Nickel	86	1	86	100	_	-	_	2.00E+00	-	7.00E+01	CP-T-4-18IN 100404(10/4/2004)	2.00E+04	_	no	no	BSL
Selenium	81	/	86	94	3.00E-01	-	6.70E-01	7.00E-02	-	5.00E+01	CP-2 081304(8/13/2004)	5.10E+03	_	no	no	BSL
Thallium	82	1	86	95	1.00E-01	-	3.00E-01	1.00E-01	-	5.20E+00	CP-2 081304(8/13/2004)	6.70E+01	_	no	no	BSL
Uranium	72	1	72	100	_	-	_	1.30E+00	-	1.03E+01	OD-SD-05-1.5-3.0_07292008(7/29/2008)	2.00E+02	_	no	no	BSL
Zinc	86	1	86	100	-	-	-	2.60E+01	-	6.21E+03	CP-9 081304(8/13/2004)	3.10E+05	-	no	no	BSL

Notes:

[a] All detected constituents are presented.

[b] Refer to Table 5-3 for screening level selection.

[c] Constituents detected at a maximum concentration above their screening level (ASL) are designated as COPCs unless the frequency of detection (FOD) is less than or equal to 5%. However, constituents detected in hotspots (HTSPT) (at a maximum concentration greater than 10x the respective screening level) were designated as COPCs regardless of the detection frequency. Constituents with maximum detected concentrations below the screening levels (BSL) are not designated as COPCs.

-: not available or not applicable.

mg/kg: milligram(s) per kilogram.

%: percent.

min: minimum. No.: number.

COPC: constituent of potential concern.

nrSRL: non-residential Soil Remediation Level.

ft bgs: feet below ground surface.

max: maximum.

Statistical Summary and Selection of Radionuclide Constituents of Potential Concern: Former CLEAR Plant - Shallow Soil/Sediment (0 to 2 ft bgs), Exposed Samples Only **Baseline Human Health Risk Assessment** Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

	Freque	ncy of Det	ection	Repor	ting	Limits		ected ntrations	Sample Identification of Maximum	Composite Worker PRG for	Is Maximum Concentration		stituent a
Constituent [a]		.,		Min	-	Max	Min	- Max	Concentration	Soil [b]	> 10x PRG?	СОР	C? [c]
	No. of Detects	No. of Sample	(%)	(pCi/g)		(pCi/g)	(pCi/g)	(pCi/g)	(Sample Date)	(pCi/g)	(YES/no)	(YES/no)	Rationale
Radionuclides													
Radium-226	65	/ 66	99	8.40E-01	-	8.40E-01	4.30E-01	- 4.80E+00	CP-P07-1-3_07172008(7/17/2008), E-JS-02-1-3_07142008(7/14/2008)	2.10E-02	YES	YES	ASL
Radium-228	66	/ 66	100	_	-	_	1.20E+00	- 7.60E+00	CP-O09-0-1_07112008(7/11/2008)	1.30E-01	YES	YES	ASL
Uranium-234	66	/ 66	100	-	-	_	8.80E-01	- 4.60E+00	E-JS-02-1-3_07142008(7/14/2008)	2.80E+01	no	no	BSL
Uranium-235	48	/ 66	73	3.90E-02	-	2.30E-01	2.00E-02	- 3.10E-01	E-JS-02-1-3_07142008(7/14/2008), OD-SD-03-0-1.5_07282008(7/28/2008)	3.00E-01	no	YES	ASL
Uranium-238	66	/ 66	100	-	-	-	8.40E-01	- 4.90E+00	E-JS-02-1-3_07142008(7/14/2008)	1.40E+00	no	YES	ASL

Notes:

[a] Only detected constituents are presented.

b) Refer to Table 5-3 for screening level selection.
[c] Constituents detected at a maximum concentration above their screening level (ASL) are designated as COPCs unless the trequency of detection (FOD) is less than or equal to 5%. However, constituents detected in hotspots (at a maximum concentration greater than 10x the respective screening level) were designated as COPCs regardless of the detection frequency (HTSPT). Constituents with maximum detected concentrations below the screening levels (BSL) are not designated as COPCs

-: not available or not applicable.

%: percent.

COPC: constituent of potential concern.

ft bgs: feet below ground surface.

max: maximum.

min: minimum. No.: number.

pCi/g: picoCurie(s) per gram.

PRG: preliminary remediation goal.

ARCADIS 1 of 1

Statistical Summary and Selection of Chemical Constituents of Potential Concern: Former CLEAR Plant - Shallow Soil/Sediment (0 to 0.5 ft bgs), All Samples **Baseline Human Health Risk Assessment**

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

	Freque	ncv o	f Detecti	ion	Reporti	ng Limits		ected ntrations	- Sample Identification of Maximum		ntial Screening	Is Maximum Concentration >		stituent a
Constituent [a]	i roquo.		. 201001		Min	- Max	Min	- Max	Concentration	Lev	el [b]	10x nrSRL?	СОР	C? [c]
	No. of Detects		o. of mples	(%)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(Sample Date)	(mg/kg)	Surrogate	(YES/no)	(YES/no)	Rationale
Inorganics														
Antimony	36	/	54	67	1.00E+00	- 2.00E+00	2.00E-01	- 6.60E+01	CP-2 081304(8/13/2004)	4.10E+02	_	no	no	BSL
Arsenic	139	/	149	93	2.50E+00	- 2.50E+00	1.10E+00	- 1.66E+02	CP-2 081304(8/13/2004)	1.00E+01	_	YES	YES	ASL
Barium	42	/	42	100	_		3.68E+01	- 6.54E+02	CP-JS-01-0-1_07152008(7/15/2008)	1.70E+05	_	no	no	BSL
Beryllium	51	/	54	94	1.00E+00	- 1.00E+00	1.10E-01	- 1.30E+00	CP-JS-01-0-1_07152008(7/15/2008)	1.90E+03	_	no	no	BSL
Cadmium	21	/	54	39	2.00E-01	- 2.00E+00	4.30E-01	- 2.49E+01	CP-9 081304(8/13/2004)	5.10E+02	_	no	no	BSL
Chromium	54	/	54	100	_		3.00E+00	- 5.80E+01	CP-5 081304(8/13/2004)	1.00E+06	Chromium III	no	no	BSL
Cobalt	47	/	47	100	_		4.00E+00	- 7.60E+01	CP-1 081304(8/13/2004)	1.30E+04	_	no	no	BSL
Copper	149	/	149	100	_		1.33E+02	- 1.09E+05	CP-16 081304(8/13/2004)	4.10E+04	_	no	YES	ASL
Lead	149	/	149	100	_		2.70E+00	- 3.22E+03	CPS-SWN-D2-01_20120511(5/11/2012)	8.00E+02	_	no	YES	ASL
Manganese	53	/	54	98	4.00E-01	- 4.00E-01	7.10E+01	- 5.87E+02	CP-9 081304(8/13/2004)	3.20E+04	_	no	no	BSL
Mercury	13	/	54	24	3.30E-02	- 2.00E-01	3.70E-02	- 6.20E-01	CP-2 081304(8/13/2004)	3.10E+02	_	no	no	BSL
Molybdenum	54	/	54	100	_		1.36E+01	- 3.02E+03	CP-2 081304(8/13/2004)	5.10E+03	_	no	no	BSL
Nickel	54	/	54	100	_		2.00E+00	- 6.40E+01	CP-5 081304(8/13/2004)	2.00E+04	_	no	no	BSL
Selenium	48	/	54	89	6.70E-01	- 4.00E+00	2.30E-01	- 5.00E+01	CP-2 081304(8/13/2004)	5.10E+03	_	no	no	BSL
Thallium	49	/	54	91	1.50E+00	- 1.50E+00	1.00E-01	- 5.20E+00	CP-2 081304(8/13/2004)	6.70E+01	_	no	no	BSL
Uranium	42	/	42	100	_		1.32E+00	- 7.57E+00	OD-SD-03-0-1.5_07282008(7/28/2008)	2.00E+02	_	no	no	BSL
Zinc	54	/	54	100	_		2.60E+01	- 6.21E+03	CP-9 081304(8/13/2004)	3.10E+05	_	no	no	BSL

Notes:

[a] All detected constituents are presented.

[b] Refer to Table 5-3 for screening level selection.

[c] Constituents detected at a maximum concentration above their screening level (ASL) are designated as COPCs unless the frequency of detection (FOD) is less than or equal to 5%. However, constituents detected in hotspots (at a maximum concentration greater than 10x the respective screening level) were designated as COPCs regardless of the detection frequency (HTSPT). Constituents with maximum detected concentrations below the screening levels (BSL) are not designated as COPCs.

-: not available or not applicable. mg/kg: milligram(s) per kilogram.

%: percent. min: minimum. COPC: constituent of potential concern. No.: number.

ft bgs: feet below ground surface. nrSRL: non-residential Soil Remediation Level.

max: maximum.

Statistical Summary and Selection of Radionuclide Constituents of Potential Concern: Former CLEAR Plant - Shallow Soil/Sediment (0 to 0.5 ft bgs), All Samples Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita

Sierrita Mine, Green Valley, Arizona

	Freque	ncy of Dete	ction	Report	ing Limits		tected ntrations	- Sample Identification	Composite Worker PRG for	Is Maximum Concentration		stituent a
Constituent [a]	•	,		Min	- Max	Min	- Max	of Maximum Concentration	Soil [b]	> 10x PRG?	СОР	C? [c]
	No. of Detects	No. of Samples	(%)	(pCi/g)	(pCi/g)	(pCi/g)	(pCi/g)	(Sample Date)	(pCi/g)	(YES/no)	(YES/no)	Rationale
Radionuclides Radium-226 Radium-228 Uranium-234 Uranium-235 Uranium-238	32 33 33 24 33	/ 33 / 33 / 33 / 33 / 33	97 100 100 73 100	8.40E-01 - - 3.90E-02 -	- 8.40E-01 1.90E-01	4.30E-01 1.20E+00 9.80E-01 6.30E-02 1.10E+00	- 3.50E+00 - 7.60E+00 - 1.20E+01 - 7.40E-01 - 1.20E+01	OD-JS-02-0-1_07292008(7/29/2008) CP-099-0-1_07112008(7/11/2008) CP-JS-02-0-1_07112008(7/11/2008) CP-JS-02-0-1_07112008(7/11/2008) CP-JS-02-0-1_07112008(7/11/2008)	2.10E-02 1.30E-01 2.80E+01 3.00E-01 1.40E+00	YES YES no no no	YES YES no YES YES	ASL ASL BSL ASL ASL

Notes:

- [a] Only detected constituents are presented.
- [b] Refer to Table 5-3 for screening level selection.
- [c] Constituents detected at a maximum concentration above their screening level (ASL) are designated as COPCs unless the frequency of detection (FOD) is less than or equal to
- 5%. However, constituents detected in hotspots (at a maximum concentration greater than 10x the respective screening level) were designated as COPCs regardless of the detection frequency (HTSPT). Constituents with maximum detected concentrations below the screening levels (BSL) are not designated as COPCs.

-: not available or not applicable. min: minimum. %: percent. No.: number.

COPC: constituent of potential concern.

ft bgs: feet below ground surface.

pCi/g: picoCurie(s) per gram.

PRG: preliminary remediation goal.

max: maximum.

Statistical Summary and Selection of Chemical Constituents of Potential Concern:

Former CLEAR Plant - Shallow Soil/Sediment (0 to 2 ft bgs), All Samples Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita

Sierrita Mine, Green Valley, Arizona

	Frequer	ncy of	Detection	nn -	Report	ing	Limits		tect entra	ted ations	Sample Identification of	Non-R	esidential	Is Maximum Concentration >		stituent a
Constituent [a]	rroquoi	icy oi	Detection	J.I.	Min	-	Max	Min	-	Max	Maximum Concentration	Screenii	ng Level [b]	10x nrSRL?	COP	C? [c]
	No. of Detects		No. of amples	(%)	(mg/kg)		(mg/kg)	(mg/kg)		(mg/kg)	(Sample Date)	(mg/kg)	Surrogate	(YES/no)	(YES/no)	Rationale
Inorganics																
Antimony	53	/	96	55	1.00E+00	-	2.00E+00	2.00E-01	-	6.60E+01	CP-2 081304(8/13/2004)	4.10E+02	_	no	no	BSL
Arsenic	185	/	195	95	2.50E+00	-	2.50E+00	7.00E-01	-	1.66E+02	CP-2 081304(8/13/2004)	1.00E+01	_	YES	YES	ASL
Barium	79	/	79	100	_	-	_	3.68E+01	-	6.54E+02	CP-JS-01-0-1_07152008(7/15/2008)	1.70E+05	_	no	no	BSL
Beryllium	90	/	100	90	1.00E+00	-	1.00E+00	1.10E-01	-	1.40E+00	CP-T-3-6 100504(10/5/2004)	1.90E+03	_	no	no	BSL
Cadmium	29	/	96	30	2.00E-01	-	2.00E+00	4.30E-01	-	2.49E+01	CP-9 081304(8/13/2004)	5.10E+02	_	no	no	BSL
Chromium	96	/	96	100	_	-	_	2.00E+00	-	4.70E+02	CP-T-4-18IN 100404(10/4/2004)	1.00E+06	Chromium III	no	no	BSL
Cobalt	84	/	84	100	_	-	_	3.00E+00	-	7.60E+01	CP-1 081304(8/13/2004)	1.30E+04	_	no	no	BSL
Copper	195	/	195	100	_	-	_	2.70E+01	-	1.09E+05	CP-16 081304(8/13/2004)	4.10E+04	_	no	YES	ASL
Lead	195	/	195	100	_	-	_	1.20E+00	-	3.22E+03	CPS-SWN-D2-01_20120511(5/11/2012)	8.00E+02	_	no	YES	ASL
Manganese	95	/	96	99	4.00E-01	-	4.00E-01	7.10E+01	-	7.59E+02	CP-T-4-18IN 100404(10/4/2004)	3.20E+04	_	no	no	BSL
Mercury	17	/	96	18	3.30E-02	-	2.00E-01	3.70E-02	-	6.20E-01	CP-2 081304(8/13/2004)	3.10E+02	_	no	no	BSL
Molybdenum	100	/	100	100	_	-	_	2.00E+00	-	3.02E+03	CP-2 081304(8/13/2004)	5.10E+03	_	no	no	BSL
Nickel	96	/	96	100	_	-	_	2.00E+00	-	7.00E+01	CP-T-4-18IN 100404(10/4/2004)	2.00E+04	_	no	no	BSL
Selenium	86	/	96	90	3.00E-01	-	4.00E+00	7.00E-02	-	5.00E+01	CP-2 081304(8/13/2004)	5.10E+03	_	no	no	BSL
Thallium	86	/	96	90	1.00E-01	-	1.50E+00	1.00E-01	-	5.20E+00	CP-2 081304(8/13/2004)	6.70E+01	_	no	no	BSL
Uranium	79	/	79	100	_	-	_	9.30E-01	-	1.03E+01	OD-SD-05-1.5-3.0_07292008(7/29/2008)	2.00E+02	_	no	no	BSL
Zinc	96	/	96	100	_	-	-	2.60E+01	-	6.21E+03	CP-9 081304(8/13/2004)	3.10E+05	_	no	no	BSL

Notes:

[a] All detected constituents are presented.

[b] Refer to Table 5-3 for screening level selection.

[c] Constituents detected at a maximum concentration above their screening level (ASL) are designated as COPCs unless the frequency of detection (FOD) is less than or equal to 5%. However, constituents detected in hotspots (HTSPT) (at a maximum concentration greater than 10x the respective screening level) were designated as COPCs regardless of the detection frequency. Constituents with maximum detected concentrations below the screening levels (BSL) are not designated as COPCs.

-: not available or not applicable.

mg/kg: milligram(s) per kilogram.

%: percent.

min: minimum.

COPC: constituent of potential concern.

No.: number.

ft bgs: feet below ground surface.

nrSRL: non-residential Soil Remediation Level.

max: maximum.

Statistical Summary and Selection of Radionuclide Constituents of Potential Concern: Former CLEAR Plant - Shallow Soil/Sediment (0 to 2 ft bgs), All Samples Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita

Sierrita Mine, Green Valley, Arizona

	Freque	ncy of Dete	ction	Report	ing Limits		etec entr	ted ations	Sample Identification	Composite Worker PRG for	Is Maximum Concentration		stituent a
Constituent [a]		,	••••	Min	- Max	Min	-	Max	of Maximum Concentration	Soil [b]	> 10x PRG?	СОР	C? [c]
	No. of Detects	No. of Samples	(%)	(pCi/g)	(pCi/g) (pCi/g)		(pCi/g)	(Sample Date)	(pCi/g)	(YES/no)	(YES/no)	Rationale
Radionuclides													
Radium-226	67	/ 68	99	8.40E-01	- 8.40E-	01 4.30E-01	-	4.80E+00	CP-P07-1-3_07172008(7/17/2008), E-JS-02-1-3_07142008(7/14/2008)	2.10E-02	YES	YES	ASL
Radium-228	68	/ 68	100	_		1.20E+00) -	7.60E+00	CP-O09-0-1_07112008(7/11/2008)	1.30E-01	YES	YES	ASL
Uranium-234	68	/ 68	100	_		8.40E-01	-	1.20E+01	CP-JS-02-0-1_07112008(7/11/2008)	2.80E+01	no	no	BSL
Uranium-235	50	/ 68	74	3.90E-02	- 2.30E-	01 2.00E-02	-	7.40E-01	CP-JS-02-0-1_07112008(7/11/2008)	3.00E-01	no	YES	ASL
Uranium-238	68	/ 68	100	-		8.40E-01	-	1.20E+01	CP-JS-02-0-1_07112008(7/11/2008)	1.40E+00	no	YES	ASL

Notes:

- [a] Only detected constituents are presented.
- [b] Refer to Table 5-3 for screening level selection.

[c] Constituents detected at a maximum concentration above their screening level (ASL) are designated as COPCs unless the frequency of detection (FOD) is less than or equal to 5%. However, constituents detected in hotspots (at a maximum concentration greater than 10x the respective screening level) were designated as COPCs regardless of the detection frequency (HTSPT). Constituents with maximum detected concentrations below the screening levels (BSL) are not designated as COPCs.

-: not available or not applicable. min: minimum. %: percent. No.: number.

COPC: constituent of potential concern. pCi/g: picoCurie(s) per gram. pRG: preliminary remediation goal.

max: maximum.

Statistical Summary and Selection of Chemical Constituents of Potential Concern:

Former CLEAR Plant - Shallow and Deep Soil/Sediment (0 to 15 ft bgs) Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

	Freque	ncv	of Detecti	on	Reportir	ng Limits	Det Conce			- Sample Identification of	Non-Re	esidential	Is Maximum Concentration >	Is Cons	stituent a
Constituent [a]	Treque	cy	of Beteet	011	Min	- Max	Min	-	Max	Maximum Concentration	Screenin	ig Level [b]	10x nrSRL?	COF	C? [c]
	No. of Detects		No. of Samples	(%)	(mg/kg)	(mg/kg)	(mg/kg)		(mg/kg)	(Sample Date)	(mg/kg)	Surrogate	(YES/no)	(YES/no)	Rationale
Inorganics															
Antimony	62	1	116	53	1.00E+00	- 2.00E+00	2.00E-01	-	6.60E+01	CP-2 081304(8/13/2004)	4.10E+02	_	no	no	BSL
Arsenic	216	/	226	96	2.50E+00	- 2.50E+00	7.00E-01	-	1.66E+02	CP-2 081304(8/13/2004)	1.00E+01	-	YES	YES	ASL
Barium	96	/	96	100			3.68E+01	-	6.54E+02	CP-JS-01-0-1_07152008(7/15/2008)	1.70E+05	-	no	no	BSL
Beryllium	118	1	131	90	1.00E+00	- 5.00E+00	1.10E-01	-	1.40E+00	CP-T-3-6 100504(10/5/2004)	1.90E+03	_	no	no	BSL
Cadmium	36	/	116	31	2.00E-01	- 8.00E+00	4.20E-01	-	2.49E+01	CP-9 081304(8/13/2004)	5.10E+02	-	no	no	BSL
Chromium	116	/	116	100			2.00E+00	-	4.70E+02	CP-T-4-18IN 100404(10/4/2004)	1.00E+06	Chromium III	no	no	BSL
Cobalt	101	/	101	100			3.00E+00	-	7.60E+01	CP-1 081304(8/13/2004)	1.30E+04	-	no	no	BSL
Copper	226	1	226	100			2.70E+01	-	1.09E+05	CP-16 081304(8/13/2004)	4.10E+04	_	no	YES	ASL
Lead	226	1	226	100			1.20E+00	-	3.22E+03	CPS-SWN-D2-01_20120511(5/11/2012)	8.00E+02	_	no	YES	ASL
Manganese	115	1	116	99	4.00E-01	- 4.00E-01	7.10E+01	-	1.24E+03	CP-JS-01-10-12_07152008(7/15/2008)	3.20E+04	_	no	no	BSL
Mercury	21	1	116	18	3.30E-02	- 2.00E-01	3.70E-02	-	6.20E-01	CP-2 081304(8/13/2004)	3.10E+02	_	no	no	BSL
Molybdenum	131	1	131	100			2.00E+00	-	3.02E+03	CP-2 081304(8/13/2004)	5.10E+03	_	no	no	BSL
Nickel	116	1	116	100			2.00E+00	-	7.00E+01	CP-T-4-18IN 100404(10/4/2004)	2.00E+04	_	no	no	BSL
Selenium	104	1	116	90	3.00E-01	- 4.00E+00	7.00E-02	-	5.00E+01	CP-2 081304(8/13/2004)	5.10E+03	_	no	no	BSL
Thallium	104	/	116	90	1.00E-01	- 1.50E+00	1.00E-01	-	5.20E+00	CP-2 081304(8/13/2004)	6.70E+01	_	no	no	BSL
Uranium	96	1	96	100	_		9.30E-01	-	1.60E+01	CP-JS-04-5-7 08272008(8/27/2008)	2.00E+02	_	no	no	BSL
Zinc	116	1	116	100	_		2.60E+01	-	6.21E+03	CP-9 081304(8/13/2004)	3.10E+05	_	no	no	BSL

Notes:

[a] All detected constituents are presented.

[b] Refer to Table 5-3 for screening level selection.

[c] Constituents detected at a maximum concentration above their screening level (ASL) are designated as COPCs unless the frequency of detection (FOD) is less than or equal to 5%. However, constituents detected in hotspots (HTSPT) (at a maximum concentration greater than 10x the respective screening level) were designated as COPCs regardless of the detection frequency. Constituents with maximum detected concentrations below the screening levels (BSL) are not designated as COPCs.

-: not available or not applicable.

mg/kg: milligram(s) per kilogram.

%: percent.

min: minimum. No.: number.

COPC: constituent of potential concern. ft bgs: feet below ground surface.

nrSRL: non-residential Soil Remediation Level.

max: maximum.

Statistical Summary and Selection of Radionuclide Constituents of Potential Concern: Former CLEAR Plant - Shallow and Deep Soil/Sediment (0 to 15 ft bgs) **Baseline Human Health Risk Assessment**

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

	Freque	ncy of Dete	ction	Report	ting l	Limits	Det Conce	tecte entra		Sample Identification	Composite Worker PRG for	Is Maximum Concentration		tituent a
Constituent [a]		,	••	Min	-	Max	Min	-	Max	of Maximum Concentration	Soil [b]	> 10x PRG?	СОР	C? [c]
	No. of Detects	No. of Samples	(pCi/g)		(pCi/g)	(pCi/g)		(pCi/g)	(Sample Date)	(pCi/g)	(YES/no)	(YES/no)	Rationale	
Radionuclides Radium-226 Radium-228 Uranium-234 Uranium-235 Uranium-238	80 82 82 63 82	/ 82 / 82 / 82 / 82 / 82	98 100 100 77 100	4.00E-01 - - 3.90E-02 -	-	8.40E-01 - - 2.30E-01	4.30E-01 1.20E+00 8.40E-01 2.00E-02 8.40E-01	-	5.30E+00 7.60E+00 1.20E+01 7.40E-01 1.20E+01	CP-JS-03-5-7_07142008(7/14/2008) CP-09-0-1_07112008(7/11/2008) CP-JS-02-0-1_07112008(7/11/2008) CP-JS-02-0-1_07112008(7/11/2008) CP-JS-02-0-1_07112008(7/11/2008)	2.10E-02 1.30E-01 2.80E+01 3.00E-01 1.40E+00	YES YES no no no	YES YES no YES YES	ASL ASL BSL ASL ASL

Notes:

- [a] Only detected constituents are presented.
- [b] Refer to Table 5-3 for screening level selection.

[c] Constituents detected at a maximum concentration above their screening level (ASL) are designated as COPCs unless the frequency of detection (FOD) is less than or equal to 5%. However, constituents detected in hotspots (at a maximum concentration greater than 10x the respective screening level) were designated as COPCs regardless of the detection frequency (HTSPT). Constituents with maximum detected concentrations below the screening levels (BSL) are not designated as COPCs.

-: not available or not applicable. %: percent.

COPC: constituent of potential concern.

ft bgs: feet below ground surface.

max: maximum.

min: minimum. No.: number.

pCi/g: picoCurie(s) per gram.

PRG: preliminary remediation goal.

Statistical Summary and Selection of Chemical Constituents of Potential Concern:

Former Esperanza Mill - Shallow Soil/Sediment (0 to 0.5 ft bgs)

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita

Sierrita Mine, Green Valley, Arizona

	Freque	ncv	of Detec	tion	Reportin	g Limits		ected ntrations	- Sample Identification of Maximum		ntial Screening	Is Maximum Concentration >		stituent a
Constituent [a]	rreque	псу	oi Detec		Min -	· Max	Min	- Max	Concentration	Lev	el [b]	10x nrSRL?	СОР	PC? [c]
	No. of Detects		No. of samples	(%)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(Sample Date)	(mg/kg)	Surrogate	(YES/no)	(YES/no)	Rationale
Inorganics														
Antimony	40	/	45	89	1.00E+00	- 1.00E+00	2.00E-01	- 6.90E+01	EM-17 081304(8/13/2004)	4.10E+02	_	no	no	BSL
Arsenic	42	/	45	93	1.01E+01	- 3.54E+01	1.40E+00	- 1.01E+02	EM-17 081304(8/13/2004)	1.00E+01	_	YES	YES	ASL
Barium	33	/	33	100			4.50E+01	- 2.94E+02	CS-JS-05-0-1_08272008(8/27/2008)	1.70E+05	_	no	no	BSL
Beryllium	40	/	45	89	1.00E+00 ·	- 5.00E+00	1.70E-01	- 2.36E+00	EM-26 081304(8/13/2004)	1.90E+03	_	no	no	BSL
Cadmium	20	/	45	44	2.00E+00	- 2.00E+00	3.20E-01	- 5.65E+00	EM-3 081304(8/13/2004)	5.10E+02	_	no	no	BSL
Chromium	45	/	45	100			2.00E+00	- 2.30E+01	C-JS-04-0-1_08052008(8/5/2008)	1.00E+06	Chromium III	no	no	BSL
Cobalt	36	/	37	97	5.00E+00	5.00E+00	3.00E+00	- 1.90E+01	EM-JS-07-0-1_08132008(8/13/2008)	1.30E+04	_	no	no	BSL
Copper	45	/	45	100		_	1.13E+02	- 3.02E+04	RA-JS-02-0-1 08112008(8/11/2008)	4.10E+04	_	no	no	BSL
Lead	45	/	45	100		_	4.99E+00	- 4.77E+02	C-JS-05-0-1 08052008(8/5/2008)	8.00E+02	_	no	no	BSL
Manganese	45	/	45	100		_	3.00E+01	- 9.28E+02	EM-26 081304(8/13/2004)	3.20E+04	_	no	no	BSL
Mercury	17	/	45	38	4.00E-02	- 2.00E-01	4.00E-02	- 3.60E-01	RA-JS-02-0-1 08112008(8/11/2008)	3.10E+02	_	no	no	BSL
Molybdenum	45	/	45	100			7.00E+00	- 6.83E+03	EM-JS-07-0-1_08132008(8/13/2008)	5.10E+03	_	no	YES	ASL
Nickel	39	/	45	87	1.00E+00 ·	- 5.00E+00	2.00E+00	- 2.50E+01	EM-4 081304(8/13/2004)	2.00E+04	_	no	no	BSL
Selenium	36	/	45	80	4.10E-01	- 1.11E+01	9.00E-02	- 9.40E+00	EM-3 081304(8/13/2004)	5.10E+03	_	no	no	BSL
Thallium	38	/	44	86	1.80E-01	- 3.00E-01	7.00E-02	- 8.90E-01	EM-14 081304(8/13/2004)	6.70E+01	_	no	no	BSL
Uranium	33	/	33	100			1.96E+00	- 1.10E+01	CS-JS-03-0-1_08052008(8/5/2008)	2.00E+02	_	no	no	BSL
Zinc	44	/	44	100			2.50E+01	- 8.24E+02	EM-3 081304(8/13/2004)	3.10E+05	_	no	no	BSL

Notes:

[a] All detected constituents are presented.

[b] Refer to Table 5-3 for screening level selection.

[c] Constituents detected at a maximum concentration above their screening level (ASL) are designated as COPCs unless the frequency of detection (FOD) is less than or equal to 5%. However, constituents detected in hotspots (at a maximum concentration greater than 10x the respective screening level) were designated as COPCs regardless of the detection frequency (HTSPT). Constituents with maximum detected concentrations below the screening levels (BSL) are not designated as COPCs.

-: not available or not applicable.

mg/kg: milligram(s) per kilogram.

%: percent.

min: minimum. No.: number.

COPC: constituent of potential concern.

nrSRL: non-residential Soil Remediation Level.

ft bgs: feet below ground surface. max: maximum.

Statistical Summary and Selection of Radionuclide Constituents of Potential Concern: Former Esperanza Mill - Shallow Soil/Sediment (0 to 0.5 ft bgs)

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

	Freque	ncy of Dete	ction	Report	ing Limits	Dete Concent		- Sample Identification	Composite Worker PRG for	Is Maximum Concentration		stituent a
Constituent [a]	Treque	ncy of Dete	Clion	Min	- Max	Min -	Max	of Maximum Concentration	Soil [b]	> 10x PRG?	COP	C? [c]
	No. of Detects	No. of Samples	(%)	(pCi/g)	(pCi/g)	(pCi/g)	(pCi/g)	(Sample Date)	(pCi/g)	(YES/no)	(YES/no)	Rationale
Radionuclides												
Radium-226	30	/ 30	100	_		5.40E-01 -	5.80E+00	RA-JS-03-0-1_08072008(8/7/2008)	2.10E-02	YES	YES	ASL
Radium-228	28	/ 30	93.3	2.40E+00	- 2.50E+00	1.40E+00 -	3.70E+00	EM-JS-02-0-1_08012008(8/1/2008)	1.30E-01	YES	YES	ASL
Uranium-234	30	/ 30	100	_		1.00E+00 -	3.70E+00	RA-JS-05-0-1_08072008(8/7/2008)	2.80E+01	no	no	BSL
Uranium-235	21	/ 30	70	5.20E-02	- 1.10E-01	5.50E-02 -	2.00E-01	RA-JS-05-0-1_08072008(8/7/2008)	3.00E-01	no	no	BSL
Uranium-238	30	/ 30	100	_		9.20E-01 -	3.50E+00	RA-JS-05-0-1_08072008(8/7/2008)	1.40E+00	no	YES	ASL

Notes:

- [a] Only detected constituents are presented.
- [b] Refer to Table 5-3 for screening level selection.
- [c] Constituents detected at a maximum concentration above their screening level (ASL) are designated as COPCs unless the frequency of detection (FOD) is less than or equal to 5%. However, constituents detected in hotspots (at a maximum concentration greater than 10x the respective screening level) were designated as COPCs regardless of the detection frequency (HTSPT). Constituents with maximum detected concentrations below the screening levels (BSL) are not designated as COPCs.

-: not available or not applicable.

%: percent.

COPC: constituent of potential concern. ft bgs: feet below ground surface.

max: maximum.

min: minimum.

No.: number.

pCi/g: picoCurie(s) per gram. PRG: preliminary remediation goal.

1 10. premimary remediation god

Statistical Summary and Selection of Chemical Constituents of Potential Concern:

Former Esperanza Mill - Shallow Soil/Sediment (0 to 2 ft bgs) Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita

Sierrita Mine, Green Valley, Arizona

	Frequer	ncv (of Detecti	on ·	Reporti	ng Limits	Det Conce			- Sample Identification of		esidential	Is Maximum Concentration >		stituent a
Constituent [a]	ricquei	, .	or Detecti		Min	- Max	Min	-	Max	Maximum Concentration	Screeni	ng Level [b]	10x nrSRL?	COP	C? [c]
	No. of Detects	;	No. of Samples	(%)	(mg/kg)	(mg/kg)	(mg/kg)		(mg/kg)	(Sample Date)	(mg/kg)	Surrogate	(YES/no)	(YES/no)	Rationale
Inorganics															
Antimony	64	/	80	80	1.002	- 1.00E+00	2.002 01	_	6.90E+01	EM-17 081304(8/13/2004)	4.10E+02	_	no	no	BSL
Arsenic	76	/	82	93	1.01E+01	- 8.97E+01	1.00E+00	- 1	1.01E+02	EM-17 081304(8/13/2004)	1.00E+01	_	YES	YES	ASL
Barium	66	/	66	100	_		4.02E+01	- 2	2.94E+02	CS-JS-05-0-1_08272008(8/27/2008)	1.70E+05	_	no	no	BSL
Beryllium	71	/	82	87	1.00E+00	- 5.00E+00	1.70E-01	- 2	2.36E+00	EM-26 081304(8/13/2004)	1.90E+03	_	no	no	BSL
Cadmium	33	/	80	41	2.00E+00	- 2.00E+00	3.20E-01	- 5	5.65E+00	EM-3 081304(8/13/2004)	5.10E+02	_	no	no	BSL
Chromium	80	/	80	100	_		2.00E+00	- 3	3.70E+01	CS-JS-01-1-3_08042008(8/4/2008)	1.00E+06	Chromium III	no	no	BSL
Cobalt	69	/	70	99	5.00E+00	- 5.00E+00	1.00E+00	- 2	2.20E+01	RA-JS-02-1-3_08112008(8/11/2008)	1.30E+04	_	no	no	BSL
Copper	82	/	82	100	_		6.20E+01	- 3	3.02E+04	RA-JS-02-0-1 08112008(8/11/2008)	4.10E+04	_	no	no	BSL
Lead	82	1	82	100	_		2.81E+00	- 3	3.74E+03	C-JS-05-1-3 08052008(8/5/2008)	8.00E+02	_	no	YES	ASL
Manganese	80	1	80	100	_		3.00E+01	- 6	9.28E+02	EM-26 081304(8/13/2004)	3.20E+04	_	no	no	BSL
Mercury	24	/	80	30	4.00E-02	- 2.00E-01	4.00E-02	- 3	3.60E-01	RA-JS-02-0-1_08112008(8/11/2008)	3.10E+02	_	no	no	BSL
Molybdenum	81	/	82	99	5.00E+00	- 5.00E+00	3.00E+00	- 6	3.83E+03	EM-JS-07-0-1_08132008(8/13/2008)	5.10E+03	_	no	YES	ASL
Nickel	71	1	80	89	1.00E+00	- 5.00E+00	2.00E+00	- 2	2.50E+01	EM-4 081304(8/13/2004)	2.00E+04	_	no	no	BSL
Selenium	66	1	80	83	2.60E-01	- 1.11E+01	5.00E-02	- 6	9.40E+00	EM-3 081304(8/13/2004)	5.10E+03	_	no	no	BSL
Thallium	67	/	78	86	1.20E-01	- 3.00E-01	7.00E-02	- 8	8.90E-01	EM-14 081304(8/13/2004)	6.70E+01	_	no	no	BSL
Uranium	66	/	66	100	_		1.17E+00	- 1	1.34E+01	RA-JS-01-1-3_08072008(8/7/2008)	2.00E+02	_	no	no	BSL
Zinc	78	/	78	100	_		2.50E+01	- 8	3.24E+02	EM-3 081304(8/13/2004)	3.10E+05	_	no	no	BSL

Notes:

[a] All detected constituents are presented.

[b] Refer to Table 5-3 for screening level selection.

[c] Constituents detected at a maximum concentration above their screening level (ASL) are designated as COPCs unless the frequency of detection (FOD) is less than or equal to 5%. However, constituents detected in hotspots (HTSPT) (at a maximum concentration greater than 10x the respective screening level) were designated as COPCs regardless of the detection frequency. Constituents with maximum detected concentrations below the screening levels (BSL) are not designated as COPCs.

-: not available or not applicable. mg/kg: milligram(s) per kilogram.

%: percent. min: minimum. COPC: constituent of potential concern. No.: number.

ft bgs: feet below ground surface. nrSRL: non-residential Soil Remediation Level.

max: maximum.

Statistical Summary and Selection of Radionuclide Constituents of Potential Concern: Former Esperanza Mill - Shallow Soil/Sediment (0 to 2 ft bgs)

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

	Freque	ncy of Dete	oction	Report	ing Limits		etecte entrat		Sample Identification	Composite Worker PRG for	Is Maximum Concentration	Is Cons	tituent a
Constituent [a]	rieque	ncy of Dete	Ction	Min	- Max	Min	-	Max	of Maximum Concentration	Soil [b]	> 10x PRG?	СОР	C? [c]
	No. of Detects	No. of Samples	(%)	(pCi/g)	(pCi/g) (pCi/g)		(pCi/g)	(Sample Date)	(pCi/g)	(YES/no)	(YES/no)	Rationale
Radionuclides													
Radium-226	62	/ 62	100	_		5.40E-01	- 5	5.80E+00	RA-JS-03-0-1_08072008(8/7/2008)	2.10E-02	YES	YES	ASL
Radium-228	59	/ 62	95.2	2.00E+00	- 2.50E+	00 1.00E+00) - 8	3.90E+00	RA-JS-02-1-3_08112008(8/11/2008)	1.30E-01	YES	YES	ASL
Uranium-234	62	/ 62	100	_		8.50E-01	- 6	6.60E+00	CS-JS-05-1-3 08272008(8/27/2008)	2.80E+01	no	no	BSL
Uranium-235	45	/ 62	72.6	4.20E-02	- 2.00E-0	01 4.20E-02	: - (3.40E-01	CS-JS-05-1-3_08272008(8/27/2008)	3.00E-01	no	YES	ASL
Uranium-238	62	/ 62	100	-		9.00E-01	- 6	6.60E+00	CS-JS-05-1-3_08272008(8/27/2008)	1.40E+00	no	YES	ASL

Notes:

- [a] Only detected constituents are presented.
- [b] Refer to Table 5-3 for screening level selection.

[c] Constituents detected at a maximum concentration above their screening level (ASL) are designated as COPCs unless the frequency of detection (FOD) is less than or equal to 5%. However, constituents detected in hotspots (at a maximum concentration greater than 10x the respective screening level) were designated as COPCs regardless of the detection frequency (HTSPT). Constituents with maximum detected concentrations below the screening levels (BSL) are not designated as COPCs.

-: not available or not applicable. min: minimum. %: percent. No.: number.

COPC: constituent of potential concern.
ft bgs: feet below ground surface.

pCi/g: picoCurie(s) per gram.
PRG: preliminary remediation goal.

max: maximum.

Statistical Summary and Selection of Chemical Constituents of Potential Concern: Former Esperanza Mill - Shallow and Deep Soil/Sediment (0 to 15 ft bgs)

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

	Freque	ncv	of Detect	ion	Reporti	ng Limits	Det Conce	ected ntratio	ns	- Sample Identification of	Non-Reside	ntial Screening	Is Maximum Concentration >	Is Cons	stituent a
Constituent [a]	rieque	псу	or Detect	1011	Min	- Max	Min	- 1	Max	Maximum Concentration	Le	vel [b]	10x nrSRL?	COP	C? [c]
	No. of Detects	;	No. of Samples	(%)	(mg/kg)	(mg/kg)	(mg/kg)	(m	ıg/kg)	(Sample Date)	(mg/kg)	Surrogate	(YES/no)	(YES/no)	Rationale
Inorganics															
Antimony	86	/	114	75	2.00E-01	- 1.00E+00	2.00E-01	- 6.9	0E+01	EM-17 081304(8/13/2004)	4.10E+02	_	no	no	BSL
Arsenic	112	/	119	94	1.01E+01	- 8.97E+01	1.00E+00	- 1.0	1E+02	EM-17 081304(8/13/2004)	1.00E+01	-	YES	YES	ASL
Barium	95	/	95	100	-		3.92E+01	- 3.6	6E+02	CS-JS-02-5-7_08042008(8/4/2008)	1.70E+05	-	no	no	BSL
Beryllium	107	/	119	90	1.00E+00	- 5.00E+00	1.70E-01	- 6.2	0E+00	RA-JS-02-5-7_08112008(8/11/2008)	1.90E+03	-	no	no	BSL
Cadmium	51	/	114	45	2.00E+00	- 2.00E+00	2.60E-01	- 8.3	0E+00	CS-JS-02-10-11_08042008(8/4/2008)	5.10E+02	-	no	no	BSL
Chromium	114	/	114	100	-		2.00E+00	- 1.9	3E+02	EM-JS-08-10-12_08122008(8/12/2008)	1.00E+06	Chromium III	no	no	BSL
Chromium VI	1	1	5	20	4.00E+00	- 9.00E+00	4.00E+00	- 4.0	0E+00	EM-JS-08-10-12_08122008(8/12/2008)	6.50E+01	_	no	no	BSL
Cobalt	98	/	99	99	5.00E+00	- 5.00E+00	1.00E+00	- 4.2	0E+01	EM-JS-08-5-7 08122008(8/12/2008)	1.30E+04	_	no	no	BSL
Copper	119	1	119	100	_		6.20E+01	- 3.0	2E+04	RA-JS-02-0-1_08112008(8/11/2008)	4.10E+04	_	no	no	BSL
Lead	119	1	119	100	_		2.81E+00	- 3.7	4E+03	C-JS-05-1-3 08052008(8/5/2008)	8.00E+02	_	no	YES	ASL
Manganese	114	1	114	100	_		3.00E+01	- 9.3	2E+02	EM-JS-08-5-7_08122008(8/12/2008)	3.20E+04	_	no	no	BSL
Mercury	35	1	114	31	4.00E-02	- 2.00E-01	4.00E-02	- 6.0	0E-01	EM-JS-08-5-7 08122008(8/12/2008)	3.10E+02	_	no	no	BSL
Molybdenum	118	/	119	99	5.00E+00	- 5.00E+00	3.00E+00	- 6.8	3E+03	EM-JS-07-0-1 08132008(8/13/2008)	5.10E+03	_	no	YES	ASL
Nickel	103	1	114	90	1.00E+00	- 5.00E+00	2.00E+00	- 3.3	0E+01	EM-JS-08-5-7_08122008(8/12/2008)	2.00E+04	_	no	no	BSL
Selenium	93	1	114	82	1.90E-01	- 1.11E+01	5.00E-02	- 9.4	0E+00	EM-3 081304(8/13/2004)	5.10E+03	_	no	no	BSL
Thallium	98	1	111	88	1.20E-01	- 3.00E-01	7.00E-02	- 1.1	0E+00	EM-T-2-2.5 100504(10/5/2004)	6.70E+01	_	no	no	BSL
Uranium	95	1	95	100	_		1.17E+00	- 2.9	9E+01	RA-JS-02-5-7 08112008(8/11/2008)	2.00E+02	_	no	no	BSL
Zinc	111	/	111	100	-		2.50E+01	- 3.6	3E+03	CS-JS-02-10-11_08042008(8/4/2008)	3.10E+05	-	no	no	BSL

Notes:

[a] All detected constituents are presented.

[b] Refer to Table 5-3 for screening level selection.

[c] Constituents detected at a maximum concentration above their screening level (ASL) are designated as COPCs unless the frequency of detection (FOD) is less than or equal to 5%. However, constituents detected in hotspots (HTSPT) (at a maximum concentration greater than 10x the respective screening level) were designated as COPCs regardless of the detection frequency. Constituents with maximum detected concentrations below the screening levels (BSL) are not designated as COPCs.

-: not available or not applicable.

mg/kg: milligram(s) per kilogram.

%: percent.

min: minimum. No.: number.

COPC: constituent of potential concern.

nrSRL: non-residential Soil Remediation Level.

ft bgs: feet below ground surface.

max: maximum.

Statistical Summary and Selection of Radionuclide Constituents of Potential Concern: Former Esperanza Mill - Shallow and Deep Soil/Sediment (0 to 15 ft bgs) **Baseline Human Health Risk Assessment**

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

	Frequency of Detection onstituent [a]		Frequency of Detection Reporting Limits Min - Max		Detected Concentrations Sample Identification		Composite Worker PRG for	Is Maximum Concentration	Is Cons	stituent a		
Constituent [a]					- Max	Min - Max of Maximum Concentration		Soil [b]	> 10x PRG?	COF		
	No. of Detects	No. of Samples	(%)	(pCi/g)	(pCi/g)	(pCi/g)	(pCi/g)	(Sample Date)	(pCi/g)	(YES/no)	(YES/no)	Rationale
Radionuclides Radium-226 Radium-228 Uranium-234 Uranium-235 Uranium-238	88 85 88 68 88	/ 88 / 88 / 88 / 88 / 88	100 96.6 100 77.3 100	2.00E+00 - 4.20E-02	 - 2.50E+00 - 2.00E-01	5.40E-01 1.00E+00 8.50E-01 4.20E-02 9.00E-01	- 5.80E+00 - 8.90E+00 - 1.20E+01 - 5.70E-01		3.00E-01	YES YES no no no	YES YES no YES YES	ASL ASL BSL ASL ASL

Notes:

- [a] Only detected constituents are presented.
- [b] Refer to Table 5-3 for screening level selection.

[c] Constituents detected at a maximum concentration above their screening level (ASL) are designated as COPCs unless the frequency of detection (FOD) is less than or equal to 5%. However, constituents detected in hotspots (at a maximum concentration greater than 10x the respective screening level) were designated as COPCs regardless of the detection frequency (HTSPT). Constituents with maximum detected concentrations below the screening levels (BSL) are not designated as COPCs.

-: not available or not applicable.

min: minimum. %: percent. No.: number.

COPC: constituent of potential concern. pCi/g: picoCurie(s) per gram. ft bgs: feet below ground surface. PRG: preliminary remediation goal.

max: maximum.

Table 5-20 Summary of Exposure Point Concentrations (Chemicals) for Soil/Sediment: Former CLEAR Plant, Exposed Samples Only Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

COPC	_	COPC? [a] Shallow Soil/Sediment	Exposure Point Concentrations [b] Shallow Soil/Sediment
	CASRN	(0 to 0.5 ft bgs)	(0 to 0.5 ft bgs) (mg/kg)
Inorganics			
Antimony	7440-36-0	no	_
Arsenic	7440-38-2	YES	3.01E+01
Barium	7440-39-3	no	_
Beryllium	7440-41-7	no	_
Cadmium	7440-43-9	no	_
Chromium	7440-47-3	no	_
Cobalt	7440-48-4	no	_
Copper	7440-50-8	YES	1.23E+04
Lead	7439-92-1	YES	2.67E+02
Manganese	7439-96-5	no	_
Mercury	7487-94-7	no	_
Molybdenum	7439-98-7	no	_
Nickel	7440-02-0	no	_
Selenium	7782-49-2	no	_
Thallium	7440-28-0	no	_
Uranium	7440-61-1	no	_
Zinc	7440-66-6	no	_

Notes:

[a] Constituent of potential concern (COPC), as determined in Table 5-4.

[b] The exposure point concentrations (EPCs) are presented for compounds selected as COPCs. EPCs are the upper confidence limit on the mean concentration (UCL) and were calculated using ProUCL (5.1).

CASRN: Chemical Abstracts Service Registry Number.

ft bgs: feet below ground surface. mg/kg: milligram(s) per kilogram.

^{-:} not applicable.

Table 5-21 Summary of Exposure Point Concentrations (Radionuclides) for Soil/Sediment: Former CLEAR Plant, Exposed Samples Only Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

Constituent	COPC? [a] Shallow Soil/Sediment (0-0.5 ft bgs)	Exposure Point Concentrations [b] Shallow Soil/Sediment (0-0.5 ft bgs) (pCi/g)
Radionuclides Radium-226 Radium-228 Uranium-234 Uranium-235 Uranium-238	YES YES no YES YES	2.15E+00 2.66E+00 2.46E+00 1.46E-01 2.57E+00

Notes:

[a] Constituent of potential concern (COPC), as determined in Table 5-5.

[b] The exposure point concentrations (EPCs) are the upper confidence limit on the mean concentration (UCL) or the maximum concentration where data are insufficient to calculate a UCL (i.e., less than 8 samples or less than 5 detects). The UCLs were calculated using ProUCL (5.1). The UCL used is the 95UCL recommended by ProUCL (5.1).

--: not detected or not applicable.

ft bgs: feet below ground surface.

pCi/g: picoCurie(s) per gram.

ARCADIS 1 of 1

Table 5-22 Summary of Exposure Point Concentrations (Chemicals) for Soil/Sediment: Former CLEAR Plant, All Samples Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita

Sierrita Mine, Green Valley, Arizona

	-	COP	PC? [a]	Exposure Point Concentrations [b]				
COPC	CASRN	Shallow Soil/Sediment (0 to 0.5 ft bgs)	Shallow and Deep Soil/Sediment (0 to 15 ft bgs)	Shallow Soil/Sediment (0 to 0.5 ft bgs) (mg/kg)	Shallow and Deep Soil/Sediment (0 to 15 ft bgs) (mg/kg)			
Inorganics								
Antimony	7440-36-0	no	no	_	_			
Arsenic	7440-38-2	YES	YES	9.58E+00	9.99E+00	soil		
Barium	7440-39-3	no	no	_	_			
Beryllium	7440-41-7	no	no	_	_			
Cadmium	7440-43-9	no	no	_	_			
Chromium	7440-47-3	no	no	_	_			
Cobalt	7440-48-4	no	no	_	_			
Copper	7440-50-8	YES	YES	7.96E+03	7.39E+03	soil		
Lead	7439-92-1	YES	YES	2.58E+02	2.09E+02	soil		
Manganese	7439-96-5	no	no	_	_			
Mercury	7487-94-7	no	no	_	_			
Molybdenum	7439-98-7	no	no	_	_			
Nickel	7440-02-0	no	no	_	_			
Selenium	7782-49-2	no	no	_	_			
Thallium	7440-28-0	no	no	_	_			
Uranium	7440-61-1	no	no	_	_			
Zinc	7440-66-6	no	no	_	_			

Notes:

[a] Constituent of potential concern (COPC), as determined in Tables 5-8 and 5-12.

[b] The exposure point concentrations (EPCs) are presented for compounds selected as COPCs. EPCs are the upper confidence limit on the mean concentration (UCL) and were calculated using ProUCL (5.1).

-: not applicable.

CASRN: Chemical Abstracts Service Registry Number.

ft bgs: feet below ground surface. mg/kg: milligram(s) per kilogram.

Table 5-23 Summary of Exposure Point Concentrations (Chemicals) for Soil/Sediment: Former Esperanza Mill

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

	_	COP	PC? [a]	Exposure Point Concentrations [b]				
COPC	Soil/Sediment Soil/S		Shallow and Deep Soil/Sediment (0 to 15 ft bgs)	Shallow Soil/Sediment (0 to 0.5 ft bgs) (mg/kg)	Shallow and Deep Soil/Sediment (0 to 15 ft bgs) (mg/kg)			
Inorganics								
Antimony	7440-36-0	no	no	-	_			
Arsenic	7440-38-2	YES	YES	1.93E+01	1.29E+01	soil only		
Barium	7440-39-3	no	no	_	_			
Beryllium	7440-41-7	no	no	_	_			
Cadmium	7440-43-9	no	no	_	_			
Chromium	7440-47-3	no	no	_	_			
Chromium VI	18540-29-9	no	no	_	_			
Cobalt	7440-48-4	no	no	_	_			
Copper	7440-50-8	no	no	_	_			
Lead	7439-92-1	no	YES	_	1.33E+02	soil + sed		
Manganese	7439-96-5	no	no	_	_			
Mercury	7487-94-7	no	no	_	_			
Molybdenum	7439-98-7	YES	YES	1.85E+03	1.44E+03	soil + sed		
Nickel	7440-02-0	no	no	_	_			
Selenium	7782-49-2	no	no	-	_			
Thallium	7440-28-0	no	no	_	_			
Uranium	7440-61-1	no	no	_	_			
Zinc	7440-66-6	no	no	_	_			

Notes:

[a] Constituent of potential concern (COPC), as determined in Tables 5-14 and 5-18.

[b] The exposure point concentrations (EPCs) are presented for compounds selected as COPCs. EPCs are the upper confidence limit on the mean concentration (UCL) and were calculated using ProUCL (5.1).

-: not applicable.

CASRN: Chemical Abstracts Service Registry Number.

ft bgs: feet below ground surface. mg/kg: milligram(s) per kilogram.

Table 5-24 Summary of Exposure Point Concentrations (Radionuclides): All Exposure Areas Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

		COP	C? [a]		Exposure Point Concentrations [b]						
	Former CL All Sa	EAR Plant, mples	Former Esperanza Mill		Former CLEAR Plant, All Samples			Former Esperanza Mill			
	Shallow Soil/Sediment	Shallow and Deep Soil/Sediment	Shallow Soil/Sediment	Shallow and Deep Soil/Sediment	Shallow Soil/Sediment, Exposed and Covered Samples	Shallow and	•	Shallow Soil/Sediment	Shallow a	•	
Constituent	(0-0.5 ft bgs)	(0-15 ft bgs)	(0-0.5 ft bgs)	(0-15 ft bgs)	(0-0.5 ft bgs) (0-15 ft bg (pCi/g) (pCi/g)		bgs)	(0-0.5 ft bgs) (pCi/g)	(0-15 ft bgs) (pCi/g)		
Radionuclides											
Radium-226	YES	YES	YES	YES	2.18E+00	2.58E+00	soil	2.60E+00	2.43E+00	soil+sed	
Radium-228	YES	YES	YES	YES	2.63E+00	2.52E+00	soil	2.19E+00	2.51E+00	soil	
Uranium-234	no	no	no	no	3.08E+00	3.07E+00	soil	2.12E+00	2.71E+00	soil	
Uranium-235	YES	YES	no	YES	1.92E-01	1.85E-01	soil	1.12E-01	1.20E-01	soil	
Uranium-238	YES	YES	YES	YES	3.17E+00	3.15E+00	soil	2.10E+00	2.76E+00	soil	

Notes:

- [a] Constituent of potential concern (COPC), as determined in Tables 5-9, 5-13, 5-15 and 5-19.
- [b] The exposure point concentrations (EPCs) are the upper confidence limit on the mean concentration (UCL) or the maximum concentration where data are insufficient to calculate a UCL (i.e., less than 8 samples or less than 5 detects). The UCLs were calculated using ProUCL (5.1). The UCL used is the 95UCL recommended by ProUCL (5.1). Where multiple 95UCLs are recommended, the following decision logic was used:
- Where 95% KM Adjusted or Approximate Gamma UCL and 95% GROS Adjusted or Approximate Gamma UCL are recommended, the KM Gamma UCL was used because the GROS Gamma UCL is more vulnerable to the effects of outliers.
- Where 95% Student's-t UCL and 95% Modified-t UCL are recommended, the 95% Student's-t UCL was used because Student's-t is a simpler model with similar results.
- Where 95% Student's-t UCL, 95% Modified-t UCL, and 95% H-UCL are recommended, the 95% Student's-t UCL was used because the H-UCL can often be inflated and the Student's-t is a simpler model than Modified-t.
- Where 95% KM (t) UCL, 95% KM (BCA) UCL, and KM H-UCL are recommended, the 95% KM (BCA) UCL was used because H-UCL can often be inflated and the BCA is more accurate and is consistent with the area-weighting approach.
- Where 95% KM (t) UCL and KM H-UCL are recommended, the 95% KM (t) UCL was used because the H-UCL can often be inflated.

ft bgs: feet below ground surface. pCi/g: picoCurie(s) per gram.

ARCADIS 1 of 1

Table 6-1 **Human Health Exposure Parameters** Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

Parameter	Symbol	Units	Commercial/Industrial Outdoor Worker Adult					Adolescent Trespasser		Construction Worker	
			EPA and Arizona Recommended		Site-Specific Factors			(6 to 16 years) EPA and Arizona Recommended		Adult EPA and Arizona Recommended	
			All Exposure	CLEAR		Esperanza Mill		All Exposure Areas		All Exposure Areas	
General Factors											
Averaging Time (cancer)	ATc	days	28,470	[1]	28,470	28,470	[1]	28,470	[1]	28,470	[1]
Averaging Time (noncancer)	ATnc	days	9,125	[2]	9,125	9,125	[2]	3,650	[2]	365	[2]
Body Weight	BW	kg	80	[3]	80	80	[3]	44	[4]	80	[3]
Exposure Frequency	EF	days/year	225	[5]	225	225	[22]	52	[6]	250	[7]
Exposure Duration	ED	years	25	[8]	25	25	[8]	10	[6]	1	[9]
<u>Inhalation</u>											
Exposure Time	ET	hours/day	4	[10]	4	4	[22]	1	[6]	8	[10]
Exposure Time, indoor	ET_i	hours/day	0		0	0		0		0	
Exposure Time, outdoor	ET_o	hours/day	8	[10]	4	4	[22]	1	[6]	8	[10]
Conversion Factor	CF	day/hour	0.042		0.042	0.042		0.042		0.042	
Particulate Emission Factor	PEF	m³/kg	1.396E +09	[11]	1.396E +09	1.396E +09	[11]	1.396E +09	[11]	1.396E +09	[11]
Inhalation Rate	InhR	m³/day	60	[12]	60	60	[12]	13.6	[13]	60	[12]
Age-Adjusted Inhalation Rate	$InhR_{adj}$	m³/day	_		_	_		_		_	
Soil - Ingestion (Oral)											
Incidental Soil Ingestion Rate	IRs	mg/day	100	[14]	100	100	[14]	50	[15]	330	[16]
Age-Adjusted Soil Ingestion Rate	IR_{adj}	mg/day	-		-	_		-		-	
Soil - Dermal Contact											
Exposed Skin Surface Area	SA	cm²	6,125	[17]	6,125	6,125	[17]	4,400	[18]	6,125	[17]
Soil-to-Skin Adherence Rate	SAR	mg/cm²/day	0.15	[19]	0.15	0.15	[19]	0.07	[20]	0.3	[21]

Page 1 of 2

Table 6-1

Human Health Exposure Parameters Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

Notes:

- [1] The averaging time for assessing cancer risk is the average expected lifespan of 78 years (Table 18-1, USEPA 2011) expressed in days.
- [2] The averaging time for evaluating non-cancer health effects is the exposure duration expressed in days (e.g., 25 years x 365 days/year = 9,125 days) (USEPA 1989).
- [3] Mean recommended body weight for adults (Table 8-1, USEPA 2011).
- [4] Mean recommended body weight for adolescents, ages 6-16 (Table 8-1, USEPA 2011).
- [5] Standard default occupational exposure frequency for an outdoor worker (ADHS 2003).
- [6] Professional Judgment: Assumes trespassing occurs one day per week, for one hour at a time. Also assumes trespasser age is 6 to 16 years.
- [7] Standard default occupational exposure frequency for a construction worker (ADHS 2003).
- [8] Standard default occupational exposure duration for an outdoor worker (ADHS 2003; ADEQ 2002).
- [9] Standard default occupational exposure duration for a construction worker (ADHS 2003).
- [10] Professional Judgment: Based on a typical 8-hour workday.
- [11] Standard default particulate emission factor (ADHS 2003; ADEQ 2002).
- [12] Recommended default exposure parameter (USEPA 2015g).
- [13] Based on an age-weighted average of mean inhalation rates for combined males and females, ages 6 to <16 (Table 6-1, USEPA 2011).
- [14] Standard default soil ingestion rate for an adult (ADEQ 2002).
- [15] Recommended central tendency soil and dust ingestion rate for an adult (Table 5-1, USEPA 2011). There is no upper percentile soil and dust ingestion rate for an adult available in Table 5-1 (USEPA, 2011).
- [16] Standard default occupational soil ingestion rate for a construction worker (ADHS 2003).
- [17] Based on an age-weighted average of 95th percentile total skin surface areas for combined males and females, ages 18 to 60 (2.45 m² or 24,500 cm²) (Table 7-9; USEPA 2011). The exposed skin surface area was assumed to be 25% of the total skin surface area (ADEQ, 2002); 24,500 cm² x 0.25 = 6,125 cm².
- [18] Assumes that a receptor 6 to 16 years old is wearing a short-sleeved shirt, shorts, and shoes; therefore, the SA is the time-weighted average of the surface area for the hands, forearms, and lower legs (USEPA 2011).
- [19] Average of recommended values for mean solids adherence to skin for adult hands (0.1595 mg/cm²) and feet (0.1393 mg/cm²), during "activities with soil" (Table 7-4, USEPA 2011).
- [20] The soil-to-skin adherence factor for the adolescent trespasser is based on the geometric mean adherence factor for gardeners (USEPA 2004).
- [21] Standard default soil adherence factor for a construction worker (ADHS 2003).
- [22] Site-specific exposure parameters are based on typical outdoor worker activities and conditions at each of the two exposure areas.

References:

Arizona Department of Environmental Quality. 2002. Appendix P, Table 1: Standard Default Factors. UST Program Release Reporting and Corrective Action Guidance. Accessed online: http://www.azdeq.gov/environ/waste/ust/rbca/appp.pdf

Arizona Department of Health Services. 2003. Table 1: Standard Default Factors. Deterministic Risk Assessment Guidance. ADHS Office of Environmental Health. Accessed online: http://www.azdhs.gov/phs/oeh/pdf/guidance.pdf

- U.S. Environmental Protection Agency. 1989. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part A). EPA/540/1-89/002. Office of Emergency and Remedial Response, USEPA, Washington, DC. (December)
- U.S. Environmental Protection Agency. 2011. Exposure Factors Handbook 2011 Edition (Final). EPA/600/R-09/052F. National Center for Environmental Assessment, Office of Research and Development, USEPA, Washington, DC. (September)
- U.S. Environmental Protection Agency. 2015g. Preliminary Remediation Goals for Radionuclides, User's Guide. Accessed online: http://epaprgs.ornl.gov/radionuclides/prg_guide.html.

ADEQ: Arizona Department of Environmental Quality.

ADHS: Arizona Department of Health Services.

cm²: square centimeter(s).

kg: kilogram(s).

m²: square meter(s).
m³: cubic meter(s).
mg: milligram(s).
USEPA: United States Environmental Protection Agency.

ARCADIS Page 2 of 2

Table 6-2 Dermal Absorption Parameters Baseline Human Health Risk Assessment Sierrita Mine

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

Constituent [a]	ABSd [b] (Unitless)
Inorganics	
Arsenic	0.03
Cobalt	0
Copper	0
Lead	0

Notes:

[a] Only constituents of potential concern are presented.

[b] Dermal absorption efficiency for uptake of constituents from a soil matrix (unitless) (USEPA 2004).

ABSd: dermal absorption efficiency.

ARCADIS Page 1 of 1

Table 7-1 Human Health Toxicity Values for Chemical COPCs Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

Constituent [a]	ABS _{GI} [b]		Oral R	fD [c]		Dermal	RfD [d]	Inhalati	on RfC [c]		Oral CSF [c]	l	Dermal CSF [d]	Inhalation Risk [c	- '
		Subchroni		Chronic		Subchronic	Chronic	Subchronic	Chroni					31	
		(mg/kg/day)	[ref]	(mg/kg/day)	[ref]	(mg/kg/day)	(mg/kg/day)	(mg/m³) [ref]	(mg/m³)	[ref]	(mg/kg/day) ⁻¹ [[ref]	(mg/kg/day) ⁻¹	(mg/m ³) ⁻¹	[ref]
Inorganics															
Arsenic	1	3.0E-04	С	3.0E-04	1	3.0E-04	3.0E-04	1.5E-05 c	1.5E-05	С	1.5E+00	1	1.5E+00	4.3E+00	1
Copper	1	4.0E-02	С	4.0E-02	Н	4.0E-02	4.0E-02	NA	NA		NA		NA	NA	
Lead [e]	1	NA		NA		NA	NA	NA	NA		NA		NA	NA	
Molybdenum	1	5.0E-03	Н	5.0E-03	I	5.0E-03	5.0E-03	NA	NA		NA		NA	NA	

Notes:

- [a] Only constituents of potential concern are presented.
- [b] ABS_{GI} Gastrointestinal absorption fraction (USEPA 2004).
- [c] Toxicity values were selected from the following hierarchy of sources:
- (1) USEPA Integrated Risk Information System (I) (USEPA 2015b).
- (2) USEPA Provisional Peer Reviewed Toxicity Values (P) (USEPA 2015d).
- (3) Agency for Toxic Substances and Disease Registry (A) (ATSDR 2014).
- (4) USEPA Health Effects Summary Tables (H). (USEPA 2015e).
- (5) California Environmental Protection Agency Toxicity Criteria Database (C). (CalEPA 2015).
- [d] RfD (dermal) = RfD (oral) \times ABS_{GI}.

CSF (dermal) = CSF (oral) / ABS_{GI}.

[e] The potential for adverse effects from exposure to lead is evaluated using USEPA lead models.

c: The chronic value is used if no subchronic value is available.

CSF: cancer slope factor.

mg/kg/day: milligram(s) per kilogram per day.

(mg/kg/day)⁻¹: inverse of milligram(s) per kilogram per day.

mg/m³: milligram(s) per cubic meter.

(mg/m³)⁻¹: inverse of milligram(s) per cubic meter.

NA: not available or applicable.

RfC: reference concentration.

RfD: reference dose.

USEPA: United States Environmental Protection Agency.

ARCADIS Page 1 of 1

Table 7-2 Radionuclide Physical Constants and Carcinogenicity Slope Factors Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

		Radioactive Half-Life [a]	Decay Constant (λ) [a]		Slope Factors [a	1]		AC	Fs [c]	GSFi [d]	GSFo [e]
				Soil Ingestion [b]	Adult Only Soil Ingestion [b]	Inhalation	External Exposure	CP	EM	_	
Constituent		yr	yr ⁻¹	risk/pCi	risk/pCi	risk/pCi	risk-yr/pCi-g				
Radionuclides											
Uranium-238	+D [f]	4.47E+09	1.55E-10	1.97E-10	5.62E-11	2.37E-08	1.19E-07	1.0	1.0	0.4	1.0
Jranium-234		2.45E+05	2.82E-06	1.48E-10	5.11E-11	2.80E-08	2.53E-10	1.0	1.0	0.4	1.0
Thorium-230		7.54E+04	9.19E-06	1.66E-10	7.73E-11	3.40E-08	8.45E-10	1.0	1.0	0.4	1.0
Radium-226	+D [f]	1.60E+03	4.33E-04	6.77E-10	2.95E-10	2.82E-08	8.37E-06	1.0	1.0	0.4	1.0
_ead-210		2.22E+01	3.12E-02	1.72E-09	5.99E-10	1.60E-08	1.48E-09	1.0	1.0	0.4	1.0
3ismuth-210		1.37E-02	5.05E+01	2.40E-11	3.74E-12	4.60E-10	2.77E-09	1.0	1.0	0.4	1.0
Polonium-210		3.79E-01	1.83E+00	3.27E-09	1.44E-09	1.50E-08	4.51E-11	1.0	1.0	0.4	1.0
Thorium-232	+D [f]	1.41E+10	4.93E-11	2.17E-09	7.55E-10	8.70E-08	4.04E-06	1.0	1.0	0.4	1.0
horium-228		1.91E+00	3.63E-01	2.43E-10	6.40E-11	1.30E-07	5.64E-09	1.0	1.0	0.4	1.0
Radium-224	+D [f]	1.00E-02	6.91E+01	4.26E-10	8.47E-11	1.10E-08	4.19E-08	1.0	1.0	0.4	1.0
_ead-212		1.21E-03	5.71E+02	6.33E-11	1.31E-11	6.40E-10	4.96E-07	1.0	1.0	0.4	1.0
3ismuth-212	+D [f]	1.15E-04	6.02E+03	1.68E-12	4.44E-13	8.40E-11	4.96E-07	1.0	1.0	0.4	1.0
Thallium-208		5.81E-06	1.19E+05	NA	NA	NA	1.75E-05	1.0	1.0	0.4	1.0
Jranium-235	+D [f]	7.04E+08	9.84E-10	1.54E-10	5.00E-11	2.50E-08	5.76E-07	1.0	1.0	0.4	1.0
Protactinium-231		3.28E+04	2.12E-05	2.98E-10	1.54E-10	7.60E-08	1.27E-07	1.0	1.0	0.4	1.0
Actinium-227		2.18E+01	3.18E-02	2.90E-10	2.01E-10	1.50E-07	1.98E-10	1.0	1.0	0.4	1.0
rancium-223		4.19E-05	1.66E+04	1.69E-11	4.88E-12	4.10E-11	1.35E-07	1.0	1.0	0.4	1.0
Astatine-219		1.78E-06	3.90E+05	NA	NA	NA	NA	1.0	1.0	0.4	1.0
3ismuth-215		1.45E-05	4.79E+04	NA	NA	NA	1.08E-06	1.0	1.0	0.4	1.0
Thorium-227		5.12E-02	1.35E+01	1.29E-10	2.06E-11	3.50E-08	4.45E-07	1.0	1.0	0.4	1.0
Radium-223	+D [f]	3.13E-02	2.21E+01	5.99E-10	1.23E-10	2.90E-08	6.91E-07	1.0	1.0	0.4	1.0
.ead-211		6.87E-05	1.01E+04	9.55E-13	2.63E-13	4.00E-11	2.91E-07	1.0	1.0	0.4	1.0
Astatine-215		3.17E-12	2.19E+11	NA	NA	NA	7.08E-10	1.0	1.0	0.4	1.0
3ismuth-211		4.07E-06	1.70E+05	NA	NA	NA	1.90E-07	1.0	1.0	0.4	1.0
hallium-207		9.08E-06	7.64E+04	NA	NA	NA	1.59E-08	1.0	1.0	0.4	1.0
Polonium-211		1.64E-08	4.24E+07	NA	NA	NA	3.76E-08	1.0	1.0	0.4	1.0

Notes:

- Radioactive half-lives, decay constants and slope factors are from the USEPA Preliminary Remediation Goal (PRG) Summary Table (USEPA 2014c).
- "Adult Only Soil Ingestion" slope factors are used to evaluate worker and trespasser exposures. "Soil Ingestion" slope factors are lifetime values and are appropriate for evaluating residential exposure.
- Isotope-specific ACFs for source area size from Appendix B of Bellamy et al. 2014 (http://epa-prgs.ornl.gov/radionuclides/ACF_FINAL_APPENDIX.pdf), based on the following calculated exposure areas: Former CLEAR Plant Area: 226,499 m² (ground plane, infinite source area)

Former Esperanza Mill Area: 521,523 m² (ground plane, infinite source area)

- Gamma shielding factor for indoor exposure (USEPA 2000).
- Assumes no gamma shielding when individual is outdoors.
- Slope factors account for contributions to risks from ingrowth of the following short-lived radioactive decay products (radioactive half-lives less than or equal to 6 months), with a decay chain extending to, but not including, the next principal or stable radionuclide out to 100 years (+D). This method assumes secular equilibrium (equal activity concentrations) with the parent radionuclide in the environment in the absence of empirical data.

yr: year

"+" indicates branches in the decay chain.

U-238: Th234, Pa-234m+Pa234

Ra-226: Rn-222, Po-218, Pb-214+At-218, Bi-214, Po-214+TI-210

Th-232: Ra-228, Ac-228

Ra-224: Rn-220, Po-216

Bi-212: Po-212

U-235: Th-231

Ra-223: Rn-219. Po-215

ACF: area correction factor. GSFi: Gamma shielding factor, indoor. CP: Former CLEAR Plant Area.

GSFo: Gamma shielding factor, outdoor.

risk/pCi: Risk per picoCurie. risk-yr/pCi-g: Risk per year per picoCurie per gram soil.

EM: Former Esperanza Mill Area. NA: not available.

> ARCADIS 1 of 1

Table 9-1 Summary of Calculated Excess Lifetime Cancer Risks and Noncancer Hazard Indices based on 95% UCLs: Former CLEAR Plant Exposure Area Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

		Former CLI	EAR Plant Exposure A	ırea	
		TOTAL EXCESS LIFE	TIME CANCER RISK	NONCANCER H	AZARD INDEX
	Exposure Type	Direct Contact with Shallow Soil/Sediment	Direct Contact with Shallow and Deep Soil/Sediment	Direct Contact with Shallow Soil/Sediment	Direct Contact with Shallow and Deep Soil/Sediment
Human Receptors	(Table Reference)	(0 to 0.5 ft bgs)	(0 to 15 ft bgs)	(0 to 0.5 ft bgs)	(0 to 15 ft bgs)
Current/Future Scenario					
RME Outdoor	Chemical (Table C-1)	8E-06		0.3	
Commercial/Industrial Worker -	Radiological (Table D-1)	2E-04		_	
Exposed Samples Only	Receptor Total	2E-04		0.3	
Site-Specific Outdoor	Chemical (Table C-2)	8E-06		0.3	
Commercial/Industrial Worker -	Radiological (Table D-2)	8E-05		_	
Exposed Samples Only	Receptor Total	8E-05		0.3	
Hypothetical Future Scenario					
RME Outdoor	Chemical (Tables C-4 and C-7)	2E-06	3E-06	0.2	0.2
Commercial/Industrial Worker	Radiological (Tables D-4 and D-7)	2E-04	2E-04	_	-
- All Samples	Receptor Total	2E-04	2E-04	0.2	0.2
Site-Specific Outdoor	Chemical (Tables C-5 and C-8)	2E-06	3E-06	0.2	0.2
Commercial/Industrial Worker	Radiological (Tables D-5 and D-8)	8E-05	9E-05	_	_
- All Samples	Receptor Total	8E-05	9E-05	0.2	0.2
	Chemical (Table C-10)		3E-07		0.6
Hypothetical Construction Worker	Radiological (Table D-10)		8E-06		_
	Receptor Total		8E-06		0.6
Hypothetical Adolescent	Chemical (Tables C-6 and C-9)	2E-07	2E-07	0.04	0.03
Trespasser	Radiological (Tables D-6 and D-9)	2E-06	2E-06	_	_
1103043361	Receptor Total	2E-06	2E-06	0.04	0.03

Notes:

The current/future scenario evaluated for the Former CLEAR Plant Exposure Area is based on shallow soil and sediment data from the sample locations that are currently exposed at the surface.

The hypothetical future scenarios evaluated for the Former CLEAR Plant Exposure Area are based on soil and sediment data from sample locations that are currently exposed at the surface and from sample locations that are currently covered (i.e., paved or developed) at the surface. This assumes that the currently covered soils will become exposed in the future.

-: not applicable.

95% UCL: 95 percent upper confidence limit of the mean concentration.

ft bgs: feet below ground surface.

ARCADIS Page 1 of 1

Table 9-2 Summary of Calculated Excess Lifetime Cancer Risks and Noncancer Hazard Indices based on 95% UCLs: Former Esperanza Mill Exposure Area Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

		Former Espe	eranza Mill Exposure A	rea	
		TOTAL EXCESS LIFE	TIME CANCER RISK	NONCANCER H	AZARD INDEX
	Exposure Type	Direct Contact with Shallow Soil/Sediment	Direct Contact with Shallow and Deep Soil/Sediment	Direct Contact with Shallow Soil/Sediment	Direct Contact with Shallow and Deep Soil/Sediment
Human Receptors	(Table Reference)	(0 to 0.5 ft bgs)	(0 to 15 ft bgs)	(0 to 0.5 ft bgs)	(0 to 15 ft bgs)
Current Scenario					
RME Outdoor Commercial/Industrial	Chemical (Table C-11)	5E-06		0.3	
Worker	Radiological (Table D-11)	2E-04		_	
vvorker	Receptor Total	2E-04		0.3	
Site-Specific Outdoor	Chemical (Table C-12)	5E-06		0.3	
Commercial/Industrial Worker	Radiological (Table D-12)	8E-05		_	
Commercial/industrial Worker	Receptor Total	9E-05		0.3	
Future Scenario					
RME Outdoor Commercial/Industrial	Chemical (Tables C-11 and C-14)	5E-06	3E-06	0.3	0.2
Worker	Radiological (Tables D-11 and D-14)	2E-04	2E-04	_	-
Worker	Receptor Total	2E-04	2E-04	0.3	0.2
Site-Specific Outdoor	Chemical (Tables C-12 and C-15)	5E-06	3E-06	0.3	0.2
Commercial/Industrial Worker	Radiological (Tables D-12 and D-15)	8E-05	8E-05	_	_
Commercial/madetrial Worker	Receptor Total	9E-05	8E-05	0.3	0.2
	Chemical (Table C-17)		4E-07		0.9
Hypothetical Construction Worker	Radiological (Table D-17)		8E-06		_
	Receptor Total		8E-06		0.9
	Chemical (Tables C-13 and C-16)	4E-07	2E-07	0.07	0.05
Hypothetical Adolescent Trespasser	Radiological (Tables D-13 and D-16)	2E-06	2E-06	_	_
I	Receptor Total	2E-06	2E-06	0.07	0.05

Notes:

- : not applicable.

95% UCL: 95 percent upper confidence limit of the mean concentration.

ft bgs: feet below ground surface.

ARCADIS Page 1 of 1

Table 9-3

Fable 9-3 Summary of Calculated Excess Lifetime Cancer Risks and Noncancer Hazard Indices based on Mean EPCs: Former CLEAR Plant Exposure Area, Background, and Incremental Cancer Risks and Hazard Indices Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

		Former CLE	AR Plant Exposure Are	ea				Background					Incremental		
		TOTAL EXCESS LIFE	TIME CANCER RISK	NONCANCER H	HAZARD INDEX		TOTAL EXCESS LIFE	TIME CANCER RISK	NONCANCER H	IAZARD INDEX		TOTAL EXCESS LIFE	TIME CANCER RISK	NONCANCER H	HAZARD INDEX
Human Receptors	Exposure Type (Table Reference)	Direct Contact with Shallow Soil/Sediment (0 to 0.5 ft bqs)	Direct Contact with Shallow and Deep Soil/Sediment (0 to 15 ft bgs)	Direct Contact with Shallow Soil/Sediment (0 to 0.5 ft bgs)	Direct Contact with Shallow and Deep Soil/Sediment (0 to 15 ft bgs)	Exposure Type (Table Reference)	Direct Contact with Shallow Soil/Sediment (0 to 0.5 ft bgs)	Direct Contact with Shallow and Deep Soil/Sediment (0 to 15 ft bgs)	Direct Contact with Shallow Soil/Sediment (0 to 0.5 ft bgs)	Direct Contact with Shallow and Deep Soil/Sediment (0 to 15 ft bgs)	Exposure Type	Direct Contact with Shallow Soil/Sediment (0 to 0.5 ft bgs)	Direct Contact with Shallow and Deep Soil/Sediment (0 to 15 ft bgs)	Direct Contact with Shallow Soil/Sediment (0 to 0.5 ft bgs)	Direct Contact with Shallow and Deep Soil/Sediment (0 to 15 ft bgs)
· · · · · · · · · · · · · · · · · · ·	(Table Reference)	(0 to 0.5 it bgs)	(0 to 15 it bys)	(0 to 0.5 it bgs)	(0 to 10 it bgs)	(Table Reference)	(0 to 0.5 it bgs)	(U to 15 it bys)	(0 to 0.5 it bgs)	(0 to 10 it bgs)	Exposure Type	(0 to 0.5 it bgs)	(0 to 15 it bys)	(0 to 0.5 it bgs)	(0 to 15 it bgs)
Current/Future Scenario															
RME Outdoor	Chemical (Table H-1)	3E-06		0.1		Chemical (Table G-1)	6E-07		0.009		Chemical	2E-06		0.09	
Commercial/Industrial Worker -	Radiological (Table I-1)	1E-04				Radiological (Table G-17)	1E-04		_		Radiological	3E-05		_	
Exposed Samples Only	Receptor Tota			0.1		Receptor Tota			0.009		Receptor Tota			0.09	
Site-Specific Outdoor	Chemical (Table H-2)	3E-06		0.1		Chemical (Table G-2)	6E-07		0.009		Chemical	2E-06		0.09	
Commercial/Industrial Worker -	Radiological (Table I-2)	7E-05		_		Radiological (Table G-18)	5E-05		_		Radiological	1E-05		-	
Exposed Samples Only	Receptor Tota	7E-05		0.1		Receptor Tota	5E-05		0.009		Receptor Tota	1 2E-05		0.09	
Hypothetical Future Scenario															
RME Outdoor	Chemical (Tables H-4 and H-7)	2E-06	2E-06	0.09	0.09	Chemical (Tables G-1 and G-4)	6E-07	4E-07	0.009	0.006	Chemical	2E-06	2E-06	0.08	0.08
Commercial/Industrial Worker	Radiological (Tables I-4 and I-7)	1E-04	2E-04	-	ı	Radiological (Tables G-17 and G-23)	1E-04	1E-04	_	-	Radiological	3E-05	5E-05	-	-
- All Samples	Receptor Tota		2E-04	0.09	0.09	Receptor Tota		1E-04	0.009	0.006	Receptor Tota		5E-05	0.08	0.08
Site-Specific Outdoor	Chemical (Tables H-5 and H-8)	2E-06	2E-06	0.09	0.09	Chemical (Tables G-2 and G-5)	6E-07	4E-07	0.009	0.006	Chemical	2E-06	2E-06	0.08	0.08
Commercial/Industrial Worker	Radiological (Tables I-5 and I-8)	7E-05	8E-05	_	_	Radiological (Tables G-18 and G-24)		5E-05	_	-	Radiological	2E-05	3E-05	_	-
- All Samples	Receptor Tota	7E-05	8E-05	0.09	0.09	Receptor Tota	5E-05	5E-05	0.009	0.006	Receptor Tota	1 2E-05	3E-05	0.08	0.08
Hypothetical Construction	Chemical (Table H-10)		3E-07		0.3	Chemical (Table G-7)		5E-08		0.02	Chemical		2E-07		0.3
Worker	Radiological (Table I-10)		7E-06		-	Radiological (Table G-26)		5E-06		-	Radiological		2E-06		-
vvorker	Receptor Tota		7E-06		0.3	Receptor Tota	I	5E-06		0.02	Receptor Tota	1	3E-06		0.3
Hypothetical Adolescent	Chemical (Tables H-6 and H-9)	2E-07	2E-07	0.02	0.02	Chemical (Tables G-3 and G-6)	4E-08	3E-08	0.002	0.001	Chemical	1E-07	1E-07	0.02	0.02
3.	Radiological (Tables I-6 and I-9)	2E-06	2E-06	_	-	Radiological (Tables G-19 and G-25)	1E-06	1E-06	_	-	Radiological	4E-07	6E-07	_	_
Trespasser	Receptor Tota	2E-06	2E-06	0.02	0.02	Receptor Tota		1E-06	0.002	0.001	Receptor Tota	1 5E-07	8E-07	0.02	0.02

Notes:

The current/future scenario evaluated for the Former CLEAR Plant Exposure Area is based on shallow soil and sediment data from the sample locations that are currently exposed at the surface.

The hypothetical future scenarios evaluated for the Former CLEAR Plant Exposure Area are based on soil and sediment data from sample locations that are currently exposed at the surface and from sample locations that are currently exposed at the surface and from sample locations that are currently covered (i.e., paved or developed) at the surface. This assumes that the currently covered soils will become exposed in the future.

- : not applicable.EPC: exposure point concentration.ft bgs: feet below ground surface.

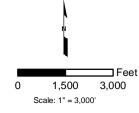
ARCADIS Page 1 of 1

Table 9-4 Summary of Calculated Excess Lifetime Cancer Risks and Noncancer Hazard Indices based on Mean EPCs: Former Esperanza Mill Exposure Area, Background, and Incremental Cancer Risks and Hazard Indices Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

		Former Esp	eranza Mill Exposure Ar	rea				Background					Incremental		
		TOTAL EXCESS LIFE	ETIME CANCER RISK	NONCANCER I	HAZARD INDEX		TOTAL EXCESS LIFE	ETIME CANCER RISK	NONCANCER I	HAZARD INDEX		TOTAL EXCESS LIFE	ETIME CANCER RISK	NONCANCER I	HAZARD INDEX
	Exposure Type	Direct Contact with Shallow Soil/Sediment	Direct Contact with Shallow and Deep Soil/Sediment	Direct Contact with Shallow Soil/Sediment	Direct Contact with Shallow and Deep Soil/Sediment	Exposure Type	Direct Contact with Shallow Soil/Sediment	Direct Contact with Shallow and Deep Soil/Sediment	Direct Contact with Shallow Soil/Sediment	Direct Contact with Shallow and Deep Soil/Sediment		Direct Contact with Shallow Soil/Sediment	Direct Contact with Shallow and Deep Soil/Sediment	Direct Contact with Shallow Soil/Sediment	Direct Contact with Shallow and Deep Soil/Sediment
Human Receptors	(Table Reference)	(0 to 0.5 ft bgs)	(0 to 15 ft bgs)	(0 to 0.5 ft bgs)	(0 to 15 ft bgs)	(Table Reference)	(0 to 0.5 ft bgs)	(0 to 15 ft bgs)	(0 to 0.5 ft bgs)	(0 to 15 ft bgs)	Exposure Type	(0 to 0.5 ft bgs)	(0 to 15 ft bgs)	(0 to 0.5 ft bgs)	(0 to 15 ft bgs)
Current Scenario RME Outdoor	Chaminal (Table II 44)	25.06		0.1		Chemical (Table G-8)	6E-07		0.01		Chaminal	25.06		0.00	
	Chemical (Table H-11)	2E-06 1E-04		· · · ·			1E-04		0.01		Chemical	2E-06		0.09	
Commercial/Industrial	Radiological (Table I-11) Receptor Total			0.1		Radiological (Table G-20) Receptor Total	1E-04 1E-04				Radiological	4E-05 4E-05		-	
Worker Site-Specific Outdoor		1E-04 2E-06							0.01		Receptor Tota	2E-06		0.09	
Commercial/Industrial	Chemical (Table H-12)			0.1		Chemical (Table G-9)	6E-07		0.01		Chemical			0.09	
	Radiological (Table I-12) Receptor Total	7E-05 7E-05		0.1		Radiological (Table G-21) Receptor Total	5E-05				Radiological	2E-05 1 2E-05		-	
Worker Future Scenario	Receptor Total	/E-05		0.1		Receptor rotar	5E-05		0.01		Receptor Tota	III		0.09	
RME Outdoor	Chemical (Tables H-11 and H-14)	2E-06	2E-06	0.1	0.1	Chemical (Tables G-8 and G-11)	6E-07	4E-07	0.01	0.006	Chemical	2E-06	2E-06	0.09	0.09
Commercial/Industrial	Radiological (Tables I-11 and I-14)	1E-04	1E-04		-	Radiological (Tables G-20 and G-23)	1E-04	1E-04	0.01	-	Radiological	4E-05	5E-05	0.09	
Worker	Receptor Total		2E-04	0.1	0.1	Receptor Total	1E-04	1E-04	0.01	0.006	Receptor Tota		5E-05	0.09	0.09
Site-Specific Outdoor	Chemical (Tables H-12 and H-15)	2E-06	2E-06	0.1	0.1	Chemical (Tables G-9 and G-12)	6E-07	4E-07	0.01	0.006	Chemical	2E-06	2E-06	0.09	0.09
Commercial/Industrial	Radiological (Tables I-12 and I-15)	7E-05	8E-05		-	Radiological (Tables G-21 and G-24)	5E-05	5E-05		-	Radiological	2E-05	2E-05	-	-
Worker	Receptor Total		8E-05	0.1	0.1	Receptor Total	5E-05	5E-05	0.01	0.006	Receptor Tota		3E-05	0.09	0.09
	Chemical (Table H-17)	. 2 33	2E-07	0.1	0.4	Chemical (Table G-14)	02.00	5E-08	5.5.	0.02	Chemical		2E-07	5.55	0.4
Hypothetical	Radiological (Table I-17)		7E-06		=	Radiological (Table G-26)		5E-06		_	Radiological		2E-06		
Construction Worker	Receptor Total		7E-06		0.4	Receptor Total		5E-06		0.02	Receptor Tota	1	2E-06		0.4
	Chemical (Tables H-13 and H-16)	2E-07	1E-07	0.03	0.02	Chemical (Tables G-10 and G-13)	4E-08	3E-08	0.002	0.001	Chemical	1E-07	1E-07	0.03	0.02
Hypothetical Adolescen	Radiological (Tables I-13 and I-16)	2E-06	2E-06	_	_	Radiological (Tables G-22 and G-25)	1E-06	1E-06	_	-	Radiological	4E-07	6E-07	_	-
Trespasser	Receptor Total	2E-06	2E-06	0.03	0.02	Receptor Total	1E-06	1E-06	0.002	0.001	Receptor Tota	6E-07	7E-07	0.03	0.02

Notes:

-: not applicable.

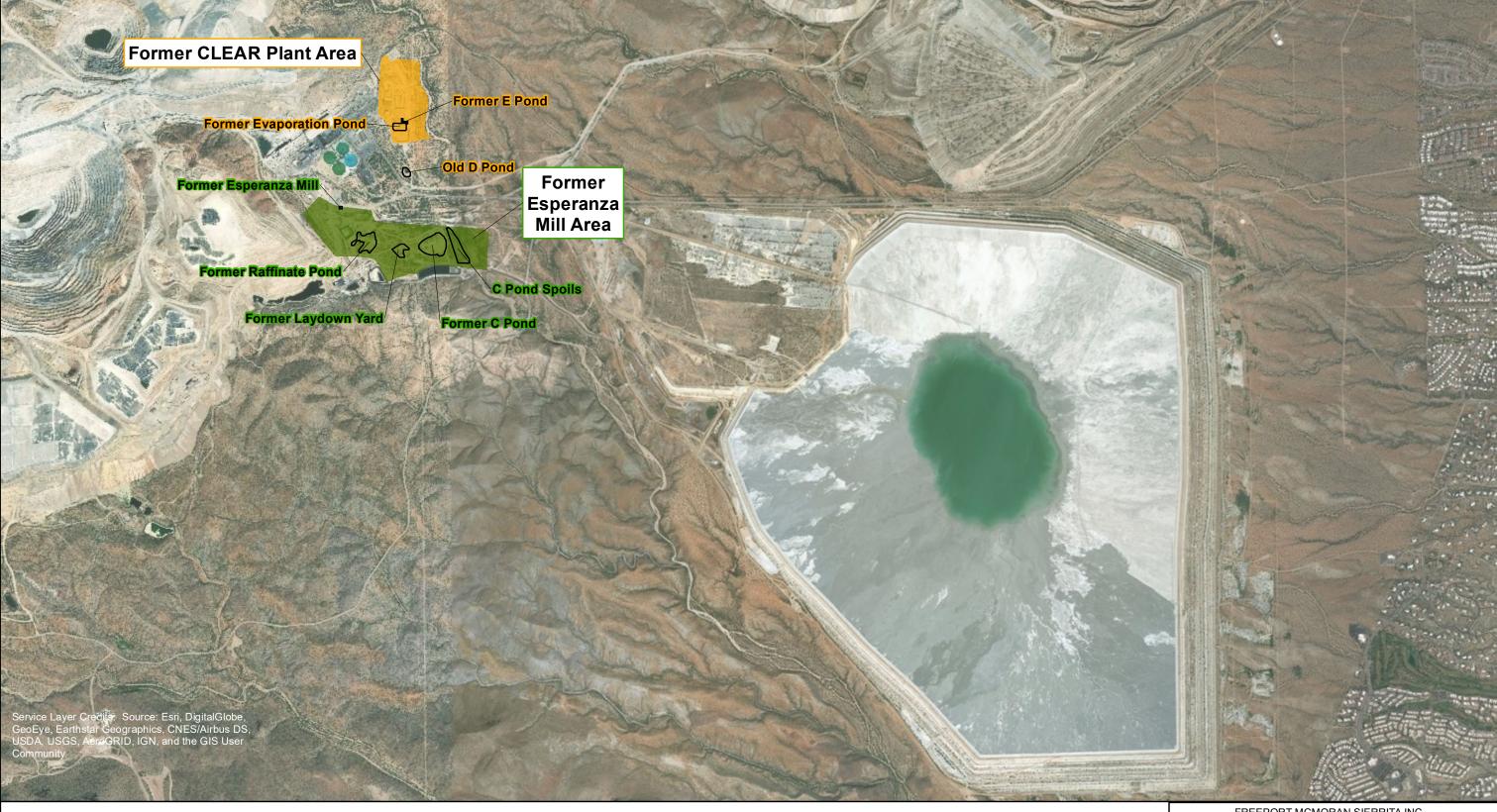

EPC: exposure point concentration.
ft bgs: feet below ground surface.

ARCADIS Page 1 of 1

FIGURES

Document Path: W:\ArcGisData\GISPROJECTS_ENV\Sierrita\GIS\ArcMap_MXD\2015\BHHRA\Fig 1-1 SiteLocationMap.mxd

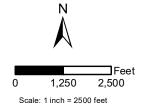
SITE FEATURE



BASELINE HUMAN HEALTH RISK ASSESSMENT

SITE FEATURES MAP

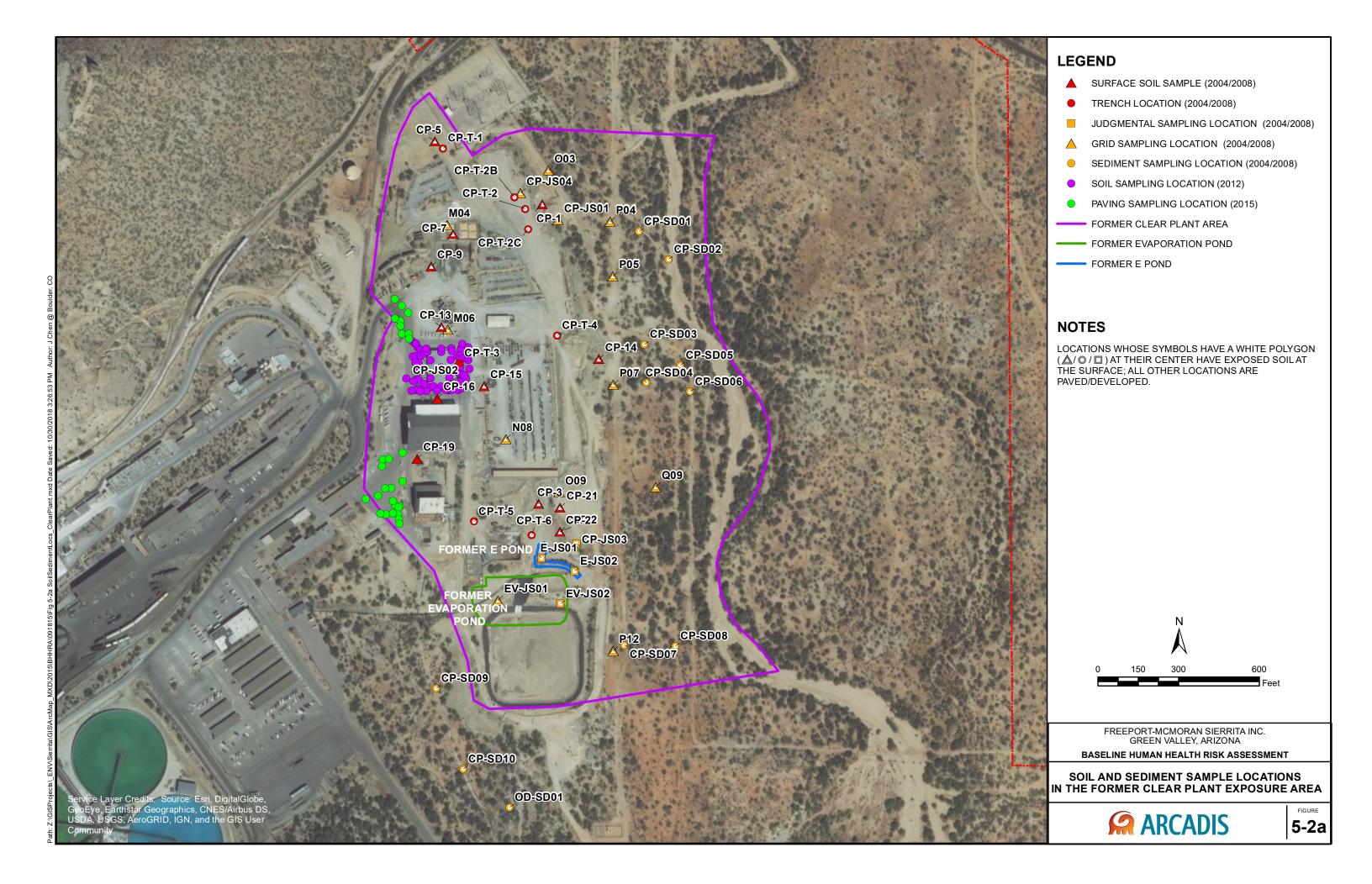
2-1



FOOTPRINT* OF FORMER CLEAR PLANT AREA

FOOTPRINT* OF FORMER ESPERANZA MILL AREA

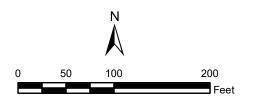
* These footprints of former site features are according to the Final Voluntary Remediation Program - Soil and Sediment Characterization Report, URS Corporation, March 2011, Freeport-McMoran Sierrita Inc.


FREEPORT-MCMORAN SIERRITA INC. GREEN VALLEY, ARIZONA


BASELINE HUMAN HEALTH RISK ASSESSMENT

EXPOSURE AREAS EVALUATED IN THE BASELINE HUMAN HEALTH RISK ASSESSMENT

5-1

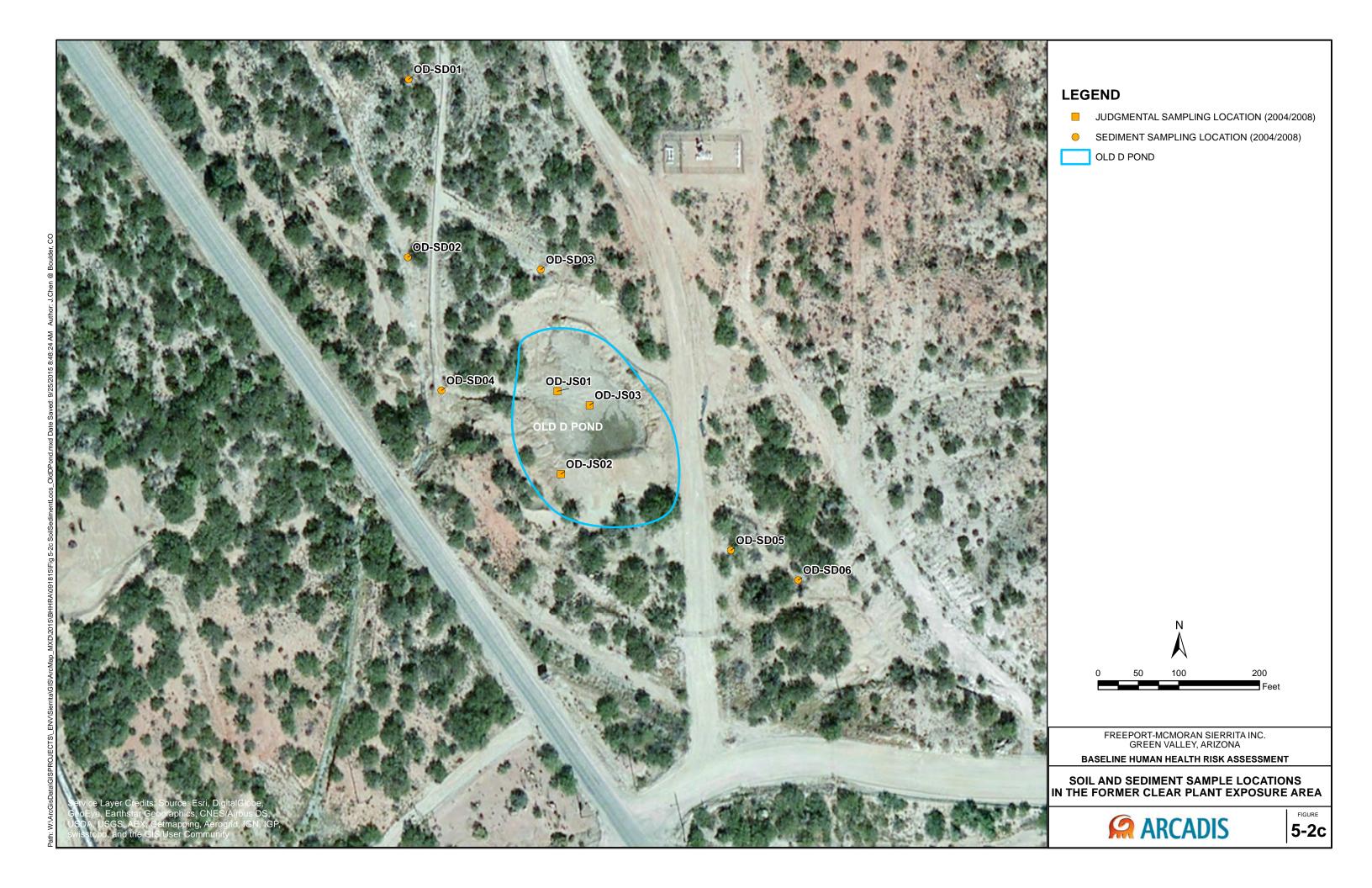


LEGEND

- ▲ SURFACE SOIL SAMPLE (2004/2008)
- TRENCH LOCATION (2004/2008)
- △ GRID SAMPLING LOCATION (2004/2008)
- SOIL SAMPLING LOCATION (2012)
- PAVING SAMPLING LOCATION (2015)
- FORMER CLEAR PLANT AREA

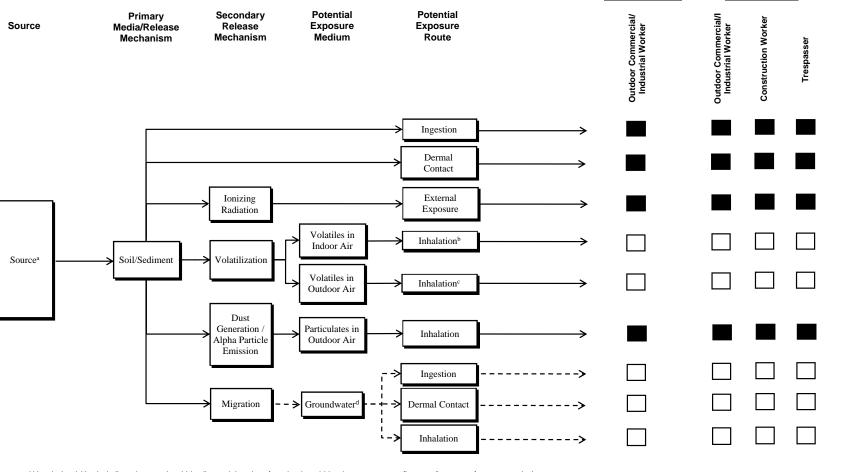
NOTES

LOCATIONS WHOSE SYMBOLS HAVE A WHITE POLYGON (^ O / D) AT THEIR CENTER HAVE EXPOSED SOIL AT THE SURFACE; ALL OTHER LOCATIONS ARE PAVED/DEVELOPED.


FREEPORT-MCMORAN SIERRITA INC. GREEN VALLEY, ARIZONA

BASELINE HUMAN HEALTH RISK ASSESSMENT

SOIL AND SEDIMENT SAMPLE LOCATIONS IN THE FORMER CLEAR PLANT EXPOSURE AREA


5-2b

Onsite Human Receptors

Future Scenario

Current Scenario

Notes:

- a. Source is related to current and historical activities including: a) excavation; b) hauling and dumping of overburden; c) historic processes to refine ore; d) storage of reagents and other solutions: d) accidental spills.
- b. This exposure pathway is incomplete for metals, which are not volatile. Radionuclides were identified as constituents of potential concern, and the potential for radon gas generation was considered. However, the radium 226 (Ra-226) exposure point concentrations (EPCs) used in this risk assessment are considerably lower than the 5 pCi/g cleanup criterion established by the United States Environmental Protection Agency (USEPA) for surface soil at sites with residual radioactive contamination (40 CFR Part 192). The USEPA criterion was intended to limit gamma radiation exposure and to limit the risk from inhalation of radon decay products in houses built on land containing radioactive tailings. Based on these considerations, the indoor air pathway is considered incomplete.
- c. This exposure pathway is incomplete for metals, which are not volatile. The potential for outdoor inhalation exposure to radon is negligible, considering mixing with ambient air would occur. In addition, the Ra-226 EPCs used in this risk assessment are considerably lower than the 5 pCi/g cleanup criterion established by the USEPA for surface soil at sites with residual radioactive contamination. Based on these considerations, the outdoor air pathway is considered incomplete.
- d. Groundwater is not used at the facility nor does it discharge to the surface at any of the three exposure areas. For this reason, it is not an exposure medium for this risk assessment.

Explanation:

 ➤ Transport pathway incomplete;	\rightarrow	Transport pathway complete
Exposure pathway is incomplete.		
Exposure pathway is complete or p	otentially	complete and is quantitatively evaluated in the risk assessment.

BASELINE HUMAN HEALTH RISK ASSESSMENT FREEPORT-MCMORAN SIERRITA SIERRITA MINE, GREEN VALLEY, ARIZONA

HUMAN HEALTH CONCEPTUAL SITE MODEL

FIGURE

6-1

APPENDIX A Soil and Sediment Data Used to Conduct the Baseline Human Health **Risk Assessment**

	Locatio	n Subarea	Former Cl	LEAR Plant	Former Cl	EAR Plant														
	L	ocation ID	CP	-01	CP	-02	CP	-03	CP-	-05	CP-	-07	CP	-09	CP	-13	CP-	14	CP-	-15
		Sample ID	CP-1 (081304	CP-2 (081304	CP-3 (81304	CP-5 C	81304	CP-7 C	81304	CP-9 (81304	CP-13	081304	CP-14 (081304	CP-15	ე81304
	Sa	mple Date	8/13/	/2004	8/13	/2004	8/13/	/2004	8/13/	2004	8/13/	/2004	8/13/	2004	8/13/	/2004	8/13/	2004	8/13/	/2004
	Sample Depth	(feet bgs)	0-0).25	0-0).25	0-0	.25	0-0	.25	0-0).25	0-0	.25	0-0).25	0-0	.25	0-0	0.25
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Antimony	7440-36-0	mg/kg	52		66		4.5		2.0		4.5		10.3		0.6		0.3		1.9	1
Arsenic	7440-38-2	mg/kg	105		166		16.30		17.10		31.30		40.10		5.44		4.63		13.70	1
Barium	7440-39-3	mg/kg	NA		NA		NA		NA		NA		NA		NA		NA		NA	
Beryllium	7440-41-7	mg/kg	0.38		0.11		0.27		0.58		0.52		0.51		1.08		0.44		0.51	1
Cadmium	7440-43-9	mg/kg	3		4		3.23		4.5		5.01		24.9		0.48		1.01		7.38	1
Chromium	7440-47-3	mg/kg	42		35		21		58		9		20		12		6		22	1
Cobalt	7440-48-4	mg/kg	76		40		37		20		NA		20		NA		NA		NA	1
Copper	7440-50-8	mg/kg	45600		9020		21700		6220		20000		59300		1090		2080		8260	1
Lead	7439-92-1	mg/kg	638		1820		51.70		141		152		200		15.4		12.70		116	1
Manganese	7439-96-5	mg/kg	156		71		317		332		295		587		177		464		335	1
Mercury	7439-97-6	mg/kg	< 0.04	U	0.62		0.07		0.12		0.32		0.18		< 0.05	U	< 0.04	U	0.11	l
Molybdenum	7439-98-7	mg/kg	1440		3020		1900		522		2820		2290		273		369		456	
Nickel	7440-02-0	mg/kg	38		17		26		64		7		23		7		8		14	
Selenium	7782-49-2	mg/kg	40		50		13.4		4		10.3		16.1		0.7		0.9		3.2	
Thallium	7440-28-0	mg/kg	0.7		5.2		0.35		0.46	•	0.23		0.23		0.31		0.23	•	0.17	1
Uranium	7440-61-1	mg/kg	NA		NA		NA		NA		NA		NA		NA		NA		NA	1
Zinc	7440-66-6	mg/kg	34		300		143		793		451		6210		76		118		730	1

ARCADIS Page 1 of 30

	Locatio	n Subarea	Former CI	EAR Plant	Former CL	FAR Plant	Former CL	FAR Plant	Former CL	FAR Plant	Former CI	FAR Plant	Former CI	FAR Plant	Former CL	FAR Plant	Former CI	EAR Plant	Former CI	EAR Plant
		ocation ID		-16	CP		CP-		CPB-		CPB-			-S-04		S-05		S-06	CPF-AE	
		Sample ID	CP-16	081304	CP-19	081304	CP-21	081304	CPB-S-02	20120511	CPB-S-03_	20120511	CPB-S-04	20120511	CPB-S-05	20120511	CPB-S-06	20120511	CPF-AE-D2-C	6 20120511
		mple Date		/2004	8/13/	2004	8/13/	2004	5/11/			- /2012	_	- /2012	_	/2012	5/11/		5/11/	_
	Sample Depth	(feet bgs)	0-0).25	0-0	.25	0-0	.25	()	()		0	()	()	()
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual								
Antimony	7440-36-0	mg/kg	11		1.6		0.4		NA		NA		NA		NA		NA		NA	
Arsenic	7440-38-2	mg/kg	34.90		9.10		4.81		17.1		6.9		3.7		17.5		4		11.1	
Barium	7440-39-3	mg/kg	NA		NA		NA		NA		NA									
Beryllium	7440-41-7	mg/kg	0.39		0.42		0.46		NA		NA		NA		NA		NA		NA	1
Cadmium	7440-43-9	mg/kg	21.2		5.95		1.26		NA		NA		NA		NA		NA		NA	
Chromium	7440-47-3	mg/kg	17		7		7		NA		NA		NA		NA		NA		NA	
Cobalt	7440-48-4	mg/kg	NA		NA		NA		NA		NA									
Copper	7440-50-8	mg/kg	109000		23800		2360		2340		1700		1140		1640		2160		2360	
Lead	7439-92-1	mg/kg	950		45.00		25.10		132		17.7		13.3		174		34.2		73.3	
Manganese	7439-96-5	mg/kg	384		273		377		NA		NA		NA		NA		NA		NA	
Mercury	7439-97-6	mg/kg	0.37		0.11		< 0.04	U	NA		NA		NA		NA		NA		NA	
Molybdenum	7439-98-7	mg/kg	1980		2430		446		NA		NA		NA		NA		NA		NA	
Nickel	7440-02-0	mg/kg	31		12		9		NA		NA		NA		NA		NA		NA	
Selenium	7782-49-2	mg/kg	12		28.4		1.0		NA		NA		NA		NA		NA		NA	
Thallium	7440-28-0	mg/kg	0.4		0.21		0.21		NA		NA		NA		NA		NA		NA	
Uranium	7440-61-1	mg/kg	NA		NA		NA		NA		NA									
Zinc	7440-66-6	mg/kg	4400		658		134		NA		NA		NA		NA		NA		NA	

ARCADIS Page 2 of 30

	Locatio	on Subarea	Former CI	LEAR Plant	Former Cl	LEAR Plant	Former CL	EAR Plant	Former Cl	EAR Plant	Former Cl	EAR Plant	Former Cl	LEAR Plant	Former CL	EAR Plant
	L	ocation ID	CPF-AE	E-D3-01	CPF-AE	E-D3-02	CPF-AE	-D3-03	CPF-AE	-D3-04	CPF-AE	-D3-05	CPF-AE-SV	VE-D1.5-01	CPF-AE-SV	VE-D1.5-02
		Sample ID	CPF-AE-D3-0	01_20120502	CPF-AE-D3-0	02_20120502	CPF-AE-D3-0	3_20120502	CPF-AE-D3-0	04_20120502	CPF-AE-D3-0	5_20120511	CPF-AE-SWE-D1	.5-01_20120502	CPF-AE-SWE-D1	.5-02_20120502
	Sa	imple Date	5/2/	2012	5/2/	2012	5/2/	2012	5/2/	2012	5/11/	/2012	5/2/	2012	5/2/	2012
	Sample Depth	(feet bgs)		0		0	(0		0	()		0	()
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Antimony	7440-36-0	mg/kg	NA		NA		NA		NA		NA		NA		NA	
Arsenic	7440-38-2	mg/kg	10.9		7.6		9.3		8.1		12.2		12.7		9.9	
Barium	7440-39-3	mg/kg	NA		NA		NA		NA		NA		NA		NA	
Beryllium	7440-41-7	mg/kg	NA		NA		NA		NA		NA		NA		NA	
Cadmium	7440-43-9	mg/kg	NA		NA		NA		NA		NA		NA		NA	
Chromium	7440-47-3	mg/kg	NA		NA		NA		NA		NA		NA		NA	
Cobalt	7440-48-4	mg/kg	NA		NA		NA		NA		NA		NA		NA	
Copper	7440-50-8	mg/kg	2330		1840		1860		2860		1680		2500		1490	
Lead	7439-92-1	mg/kg	56		127		38.3		19.3		36.9		94		12.5	
Manganese	7439-96-5	mg/kg	NA		NA		NA		NA		NA		NA		NA	
Mercury	7439-97-6	mg/kg	NA		NA		NA		NA		NA		NA		NA	
Molybdenum	7439-98-7	mg/kg	NA		NA		NA		NA		NA		NA		NA	
Nickel	7440-02-0	mg/kg	NA		NA		NA		NA		NA		NA		NA	
Selenium	7782-49-2	mg/kg	NA		NA		NA		NA		NA		NA		NA	
Thallium	7440-28-0	mg/kg	NA		NA		NA		NA		NA		NA		NA	
Uranium	7440-61-1	mg/kg	NA		NA		NA		NA		NA		NA		NA	
Zinc	7440-66-6	mg/kg	NA		NA		NA		NA		NA		NA		NA	

ARCADIS Page 3 of 30

	Locatio	n Subarea	Formor CI	EAR Plant	Formor CI	EAR Plant	Formor Cl	EAR Plant	Formor CI	EAR Plant	Formor CI	EAR Plant	Former CL	EAD Dlant
		ocation ID		VE-D1.5-03		/W-D1.5-02	CPF-AE-S		CPF-AE-S\		CPF-AN		CPF-AN-SV	
		Sample ID		_		1.5-02_20120502		01-04_20120511		2-03_20120511	CPF-AN-D1-0		CPF-AN-SWN-DO	_
		imple Date		/2012	5/2/	2012	5/11.	/2012	5/11/	/2012	5/11/	/2012	5/11/	2012
	Sample Depth	, ,		0		0		0)		0)
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Antimony	7440-36-0	mg/kg	NA		NA		NA		NA		NA		NA	
Arsenic	7440-38-2	mg/kg	9.5		8.7		12		8.1		10.1		9.9	
Barium	7440-39-3	mg/kg	NA		NA		NA		NA		NA		NA	
Beryllium	7440-41-7	mg/kg	NA		NA		NA		NA		NA		NA	
Cadmium	7440-43-9	mg/kg	NA		NA		NA		NA		NA		NA	
Chromium	7440-47-3	mg/kg	NA		NA		NA		NA		NA		NA	
Cobalt	7440-48-4	mg/kg	NA		NA		NA		NA		NA		NA	
Copper	7440-50-8	mg/kg	3060		1800		4070		2540		4910		4090	
Lead	7439-92-1	mg/kg	35.6		45.7		279		93.7		236		105	
Manganese	7439-96-5	mg/kg	NA		NA		NA		NA		NA		NA	
Mercury	7439-97-6	mg/kg	NA		NA		NA		NA		NA		NA	
Molybdenum	7439-98-7	mg/kg	NA		NA		NA		NA		NA		NA	
Nickel	7440-02-0	mg/kg	NA		NA		NA		NA		NA		NA	
Selenium	7782-49-2	mg/kg	NA		NA		NA		NA		NA		NA	
Thallium	7440-28-0	mg/kg	NA		NA		NA		NA		NA		NA	
Uranium	7440-61-1	mg/kg	NA		NA		NA		NA		NA		NA	
Zinc	7440-66-6	mg/kg	NA		NA		NA		NA		NA		NA	

ARCADIS Page 4 of 30

	Locatio	n Subarea	Former C	LEAR Plant	Former C	LEAR Plant	Former Cl	EAR Plant	Former CI	EAR Plant	Former CL	EAR Plant	Former Cl	LEAR Plant
	Sample Dat		CPF-AN-S\	WN-D1.5-02	CPF-AN-SV	VN-D1.5-04	CPF-AN-S	WN-D1-01	CPF-AN-S	WN-D1-03	CPF-AN-SW	/S-D0.5-02	CPF-AN-SV	VS-D0.5-03
	;	Sample ID	CPF-AN-SWN-D	1.5-02_20120511	CPF-AN-SWN-D	1.5-04_20120511	CPF-AN-SWN-D	1-01_20120511	CPF-AN-SWN-D	1-03_20120511	CPF-AN-SWS-D0	.5-02_20120511	CPF-AN-SWS-DC).5-03_20120511
	Sa	mple Date	5/11	/2012	5/11	/2012	5/11/	/2012	5/11	/2012	5/11/	2012	5/11/	/2012
	Sample Depth	(feet bgs)		0		0	(0	(0	C)	(ວ
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Antimony	7440-36-0	mg/kg	NA		NA		NA		NA		NA		NA	
Arsenic	7440-38-2	mg/kg	9.8		8.7		6.1		10.7		6.3		18	
Barium	7440-39-3	mg/kg	NA		NA		NA		NA		NA		NA	
Beryllium	7440-41-7	mg/kg	NA		NA		NA		NA		NA		NA	1
Cadmium	7440-43-9	mg/kg	NA		NA		NA		NA		NA		NA	
Chromium	7440-47-3	mg/kg	NA		NA		NA		NA		NA		NA	
Cobalt	7440-48-4	mg/kg	NA		NA		NA		NA		NA		NA	
Copper	7440-50-8	mg/kg	4570		3490		1910		3800		2470		3810	
Lead	7439-92-1	mg/kg	453		466		171		473		279		470	
Manganese	7439-96-5	mg/kg	NA		NA		NA		NA		NA		NA	
Mercury	7439-97-6	mg/kg	NA		NA		NA		NA		NA		NA	
Molybdenum	7439-98-7	mg/kg	NA		NA		NA		NA		NA		NA	
Nickel	7440-02-0	mg/kg	NA		NA		NA		NA		NA		NA	
Selenium	7782-49-2	mg/kg	NA		NA		NA		NA		NA		NA	
Thallium	7440-28-0	mg/kg	NA		NA		NA		NA		NA		NA	
Uranium	7440-61-1	mg/kg	NA		NA		NA		NA		NA	•	NA	
Zinc	7440-66-6	mg/kg	NA		NA		NA		NA		NA		NA	

ARCADIS Page 5 of 30

	Location	on Subarea	Former CL	EAR Plant	Former C	LEAR Plant	Former CI	EAR Plant	Former C	LEAR Plant	Former Cl	EAR Plant	Former CI	EAR Plant	Former Cl	EAR Plant
	L	ocation ID	CPF-AN-SV	VS-D0.5-04	CPF-AN-S	NS-D0.5-05	CPF-AV	V-D2-05	CPF-AV	V-D3-01	CPF-AV	/-D4-02	CPF-AV	/-D4-05	CPF-AW-SV	VE-D0.5-04
		Sample ID	CPF-AN-SWS-DO).5-04_20120511	CPF-AN-SWS-D	0.5-05_20120521	CPF-AW-D2-	05_20120511	CPF-AW-D3-	01_20120501	CPF-AW-D4-0	02_20120501	CPF-AW-D4-	05_20120502	CPF-AW-SWE-DO	0.5-04_20120511
	Sa	ample Date	5/11/	/2012	5/21	/2012	5/11/	/2012	5/1/	2012	5/1/	2012	5/2/	2012	5/11/	/2012
	Sample Depth	(feet bgs)		0		0		0		0))	()
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Antimony	7440-36-0	mg/kg	NA				NA		NA		NA		NA		NA	
Arsenic	7440-38-2	mg/kg	21.7		6.3		9.8		2.6		< 2.5	U	< 2.5	U	15	
Barium	7440-39-3	mg/kg	NA				NA		NA		NA		NA		NA	
Beryllium	7440-41-7	mg/kg	NA				NA		NA		NA		NA		NA	,
Cadmium	7440-43-9	mg/kg	NA				NA		NA		NA		NA		NA	
Chromium	7440-47-3	mg/kg	NA				NA		NA		NA		NA		NA	
Cobalt	7440-48-4	mg/kg	NA				NA		NA		NA		NA		NA	,
Copper	7440-50-8	mg/kg	4390		3760		1040		313		248		924		8970	,
Lead	7439-92-1	mg/kg	379		578		12.3		11.5		11.7		63.1		1140	
Manganese	7439-96-5	mg/kg	NA				NA		NA		NA		NA		NA	,
Mercury	7439-97-6	mg/kg	NA				NA		NA		NA		NA		NA	
Molybdenum	7439-98-7	mg/kg	NA				NA		NA		NA		NA		NA	
Nickel	7440-02-0	mg/kg	NA				NA		NA		NA		NA		NA	,
Selenium	7782-49-2	mg/kg	NA				NA		NA		NA		NA		NA	,
Thallium	7440-28-0	mg/kg	NA				NA		NA		NA		NA		NA	
Uranium	7440-61-1	mg/kg	NA				NA		NA		NA		NA		NA	
Zinc	7440-66-6	mg/kg	NA				NA		NA		NA		NA		NA	

ARCADIS Page 6 of 30

	Locatio	n Subarea	Former Cl	LEAR Plant	Former CL	EAR Plant	Former CI	EAR Plant	Former C	LEAR Plant	Former C	LEAR Plant	Former C	LEAR Plant
	L	ocation ID	CPF-AW-S\	WE-D1.5-01	CPF-AW-SV	VE-D1.5-02	CPF-AW-S\	VE-D2.5-02	CPF-AW-S	NE-D2.5-03	CPF-AW-SW	/W-D0.75-04	CPF-AW-S	WW-D1-03
		Sample ID	CPF-AW-SWE-D	1.5-01_20120501	CPF-AW-SWE-D1	.5-02_20120502	CPF-AW-SWE-D2	2.5-02_20120502	CPF-AW-SWE-D	2.5-03_20120511	CPF-AW-SWW-DO	0.75-04_20120511	CPF-AW-SWW-I	D1-03_20120511
	Sa	mple Date	5/1/	2012	5/2/	2012	5/2/	2012	5/11	/2012	5/11	/2012	5/11	/2012
	Sample Depth	(feet bgs)		0	()	(0		0		0		0
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Antimony	7440-36-0	mg/kg	NA		NA		NA		NA		NA		NA	
Arsenic	7440-38-2	mg/kg	3		9.9		10.3		2.6		6.9		7.6	
Barium	7440-39-3	mg/kg	NA		NA		NA		NA		NA		NA	
Beryllium	7440-41-7	mg/kg	NA		NA		NA		NA		NA		NA	
Cadmium	7440-43-9	mg/kg	NA		NA		NA		NA		NA		NA	
Chromium	7440-47-3	mg/kg	NA		NA		NA		NA		NA		NA	
Cobalt	7440-48-4	mg/kg	NA		NA		NA		NA		NA		NA	
Copper	7440-50-8	mg/kg	360		1490		3040		423		4610		1290	
Lead	7439-92-1	mg/kg	18.7		12.5		459		37.5		622		120	
Manganese	7439-96-5	mg/kg	NA		NA		NA		NA		NA		NA	
Mercury	7439-97-6	mg/kg	NA		NA		NA		NA		NA		NA	
Molybdenum	7439-98-7	mg/kg	NA		NA		NA		NA		NA		NA	
Nickel	7440-02-0	mg/kg	NA	_	NA	_	NA		NA	_	NA		NA	
Selenium	7782-49-2	mg/kg	NA	_	NA	_	NA		NA	_	NA		NA	
Thallium	7440-28-0	mg/kg	NA		NA		NA		NA		NA		NA	
Uranium	7440-61-1	mg/kg	NA		NA		NA		NA		NA		NA	
Zinc	7440-66-6	mg/kg	NA		NA		NA		NA		NA		NA	

ARCADIS Page 7 of 30

	Locatio	n Subarea	Former CI	LEAR Plant	Former Cl	EAR Plant	Former Cl	EAR Plant	Former CL	EAR Plant	Former CI	EAR Plant	Former CL	EAR Plant	Former CL	EAR Plant
	L	ocation ID	CPF-AW-S	WW-D2-01	CP-	JS01	CP-	JS01	CP-	JS01	CP-	JS01	CP-J	IS02	CP-J	JS02
		Sample ID	CPF-AW-SWW-E	02-01_20120501	CP-JS-01-0-	1_07152008	CP-JS-01-10-	12_07152008	CP-JS-01-1-	3_07152008	CP-JS-01-5-	7_07152008	CP-JS-02-0-	1_07112008	CP-JS-02-1-	3_07112008
	Sa	mple Date	5/1/	2012	7/15	/2008	7/15/	/2008	7/15/	/2008	7/15	/2008	7/11/	2008	7/11/	/2008
	Sample Depth	(feet bgs)	(0	0	-1	10	-12	1-	-3	5	-7	0-	-1	1-	-3
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Antimony	7440-36-0	mg/kg	NA		0.4		0.7		0.4	J	5.9		1		0.2	
Arsenic	7440-38-2	mg/kg	3.5		7.3		28.1		12.3		32.8		6.3		2.8	1
Barium	7440-39-3	mg/kg	NA		654		159		336		130		36.8		77.4	i
Beryllium	7440-41-7	mg/kg	NA		1.3		< 5	U	0.8		0.7		0.8		0.8	i l
Cadmium	7440-43-9	mg/kg	NA		< 2	U	< 8	U	< 2	U	< 2	U	< 2	U	< 2	U
Chromium	7440-47-3	mg/kg	NA		8		3		7		7		3		7	
Cobalt	7440-48-4	mg/kg	NA		8		18		12		12		12		5	
Copper	7440-50-8	mg/kg	779		1390		506		781		822		2690		174	
Lead	7439-92-1	mg/kg	39.9		5.93		8.98		7.4		44.3		39.7		7.39	
Manganese	7439-96-5	mg/kg	NA		297		1240		379		482		345		122	
Mercury	7439-97-6	mg/kg	NA		0.06		< 0.2	U	< 0.2	U	< 0.2	U	0.07		< 0.2	U
Molybdenum	7439-98-7	mg/kg	NA		15		200		53		34		618		27	
Nickel	7440-02-0	mg/kg	NA		8		14		8		7		2		4	
Selenium	7782-49-2	mg/kg	NA		0.28		1.68		0.69		0.24		3.15		0.17	
Thallium	7440-28-0	mg/kg	NA		0.3		0.36		< 0.3	U	0.39		0.12		< 0.3	U
Uranium	7440-61-1	mg/kg	NA		2.36		7.77		4.29		5.11		6.34		0.93	
Zinc	7440-66-6	mg/kg	NA		45		65		39		42		114		34	

Page 8 of 30

	Locatio	n Subarea	Former CL	EAR Plant	Former CL	EAR Plant	Former CL	EAR Plant	Former Cl	LEAR Plant	Former Cl	EAR Plant	Former CL	EAR Plant	Former CL	EAR Plant	Former CL	EAR Plant
		ocation ID		JS03	CP-J		CP-J			JS04	CP-		CP-		CP-		CPP-AI	
		Sample ID	CP-JS-03-0-	1_07142008	CP-JS-03-1-3	3_07142008	CP-JS-03-5-	7_07142008	CP-JS-04-0-	1_08272008	CP-JS-04-10-	12_08272008	CP-JS-04-1-	3_08272008	CP-JS-04-5-	7_08272008	CPP-AE-S-0	1_20120502
	Sa	mple Date	7/14/	/2008	7/14/	2008	7/14/	['] 2008	8/27	/2008	8/27	/2008	8/27	/2008		/2008	5/2/2	2012
	Sample Depth	(feet bgs)	0-	-1	1-	3	5-	-7	0	-1	10	-12	1	-3	5	-7	()
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Antimony	7440-36-0	mg/kg	< 1	U	< 1	UJ	< 1	U	0.4		< 1	U	0.2		0.4		NA	
Arsenic	7440-38-2	mg/kg	3.3		2		2		4.5		2.3		1.6		8.7		5.9	
Barium	7440-39-3	mg/kg	164	J	189		205		165	J	106		172		183		NA	
Beryllium	7440-41-7	mg/kg	0.3		0.2		0.4		0.5		0.4		0.4		0.4		NA	
Cadmium	7440-43-9	mg/kg	0.7		< 2	U	< 2	U	< 2	U	< 2	U	< 2	U	< 2	U	NA	
Chromium	7440-47-3	mg/kg	7		9		8		5	J	5		5	J	5		NA	
Cobalt	7440-48-4	mg/kg	11		12		11		13		9		12		11		NA	
Copper	7440-50-8	mg/kg	1700		888		1680		1710		1080		684		1400		2850	
Lead	7439-92-1	mg/kg	24.5		13		5.98		14.3		5.36		4.55		10.9		21.8	
Manganese	7439-96-5	mg/kg	456		456		496		396		347		469		343		NA	
Mercury	7439-97-6	mg/kg	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	NA	
Molybdenum	7439-98-7	mg/kg	75	J	20		26		223		34		24		202		NA	
Nickel	7440-02-0	mg/kg	15		15		13		8		7		8		7		NA	
Selenium	7782-49-2	mg/kg	< 0.67	U	< 0.31	U	0.44		1.26		0.56		0.26	J	0.76		NA	
Thallium	7440-28-0	mg/kg	0.29		0.22		0.49		0.35		0.26		0.28	J	0.36		NA	
Uranium	7440-61-1	mg/kg	4.29		3.96		5.27		4.96		8.72		5.03	J	16		NA	
Zinc	7440-66-6	mg/kg	158		129		78		82		71		77		63		NA	

ARCADIS Page 9 of 30

	Locatio	on Subarea	Former CL	EAR Plant	Former CI	EAR Plant	Former CL	EAR Plant	Former Cl	EAR Plant	Former CI	LEAR Plant	Former CI	EAR Plant	Former CI	EAR Plant	Former CL	EAR Plant
	L	ocation ID	CPP-A	E-S-02	CPP-A	E-S-03	CPP-A	E-S-04	CPP-A	E-S-05	CPP-A	N-S-01	CPP-A	N-S-02	CPP-A	N-S-03	CPP-AN	√-S-04
		Sample ID	CPP-AE-S-0	2_20120502	CPP-AE-S-0	3_20120502	CPP-AE-S-0	4_20120502	CPP-AE-S-0	5_20120511	CPP-AN-S-0	1_20120502	CPP-AN-S-0	2_20120502	CPP-AN-S-0	3_20120502	CPP-AN-S-04	1_20120502
	Sa	imple Date	5/2/	2012	5/2/	2012	5/2/	2012	5/11/	/2012	5/2/	2012	5/2/	2012	5/2/	2012	5/2/2	2012
	Sample Depth	(feet bgs)	(0))	(0		0	())	0	j
Analyte	CASRN	Units	Result	Qual	Result	Qual												
Antimony	7440-36-0	mg/kg	NA		NA													
Arsenic	7440-38-2	mg/kg	4.2		9.3		10.1		16.3		3.5		< 2.5	U	6.9		< 2.5	U
Barium	7440-39-3	mg/kg	NA		NA													
Beryllium	7440-41-7	mg/kg	NA		NA													
Cadmium	7440-43-9	mg/kg	NA		NA													
Chromium	7440-47-3	mg/kg	NA		NA													
Cobalt	7440-48-4	mg/kg	NA		NA													
Copper	7440-50-8	mg/kg	1410		1890		3310		2090		987		4550		2090		133	
Lead	7439-92-1	mg/kg	64.8		45.9		73.9		37.4		48.8		8.98		65.2		5.1	
Manganese	7439-96-5	mg/kg	NA		NA													
Mercury	7439-97-6	mg/kg	NA		NA													
Molybdenum	7439-98-7	mg/kg	NA		NA													
Nickel	7440-02-0	mg/kg	NA		NA													
Selenium	7782-49-2	mg/kg	NA		NA													
Thallium	7440-28-0	mg/kg	NA		NA	<u> </u>	NA		NA		NA		NA	<u> </u>	NA		NA	
Uranium	7440-61-1	mg/kg	NA		NA													
Zinc	7440-66-6	mg/kg	NA		NA													

ARCADIS Page 10 of 30

	Location	on Subarea	Former CL	EAR Plant	Former CL	EAR Plant	Former CL	EAR Plant	Former CI	LEAR Plant	Former CI	EAR Plant	Former CL	EAR Plant	Former CL	EAR Plant
		ocation ID				N-S-01	CPP-A\			W-S-03	CPP-A		CP-S		CP-S	
		Sample ID	CPP-AN-S-0	5_20120511	CPP-AW-S-0	1_20120502	CPP-AW-S-0	2_20120502	CPP-AW-S-0	3_20120502	CPP-AW-S-C	4_20120502	CP-SD-01-0-1	1.5_07162008	CP-SD-01-1.5-	3.0_07162008
	Sa	mple Date	5/11/	/2012	5/2/	2012	5/2/	2012	5/2/	2012	5/2/	2012	7/16/	/2008	7/16/	/2008
	Sample Depth	(feet bgs)	(0)	()		0)	0-	1.5	1.5	j-3
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual								
Antimony	7440-36-0	mg/kg	NA		< 1	U	< 1	U								
Arsenic	7440-38-2	mg/kg	2.6		2.5		4.5		2.6		11.1		2.1		1	
Barium	7440-39-3	mg/kg	NA		145		140									
Beryllium	7440-41-7	mg/kg	NA		0.4		0.4									
Cadmium	7440-43-9	mg/kg	NA		< 2	U	< 2	U								
Chromium	7440-47-3	mg/kg	NA		6		6									
Cobalt	7440-48-4	mg/kg	NA		10		9									
Copper	7440-50-8	mg/kg	264		679		1520		217		1190		979		253	
Lead	7439-92-1	mg/kg	9.25		9.98		65.6		11.9		22.3		5.49		1.72	
Manganese	7439-96-5	mg/kg	NA		342		314									
Mercury	7439-97-6	mg/kg	NA		< 0.2	U	< 0.2	U								
Molybdenum	7439-98-7	mg/kg	NA		121		4									
Nickel	7440-02-0	mg/kg	NA		8		8									
Selenium	7782-49-2	mg/kg	NA		0.37		0.08									
Thallium	7440-28-0	mg/kg	NA		0.23		0.25									
Uranium	7440-61-1	mg/kg	NA		4.04		2.34									
Zinc	7440-66-6	mg/kg	NA		49		30									

ARCADIS Page 11 of 30

	Locatio	n Subarea	Former CL	EAR Plant	Former CL	EAR Plant	Former CI	LEAR Plant	Former Cl	EAR Plant	Former Cl	EAR Plant	Former CI	LEAR Plant	Former Cl	EAR Plant
	L	ocation ID	CP-S	SD02	CP-S	D02	CP-S	SD03	CP-S	SD03	CP-S	SD04	CP-S	SD04	CP-S	SD05
		Sample ID	CP-SD-02-0-1	1.5_07162008	CP-SD-02-1.5-	3.0_07162008	CP-SD-03-0-1	1.5_07162008	CP-SD-03-1.5	3.0_07162008	CP-SD-04-0-1	1.5_07172008	CP-SD-04-1.5	-3.0_07172008	CP-SD-05-0-1	1.5_07162008
	Sa	imple Date	7/16/	/2008	7/16/	2008	7/16	/2008	7/16	/2008	7/17	/2008	7/17.	/2008	7/16	/2008
	Sample Depth	(feet bgs)	0-	1.5	1.5	5-3	0-	1.5	1.	5-3	0-	1.5	1.5	5-3	0-	1.5
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Antimony	7440-36-0	mg/kg	< 1	U	< 1	U	< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
Arsenic	7440-38-2	mg/kg	1.1		1.5		2.9		1.9		1.8		1		5.4	
Barium	7440-39-3	mg/kg	117		41.1		95.3		112		166		170		123	
Beryllium	7440-41-7	mg/kg	< 1	U	0.3		0.7		0.5		0.6		0.4		0.6	
Cadmium	7440-43-9	mg/kg	< 2	U	< 2	U	< 2	U	< 2	U	< 2	U	< 2	U	< 2	U
Chromium	7440-47-3	mg/kg	3		2		5		4		7		7		6	
Cobalt	7440-48-4	mg/kg	6		3		7		7		11		11		11	
Copper	7440-50-8	mg/kg	451		780		995		335		1180		512		561	
Lead	7439-92-1	mg/kg	4		3.78		9.49		5.32		4.25		2.14		8.74	
Manganese	7439-96-5	mg/kg	207		148		257		302		403		448		343	
Mercury	7439-97-6	mg/kg	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U
Molybdenum	7439-98-7	mg/kg	32		18		114		44		40		7		126	i
Nickel	7440-02-0	mg/kg	6		2		5		6		10		10		7	
Selenium	7782-49-2	mg/kg	0.31		0.21		0.36		0.2		0.36		0.12		0.51	
Thallium	7440-28-0	mg/kg	0.18		< 0.3	U	0.13		0.14		0.43		0.35		0.13	
Uranium	7440-61-1	mg/kg	2.5		2.82		4.05		3.86		4.05		4.76		3.61	
Zinc	7440-66-6	mg/kg	31		30		48		34		57		46		43	

ARCADIS Page 12 of 30

	Location	n Subarea	Former CL	EAR Plant	Former CL	EAR Plant	Former CL	EAR Plant	Former CI	EAR Plant	Former Cl	_EAR Plant	Former CI	LEAR Plant	Former Cl	LEAR Plant
	L	ocation ID	CP-S	D05	CP-S	SD06	CP-S	SD06	CP-S	SD07	CP-S	SD07	CP-S	SD08	CP-S	SD08
		Sample ID	CP-SD-05-1.5-	3.0_07162008	CP-SD-06-0-1	.5_07162008	CP-SD-06-1.5-	3.0_07162008	CP-SD-07-0-1	1.5_07232008	CP-SD-07-1.5	-3.0_07232008	CP-SD-08-0-	1.5_07282008	CP-SD-08-1.5-	-3.0_07282008
		mple Date	7/16/			/2008	7/16/	/2008	7/23	/2008	7/23	/2008	7/28	/2008	7/28	/2008
	Sample Depth	(feet bas)	1.5	5-3	0-1	1.5	1.5	5-3	0-	1.5	1.	5-3	0-	1.5	1.!	5-3
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Antimony	7440-36-0	mg/kg	< 1	U	< 1	U	< 1	U	0.2		0.2		0.2		< 1	U
Arsenic	7440-38-2	mg/kg	3.6		3.7		4		2.9		0.8		2		1.2	
Barium	7440-39-3	mg/kg	181		177		174		136		166		135		164	
Beryllium	7440-41-7	mg/kg	0.5		0.7		0.5		0.9		0.5		0.5		0.5	
Cadmium	7440-43-9	mg/kg	< 2	U	< 2	U	< 2	U	< 2	U	< 2	U	< 2	U	< 2	U
Chromium	7440-47-3	mg/kg	6		6		6		14		9		12		11	
Cobalt	7440-48-4	mg/kg	11		17		11		9		11		10		11	
Copper	7440-50-8	mg/kg	283		976		729		439		180		599		142	
Lead	7439-92-1	mg/kg	4.91		4.17		3.75		7.05		2.49		6.87		3.69	
Manganese	7439-96-5	mg/kg	359		447		375		298		344		283		300	
Mercury	7439-97-6	mg/kg	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U
Molybdenum	7439-98-7	mg/kg	24		43		37		42		2		86		9	1
Nickel	7440-02-0	mg/kg	8		10		8		33		31		31		27	
Selenium	7782-49-2	mg/kg	0.31		0.46		0.26		0.34		< 0.3	U	0.27		0.09	
Thallium	7440-28-0	mg/kg	0.17	•	0.29		0.28		0.27		0.3		0.25		0.33	
Uranium	7440-61-1	mg/kg	2.86	•	5.54		3.81		3.45		2.19		5.96		3.99	
Zinc	7440-66-6	mg/kg	42		86		39		45		47		50		52	

Page 13 of 30

	Locatio	on Subarea	Former CL	EAR Plant	Former CL	EAR Plant	Former C	LEAR Plant	Former C	LEAR Plant	Former CI	EAR Plant	Former CI	EAR Plant	Former Cl	LEAR Plant
	L	ocation ID	CP-S	SD09	CP-S	SD09	CP-S	SD10	CP-S	SD10	CPS-I	05-06	CPS-SWE	E-D2.5-01	CPS-SW	N-D2-01
		Sample ID	CP-SD-09-0-1	.5_07282008	CP-SD-09-1.5-	3.0_07282008	CP-SD-10-0-	1.5_07282008	CP-SD-10-1.5	-3.0_07282008	CPS-D5-06	_20120501	CPS-SWE-D2.5	5-01_20120502	CPS-SWN-D2-	-01_20120511
	Sa	mple Date	7/28/	/2008	7/28/	/2008	7/28	/2008	7/28	/2008	5/1/	2012	5/2/	2012	5/11/	/2012
	Sample Depth	(feet bgs)	0-	1.5	1.5	5-3	0-	1.5	1.	5-3	()	(0	(o l
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Antimony	7440-36-0	mg/kg	0.3		< 1	U	0.2		< 1	U	NA		NA		NA	
Arsenic	7440-38-2	mg/kg	1.9		0.7		3.6		1.2		5.5		5.6		19.3	
Barium	7440-39-3	mg/kg	139		131		161		193		NA		NA		NA	
Beryllium	7440-41-7	mg/kg	0.4		0.2		0.5		0.4		NA		NA		NA	1
Cadmium	7440-43-9	mg/kg	< 2	U	< 2	U	< 2	U	< 2	U	NA		NA		NA	
Chromium	7440-47-3	mg/kg	11		11		11		13		NA		NA		NA	
Cobalt	7440-48-4	mg/kg	10		9		9		12		NA		NA		NA	1
Copper	7440-50-8	mg/kg	1100		380		570		269		2670		2220		4350	1
Lead	7439-92-1	mg/kg	11.3		26.6		6.23		1.81		176		258		3220	1
Manganese	7439-96-5	mg/kg	312		239		278		332		NA		NA		NA	1
Mercury	7439-97-6	mg/kg	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	NA		NA		NA	
Molybdenum	7439-98-7	mg/kg	157		25		84		3		NA		NA		NA	1
Nickel	7440-02-0	mg/kg	29		28		29		31		NA		NA		NA	1
Selenium	7782-49-2	mg/kg	0.3		< 0.3	U	0.34		< 0.3	U	NA		NA		NA	
Thallium	7440-28-0	mg/kg	0.21	<u> </u>	0.25		0.25		0.32		NA		NA		NA	
Uranium	7440-61-1	mg/kg	2.44		2.46		4.13		4.41		NA		NA		NA	
Zinc	7440-66-6	mg/kg	75		52		47		53		NA		NA		NA	1

ARCADIS Page 14 of 30

							_								_	
		n Subarea		EAR Plant		LEAR Plant		LEAR Plant		LEAR Plant		EAR Plant		LEAR Plant		LEAR Plant
	L	ocation ID	CPS-SW	N-D2-02	CPS-SW	/N-D2-03	CPS-SW	N-D2-04	CPS-SWI	N-D3.5-05	CPS-SWS	5-D2.5-01	CPS-SWS	S-D2.5-02	CPS-SWS	S-D2.5-03
		Sample ID	CPS-SWN-D2-	-02_20120511	CPS-SWN-D2	-03_20120511	CPS-SWN-D2-	-04_20120511	CPS-SWN-D3.	5-05_20120511	CPS-SWS-D2.5	-01_20120501	CPS-SWS-D2.5	5-02_20120501	CPS-SWS-D2.5	-03_20120501
	Sa	mple Date	5/11/	/2012	5/11	/2012	5/11/	/2012	5/11	/2012	5/1/	2012	5/1/	2012	5/1/	2012
	Sample Depth	(feet bgs)	()		0		0		0)	(0		J
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Antimony	7440-36-0	mg/kg	NA		NA		NA		NA		NA		NA		NA	
Arsenic	7440-38-2	mg/kg	3.1		11.9		3.2		13.1		12		9.7		4.1	
Barium	7440-39-3	mg/kg	NA		NA		NA		NA		NA		NA		NA	
Beryllium	7440-41-7	mg/kg	NA		NA		NA		NA		NA		NA		NA	
Cadmium	7440-43-9	mg/kg	NA		NA		NA		NA		NA		NA		NA	
Chromium	7440-47-3	mg/kg	NA		NA		NA		NA		NA		NA		NA	
Cobalt	7440-48-4	mg/kg	NA		NA		NA		NA		NA		NA		NA	
Copper	7440-50-8	mg/kg	261		4150		1350		4560		2210		7560		914	
Lead	7439-92-1	mg/kg	13		617		29.5		643		208		503		32.4	
Manganese	7439-96-5	mg/kg	NA		NA		NA		NA		NA		NA		NA	
Mercury	7439-97-6	mg/kg	NA		NA		NA		NA		NA		NA		NA	
Molybdenum	7439-98-7	mg/kg	NA		NA		NA		NA		NA		NA		NA	
Nickel	7440-02-0	mg/kg	NA		NA		NA		NA		NA		NA		NA	
Selenium	7782-49-2	mg/kg	NA		NA		NA		NA		NA		NA		NA	
Thallium	7440-28-0	mg/kg	NA		NA		NA		NA		NA		NA		NA	
Uranium	7440-61-1	mg/kg	NA		NA		NA		NA		NA		NA		NA	
Zinc	7440-66-6	mg/kg	NA		NA		NA		NA		NA		NA		NA	

ARCADIS Page 15 of 30

	Locatio	n Subarea	Former CI	LEAR Plant	Former CI	EAR Plant	Former CL	EAR Plant	Former CI	LEAR Plant	Former Cl	EAR Plant	Former Cl	EAR Plant	Former Cl	EAR Plant
	L	ocation ID	CPS-SWS	S-D2.5-07	CPS-SW	S-D2-05	CPS-SWS	S-D4.5-06	CPS-SWS	S-D4.5-08	CPS-SW	S-D4-04	CPS-SWV	V-D2.5-01	CPS-SWV	V-D2.5-02
		Sample ID	CPS-SWS-D2.5	5-07_20120511	CPS-SWS-D2-	05_20120511	CPS-SWS-D4.5	5-06_20120511	CPS-SWS-D4.5	5-08_20120511	CPS-SWS-D4	-04_20120502	CPS-SWW-D2.	5-01_20120501	CPS-SWW-D2.	5-02_20120511
	Sa	mple Date	5/11	/2012	5/11	/2012	5/11/	/2012	5/11	/2012	5/2/	2012	5/1/	2012	5/11/	/2012
	Sample Depth	(feet bgs)		0		0	()		0		0	()	()
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Antimony	7440-36-0	mg/kg	NA		NA		NA		NA		NA		NA		NA	
Arsenic	7440-38-2	mg/kg	5		6.7		14.3		3.2		< 2.5	U	12.3		< 2.5	U
Barium	7440-39-3	mg/kg	NA		NA		NA		NA		NA		NA		NA	1
Beryllium	7440-41-7	mg/kg	NA		NA		NA		NA		NA		NA		NA	1
Cadmium	7440-43-9	mg/kg	NA		NA		NA		NA		NA		NA		NA	1
Chromium	7440-47-3	mg/kg	NA		NA		NA		NA		NA		NA		NA	1
Cobalt	7440-48-4	mg/kg	NA		NA		NA		NA		NA		NA		NA	
Copper	7440-50-8	mg/kg	1580		3220		2200		451		287		3250		248	
Lead	7439-92-1	mg/kg	20.6		34		97.2		20.3		6.99		126		9.3	
Manganese	7439-96-5	mg/kg	NA		NA		NA		NA		NA		NA		NA	
Mercury	7439-97-6	mg/kg	NA		NA		NA		NA		NA		NA		NA	
Molybdenum	7439-98-7	mg/kg	NA		NA		NA		NA		NA		NA		NA	
Nickel	7440-02-0	mg/kg	NA		NA		NA		NA		NA		NA		NA	
Selenium	7782-49-2	mg/kg	NA		NA		NA		NA		NA		NA		NA	
Thallium	7440-28-0	mg/kg	NA		NA		NA		NA		NA		NA		NA	
Uranium	7440-61-1	mg/kg	NA		NA		NA		NA		NA		NA		NA	
Zinc	7440-66-6	mg/kg	NA		NA		NA		NA		NA		NA		NA	

ARCADIS Page 16 of 30

	Location Subare		Former CLEAR Plant		Former CLEAR Plant		Former CLEAR Plant		Former CLEAR Plant		Former CLEAR Plant		Former CLEAR Plant		Former CLEAR Plant		Former CLEAR Plant		Former CLEAR Plant		Former CLEAR Plant	
	Location ID				CP-T01		CP-T01		CP-T01		CP-T02		CP-T02		CP-T02		CP-T02B		CP-T02BL		CP-T02C	
	Sample ID		CP-T-1-18IN 100404		CP-T-1-2 100404		CP-T-1-4 100404		CP-T-1-8 100404		CP-T-2-10 100404		CP-T-2-2 100404		CP-T-2-7 100404		CP-T-2-B-6 100404		CP-T-2-7BL 100404		CP-T-2-C-6 100404	
	Sample Date		te 10/4/2004		10/4/2004		10/4/2004		10/4/2004		10/4/2004		10/4/2004		10/4/2004		10/4/2004		10/4/2004		10/4/2004	
	Sample Depth (feet bgs)		1.5		2		4		8		10		2		7		6		7		6	
Analyte	CASRN	Units	Result	Qual																		
Antimony	7440-36-0	mg/kg	0.8		NA		1.4		7.6		2.1											
Arsenic	7440-38-2	mg/kg	18.1		8.64		14.30		4.20		5.43		3.60		5.63		11.80		37.1		14.8	
Barium	7440-39-3	mg/kg	NA																			
Beryllium	7440-41-7	mg/kg	0.7		0.82		1.29		0.52		0.63		0.63		0.58		0.35		0.2		0.3	
Cadmium	7440-43-9	mg/kg	8.9		NA		2.75		2.2		1.5											
Chromium	7440-47-3	mg/kg	25		NA		10		9		9											
Cobalt	7440-48-4	mg/kg	NA																			
Copper	7440-50-8	mg/kg	40100		2520		4390		1200		2850		765		2160		2600		1470		1950	
Lead	7439-92-1	mg/kg	77.1		21.70		37.20		12.70		44.70		12.50		39.80		62.40		270		293	
Manganese	7439-96-5	mg/kg	347		NA		569		157		197											
Mercury	7439-97-6	mg/kg	0.06		NA		0.05		< 0.05	U	< 0.04	U										
Molybdenum	7439-98-7	mg/kg	377		368		182		114		99		38		135		625		535		331	
Nickel	7440-02-0	mg/kg	37		NA		9		4		6											
Selenium	7782-49-2	mg/kg	2.1		NA		2.5		8.1		3.9											
Thallium	7440-28-0	mg/kg	1		NA		0.32		0.2		0.3											
Uranium	7440-61-1	mg/kg	NA																			
Zinc	7440-66-6	mg/kg	1270	·	NA		127		43		92											

ARCADIS Page 17 of 30

	Locatio	n Suharoa	Former CL	FAR Plant	Former CI	FΔD Dlant	Former CI	FΔP Plant	Former CI	FΔP Plant	Former CI	FΔP Plant	Former CI	FΔP Plant	Former CI	FAD Plant	Former CI	FΔP Plant	Former CL	FAR Plant	Former CI	FAR Plant
	Location ID		CP-T03		CP-T03		CP-T03		CP-T04		CP-T04		CP-T04		CP-T04		CP-T05		CP-T05		CP-T05	
	Sample ID				CP-T-3-8 100504				CP-T-4-1.5C 100404		1		CP-T-4-18IN 100404						CP-T-5-3 100404		CP-T-5-6 100404	
	•																CP-T-5-1.5 100404		10/4/2004		10/4/2004	
	Sample Date				10/5/2004		10/5/2004		10/4/2004		10/4/2004		10/4/2004		10/4/2004		10/4/2004		10/4/2004		,	
	Sample Depth (feet bgs)				8		0.75		1.5		14		1.5		2.5		1.5		3		6	
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Antimony	7440-36-0	mg/kg	NA		NA		1.2		0.5		NA		0.4		NA		0.4		NA		NA	
Arsenic	7440-38-2	mg/kg	5.60		26.9		20.90		4.88		10.40		1.1		16.40		4.70		4.14		5.27	
Barium	7440-39-3	mg/kg	NA		NA		NA		NA		NA		NA		NA		NA		NA		NA	
Beryllium	7440-41-7	mg/kg	1.40		0.5		0.48		0.28		0.45		1		0.41		0.23		0.57		0.44	
Cadmium	7440-43-9	mg/kg	NA		NA		1.07		1.74		NA		18.1		NA		0.62		NA		NA	
Chromium	7440-47-3	mg/kg	NA		NA		7		24		NA		470		NA		9		NA		NA	
Cobalt	7440-48-4	mg/kg	NA		NA		NA		NA		NA		NA		NA		NA		NA		NA	
Copper	7440-50-8	mg/kg	4750		14100		978		2790		1570		57300		998		839		1050		746	
Lead	7439-92-1	mg/kg	31.10		488		6.03		14.40		3.66		4.1		7.26		13.90		12.40		3.98	
Manganese	7439-96-5	mg/kg	NA		NA		379		244		NA		759		NA		235		NA		NA	
Mercury	7439-97-6	mg/kg	NA		NA		< 0.04	U	< 0.04	U	NA		< 0.04	U	NA		< 0.04	U	NA		NA	
Molybdenum	7439-98-7	mg/kg	62		615		264		347		91		60		330		115		95		60	
Nickel	7440-02-0	mg/kg	NA		NA		9		11		NA		70		NA		4		NA		NA	
Selenium	7782-49-2	mg/kg	NA		NA		0.6		2.6		NA		3.7		NA		0.8		NA		NA	
Thallium	7440-28-0	mg/kg	NA		NA		0.37		0.34		NA		< 0.1	U	NA		0.18		NA		NA	
Uranium	7440-61-1	mg/kg	NA		NA		NA		NA		NA		NA		NA		NA		NA		NA	
Zinc	7440-66-6	mg/kg	NA		NA		47		153		NA		4900		NA		57		NA		NA	

ARCADIS Page 18 of 30

	Locatio	n Subarea	Former CI	FAR Plant	Former CI	FAR Plant	Former CL	FAR Plant	Former CI	EAR Plant	Former CI	EAR Plant	Former CI	EAR Plant	Former CI	EAR Plant	Former CI	EAR Plant
		ocation ID		T06		T06		T06		04	M		M			06	M	
		Sample ID		2 100404		100404		5 100404				.5_07112008						3_07112008
		ample Date		/2004	10/4/			/2004		/2008		/2008		/2008	7/11/	_		/2008
	Sample Depth			2		4		5	0			2.5		5.4	0.			-3
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	-s Qual
				Quai		Quai		Quai		Quai		Quai						Quai
Antimony	7440-36-0	mg/kg	NA F. 20		NA 4.75		NA 2.04		2.3		1.1		< 1	U	< 1	U	0.2	
Arsenic	7440-38-2	mg/kg	5.38		4.75		3.96		12.6		7.5		1.5		2.6		3	
Barium	7440-39-3	mg/kg	NA		NA		NA		130		142		197		67.1		92.4	
Beryllium	7440-41-7	mg/kg	0.60		0.60		0.51		0.5		0.4		0.5		0.5		0.7	ı l
Cadmium	7440-43-9	mg/kg	NA		NA		NA		0.7		0.6		< 2	U	< 2	U	< 2	U
Chromium	7440-47-3	mg/kg	NA		NA		NA		9		26		6		6		7	
Cobalt	7440-48-4	mg/kg	NA		NA		NA		9		5		11		4		4	
Copper	7440-50-8	mg/kg	1900		2150		1410		9390		3900		1720		207		200	
Lead	7439-92-1	mg/kg	29.20		45.00		28.10		48.1		48.1		6.55		7.76		8.17	
Manganese	7439-96-5	mg/kg	NA		NA		NA		333		319		374		159		157	
Mercury	7439-97-6	mg/kg	NA		NA		NA		0.15		0.16		< 0.2	U	< 0.2	U	< 0.2	U
Molybdenum	7439-98-7	mg/kg	76		143		52		704		206		48		23		14	
Nickel	7440-02-0	mg/kg	NA		NA		NA		7		7		7		3		4	
Selenium	7782-49-2	mg/kg	NA		NA		NA		3.09		1.29		0.87		0.23		0.35	
Thallium	7440-28-0	mg/kg	NA		NA		NA		0.24		0.12		0.41		0.11		0.14	
Uranium	7440-61-1	mg/kg	NA		NA		NA		5.55		3.01		9.05		1.45		1.35	
Zinc	7440-66-6	mg/kg	NA		NA		NA		272		212		45		26		27	

ARCADIS Page 19 of 30

	Locatio	n Subarea	Former Cl	EAR Plant	Former CI	EAR Plant	Former CI	EAR Plant	Former CL	EAR Plant	Former CL	EAR Plant	Former Cl	EAR Plant	Former CL	EAR Plant	Former CL	EAR Plant
	L	ocation ID	N	80	N	80	N	80	No	08	00	03	0	03	00)9	00	ე9
		Sample ID	CP-N08-0-1	1_07112008	CP-N08-10-1	11_07112008	CP-N08-1-3	3_07112008	CP-N08-5-7	_07112008	CP-003-0-1	_07112008	CP-003-1-3	3_07112008	CP-009-0-1	_07112008	CP-009-10-1	12_07112008
	Sa	mple Date	7/11	/2008	7/11	/2008	7/11.	/2008	7/11/	2008	7/11/	2008	7/11	/2008	7/11/	2008	7/11/	2008
	Sample Depth	(feet bgs)	0	-1	10	-11	1	-3	5.	-7	0-	-1	1	-3	0-	1	10-	-12
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Antimony	7440-36-0	mg/kg	< 1	UJ	2.9		0.6		0.5		< 1	U	< 1	U	< 1	U	0.4	
Arsenic	7440-38-2	mg/kg	4.1		41.9		7.5		7.7		2.3		1.2		3.5		3.7	ı
Barium	7440-39-3	mg/kg	169		213		188	J	186		251		212		142		155	ı
Beryllium	7440-41-7	mg/kg	0.4		0.6		0.4	J	0.4		0.5		< 1	U	0.5		0.4	1
Cadmium	7440-43-9	mg/kg	< 2	U	< 2	U	< 2	UJ	< 2	U	< 2	U	< 2	U	< 2	U	1.1	
Chromium	7440-47-3	mg/kg	5		14		7	J	11		8		5		5		25	j
Cobalt	7440-48-4	mg/kg	11		9		12	J	11		14		13		11		11	j
Copper	7440-50-8	mg/kg	1070		1190		2420		1100		1700		298		913		1670	ı
Lead	7439-92-1	mg/kg	10.1		9.66		16.3		9.56		5.35		1.72		11.2		46.1	j
Manganese	7439-96-5	mg/kg	504		271		294		365		386		440		469		343	
Mercury	7439-97-6	mg/kg	< 0.2	U	0.1		0.04		< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U
Molybdenum	7439-98-7	mg/kg	27		106		149	J	77		102		2		69		73	ı
Nickel	7440-02-0	mg/kg	8		9		9	J	9		11		11		8		11	ı
Selenium	7782-49-2	mg/kg	0.42		1.58		0.85		0.54		0.45		0.81		0.39		0.84	
Thallium	7440-28-0	mg/kg	0.27		0.34		0.53		0.41		0.4		0.31		0.32		0.31	
Uranium	7440-61-1	mg/kg	4.77		9.05		8.99		9.35		4.91		7.25		4.91		3.45	j
Zinc	7440-66-6	mg/kg	94		73		161	J	66		119		77		106		123	

ARCADIS Page 20 of 30

	Locatio	n Subarea	Former CL	FΔR Plant	Former CI	EAR Plant	Former CI	EAR Plant	Former CI	EAR Plant	Former CI	EAR Plant	Former CL	FAR Plant	Former CI	EAR Plant	Former CI	EAR Plant
		ocation ID	0(09	Pi		Pi			05	P(P		PC	
		Sample ID		3_07112008	_	7_07112008		_07152008		_07152008		07152008		07152008		07172008	1	3 07172008
		mple Date	7/11/	_		/2008		/2008		/2008		/2008	7/15/	_		/2008	7/17/	_
	Sample Depth	•	1.			-7	0		1		0		1.		0			-3
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Antimony	7440-36-0	mg/kg	< 1	U	< 1	U	< 1	U	< 1	U	< 1	U	< 1	II	< 1	U	< 1	U
Arsenic	7440-38-2	mg/kg	3.4	0	2.6	- 0	1.6		1	0	1.6	0	11	U	1.5	- 0	1.1	
Barium	7440-39-3	mg/kg	187		158		206		154		115		197		99.5		80.4	
Beryllium	7440-41-7	mg/kg	0.5		0.4		0.4		< 1	- 11	0.4		0.4		0.4		0.3	
Cadmium	7440-43-9	mg/kg	< 2	U	< 2	U	< 2	U	< 2	II	< 2	U	< 2	П	< 2	U	< 2	U
Chromium	7440-47-3	mg/kg	7		12	<u> </u>	8		3		5	J	4	Ü	6		5	
Cobalt	7440-48-4	mg/kg	13		9		7		8		9		7		8		7	
Copper	7440-50-8	mg/kg	1500		2480		626		518		973		289		538		210	
Lead	7439-92-1	mg/kg	26.7		18.6		4.87		1.2		7.41		2.05		9.36		3.38	
Manganese	7439-96-5	mg/kg	442		317		275		295		330		307		293		276	1
Mercury	7439-97-6	ma/ka	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U
Molybdenum	7439-98-7	mg/kg	43		36		33		4		72		3		26		31	
Nickel	7440-02-0	mg/kg	10		9		7		6		7		6		7		6	i
Selenium	7782-49-2	mg/kg	0.45		0.39		0.48		0.07		0.34		0.07		0.36		0.24	
Thallium	7440-28-0	mg/kg	0.35		0.29		0.37		0.29		0.22		0.22		0.15		0.14	
Uranium	7440-61-1	mg/kg	5.66		3.4		3.77		2.41		4.75		3.16		3.24		3.79	
Zinc	7440-66-6	mg/kg	146		78		34		39		55		29		44		39	

ARCADIS Page 21 of 30

	Locatio	n Subarea	Former Cl	LEAR Plant	Former CI	EAR Plant	Former CL	EAR Plant	Former CI	EAR Plant	Former C	LEAR Plant	Former Cl	EAR Plant	Former CL	EAR Plant	Former Cl	LEAR Plant
	L	ocation ID	P	07	P ⁻	12	P.	12	Q	09	Q	09	RCP-16	-D2.5-01	RCP-T-3	-D0.5-01	RCP-T-3	-D0.5-02
		Sample ID	CP-P07-5-7	7_07172008	CP-P12-0-1	_07232008	CP-P12-1-3	3_07232008	CP-Q09-0-1	_07232008	CP-Q09-1-3	3_07232008	RCP-16-D2.5	-01_20120502	RCP-T-3-D0.5	-01_20120502	RCP-T-3-D0.5	-02_20120511
	Sa	mple Date	7/17.	/2008	7/23	/2008	7/23/	/2008	7/23	/2008	7/23	/2008	5/2/	2012	5/2/	2012	5/11/	/2012
	Sample Depth	(feet bgs)	5	-7	0	-1	1-	-3	0	-1	1	-3		0	(0		J .
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Antimony	7440-36-0	mg/kg	< 1	U	0.9		0.3		0.3	J	< 1	U	NA		NA		NA	
Arsenic	7440-38-2	mg/kg	1.4		5.5		3.4		2.3		1.5		< 2.5	U	18.1		7.3	
Barium	7440-39-3	mg/kg	101		81.4		49.9		120		247		NA		NA		NA	
Beryllium	7440-41-7	mg/kg	< 1	U	0.7		0.8		0.6		0.3		NA		NA		NA	
Cadmium	7440-43-9	mg/kg	< 2	U	< 2	U	< 2	U	< 2	U	< 2	U	NA		NA		NA	
Chromium	7440-47-3	mg/kg	13		13		10		12		7		NA		NA		NA	
Cobalt	7440-48-4	mg/kg	8		6		3		8		5		NA		NA		NA	
Copper	7440-50-8	mg/kg	333		1680		337		724		499		1250		3610		2910	1
Lead	7439-92-1	mg/kg	3.79		39		7.98		4.61		3.19		139		65.1		39.3	
Manganese	7439-96-5	mg/kg	283		167		85		202		170		NA		NA		NA	
Mercury	7439-97-6	mg/kg	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	NA		NA		NA	
Molybdenum	7439-98-7	mg/kg	53		239		9		123		8		NA		NA		NA	
Nickel	7440-02-0	mg/kg	8		31		31		29		22		NA		NA		NA	
Selenium	7782-49-2	mg/kg	0.5		1.48		0.19		0.35		0.14		NA		NA		NA	
Thallium	7440-28-0	mg/kg	0.16		0.26		0.18		0.26		0.49		NA		NA		NA	
Uranium	7440-61-1	mg/kg	4.03		3.15		1.3		2.21		2.67		NA		NA		NA	
Zinc	7440-66-6	mg/kg	88		96		27		44		30		NA		NA		NA	

ARCADIS Page 22 of 30

	Locatio	on Subarea	Former CI	EAR Plant	Former CI	EAR Plant	Former C	LEAR Plant	Former Cl	EAR Plant	Former CL	EAR Plant	Former CI	EAR Plant	Former Cl	EAR Plant	Former Cl	EAR Plant
	l	ocation ID	CP-NP	A-S-01	CP-NP	A-S-02	CP-NP	A-S-03	CP-NP	A-S-04	CP-NP	A-S-05	CP-NP	A-S-06	CP-NP	A-S-07	CP-NP	A-S-08
		Sample ID	CP-NPA-S-0	1_20150528	CP-NPA-S-0	2_20150528	CP-NPA-S-0	3_20150528	CP-NPA-S-0	4_20150528	CP-NPA-S-0	5_20150528	CP-NPA-S-0	6_20150528	CP-NPA-S-0	7_20150528	CP-NPA-S-0	8_20150528
	Sa	ample Date	5/28	/2015	5/28	/2015	5/28	/2015	5/28	′2015	5/28/	/2015	5/28	/2015	5/28	/2015	5/28/	/2015
	Sample Depth	(feet bgs)	(0	(0		0	()	()		0	(0	()
Analyte	CASRN	Units	Result	Qual														
Antimony	7440-36-0	mg/kg	< 2	U	NA		NA		NA		< 2	U	NA		NA		NA	
Arsenic	7440-38-2	mg/kg	< 2.5	U	5.1		7.9		7.3		< 2.5	U	18.9		23.6		2.9	
Barium	7440-39-3	mg/kg	115		NA		NA		NA		68.9		NA		NA		NA	
Beryllium	7440-41-7	mg/kg	0.42		NA		NA		NA		0.44		NA		NA		NA	
Cadmium	7440-43-9	mg/kg	0.43		NA		NA		NA		< 0.2	U	NA		NA		NA	
Chromium	7440-47-3	mg/kg	4.52		NA		NA		NA		3.45		NA		NA		NA	
Cobalt	7440-48-4	mg/kg	7.46		NA		NA		NA		5.64		NA		NA		NA	
Copper	7440-50-8	mg/kg	1580		2550		12800		4730		764		4810		3200		618	
Lead	7439-92-1	mg/kg	3.9		19.8		69		41.6		5.8		97		57		20.6	
Manganese	7439-96-5	mg/kg	< 0.4	U	NA		NA		NA		231		NA		NA		NA	
Mercury	7439-97-6	mg/kg	< 0.033	U	NA		NA		NA		< 0.033	U	NA		NA		NA	
Molybdenum	7439-98-7	mg/kg	13.6		NA		NA		NA		26.6		NA		NA		NA	
Nickel	7440-02-0	mg/kg	8.53		NA		NA		NA		4.88		NA		NA		NA	
Selenium	7782-49-2	mg/kg	< 4	U	NA		NA		NA		< 4	U	NA		NA		NA	
Thallium	7440-28-0	mg/kg	< 1.5	U	NA		NA		NA		< 1.5	U	NA		NA		NA	
Uranium	7440-61-1	mg/kg	2.64		NA		NA		NA		1.32		NA		NA		NA	
Zinc	7440-66-6	mg/kg	187		NA		NA		NA		67.3		NA		NA		NA	

Page 23 of 30

	Locatio	n Subarea	Former CI	EAR Plant	Former C	LEAR Plant	Former CI	EAR Plant	Former CI	EAR Plant	Former CI	EAR Plant	Former CI	EAR Plant	Former CL	FΔR Plant	Former CI	EAR Plant
		ocation ID	CP-NP			A-S-10	CP-SP		CP-SP/		CP-SP			A-S-02	CP-SP/		CP-SP	
		Sample ID				0_20150528		-E-D3.5-01						2_20150609				
		mple Date		_		/2015		/2015		/2015		2015		2015	6/9/2	_	6/9/	_
)			3/17/			.5).25).25	0-0		0-0	-
Analyte	Sample Depth CASRN	Units		Qual		0 Qual		.o Qual		.o Qual		Qual		Qual		.25 Qual		Qual
			Result	Quai	Result	Quai	Result		Result		Result	Quai	Result	Quai	Result	- Quai	Result	Quai
Antimony	7440-36-0	mg/kg	NA		5.1		< 2	U	< 2	U	NA 10.0		NA		< 2.0	U	NA	
Arsenic	7440-38-2	mg/kg	3.8		10.3		4.1		18.7		10.3		3.8		6.2		12	
Barium	7440-39-3	mg/kg	NA		51.8		136		167		NA		NA		134		NA	
Beryllium	7440-41-7	mg/kg	NA		0.38		0.42		0.48		NA		NA		0.45		NA	
Cadmium	7440-43-9	mg/kg	NA		0.98		0.42		1.04		NA		NA		0.43		NA	
Chromium	7440-47-3	mg/kg	NA		3.12		8.35		21.5		NA		NA		6.63		NA	
Cobalt	7440-48-4	mg/kg	NA		8.4		5.72		5.38		NA		NA		7.67		NA	
Copper	7440-50-8	mg/kg	1290		5090		2100		1310		1050		2310		823		2340	
Lead	7439-92-1	mg/kg	23.9		80.7		17.3		22.6		6.2		311		4.2		33.1	
Manganese	7439-96-5	mg/kg	NA		168		220		235		NA		NA		292		NA	
Mercury	7439-97-6	mg/kg	NA		0.037		0.052		0.137		NA		NA		< 0.033	U	NA	
Molybdenum	7439-98-7	mg/kg	NA		366		157		263		NA		NA		216		NA	
Nickel	7440-02-0	mg/kg	NA		6.53		8.73		14.3		NA		NA		7.44		NA	
Selenium	7782-49-2	mg/kg	NA		< 4	U	< 4	U	< 4	U	NA		NA		< 4.0	U	NA	
Thallium	7440-28-0	mg/kg	NA		< 1.5	U	< 1.5	U	< 1.5	U	NA		NA		< 1.5	U	NA	
Uranium	7440-61-1	mg/kg	NA		2.33		4.16		6.28		NA		NA		7.25		NA	
Zinc	7440-66-6	mg/kg	NA		249		57.8		78.9		NA		NA		35.2		NA	

ARCADIS Page 24 of 30

	Location	on Subarea	Former CL	EAR Plant	Former CI	EAR Plant	Former CL	EAR Plant	Former CL	EAR Plant	Former CL	EAR Plant	Former CI	EAR Plant	Former CL	EAR Plant	Former CL	EAR Plant
	L	ocation ID	CP-SP	A-S-05	CP-SP	A-S-06	CP-SP/	A-S-07	CP-SP/	A-S-08	CP-SP/	A-S-09	CP-SP	A-S-10	CP-SP	A-S-11	CP-SP/	A-S-12
		Sample ID	CP-SPA-S-0	5_20150609	CP-SPA-S-0	6_20150609	CP-SPA-S-07	7_20150609	CP-SPA-S-08	3_20150609	CP-SPA-S-09	9_20150609	CP-SPA-S-1	0_20150609	CP-SPA-S-1	1_20150609	CP-SPA-S-12	2_20150609
	Sa	ample Date	6/9/	2015	6/9/	2015	6/9/2	2015	6/9/	2015	6/9/	2015	6/9/	2015	6/9/	2015	6/9/	2015
	Sample Depth	(feet bgs)	0-0	.25	0-0	.25	0-0	.25	0-0	.25	0-0	.25	0-0).25	0-0	.25	0-0	.25
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Antimony	7440-36-0	mg/kg	NA		NA		NA		NA		< 2.0	U	NA		NA		NA	
Arsenic	7440-38-2	mg/kg	6.1		4.5		6.4		2.5		3.1		5.6		3.7		3.1	
Barium	7440-39-3	mg/kg	NA		NA		NA		NA		318		NA		NA		NA	
Beryllium	7440-41-7	mg/kg	NA		NA		NA		NA		0.41		NA		NA		NA	
Cadmium	7440-43-9	mg/kg	NA		NA		NA		NA		< 0.20	U	NA		NA		NA	
Chromium	7440-47-3	mg/kg	NA		NA		NA		NA		7.53		NA		NA		NA	
Cobalt	7440-48-4	mg/kg	NA		NA		NA		NA		13.1		NA		NA		NA	
Copper	7440-50-8	mg/kg	2490		1420		1770		943		922		1770		1920		1500	1
Lead	7439-92-1	mg/kg	35.1		14.2		20.5		4.6		2.7		16		15.5		12.2	
Manganese	7439-96-5	mg/kg	NA		NA		NA		NA		306		NA		NA		NA	
Mercury	7439-97-6	mg/kg	NA		NA		NA		NA		< 0.033	U	NA		NA		NA	
Molybdenum	7439-98-7	mg/kg	NA		NA		NA		NA		47.7		NA		NA		NA	
Nickel	7440-02-0	mg/kg	NA		NA		NA		NA		10.4		NA		NA		NA	
Selenium	7782-49-2	mg/kg	NA		NA		NA		NA		< 4.0	U	NA		NA		NA	
Thallium	7440-28-0	mg/kg	NA		NA		NA		NA	•	< 1.5	U	NA		NA		NA	
Uranium	7440-61-1	mg/kg	NA		NA		NA		NA	•	2.72		NA		NA		NA	
Zinc	7440-66-6	mg/kg	NA		NA		NA		NA		39.1		NA		NA		NA	

ARCADIS Page 25 of 30

	Locatio	n Subarea	Former CI	LEAR Plant	Former C	LEAR Plant	Former Cl	EAR Plant	Former CL	EAR Plant	Former CL	EAR Plant	Former	E Pond	Former	E Pond	Former	E Pond
	L	ocation ID	CP-SP	A-S-13	CP-SP	A-S-14	CP-SP	A-S-15	CP-SP/	A-S-16	CP-SP	A-S-17	E-J	S01	E-J	S01	E-J:	S01
		Sample ID	CP-SPA-S-1	3_20150609	CP-SPA-S-1	4_20150609	CP-SPA-S-1	5_20150609	CP-SPA-S-16	5_20150609	CP-SPA-S-1	7_20150609	E-JS-01-0-1	_07142008	E-JS-01-1-3	3_07142008	E-JS-01-5-7	7_07142008
	Sa	imple Date	6/9/	2015	6/9/	2015	6/9/	2015	6/9/2	2015	6/9/	2015	7/14/	2008	7/14	/2008	7/14/	2008
	Sample Depth	(feet bgs)	0-0	0.25	0-0).25	0-0).25	0-0	.25	0-0).25	0-	-1	1	-3	5-	.7
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Antimony	7440-36-0	mg/kg	NA		NA		NA		NA		NA		0.3		0.2		< 1	U
Arsenic	7440-38-2	mg/kg	11.1		5.6		8.9		< 2.5	U	4.8		2.9		2.5		2	
Barium	7440-39-3	mg/kg	NA		NA		NA		NA		NA		146		122		203	
Beryllium	7440-41-7	mg/kg	NA		NA		NA		NA		NA		< 1	U	< 1	U	0.3	ı
Cadmium	7440-43-9	mg/kg	NA		NA		NA		NA		NA		0.8		< 2	U	< 2	U
Chromium	7440-47-3	mg/kg	NA		NA		NA		NA		NA		5		3		4	
Cobalt	7440-48-4	mg/kg	NA		NA		NA		NA		NA		10		8		6	I
Copper	7440-50-8	mg/kg	767		2970		2820		515		1710		2650		1810		1510	1
Lead	7439-92-1	mg/kg	4.2		17.4		40.1		4.9		17.7		22.9		19.1		6.62	
Manganese	7439-96-5	mg/kg	NA		NA		NA		NA		NA		369		327		182	
Mercury	7439-97-6	mg/kg	NA		NA		NA		NA		NA		< 0.2	U	< 0.2	U	< 0.2	U
Molybdenum	7439-98-7	mg/kg	NA		NA		NA		NA		NA		104		79		246	1
Nickel	7440-02-0	mg/kg	NA		NA		NA		NA		NA		11		10		9	
Selenium	7782-49-2	mg/kg	NA		NA		NA		NA		NA		0.78		0.59		0.42	1
Thallium	7440-28-0	mg/kg	NA		NA		NA		NA		NA		0.17		0.13		0.12	
Uranium	7440-61-1	mg/kg	NA		NA		NA		NA		NA		3.11		3.04		2.9	1
Zinc	7440-66-6	mg/kg	NA		NA		NA		NA		NA		197		165		134	

ARCADIS Page 26 of 30

	Location	on Subarea	Former	E Pond	Former	E Pond	Former Evap	ooration Pond	Former Evapo	oration Pond	Former Evap	oration Pond						
	L	ocation ID	E-J	S02	E-J	S02	EV-	JS01	EV-J:	S01	EV-	JS01	EV-	JS02	EV-	JS02	EV-	JS02
		Sample ID	E-JS-02-0-1	1_07142008	E-JS-02-1-3	3_07142008	EV-JS-01-0-	-1_07142008	EV-JS-01-1-3	3_07142008	EV-JS-01-5-	7_07142008	EV-JS-02-0-	1_07142008	EV-JS-02-1-	3_07142008	EV-JS-02-5-	7_07142008
	Sa	ample Date	7/14	/2008	7/14/	/2008	7/14	/2008	7/14/2	2008	7/14	/2008	7/14	/2008	7/14	/2008	7/14/	/2008
	Sample Depth	(feet bgs)	0	-1	1-	-3	0)-1	1-	3	5	-7	0	-1	1	-3	5.	-7
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Antimony	7440-36-0	mg/kg	0.3		< 1	U	1.1		0.4		< 1	U	0.3		< 1	U	< 1	U
Arsenic	7440-38-2	mg/kg	3		4		9.9		5.7		5.5		2.8		1.1		3.5	1
Barium	7440-39-3	mg/kg	183		75.1		122		213		169		105		96.2		142	1
Beryllium	7440-41-7	mg/kg	0.3		0.5		0.2		0.4		0.6		0.2		< 1	U	< 1	U
Cadmium	7440-43-9	mg/kg	0.5		< 2	U	0.6		1.6		6		< 2	U	< 2	U	< 2	U
Chromium	7440-47-3	mg/kg	7		6		6		9		7		4		7		20	1
Cobalt	7440-48-4	mg/kg	10		8		7		15		12		9		10		9	1
Copper	7440-50-8	mg/kg	1160		1290		3380		5440		1550		2020		583		890	1
Lead	7439-92-1	mg/kg	83.5		10.2		196		73.8		12		19.1		1.59		11.3	1
Manganese	7439-96-5	mg/kg	408		719		208		402		342		330		357		394	1
Mercury	7439-97-6	mg/kg	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U
Molybdenum	7439-98-7	mg/kg	138		98		547		258		77		67		11		37	1
Nickel	7440-02-0	mg/kg	15		12		11		18		14		14		13		17	1
Selenium	7782-49-2	mg/kg	0.57		0.67		3.43		1.85		1.69		0.47		1.02		0.46	1
Thallium	7440-28-0	mg/kg	0.21		< 0.3	U	0.4		0.44		0.1		0.1		0.12		0.14	1
Uranium	7440-61-1	mg/kg	3.62		9.68		4.26		7.05		8.51		2.87		4.14		5.53	i
Zinc	7440-66-6	mg/kg	98		87		100		224		407		124		54		77	1

ARCADIS Page 27 of 30

	Locatio	n Subarea	Old D	Pond	Old D	Pond	Old D	Pond	Old D	Pond	Old D	Pond	Old D	Pond	Old D	Pond	Old D) Pond
	L	ocation ID	OD-	JS01	OD-	JS01	OD-	JS02	OD-J	S02	OD-	JS02	OD	JS03	OD-	JS03	OD-	SD01
	:	Sample ID	OD-JS-01-0-	1_07292008	OD-JS-01-1-	3_07292008	OD-JS-02-0-	-1_07292008	OD-JS-02-1-	3_07292008	OD-JS-02-5	-7_07292008	OD-JS-03-0-	1_08272008	OD-JS-03-1	-3_08272008	OD-SD-01-0-	1.5_07282008
	Sa	mple Date	7/29	/2008	7/29	/2008	7/29	/2008	7/29/	2008	7/29	/2008	8/27/	′2008	8/27	/2008	7/28	/2008
	Sample Depth	(feet bgs)	0	-1	1	-3	0	-1	1-	3	5	-7	0-	-1	1	-3	0-	1.5
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Antimony	7440-36-0	mg/kg	0.3		< 1	U	0.4		< 1	U	< 1	U	0.6		0.4		0.3	
Arsenic	7440-38-2	mg/kg	3.6		1.8		3.4		1.4		0.8		10.6		6.4		2	
Barium	7440-39-3	mg/kg	121		149		96.8		170		139		118		114		184	
Beryllium	7440-41-7	mg/kg	0.3		< 1	U	< 1	U	0.5		0.5		0.3		< 1	U	0.4	
Cadmium	7440-43-9	mg/kg	< 2	U	< 2	U	< 2	U	< 2	U	< 2	U	< 2	U	< 2	U	< 2	U
Chromium	7440-47-3	mg/kg	15		9		8		9		9		8		5		13	
Cobalt	7440-48-4	mg/kg	9		10		7		13		11		8		6		11	
Copper	7440-50-8	mg/kg	1770		121		1840		1310		110		1470		1510		361	
Lead	7439-92-1	mg/kg	17.7		2.1		13.8		4.43		2.12		19.3		10.6		5.32	
Manganese	7439-96-5	mg/kg	231		328		250		391		378		236		203		332	
Mercury	7439-97-6	mg/kg	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U
Molybdenum	7439-98-7	mg/kg	95		8		304		9		8		97		74		87	
Nickel	7440-02-0	mg/kg	6		7		6		9		9		7		6		30	
Selenium	7782-49-2	mg/kg	1.1		0.11		1.44		0.11		0.71		0.85		0.72		0.23	
Thallium	7440-28-0	mg/kg	0.25		0.28		0.28		0.32		0.35		0.23		0.23		0.29	
Uranium	7440-61-1	mg/kg	5.3		2.54		2.92		3.68		7.34		4.32		3.31		3.11	
Zinc	7440-66-6	mg/kg	99	_	42		83		89		45		111		71		51	

ARCADIS Page 28 of 30

	Locatio	n Subarea	Old D	Pond	Old D	Pond	Old D	Pond	Old D	Pond	Old D	Pond	Old D	Pond	Old D) Pond
	L	ocation ID	OD-S	SD01	OD-S	SD02	OD-S	SD02	OD-S	SD03	OD-	SD03	OD-	SD04	OD-	SD04
		Sample ID	OD-SD-01-1.5-	-3.0_07282008	OD-SD-02-0-	1.5_07282008	OD-SD-02-1.5	-3.0_07282008	OD-SD-03-0-	1.5_07282008	OD-SD-03-1.5	-3.0_07282008	OD-SD-04-0-	1.5_07282008	OD-SD-04-1.5	-3.0_07282008
		mple Date				['] 2008	7/28	/2008	7/28	/2008	7/28	/2008	7/28	/2008	7/28	/2008
	Sample Depth	(feet bas)	1.5	5-3	0-	1.5	1.!	5-3	0-	1.5	1.	5-3	0-	1.5	1.5	5-3
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Antimony	7440-36-0	mg/kg	< 1	U	0.2		< 1	U	0.3		< 2	U	0.3		< 1	U
Arsenic	7440-38-2	mg/kg	1.2		2.2		0.9		2.7		2.8		3.1		2.1	
Barium	7440-39-3	mg/kg	185		173		173		158		87.9	J	118		133	
Beryllium	7440-41-7	mg/kg	< 1	U	0.5		0.2		0.4		0.3		0.4		0.3	
Cadmium	7440-43-9	mg/kg	< 2	U	< 2	U	< 2	U	< 2	U	0.5		< 2	U	< 2	U
Chromium	7440-47-3	mg/kg	14		13		9		18		13		11		9	
Cobalt	7440-48-4	mg/kg	10		12		9		11		8		11		9	
Copper	7440-50-8	mg/kg	125		376		27		2350		4390		1640		671	
Lead	7439-92-1	mg/kg	2.59		7.63		1.89		46.7		253		8.86		2.2	
Manganese	7439-96-5	mg/kg	346		390		320		316		173		262		258	
Mercury	7439-97-6	mg/kg	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	0.05		< 0.2	U	< 0.2	U
Molybdenum	7439-98-7	mg/kg	6		107		3		100		145		128		25	
Nickel	7440-02-0	mg/kg	29		32		26		31		30		29		27	
Selenium	7782-49-2	mg/kg	0.08		0.42		0.07		0.41		0.4		0.53		0.19	
Thallium	7440-28-0	mg/kg	0.28		0.3		0.32		0.28		0.2		0.3		0.26	
Uranium	7440-61-1	mg/kg	7.42		4.66		3.37		7.57		7.8		4.25		2.18	
Zinc	7440-66-6	mg/kg	43		60		41		147		201		68		48	

ARCADIS Page 29 of 30

	Locatio	on Subarea	Old D	Pond	014.5	Pond	Old D	Pond	Old D) Pond
		ocation ID		SD05		SD05		SD06		SD06
							_			
		Sample ID		1.5_07292008		-3.0_07292008		1.5_07292008		-3.0_07292008
		ample Date		/2008		/2008		/2008		/2008
	Sample Depth	, ,		1.5	1	5-3		1.5		5-3
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Antimony	7440-36-0	mg/kg	0.8		0.3		0.5		< 1	U
Arsenic	7440-38-2	mg/kg	6.2		4.6		5.3		3.2	
Barium	7440-39-3	mg/kg	141	J	169		109		122	
Beryllium	7440-41-7	mg/kg	0.6		0.5		0.5		0.5	
Cadmium	7440-43-9	mg/kg	1.1		< 2	U	< 2	U	< 2	U
Chromium	7440-47-3	mg/kg	22		13		13		12	
Cobalt	7440-48-4	mg/kg	13		12		11		14	
Copper	7440-50-8	mg/kg	3960		916		2590		1130	
Lead	7439-92-1	mg/kg	102		35.3		29.3		7.26	
Manganese	7439-96-5	mg/kg	365		402		334		552	
Mercury	7439-97-6	mg/kg	0.05		< 0.2	U	< 0.2	U	< 0.2	U
Molybdenum	7439-98-7	mg/kg	230		63		115		9	
Nickel	7440-02-0	mg/kg	8		7		7		11	
Selenium	7782-49-2	mg/kg	1.04		0.47		1.04		0.23	
Thallium	7440-28-0	mg/kg	0.39		0.28		0.3		0.23	
Uranium	7440-61-1	mg/kg	5.57		10.3		4.33		6.42	
Zinc	7440-66-6	mg/kg	179		105		198		218	

ARCADIS Page 30 of 30

	Locat	ion Subarea	Esperar	za Mill	Esperai	nza Mill	Espera	nza Mill	Raffina	te Pond	Espera	nza Mill	Espera	nza Mill	Esperai	nza Mill	Espera	nza Mill	Espera	nza Mill	Laydow	n Yard
		Location ID	-1		EM		EM		EM	-09	EM			-13	EM			I-17	EM		EM-	
		Sample ID	EM-3 0	81304	EM-4 C	81304	EM-5 (081304	EM-9 0	81304	EM-10	081304	EM-13	081304	EM-14	081304	EM-17	081304	EM-18	081304	EM-20 (081304
	9	Sample Date	8/13/	2004	8/13/	2004	8/13/	/2004	8/13/	2004	8/13/	2004	8/13/	2004	8/13/	2004	8/13	/2004	8/13/	/2004	8/13/	2004
	Sample Dept	th (feet bgs)	0-0	25	0-0	.25	0-0	.25	0-0	.25	0-0	.25	0-0	.25	0-0	.25	0-0).25	0-0	.25	0-0	.25
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Antimony	7440-36-0	mg/kg	4.7		0.9		0.3		0.6		0.6		0.3		0.4		69		0.7		2.0	
Arsenic	7440-38-2	mg/kg	34.80		10.80		3.62		5.01		9.52		4.23		11.80		101		10.40		13.70	
Barium	7440-39-3	mg/kg	NA		NA		NA		NA		NA		NA		NA		NA		NA		NA	
Beryllium	7440-41-7	mg/kg	1		0.55		0.37		0.44		0.93		0.72		0.26		0.33		0.48		0.55	
Cadmium	7440-43-9	mg/kg	5.65		2.55		0.59		0.57		1.78		0.83		0.85		2.8		2.31		2.39	
Chromium	7440-47-3	mg/kg	6		10		7		8		10		8		14		3		8		17	
Chromium VI	18540-29-9	mg/kg	NA		NA		NA		NA		NA		NA		NA		NA		NA		NA	
Cobalt	7440-48-4	mg/kg	NA		NA		NA		NA		12		NA		< 5	U	3		NA		NA	
Copper	7440-50-8	mg/kg	11600		8360		1880		522		814		668		409		2330		3560		4710	
Lead	7439-92-1	mg/kg	133		61.9		12.00		38.10		54.50		12.7		8.87		80.7		54.80		87.8	
Manganese	7439-96-5	mg/kg	715		657		323		340		538		172		30		75.5		173		405	
Mercury	7439-97-6	mg/kg	0.14		0.08		< 0.04	U	< 0.04	U	< 0.04	U	< 0.05	U	< 0.05	U	0.3		0.04		0.07	
Molybdenum	7439-98-7	mg/kg	1570		630		122		230		239		2640		471		1690		1470		6500	
Nickel	7440-02-0	mg/kg	11		25		8		5		8		8		< 5	U	< 1	U	4		14	
Selenium	7782-49-2	mg/kg	9.4		1.5		< 0.5	U	< 0.5	U	0.7		< 0.5	U	1.0		< 5	U	2.9		5.5	
Thallium	7440-28-0	mg/kg	0.17		0.15		0.27		NA		0.22		0.27		0.89	•	< 0.3	U	0.19		0.2	
Uranium	7440-61-1	mg/kg	NA		NA		NA		NA		NA		NA		NA	•	NA		NA		NA	
Zinc	7440-66-6	mg/kg	824		443		195	·	NA		256		64		29	•	77		67	·	234	

ARCADIS Page 1 of 15

	Locat	ion Subarea	Esperai	nza Mill	C Po	ond	Raffinat	e Pond	Raffina	te Pond	Raffinat	e Pond	Raffinat	te Pond	Espera	nza Mill	Espera	nza Mill	Esperar	nza Mill	Esperar	nza Mill
		Location ID	· EM	-21	EM	-26	EM-	T01	EM-	T01	EM-	T01	EM-	T01	EM-	T02	· EM-	T02	EM-T	02B	EM-	T03
		Sample ID	EM-21	081304	EM-26	081304	EM-T-1-1.	5 100504	EM-T-1-1	3 100504	EM-T-1-2	100504	EM-T-1-6	5 100504	EM-T-2-2	2 100504	EM-T-2-2	.5 100504	EM-T-2-B-1	18 100504	EM-T-3-1	2 100504
	5	ample Date	8/13/	2004	8/13/	2004	10/5/	2004	10/5/	/2004	10/5/	2004	10/5/	2004	10/5	2004	10/5/	/2004	10/5/	2004	10/5/	2004
	Sample Dept	h (feet bgs)	0-0	.25	0-0	.25	1.	5	1	3	2	2	6	5		2	2	.5	1.	5	1.	2
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Antimony	7440-36-0	mg/kg	0.5		2.5		1.4		NA		NA		0.5		NA		< 0.2	U	0.3		NA	
Arsenic	7440-38-2	mg/kg	4.09		23.00		28.30		1.35		23.00		5.49		3.58		5.3		6.4		3.52	
Barium	7440-39-3	mg/kg	NA		NA		NA		NA		NA		NA		NA		NA		NA		NA	
Beryllium	7440-41-7	mg/kg	0.17		2.36		0.41		0.69		0.82		0.85		0.51		0.7		0.9		1.43	1
Cadmium	7440-43-9	mg/kg	0.32		1.99		1.3		NA		NA		0.26		NA		3.6		0.5		NA	1
Chromium	7440-47-3	mg/kg	2		15		9		NA		NA		12		NA		36		33		NA	
Chromium VI	18540-29-9	mg/kg	NA		NA		NA		NA		NA		NA		NA		NA		NA		NA	
Cobalt	7440-48-4	mg/kg	4		NA		NA		NA		NA		NA		NA		NA		NA		NA	1
Copper	7440-50-8	mg/kg	514		5220		2200		159		9850		1700		533		1170		1400		733	
Lead	7439-92-1	mg/kg	8.79		127		60.90		65.90		63.60		36.50		17.20		19.0		17.5		12.40	
Manganese	7439-96-5	mg/kg	110		928		151		NA		NA		146		NA		31		198		NA	
Mercury	7439-97-6	mg/kg	< 0.04	U	0.18		< 0.05	U	NA		NA		0.06		NA		< 0.05	U	< 0.04	U	NA	
Molybdenum	7439-98-7	mg/kg	151		936		305		3		229		24		16		1050		103		20	
Nickel	7440-02-0	mg/kg	< 1	U	20		6		NA		NA		9		NA		< 5	U	< 5	U	NA	
Selenium	7782-49-2	mg/kg	1.5		2.2		3.76		NA		NA		0.41		NA		0.9		2.2		NA	
Thallium	7440-28-0	mg/kg	0.07		0.4		NA		NA		NA		NA		NA		1.1		0.2		NA	
Uranium	7440-61-1	mg/kg	NA		NA		NA		NA		NA		NA		NA		NA		NA		NA	
Zinc	7440-66-6	mg/kg	25		429		NA		NA		NA		NA		NA		40		169		NA	. 7

Page 2 of 15

	Loca	tion Subarea	Esperar	nza Mill	Espera	nza Mill	C Po	ond	C P	ond	Esperar	ıza Mill	Esperan	za Mill	Espera	nza Mill	Esperar	nza Mill	Espera	nza Mill
		Location ID	EM-	T03	EM-	T03	EM-	T04	EM-	T04	EM-J	S01	EM-J	501	C	22	. C2	22	· c:	
		Sample ID	EM-T-3-4	100504	EM-T-3-6	5 100504	EM-T-4-1	0 100504	EM-T-4-6	5 100504	EM-JS-01-0-	I_08012008	EM-JS-01-1-3	_08012008	EM-C22-0-1	1_07292008	EM-C22-1-3	3_07292008	EM-C22-5-7	7_07292008
	;	Sample Date	10/5/	2004	10/5/	/2004	10/5/	2004	10/5/	2004	8/1/2	8008	8/1/2	800	7/29/	/2008	7/29/	′2008	7/29/	/2008
	Sample Dep	th (feet bgs)	4	1	(5	1	0	(5	0-	1	1-3	3	0-	-1	1-	-3	5-	-7
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Antimony	7440-36-0	mg/kg	3.1		2.0		NA		0.7		0.5		< 1	U	2		0.5		< 1	U
Arsenic	7440-38-2	mg/kg	38.8		4.70		2.66		6.77		4.3		3.1		13.9		5.1		2.2	
Barium	7440-39-3	mg/kg	NA		NA		NA		NA		103		228		82.7		161		234	
Beryllium	7440-41-7	mg/kg	0.9		1.03		0.76		0.76		0.6		0.8		0.5		0.5		0.5	
Cadmium	7440-43-9	mg/kg	1.6		1.37		NA		2.83		< 2	U	0.8		0.8		< 2	U	< 2	U
Chromium	7440-47-3	mg/kg	90		8		NA		7		7		11		19		13		10	
Chromium VI	18540-29-9	mg/kg	NA		NA		NA		NA		NA		NA		NA		NA		NA	
Cobalt	7440-48-4	mg/kg	NA		NA		NA		NA		8		10		16		13		14	i
Copper	7440-50-8	mg/kg	1850		1270		643		2020		840		543		5480		1120		739	<u> </u>
Lead	7439-92-1	mg/kg	43.8		10.80		21.60		64.30		24		9.8		85.2		12.1		5.13	<u> </u>
Manganese	7439-96-5	mg/kg	212		593		NA		250		238		388		323		378		370	<u> </u>
Mercury	7439-97-6	mg/kg	< 0.05	U	< 0.04	U	NA		0.05		< 0.2	U	< 0.2	U	0.2		< 0.2	U	< 0.2	U
Molybdenum	7439-98-7	mg/kg	260		21		88		550		143		8		4800		270		5	<u> </u>
Nickel	7440-02-0	mg/kg	< 5	U	8		NA		6		7		13		5		9		8	
Selenium	7782-49-2	mg/kg	0.9		0.31		NA		2.27		0.46		0.12		7.25		0.28		0.15	i
Thallium	7440-28-0	mg/kg	0.2		0.16		NA		0.21		< 0.28	U	< 0.26	U	0.21		0.25		0.26	1
Uranium	7440-61-1	mg/kg	NA		NA		NA		NA		2.9	•	3.64		4.74		3.37		2.45	
Zinc	7440-66-6	mg/kg	111		209		NA		104		88	•	187		332		122		85	

ARCADIS Page 3 of 15

	Loca	tion Subarea	Espera	nza Mill	Espera	nza Mill	Espera	nza Mill	Espera	nza Mill	Espera	nza Mill	Espera	nza Mill	Esperai	nza Mill	Esperar	nza Mill
		Location ID				24	E:		G			27		22	H		H2	
		Sample ID	EM-E24-0-1	1_07292008	EM-E24-1-3	3_07292008	EM-E24-5-7	_07292008	EM-G27-0-1	1_08072008	EM-G27-1-3	3_08072008	EM-H22-0-	1_07302008	EM-H22-1-3	_07302008	EM-H22-5-7	_07312008
		Sample Date	7/29/	/2008	7/29/	/2008	7/29/	/2008	8/7/	2008	8/7/	2008	7/30	/2008	7/30/	2008	7/31/	2008
	Sample Dep	th (feet bgs)	0-	-1	1-	-3	5	-7	0	-1	1	-3	0	-1	1-	.3	5-	.7
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Antimony	7440-36-0	mg/kg	0.6		1		0.2		0.3		< 1	UJ	3.7		0.4		< 1	U
Arsenic	7440-38-2	mg/kg	5		7.6		2.2		3.5		1.2		11.7		3.7		1.1	
Barium	7440-39-3	mg/kg	149		116		198		81.2		126		115	J	70.4		199	
Beryllium	7440-41-7	mg/kg	0.8		0.9		0.6		0.5		0.4		0.5		0.3		0.5	
Cadmium	7440-43-9	mg/kg	< 2	U	< 2	U	< 2	U	< 2	U	< 2	U	1.6		1		1.7	
Chromium	7440-47-3	mg/kg	10		11		12		6		4		8		5		6	
Chromium VI	18540-29-9	mg/kg	NA		NA		NA		NA		NA		NA		NA		NA	
Cobalt	7440-48-4	mg/kg	9		10		14		7		11		10		5		14	
Copper	7440-50-8	mg/kg	2270		2470		364		2750		933		10000		2330		1740	
Lead	7439-92-1	mg/kg	26.5		47.9		13.1		30.9		3.92		91.3		15		3.75	
Manganese	7439-96-5	mg/kg	364		369		434		233		399		294		188		594	
Mercury	7439-97-6	mg/kg	0.04		< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	0.05		< 0.2	U	< 0.2	U
Molybdenum	7439-98-7	mg/kg	234		362		57		403		3		821		118		10	
Nickel	7440-02-0	mg/kg	2		3		10		5		7		7		7		14	
Selenium	7782-49-2	mg/kg	1.65		2.42		0.32		0.8		0.07		4.53		1.07		0.06	
Thallium	7440-28-0	mg/kg	0.18		0.22		0.38		0.2		0.29		0.42		0.24		0.51	
Uranium	7440-61-1	mg/kg	4.05		5.32		4.07		2.8		3.7		3.34		2.3		3.75	
Zinc	7440-66-6	mg/kg	132		159		68		90		57		293		181		464	

ARCADIS Page 4 of 15

	Loca	tion Subarea	Espera	nza Mill	Espera	nza Mill	Espera	nza Mill	Espera	nza Mill	Espera	nza Mill	Espera	nza Mill	Esperai	nza Mill	Esperar	nza Mill
		Location ID				24	K			26		26		26	N2		N2	
		Sample ID	EM-K24-0-1	1_07312008	EM-K24-1-3	3_07312008	EM-K24-5-7	7_07312008	EM-M26-0-	1_08012008	EM-M26-1-	3_08012008	EM-M26-5-	7_08012008	EM-N29-0-1	_08062008	EM-N29-1-3	_08062008
		Sample Date	7/31/	/2008	7/31/	['] 2008	7/31/	['] 2008	8/1/	2008	8/1/	2008	8/1/	2008	8/6/2	2008	8/6/2	2008
	Sample Dep	th (feet bgs)	0-	-1	1-	-3	5	-7	0	-1	1	-3	5	-7	0-	-1	1-	3
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Antimony	7440-36-0	mg/kg	< 1	U	0.2		< 1	U	< 1	U	0.3		0.2		0.4		0.6	
Arsenic	7440-38-2	mg/kg	3		2.5		2.4		2.6		3.7		4.6		5.2		7.5	
Barium	7440-39-3	mg/kg	78.7		79.4		152		126		48.4		67.5		56		65.9	
Beryllium	7440-41-7	mg/kg	0.8		0.6		0.6		< 1	U	0.4		0.7		0.9		1.1	
Cadmium	7440-43-9	mg/kg	< 2	U	< 2	U	< 2	U	< 2	U	< 2	U	0.5		< 2	U	< 2	U
Chromium	7440-47-3	mg/kg	7		8		6		7		8		10		9		6	
Chromium VI	18540-29-9	mg/kg	NA		NA		NA		NA		NA		NA		NA		NA	
Cobalt	7440-48-4	mg/kg	8		5		8		5		4		6		6		17	
Copper	7440-50-8	mg/kg	629		530		486		358		469		536		495		805	
Lead	7439-92-1	mg/kg	15.9		13.1		12.3		21.9		20.3		19.5		25.8		41.8	
Manganese	7439-96-5	mg/kg	175		124		241		146		109		144		194		429	
Mercury	7439-97-6	mg/kg	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U
Molybdenum	7439-98-7	mg/kg	66		19		24		66		23		44		124		94	
Nickel	7440-02-0	mg/kg	6		6		7		5		5		7		3		3	
Selenium	7782-49-2	mg/kg	0.52		0.21		0.27		0.35		0.28		0.16		0.5		0.79	
Thallium	7440-28-0	mg/kg	0.28		0.26		0.25		< 0.18	U	< 0.16	U	< 0.19	U	0.13		0.13	
Uranium	7440-61-1	mg/kg	2.5		3.16		2.89		3.13		5.3		5.57		1.96		2.7	
Zinc	7440-66-6	mg/kg	46		47		45		57		97		142		78		59	

ARCADIS Page 5 of 15

	Locat	ion Subarea	Espera	nza Mill	Espera	nza Mill	Esperai	nza Mill	Espera	nza Mill	Espera	nza Mill	Espera	nza Mill	Espera	nza Mill	C Po	ond
		Location ID	P2	24	P:	24	P2	24	P:	24	. X	26	· X	26	. X2	26	C-JS	301
		Sample ID	EM-P24-0-1	1_08072008	EM-P24-10-1	11_08072008	EM-P24-1-3	3_08072008	EM-P24-5-7	_08072008	EM-X26-0-1	_08062008	EM-X26-1-3	3_08062008	EM-X26-5-7	_08062008	C-JS-01-0-1	_08012008
	9	Sample Date	8/7/	2008	8/7/	2008	8/7/2	2008	8/7/	2008	8/6/	2008	8/6/	2008	8/6/	2008	8/1/2	2008
	Sample Dept	h (feet bgs)	0-	-1	10	-11	1-	-3	5	-7	0-	-1	1	-3	5.	.7	0-	1
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Antimony	7440-36-0	mg/kg	< 1	U	< 1	U	< 1	U	< 1	U	0.4		< 1	U	0.5		0.4	
Arsenic	7440-38-2	mg/kg	2.3		2.1		2.6		2.3		3.2		1.7		4.5		5.3	
Barium	7440-39-3	mg/kg	104		132		79.9		86.5		94.8		52.8		101		79.2	
Beryllium	7440-41-7	mg/kg	0.7		0.9		0.5		0.4		0.6		0.2		0.5		0.6	
Cadmium	7440-43-9	mg/kg	< 2	U	< 2	U	< 2	U	< 2	U	< 2	U	< 2	U	< 2	U	< 2	U
Chromium	7440-47-3	mg/kg	5		3		6		8		6		5		5		9	
Chromium VI	18540-29-9	mg/kg	NA		NA		NA		NA		NA		NA		NA		NA	
Cobalt	7440-48-4	mg/kg	10		8		5		6		10		7		7		7	
Copper	7440-50-8	mg/kg	719		348		483		540		1390		424		1030		677	
Lead	7439-92-1	mg/kg	15		104		14.6		24.6		12.8		6.02		75.2		56.6	
Manganese	7439-96-5	mg/kg	379		293		146		230		356		199		232		338	
Mercury	7439-97-6	mg/kg	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	0.06		< 0.2	U
Molybdenum	7439-98-7	mg/kg	60		9		260		106		154		51		307		135	
Nickel	7440-02-0	mg/kg	7		8		4		5		5		3		5		7	
Selenium	7782-49-2	mg/kg	0.36		0.14		0.48		0.27		0.52		0.27		0.63		0.33	
Thallium	7440-28-0	mg/kg	0.24		0.28		0.17		0.16		0.3		0.14		0.24		< 0.19	U
Uranium	7440-61-1	mg/kg	4.54		6.46		5.44		3.97		3.78		2.38		5.86	•	3.39	
Zinc	7440-66-6	mg/kg	82	-	550	-	64		89	-	67		37		77		149	

ARCADIS Page 6 of 15

	Loca	tion Subarea	СР	ond	СР	ond	СР	ond	C Po	ond	C P	ond	СР	ond	СР	ond	C P	ond
		Location ID	C-J	S01	C-J	S02	C-J	S02	C-J:	S02	C-J:	S03	C-J	S03	C-J	S03	C-J	S03
		Sample ID	C-JS-01-1-3	3_08012008	C-JS-02-0-1	_08012008	C-JS-02-1-3	3_08012008	C-JS-02-5-7	_08012008	C-JS-03-0-1	_08042008	C-JS-03-10-	12_08042008	C-JS-03-1-3	3_08042008	C-JS-03-5-7	7_08042008
	•	Sample Date	8/1/	2008	8/1/	2008	8/1/	2008	8/1/2	2008	8/4/	2008	8/4/	2008	8/4/	2008	8/4/	2008
	Sample Dep	th (feet bgs)	1	-3	0-	-1	1	-3	5-	-7	0-	-1	10	-12	1-	-3	5.	-7
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Antimony	7440-36-0	mg/kg	0.5		0.2		< 1	U	< 1	UJ	0.5		< 1	U	< 1	U	< 1	U
Arsenic	7440-38-2	mg/kg	4.5		3.4		1.8		1.6		6.6		2.2		3.3		2.7	
Barium	7440-39-3	mg/kg	136		116		64.9		143		82.5		85.8		136		88.1	
Beryllium	7440-41-7	mg/kg	0.7		1.3		0.5		0.7		1.4		0.7		0.7		0.6	
Cadmium	7440-43-9	mg/kg	0.6		1.7		< 2	U	1		< 2	U	< 2	U	0.7		< 2	U
Chromium	7440-47-3	mg/kg	8		8		6		4		11		8		8		12	
Chromium VI	18540-29-9	mg/kg	NA		NA		NA		NA		NA		NA		NA		NA	
Cobalt	7440-48-4	mg/kg	8		14		5		9		12		4		8		6	
Copper	7440-50-8	mg/kg	763		794		399		442		1020		365		485		371	
Lead	7439-92-1	mg/kg	46.3		30.5		10		37.3	J	74.8		89.3		53.2		45.9	
Manganese	7439-96-5	mg/kg	329		551		170		373		573		211		351		256	
Mercury	7439-97-6	mg/kg	0.04		< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U
Molybdenum	7439-98-7	mg/kg	194		99		18		5		199		7		37		18	
Nickel	7440-02-0	mg/kg	6		9		6		7		10		4		6		6	
Selenium	7782-49-2	mg/kg	0.4		0.39		0.18		0.07		< 0.69	U	< 0.41	U	< 0.29	U	< 0.23	U
Thallium	7440-28-0	mg/kg	< 0.18	U	< 0.19	U	< 0.12	U	< 0.19	U	0.2		0.18		0.22		0.15	
Uranium	7440-61-1	mg/kg	4.1		4.64		4.34		9.38		6.11		13		3.7		3.15	
Zinc	7440-66-6	mg/kg	188		362		180		1070		256		178		442		255	

ARCADIS Page 7 of 15

Sierrita Mine, Green Valley, Arizona

	Locat	tion Subarea	C Po	ond	C P	ond	СР	ond	C Po	and	CP	ond	C Po	and	C Pond	l Spoils	C Pond	Spoils
	LUCA	Location ID	C-J:		C-J		C-J		C-J:			S05	C-J:		CS-J		CS-J	•
				304 I_08052008						_08052008		303 1_08052008				1_08042008		12_08042008
		Sample Date	8/5/2	_	8/5/		8/5/	_	8/5/2	_		2008	8/5/2	_	8/4/2	_	8/4/2	
Amobito	Sample Dept	` ,	0-			-12	1.		5-		0.		1-		0-		10-	
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Antimony	7440-36-0	mg/kg	0.4		0.7		< 1	U	< 1	U	0.2	J	0.3		0.5		1	
Arsenic	7440-38-2	mg/kg	8.9		4.7		1.4		2.3		4.2		11.2		8.7		5.8	
Barium	7440-39-3	mg/kg	73		88.1		137		152		120		104	J	82.3		123	
Beryllium	7440-41-7	mg/kg	1.2		0.4		0.5		0.6		0.9		< 1	U	0.6		0.7	
Cadmium	7440-43-9	mg/kg	< 2	U	2.1		< 2	U	< 2	U	1.2		0.6		< 2	U	< 2	U
Chromium	7440-47-3	mg/kg	23		9		6		11		16		3		14		9	
Chromium VI	18540-29-9	mg/kg	NA		NA		NA		NA		NA		NA		< 4	U	NA	
Cobalt	7440-48-4	mg/kg	12		11		7		11		10		1		7		12	
Copper	7440-50-8	mg/kg	671		2780		491		420		481		185		423		4580	
Lead	7439-92-1	mg/kg	44.4		41.4		15.1		56.1		477		3740		65.1		47.9	
Manganese	7439-96-5	mg/kg	664		187		333		388		838		78.1	J	386		392	
Mercury	7439-97-6	mg/kg	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U
Molybdenum	7439-98-7	mg/kg	98		537		16		38		74		18		142		735	
Nickel	7440-02-0	mg/kg	11		6		6		8		7		< 5	U	6		5	
Selenium	7782-49-2	mg/kg	0.3		2.39		0.15		0.26		< 1	U	< 5	U	< 0.62	U	< 3.37	U
Thallium	7440-28-0	mg/kg	0.18		0.22		0.28		0.27		0.18		0.62		0.22		0.27	
Uranium	7440-61-1	mg/kg	4.05		7.23		3.28		3.23		5.66		4.19		3.67		6.9	
Zinc	7440-66-6	mg/kg	245		135		45		106		315		156	J	124		150	

Page 8 of 15

	Locat	tion Subarea	C. Ponc	d Spoils	C. Ponc	d Spoils	C Pond	Spoils	C Pond	Spoils	C Pond	d Spoils	C. Ponc	l Spoils	C. Ponc	d Spoils
	2000	Location ID		JS01	CS-	•	CS-J	•	CS-J			JS02		JS02		JS03
		Sample ID		3_08042008		7_08042008		1_08042008		11_08042008		3_08042008		7_08042008		1_08052008
	9	Sample Date		2008		2008	8/4/	_	8/4/2	_		2008		2008		2008
		th (feet bgs)			5.		0-		10-			-3	5.		0	
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Antimony	7440-36-0	mg/kg	< 1	U	0.3		0.3		0.7	J	0.2		< 1	U	0.3	
Arsenic	7440-38-2	mg/kg	2.2		3.6		4		5.3		3.3		1.6		3.8	
Barium	7440-39-3	mg/kg	121		146		157		138		85.6		366		95.4	
Beryllium	7440-41-7	mg/kg	0.6		0.7		0.6		0.6		0.7		0.5		0.4	
Cadmium	7440-43-9	mg/kg	< 2	U	< 2	U	< 2	U	8.3		< 2	U	< 2	U	< 2	U
Chromium	7440-47-3	mg/kg	37		5		8		5		7		5		8	
Chromium VI	18540-29-9	mg/kg	NA		NA		NA		NA		NA		NA		NA	
Cobalt	7440-48-4	mg/kg	8		10		9		12		7		11		17	
Copper	7440-50-8	mg/kg	432		602		640		448		448		131		562	
Lead	7439-92-1	mg/kg	90.5		343		126		376		25.7		20.3		57.2	
Manganese	7439-96-5	mg/kg	546		486		348		717		269		430		279	
Mercury	7439-97-6	mg/kg	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U
Molybdenum	7439-98-7	mg/kg	54		134		81		15		28		5		51	
Nickel	7440-02-0	mg/kg	6		5		6		8		5		9		5	
Selenium	7782-49-2	mg/kg	< 0.26	U	< 0.48	U	< 0.41	U	< 0.24	U	< 0.32	U	< 0.19	U	0.28	
Thallium	7440-28-0	mg/kg	0.2		0.23		0.32		0.4		0.26		0.38		0.17	
Uranium	7440-61-1	mg/kg	4.66		6.09		3.77		7.77		3.28		3		11	
Zinc	7440-66-6	mg/kg	172		302		218		3630	·	269		1140		129	

ARCADIS Page 9 of 15

	Locat	tion Subarea	C Pond	l Spoils	C. Ponc	l Spoils	C. Ponc	l Spoils	C Pond	Spoils	C Pond	Spoils	C. Ponc	d Spoils	C. Ponc	d Spoils	C. Ponc	l Spoils
	Loca	Location ID		•		JS03	CS-	•	CS-		CS-J			JS04		JS05	CS-J	
			CS-JS-03-10-			3_08052008					CS-JS-04-1-3			7_08062008		1_08272008	CS-JS-05-1-	
	9	Sample Date		_		2008		2008	8/6/	_	8/6/2	_		2008		/2008		/2008
	Sample Dep					-3	5		0.		1-		5		0.		1-	
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Antimony	7440-36-0	mg/kg	0.3		0.3		0.2		0.4		0.6	J	< 1	U	0.2		0.5	
Arsenic	7440-38-2	mg/kg	3.3		3.5		2.9		3.2		4.3		1.6		3.9		14.6	
Barium	7440-39-3	mg/kg	201		123		142		111		101		216		294		103	
Beryllium	7440-41-7	mg/kg	0.4		0.6		0.6		0.4		0.4		0.6		0.5		0.6	
Cadmium	7440-43-9	mg/kg	< 2	U	< 2	U	< 2	U	< 2	U	< 2	U	1.4		< 2	U	1.7	
Chromium	7440-47-3	mg/kg	8		8		13		7		17		6		5		4	
Chromium VI	18540-29-9	mg/kg	NA		NA		NA		NA		NA		NA		NA		NA	
Cobalt	7440-48-4	mg/kg	11		8		10		8		8		14		12		6	
Copper	7440-50-8	mg/kg	641		802		770		557		658		425		116		148	
Lead	7439-92-1	mg/kg	71.4		48.8		88.7		131		18.2		16.3		38.1		280	
Manganese	7439-96-5	mg/kg	371		273		478		375		209		495		515		538	
Mercury	7439-97-6	mg/kg	0.04		< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U
Molybdenum	7439-98-7	mg/kg	98		66		46		281		822		8		19		17	
Nickel	7440-02-0	mg/kg	9		6		10		6		5		9		11		6	
Selenium	7782-49-2	mg/kg	0.34		0.37		0.3		0.49		0.88		0.1		0.16		0.39	
Thallium	7440-28-0	mg/kg	0.35		0.23		0.31		0.31		0.19		0.4		0.36		0.17	
Uranium	7440-61-1	mg/kg	3		3.24		3.01		2.94		3.42		3.29		5.08		8.01	
Zinc	7440-66-6	mg/kg	456		154		217		207		76		451		134		502	

Page 10 of 15

	Laga	tion Cuborca	C Done	Cneile	C Dame	l Cnaile	C Dame	l Cmaile	C Dame	I Casila	C Dame	Cnaile	Loudou	un Vord	Loudou	un Vord
	Loca	tion Subarea				l Spoils		l Spoils	C Pond		C Pond		,	vn Yard	Laydow	
		Location ID				IS06	U:		U2	-	U2	-		JS02	EM	
			CS-JS-06-0-			3_08272008		1_08062008		3_08062008	EM-U25-5-5.	_		1_08012008	EM-JS-02-1-	_
		Sample Date				′2008		2008		2008	8/6/2			2008	8/1/2	
	Sample Dep				1-		0-	-	1-	-3	5-5		0-		1-	
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Antimony	7440-36-0	mg/kg	0.2		0.2	J	0.4		0.4		0.3		0.4		< 1	U
Arsenic	7440-38-2	mg/kg	1.6		1.2		3.2		4.6		8.6		5.1		3.4	
Barium	7440-39-3	mg/kg	213		168		265		156		88.7		115		89.6	
Beryllium	7440-41-7	mg/kg	0.4		0.5		0.6		0.7		0.6		0.7		0.5	
Cadmium	7440-43-9	mg/kg	< 2	U	1		0.6		< 2	U	0.6		0.9		1.5	
Chromium	7440-47-3	mg/kg	5		5		7		8		7		7		5	
Chromium VI	18540-29-9	mg/kg	NA		NA		NA		NA		NA		NA		NA	
Cobalt	7440-48-4	mg/kg	16		11		10		11		9		9		6	
Copper	7440-50-8	mg/kg	175		149		728		1210		204		2160		722	
Lead	7439-92-1	mg/kg	30.5		3.5		100		136		433		187		576	
Manganese	7439-96-5	mg/kg	501		373		398		366		693		566		684	
Mercury	7439-97-6	mg/kg	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U	0.05		0.11		< 0.2	U
Molybdenum	7439-98-7	mg/kg	7		3		113		292		57		382		8	
Nickel	7440-02-0	mg/kg	12		9		7		7		6		9		5	
Selenium	7782-49-2	mg/kg	0.14		0.13		0.32		0.72		0.26		0.55		0.23	
Thallium	7440-28-0	mg/kg	0.49		0.5		0.25		0.23		0.15		< 0.22	U	< 0.17	U
Uranium	7440-61-1	mg/kg	3.15		2.88		3.65		3.89		14.1		6.85		10.2	
Zinc	7440-66-6	mg/kg	168		257		234		233		971		531		640	

ARCADIS Page 11 of 15

	Loca	tion Subarea	Lavdov	vn Yard	Lavdow	n Yard	Lavdov	n Yard	Lavdov	n Yard	Lavdov	vn Yard	Lavdov	vn Yard	Lavdov	vn Yard
	Loca	Location ID	,	JS06	,	JS06	,	JS06	,	JS06		JS07	,	JS07	,	JS07
		Sample ID		1_08132008		11_08132008	EM-JS-06-1-					1_08132008	EM-JS-07-10-			3_08132008
		Sample Date		/2008		2008	8/13/			/2008		/2008		/2008		/2008
		th (feet bgs)	0			·11	1.		5.		0.			-12		-3
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Antimony	7440-36-0	mg/kg	1.5		2.1		1		0.9		1.4		2.6		2.3	
Arsenic	7440-38-2	mg/kg	10.3		15.8		6.5		8.1		11.7		16.1		10.7	
Barium	7440-39-3	mg/kg	45		142		40.2		39.2		96.2		62.6		77.8	
Beryllium	7440-41-7	mg/kg	0.7		0.9		0.4		0.5		0.2		0.5		0.7	
Cadmium	7440-43-9	mg/kg	< 2	U	1		< 2	U	< 2	U	0.6		2		0.7	
Chromium	7440-47-3	mg/kg	9		22		6		14		12		36		13	
Chromium VI	18540-29-9	mg/kg	NA		NA		NA		NA		NA		< 4	U	NA	
Cobalt	7440-48-4	mg/kg	18		16		14		17		19		25		17	
Copper	7440-50-8	mg/kg	4090		5870		1900		2650		3770		5150		4840	
Lead	7439-92-1	mg/kg	86.1		93.3		33.5		157		96.4		147		151	
Manganese	7439-96-5	mg/kg	448		579		288		371		382		645		556	
Mercury	7439-97-6	mg/kg	0.06		0.05		< 0.2	U	< 0.2	U	0.09		0.23		0.05	
Molybdenum	7439-98-7	mg/kg	1180		481		472		309		6830		5610		1000	
Nickel	7440-02-0	mg/kg	4		19		2		4		< 5	U	16		10	
Selenium	7782-49-2	mg/kg	3.01		1.85		2.58		2.53		3.68		3.96		2.77	
Thallium	7440-28-0	mg/kg	0.21		0.25		0.19		0.21		0.27		0.26		0.21	
Uranium	7440-61-1	mg/kg	6.63		18.1	<u> </u>	4.13	-	5.12	-	6.01		9.21		8.97	
Zinc	7440-66-6	mg/kg	161		283		53		110		122		393		238	

ARCADIS Page 12 of 15

	Locat	tion Subarea	Laydo	wn Yard	Lavdov	n Yard	Laydov	vn Yard	Laydov	vn Yard	Laydov	vn Yard	Doffina	te Pond	Doffina	te Pond
	LUCA	Location ID	,	JS07	,	JS08	,	JS08	,	JS08	,	JS08	RA		RA-,	
	,	Sample ID		-7_08132008		_		-12_08122008		3_08122008		7_08122008		1_08072008		-3_08072008
		Sample Date		/2008	8/12/			/2008		/2008		/2008		2008		2008
	Sample Dep	, ,		5-7	0-			-12	1		5			-1	1	,
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Antimony	7440-36-0	mg/kg	1.2		1.1		2	J	0.4		13.6		0.6		0.8	
Arsenic	7440-38-2	mg/kg	9.1		11.9	J	16		7.7	J	64.8	J	9.7		16.8	
Barium	7440-39-3	mg/kg	75.8		55.7		77.6		47.3		150		67.3		99.1	
Beryllium	7440-41-7	mg/kg	0.7		< 1	U	0.9		< 1	U	< 1	U	0.9		2.1	
Cadmium	7440-43-9	mg/kg	0.9		< 2	U	5.3		< 2	U	5		< 2	U	< 2	U
Chromium	7440-47-3	mg/kg	10		5		193		2		36	J	5		8	
Chromium VI	18540-29-9	mg/kg	NA		NA		4	R	NA		< 9	U	NA		NA	
Cobalt	7440-48-4	mg/kg	17		4		23		5		42		7		13	
Copper	7440-50-8	mg/kg	3840		2040		4120		1800		26800		3550		4020	
Lead	7439-92-1	mg/kg	144		57		303		152		999		64.7		120	
Manganese	7439-96-5	mg/kg	590		166		683		190		932		401		566	
Mercury	7439-97-6	mg/kg	0.07		0.08		0.4		0.09		0.6		0.07		0.08	
Molybdenum	7439-98-7	mg/kg	343		1240		2220		315		6470		955		767	
Nickel	7440-02-0	mg/kg	11			U	29		< 5	U	33		4		7	
Selenium	7782-49-2	mg/kg	2.13		3.24		2.86		3.38		7.85		1.9		2.17	
Thallium	7440-28-0	mg/kg	0.26		0.12		0.17		0.2		0.22		0.22		0.28	
Uranium	7440-61-1	mg/kg	6.49		2.41		7.78		1.17		5.2		4.42		13.4	
Zinc	7440-66-6	mg/kg	274		39		741		39		1550		133		173	

ARCADIS Page 13 of 15

	Loca	tion Subarea	Raffina	te Pond	Raffinat	te Pond	Raffina	te Pond	Raffinat	te Pond						
	Loca	Location ID		JS01	RA-J			JS02		JS02		JS03		JS03	RA-J	
		Sample ID		7_08072008		1_08112008		3_08112008		7_08112008		1_08072008		3_08072008	RA-JS-04-0-	
		Sample Date		2008	8/11/	_		/2008		/2008		2008	8/7/2	_	8/7/2	_
		th (feet bgs)			0-117			-3		-7	0///		1.		0-	
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
				Quai		Quai		Quai		Quai						
Antimony	7440-36-0	mg/kg	0.9		8		17.4		9.6		< 1	U	< 1	U	< 1	U
Arsenic	7440-38-2	mg/kg	13.5		< 35.4	U	< 89.7	U	< 60	U	1.7		1.1		1.4	
Barium	7440-39-3	mg/kg	83.7		74.1		68.9		78.1		163		127		121	
Beryllium	7440-41-7	mg/kg	0.8		< 5	U	< 5	U	6.2		0.3		< 1	U	< 1	U
Cadmium	7440-43-9	mg/kg	< 2	U	1.5		2.5		1.8		< 2	U	< 2	U	< 2	U
Chromium	7440-47-3	mg/kg	6		10		18		35		5		4		4	
Chromium VI	18540-29-9	mg/kg	NA		NA		NA		< 8	UJ	NA		NA		NA	
Cobalt	7440-48-4	mg/kg	16		17		22		26		7		6		6	
Copper	7440-50-8	mg/kg	7520		30200		27800		19600		113		62		201	
Lead	7439-92-1	mg/kg	78.6		137		349		199		4.99		2.81		10.8	
Manganese	7439-96-5	mg/kg	276		384		327		382		239		228		232	
Mercury	7439-97-6	mg/kg	< 0.2	U	0.36		0.28		0.32		< 0.2	U	< 0.2	U	< 0.2	U
Molybdenum	7439-98-7	mg/kg	525		1430		3430		1950		26		12		13	
Nickel	7440-02-0	mg/kg	7		2		2		8		6		6		5	
Selenium	7782-49-2	mg/kg	2.43		< 11.1	U	< 9.76	U	< 6.25	U	0.13		0.05		0.09	
Thallium	7440-28-0	mg/kg	0.19		0.35		0.36		0.39		0.32		0.26		0.34	
Uranium	7440-61-1	mg/kg	6.59		5.63		8.62		29.9		3.7		3.33		2.75	
Zinc	7440-66-6	mg/kg	125		281	_	466		629		75		63	_	60	

ARCADIS Page 14 of 15

	Loca	tion Subarea	Raffina	te Pond	Raffina	te Pond	Raffina	te Pond	Raffina	te Pond	Raffina	te Pond	Raffinat	te Pond	Raffina	te Pond
	Loca	Location ID		JS04	RA-		RA-			SD01		SD01	RA-S		RA-S	
				2.5_08072008		1_08072008		3_08072008		1.5_08112008		-3.0_08112008				3.0_08112008
		Sample Date		2008		2008		2008		/2008		/2008	8/11/	_		/2008
	Sample Dep	•		2.5	0.		1-			1.5		5-3	0-1		1.5	
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Antimony	7440-36-0	mg/kg	< 1	U	0.4		0.6		1.3		4		5.8		7.4	
Arsenic	7440-38-2	mg/kg	1		5.2		3.1		< 10.1	U	< 24.7	U	< 32.4	U	< 39.1	U
Barium	7440-39-3	mg/kg	98.9		52.2		53.5		73.1		81.7		52.4		57.4	
Beryllium	7440-41-7	mg/kg	< 1	U	0.4		< 1	U	0.7		0.7		< 1	U	0.5	
Cadmium	7440-43-9	mg/kg	< 2	U	< 2	U	< 2	U	< 2	U	0.8		< 2	U	< 2	U
Chromium	7440-47-3	mg/kg	3		2		2		11		14		7		8	
Chromium VI	18540-29-9	mg/kg	NA		NA		NA		NA		NA		NA		NA	
Cobalt	7440-48-4	mg/kg	5		4		5		6		10		4		5	
Copper	7440-50-8	mg/kg	136		380		284		7630		6960		4210		4180	
Lead	7439-92-1	mg/kg	3		24.5		8.63		86.9		114		106		91.3	
Manganese	7439-96-5	mg/kg	220		169		210		277		226		108		181	
Mercury	7439-97-6	mg/kg	< 0.2	U	< 0.2	U	< 0.2	U	0.09		0.11		0.13		0.13	
Molybdenum	7439-98-7	mg/kg	< 5	U	157		25		998		1590		530		1000	
Nickel	7440-02-0	mg/kg	4		3		3		2		2		< 5	U	2	
Selenium	7782-49-2	mg/kg	0.06		0.33		0.15		2.61		3.46		3.13		3.02	
Thallium	7440-28-0	mg/kg	0.22		0.14		0.15		0.2		0.31		0.18		0.25	
Uranium	7440-61-1	mg/kg	3.4		6.88		8.31		7.72		10.9		2.12		3.98	
Zinc	7440-66-6	mg/kg	51		82		87		91		186		51		77	

ARCADIS Page 15 of 15

	Locat	ion Subarea	Rheniur	n Ponds	Rhenium	Ponds	Rheniur	n Ponds	Rheniur	n Ponds	Rheniur	m Ponds	Rhenium	Ponds	Rheniur	m Ponds	Rheniur	m Ponds
		Location ID	RP-J	IS01	RP-J	S01	RP	JS01	RP-J	IS01	RP	JS02	RP-J:	502	RP-	JS02	RP-	JS02
		Sample ID	RP-JS-01-0-	1_08122008	RP-JS-01-10-1	2_08122008	RP-JS-01-1-	3_08122008	RP-JS-01-5-	7_08122008	RP-JS-02-0-	1_08122008	RP-JS-02-10-1	2_08122008	RP-JS-02-1-	3_08122008	RP-JS-02-5-	7_08122008
	9	Sample Date	8/12/	2008	8/12/2	2008	8/12	/2008	8/12/	2008	8/12	/2008	8/12/2	2008	8/12/	/2008	8/12/	/2008
	Sample Dept	th (feet bgs)	0-	-1	10-	12	1	-3	5-	-7	0	-1	10-	12	1-	-3	5.	-7
Analyte	CASRN	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Antimony	7440-36-0	mg/kg	< 1	U	< 1	U	< 1	U	< 1	U	0.2		0.3		< 1	U	< 1	U
Arsenic	7440-38-2	mg/kg	3.5 J		2.6	J	3.1	J	1.9	J	3.5	J	3.3	J	3.5	J	5.2	J
Barium	7440-39-3	mg/kg	127		50.8		46.1		49		303		50.9		47.3		188	
Beryllium	7440-41-7	mg/kg	0.6		0.3		0.2		< 1	U	1.6		0.5		< 1	U	0.8	
Cadmium	7440-43-9	mg/kg	< 2	U	< 2	U	< 2	U	< 2	U	< 2	U	< 2	U	< 2	U	< 2	U
Chromium	7440-47-3	mg/kg	4		2		4		2		7		2		3		4	
Cobalt	7440-48-4	mg/kg	5		5		5		5		10		16		2		10	
Copper	7440-50-8	mg/kg	124		466		183		137		63		323		74		123	
Lead	7439-92-1	mg/kg	11.4		9.69		12.7		6.43		10.8		14.5		8.5		7.69	
Manganese	7439-96-5	mg/kg	271		207		244		231		975		713		160		1250	
Mercury	7439-97-6	mg/kg	0.07		0.06		< 0.2	U	< 0.2	U	0.04		0.07		< 0.2	U	< 0.2	U
Molybdenum	7439-98-7	mg/kg	51		126		86		33		6		93		121		32	
Nickel	7440-02-0	mg/kg	2		2		2		2		6		5		< 5	U	4	
Selenium	7782-49-2	mg/kg	0.91		1.04		0.8		0.6		0.34	-	0.93		0.74		0.7	
Thallium	7440-28-0	mg/kg	0.15		0.09		0.13		0.08		0.25		0.12		0.11		0.17	
Uranium	7440-61-1	mg/kg	2.64		2.25		2.44		1.26		2.11		9.12		1.07		2.12	
Zinc	7440-66-6	mg/kg	40		48		43		36		51		139		23		71	

Page 1 of 1

	Loca	tion Subarea		Former Cl	LEAR Plant	t		Former CI	EAR Plan	t		Former CI	LEAR Plan	t		Former Cl	EAR Plant	t		Former Cl	EAR Plan	t		Former CI	EAR Plant	i
	Location ID CP-JS01							CP-	JS01			CP-	JS01			CP-	JS01			CP-	JS02			CP-	JS02	
	Sample ID CP-JS-01-0-1_07152008						CP-	JS-01-10-	12_07152	800	CP	-JS-01-1-	3_071520	800	CF	-JS-01-5-	7_071520	80	CP	-JS-02-0-	1_071120	08	CF	-JS-02-1-	3_071120	08
	Sample Date 7/15/2008							7/15	/2008			7/15	/2008			7/15/	/2008			7/11/	/2008			7/11	2008	
	Sample Date 7/15/2008 Sample Depth (feet bgs) 0-1							10	-12			1	-3			5	-7			0	-1			1	-3	
Analyte	CAS Units Result Qual MDC TPI					TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU
Radium-226	13982-63-3	pCi/g	0.64		0.59	0.44	2.4		0.33	0.71	2		0.37	0.54	2.8		0.6	0.49	2.9		0.46	0.8	1.1	J	0.42	0.28
Radium-228	15262-20-1	pCi/g	4.2		2.7	1.9	2.5		0.96	0.68	2.1	J	0.98	0.64	1.7	J	0.77	0.57	1.9	J	1.6	0.85	1.5	J	1.1	0.63
Uranium-234	13966-29-5	pCi/g	1.3		0.034	0.27	2.8		0.047	0.52	2.4		0.073	0.47	2		0.043	0.39	12		0.017	2	0.84		0.034	0.19
Uranium-235	15117-96-1	pCi/g	< 0.039	U	0.039	0.039	0.11		0.047	0.059	0.19		0.053	0.084	0.2		0.034	0.079	0.74		0.046	0.19	0.081		0.033	0.048
Uranium-238	ARC-U238	pCi/q	1.3		0.034	0.28	3		0.058	0.55	2.7		0.06	0.52	2.1		0.029	0.4	12		0.017	2	1		0.028	0.22

ARCADIS Page 1 of 14

	Locat	ion Subarea		Former C	LEAR Plan	t		Former C	LEAR Plan	t		Former CI	LEAR Plan	t	F	ormer CL	EAR Plant	t		Former Cl	LEAR Plan	t		Former CI	EAR Plant	
	Location ID CP-JS03							CP-	JS03			CP-	JS03			CP-J	JS04			CP-	JS04			CP-	JS04	
	Sample ID CP-JS-03-0-1_07142008							-JS-03-1	3_071420	80	CP	-JS-03-5-	7_071420	80	CP-	JS-04-0-	1_082720	80	CP-	JS-04-10-	12_08272	800	CF	P-JS-04-1-	3_082720	38
	Sample Date 7/14/2008							7/14	/2008			7/14	/2008			8/27/	2008			8/27	/2008			8/27	/2008	
	Sample Date 7/14/2008 Sample Depth (feet bgs) 0-1							1	-3			5	-7			0-	-1			10	-12			1	-3	
Analyte	alyte CAS Units Result Qual MDC TP					TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU
Radium-226	13982-63-3	pCi/g	2.5		0.38	0.66	2.1		0.35	0.6	5.3		0.35	1.2	2.6		0.38	0.69	0.88	J	0.52	0.43	2.4		0.51	0.41
Radium-228	15262-20-1	pCi/g	2.3		0.87	0.61	2.3	J	0.89	0.64	2	J	0.74	0.52	2.3		0.99	0.62	1.8	J	0.66	0.57	1.7		1.1	0.53
Uranium-234	13966-29-5	pCi/g	2.6		0.036	0.49	2.3		0.027	0.42	3.6		0.03	0.65	3		0.051	0.55	2.9		0.11	0.52	2.3		0.073	0.45
Uranium-235	15117-96-1	pCi/g	0.11		0.048	0.059	0.072		0.032	0.044	0.2		0.042	0.081	0.081		0.076	0.059	0.19		0.052	0.078	0.14		0.086	0.083
Uranium-238	ARC-U238	pCi/g	2.7		0.036	0.5	2.2		0.033	0.42	3.6		0.036	0.64	2.6		0.058	0.48	3.1		0.077	0.55	2.2		0.052	0.45

ARCADIS Page 2 of 14

	Loca	tion Subarea		Former CI	LEAR Plant	t		Former Cl	EAR Plan	t		Former Cl	LEAR Plan	t		Former Cl	EAR Plan	t		Former Cl	LEAR Plan	t		Former CI	LEAR Plant	t
	Location ID CP-JS04							CP-S	SD01			CP-S	SD01			CP-S	SD02			CP-S	SD02			CP-S	SD03	
	Sample ID CP-JS-04-5-7_08272008						CP-	SD-01-0-1	1.5_07162	800	CP-S	D-01-1.5-	3.0_0716	2008	CP-	SD-02-0-1	.5_07162	800	CP-S	D-02-1.5-	3.0_0716	2008	CP-	SD-03-0-1	1.5_07162	800
	Sample Date 8/27/2008						7/16/	/2008			7/16	/2008			7/16/	/2008			7/16	/2008			7/16	/2008		
	Sample Date 8/2/72008 Sample Depth (feet bgs) 5-7							0-	1.5			1.!	5-3			0-	1.5			1.!	5-3			0-	1.5	
Analyte	CAS	CAS Units Result Qual MDC TPU				TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU
Radium-226	13982-63-3	pCi/g	5	J	0.62	0.75	2.1		0.41	0.61	2.2		0.42	0.39	1.5		0.54	0.34	1.5		0.35	0.47	2.8		0.094	0.79
Radium-228	15262-20-1	pCi/g	2.4	J	1.1	0.67	1.5		0.96	0.5	2.4		0.78	0.57	1.4	J	1	0.58	1.5		0.95	0.66	1.5	J	1	0.61
Uranium-234	13966-29-5	pCi/g	6.4		0.087	1.1	1.5		0.031	0.32	2.2		0.03	0.42	1.9		0.014	0.37	1.2		0.046	0.27	0.98		0.049	0.23
Uranium-235	15117-96-1	pCi/g	0.27		0.085	0.11	0.11		0.036	0.058	0.14		0.042	0.067	0.092		0.033	0.051	0.043		0.023	0.039	0.075		0.053	0.051
Uranium-238	ARC-U238	pCi/g	6.3		0.11	1.1	1.5		0.016	0.31	2.2		0.03	0.42	1.8		0.028	0.36	1.2		0.046	0.27	1.1		0.04	0.25

ARCADIS Page 3 of 14

	Loca	tion Subarea		Former Cl	LEAR Plant	t		Former CI	LEAR Plan	t		Former Cl	LEAR Plan	t		Former Cl	EAR Plant	t		Former Cl	LEAR Plan	t		Former CL	EAR Plant	I
		Location ID		CP-S	SD03			CP-S	SD04			CP-S	SD04			CP-S	SD05			CP-S	SD05			CP-S	SD06	
		Sample ID	CP-S	D-03-1.5-	-3.0_0716	2008	CP-	SD-04-0-1	1.5_07172	800	CP-S	D-04-1.5	-3.0_0717	2008	CP-	SD-05-0-1	.5_07162	800	CP-S	D-05-1.5-	3.0_0716	2008	CP-	SD-06-0-1	.5_07162	800
		Sample Date		7/16	/2008			7/17	/2008			7/17	/2008			7/16/	2008			7/16	/2008			7/16/	2008	
	Sample Dep	th (feet bgs)		1.!	5-3			0-	1.5			1.	5-3			0-	1.5			1.!	5-3			0-1	1.5	
Analyte	CAS	Units	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU
Radium-226	13982-63-3	pCi/g	2.3		0.45	0.42	0.77		0.065	0.31	1.4		0.46	0.49	2.7		0.54	0.46	2.3		0.06	0.61	2.7		0.49	0.44
Radium-228	15262-20-1	pCi/g	1.8	J	0.78	0.59	2.7		1.6	0.81	2.3	J	1.5	0.84	2		1	0.56	2.1		0.96	0.62	2.1		0.91	0.59
Uranium-234	13966-29-5	pCi/g	1.8		0.13	0.42	1.9		0.059	0.42	1.4		0.031	0.29	2.1		0.05	0.4	2.3		0.1	0.49	1.7		0.037	0.34
Uranium-235	15117-96-1	pCi/g	< 0.097	U	0.097	0.08	0.097		0.069	0.075	0.11		0.036	0.058	0.15		0.035	0.068	0.098		0.038	0.076	0.095		0.039	0.052
Uranium-238	ARC-U238	pCi/g	1.9		0.031	0.42	2.1		0.041	0.46	1.3		0.031	0.27	2		0.04	0.39	1.9		0.11	0.44	1.9		0.028	0.37

ARCADIS Page 4 of 14

	Locat	ion Subarea	ı	Former C	LEAR Plan	t		Former C	LEAR Plan	t		Former C	LEAR Plan	t		Former Cl	EAR Plan	t	ı	Former Cl	LEAR Plan	t		Former C	EAR Plant	
	Location ID CP-SD06							CP-	SD07			CP-S	SD09			CP-S	SD09			CP-S	SD10			M	04	
	Sample ID							D-07-1.5	-3.0_0723	2008	CP-	SD-09-0-	1.5_07282	800	CP-S	D-09-1.5-	3.0_0728	2008	CP-S	D-10-1.5-	3.0_0728	2008	CP	-M04-1-2	5_071120	80
	Sample Date 7/16/2008							7/23	/2008			7/28	/2008			7/28/	/2008			7/28	/2008			7/11	/2008	
	Sample Date //16/2008 Sample Depth (feet bgs) 1.5-3							1.	5-3			0-	1.5			1.5	5-3			1.	5-3			1-	2.5	
Analyte	te CAS Units Result Qual MDC TP						Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU
Radium-226	13982-63-3	pCi/g	3		0.51	0.49	2.1		0.45	0.38	3		0.26	0.76	1.6		0.42	0.55	0.61		0.58	0.4	2.3		0.56	0.42
Radium-228	15262-20-1	pCi/g	2.6		0.92	0.65	2.5		0.83	0.6	2		1	0.59	1.4		0.79	0.45	2.2	J	0.93	0.66	1.5	J	1.1	0.6
Uranium-234	13966-29-5	pCi/g	1.7		0.034	0.34	2		0.034	0.39	2.1		0.041	0.4	1.7		0.051	0.34	1.2		0.079	0.27	1.9		0.067	0.37
Uranium-235	15117-96-1	pCi/g	0.11		0.034	0.056	< 0.12	U	0.12	0.067	0.098		0.043	0.055	0.072		0.035	0.046	< 0.054	U	0.054	0.045	0.069		0.049	0.047
Uranium-238	ARC-U238	pCi/g	1.9		0.029	0.36	2.2		0.051	0.44	2.4		0.03	0.46	1.7		0.041	0.34	1.4		0.063	0.3	1.8		0.055	0.35

ARCADIS Page 5 of 14

	Loca	tion Subarea		Former Cl	LEAR Plant	t		Former Cl	EAR Plan	t		Former C	LEAR Plan	t		Former Cl	EAR Plan	t		Former Cl	LEAR Plan	t		Former Cl	EAR Plant	I
	Location ID M04							M	06			M	106			N	80			N	80			N	28	
	Sample ID						C	P-M06-0-1	_0711200	08	CF	P-M06-1-3	3_071120	08	С	P-N08-0-1	_0711200	08	C	P-N08-1-3	3_0711200	08	С	P-N08-5-7	_0711200	18
	Sample Date 7/11/2008							7/11/	2008			7/11	/2008			7/11/	/2008			7/11	/2008			7/11/	2008	
	Sample Date 7/11/2008 Sample Depth (feet bgs) 5-5.4						0	-1			1	-3			0	-1			1	-3			5	-7		
Analyte	CAS	Units	Units Result Qual MDC TPU				Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU
Radium-226	13982-63-3	pCi/g	4		0.57	0.61	1.3	J	0.47	0.29	1		0.52	0.28	1.5		0.42	0.31	4.1		0.47	0.94	2.3		0.35	0.59
Radium-228	15262-20-1	pCi/g	2.5	J	1.1	0.72	1.2	J	0.9	0.45	1.6	J	1.2	0.64	1.6		0.72	0.47	3	J	0.96	0.8	2.4	J	1.2	0.78
Uranium-234	13966-29-5	pCi/g	3.8		0.034	0.68	1.1		0.065	0.24	0.88		0.034	0.2	1.5		0.043	0.32	3.9		0.05	0.7	4		0.058	0.72
Uranium-235	15117-96-1	pCi/g	0.2		0.017	0.079	0.063		0.056	0.046	0.056		0.034	0.04	0.089	, and the second	0.037	0.053	0.2		0.036	0.082	0.18		0.038	0.079
Uranium-238	ARC-U238	pCi/g	3.8		0.034	0.68	1.1		0.047	0.23	1		0.034	0.22	1.8		0.047	0.36	4		0.042	0.71	4.3		0.044	0.78

ARCADIS Page 6 of 14

	Locat	tion Subarea		Former C	LEAR Plan	t		Former CL	EAR Plant			Former Cl	EAR Plan	t		Former Cl	EAR Plant	t		Former CL	EAR Plan	İ		Former CL	EAR Plant	
Location ID O03								00	03			0	09			0	09			00	09			00	09	
Sample ID CP-003-0-1_071120							C	P-003-1-3	_0711200	18	С	P-009-0-1	_0711200)8	CP.	-009-10-1	2_071120	800	C	P-009-1-3	_0711200	8	С	P-009-5-7	_0711200	8
	9	Sample Date	2	7/11	/2008			7/11/	2008			7/11/	/2008			7/11/	2008			7/11/	2008			7/11/	2008	
	Sample Dep		0)-1			1-	-3			0	-1			10	-12			1.	-3			5-	-7		
Analyte	· · · · · · · · · · · · · · · · · · ·				MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU
Radium-226	13982-63-3	pCi/g	2.1		0.44	0.38	3.3		0.5	0.52	1.4		0.29	0.42	< 0.4	U	0.4	0.3	1.2		0.44	0.44	1.7		0.42	0.54
Radium-228	15262-20-1	pCi/g	2		0.9	0.52	2.4		0.83	0.61	7.6	J	3.4	2.9	1.9	J	1.1	0.67	2.1		1	0.64	2.2	J	1.4	0.77
Uranium-234	13966-29-5	pCi/g	2.5		0.072	0.49	3.1		0.072	0.56	2.7		0.054	0.51	1.8		0.05	0.37	2		0.051	0.4	1.9		0.066	0.38
Uranium-235					0.043	0.069	0.23		0.044	0.085	0.21	, and the second	0.038	0.086	0.1	, and the second	0.019	0.057	0.17	J	0.019	0.075	0.16		0.044	0.074
Uranium-238	ARC-U238	pCi/g	2.7		0.075	0.52	3.1		0.053	0.56	2.8		0.043	0.53	1.9		0.042	0.38	2		0.057	0.4	1.9		0.016	0.37

ARCADIS Page 7 of 14

	Loca	tion Subarea		Former Cl	LEAR Plant	İ		Former Cl	EAR Plan	t		Former Cl	LEAR Plan	t		Former Cl	EAR Plan	t		Former CI	LEAR Plan	t		Former Cl	EAR Plant	i
	Location ID P04							P	04			P	05			P	05			P	07			P	07	
	Sample ID						C	P-P04-1-3	_0715200)8	C	P-P05-0-1	_0715200	8	С	P-P05-1-3	_0715200	8(С	P-P07-0-1	_0717200)8	C	P-P07-1-3	_0717200	18
	Sample Date 7/15/2008							7/15/	/2008			7/15/	/2008			7/15/	/2008			7/17	/2008			7/17/	2008	
	Sample Date 7/15/2008 Sample Depth (feet bgs) 0-1							1	-3			0	-1			1	-3			0	-1			1-	-3	
Analyte	CAS	Units	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU
Radium-226	13982-63-3	pCi/g	1.9		0.47	0.58	1.8		0.44	0.35	1.2		0.28	0.38	2.2		0.41	0.39	2.8		0.3	0.69	4.8		0.71	1.2
Radium-228	15262-20-1	pCi/g	2.5	J	0.88	0.7	2.1		0.91	0.57	2.5		0.94	0.63	1.9		0.72	0.52	2.8	J	0.9	0.69	2.8	J	1.3	0.78
Uranium-234	13966-29-5	pCi/g	2.5		0.016	0.48	2.3		0.055	0.45	2.9		0.038	0.54	2.5		0.045	0.47	2.2		0.11	0.49	2.4		0.1	0.52
Uranium-235	15117-96-1	pCi/g	0.17		0.019	0.075	0.19		0.049	0.084	0.27		0.045	0.1	0.22		0.036	0.085	0.21		0.04	0.12	0.19		0.04	0.11
Uranium-238	ARC-U238	pCi/g	2.5		0.047	0.47	1.9		0.062	0.39	3		0.032	0.57	2.6		0.041	0.48	2.9		0.079	0.62	2.6		0.089	0.56

ARCADIS Page 8 of 14

	Locat	tion Subarea	n	Former C	LEAR Plan	t		Former C	LEAR Plan	t		Former C	LEAR Plan	t		Former CI	EAR Plan	t		Former CI	LEAR Plan	t		Former	E Pond	
		Location ID)	Р	07			Р	12			Р	12			Q	09			Q	09			E-J	S01	
		Sample ID CP-P07-5-7_07172008						P-P12-0-	1_0723200	8(С	P-P12-1-3	3_0723200	08	C	P-Q09-0-1	_0723200)8	C	P-Q09-1-3	3_0723200)8	E	-JS-01-0-1	I_0714200	18
	Ş	Sample Date	9	7/17	/2008			7/23	/2008			7/23	/2008			7/23	/2008			7/23	/2008			7/14	/2008	
	Sample Dept	th (feet bgs)	5-7			C)-1			1	-3			0	-1			1	-3			0	-1			
Analyte	CAS	Units	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU
Radium-226	13982-63-3	pCi/g	1.3		0.33	0.44	1.5		0.055	0.43	1.9		0.58	0.65	< 0.84	U	0.84	0.54	1.9		0.44	0.35	1.3	J	0.24	0.44
Radium-228	15262-20-1	pCi/g	3.5		2.8	1.8	1.6	J	1.1	0.62	1.9	J	1	0.67	2	J	1.2	0.66	1.8	J	0.69	0.54	1.4		0.88	0.5
Uranium-234	13966-29-5	pCi/g	1.9		0.1	0.36	1.6		0.083	0.39	0.91		0.049	0.21	1.7		0.095	0.4	1.2		0.036	0.26	1.8		0.06	0.35
Uranium-235	15117-96-1	pCi/g	< 0.074	Ū	0.074	0.068	< 0.19	U	0.19	0.11	0.041		0.019	0.034	0.14		0.099	0.09	0.02		0.018	0.025	0.097		0.051	0.055
Uranium-238	ARC-U238	pCi/g	i/g 1.8 0.11 0.35						0.061	0.39	0.84		0.055	0.2	1.5		0.12	0.37	1.2		0.036	0.25	1.6		0.058	0.33

ARCADIS Page 9 of 14

	Locat	ion Subarea	1	Former	E Pond			Former	E Pond			Former	E Pond			Former	E Pond		For	mer Evap	oration Po	ond	Fo	rmer Evap	oration Po	nd
		Location ID)	E-J	IS01			E-J	IS01			E-J	S02			E-J	S02			EV-	JS01			EV-	JS01	
		Sample ID	E-	JS-01-1-	3_0714200	08	E-	-JS-01-5-	7_0714200	08	E-	JS-02-0-1	1_0714200	08	E-	-JS-02-1-3	_0714200	08	EV	/-JS-01-0-	1_071420	80	E۱	/-JS-01-1-	3_071420	J8
	Ş	Sample Date	;	7/14	/2008			7/14	/2008			7/14	/2008			7/14/	2008			7/14	/2008			7/14	/2008	
	Sample Dept	h (feet bgs)		1	-3			5	-7			0	-1			1	-3			0	-1			1	-3	
Analyte	CAS	Units	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU
Radium-226	13982-63-3	pCi/g	1.6		0.5	0.54	2		0.41	0.61	1.8		0.063	0.52	4.8		0.42	1.1	0.44		0.17	0.23	3		0.33	0.85
Radium-228	15262-20-1	pCi/g	3.5		2.5	1.7	2.2	J	1.2	0.66	2.7		1	0.71	2		1	0.63	1.9	J	0.88	0.59	3.8		2.5	1.7
Uranium-234	13966-29-5	pCi/g	2.1		0.088	0.43	2.3		0.09	0.47	2.2		0.029	0.41	4.6		0.046	0.83	3.8		0.051	0.68	2.4		0.048	0.46
Uranium-235	15117-96-1	pCi/g	0.092		0.074	0.062	0.072		0.063	0.055	0.12		0.018	0.061	0.31		0.019	0.1	0.27		0.019	0.098	0.13		0.035	0.063
Uranium-238	ım-238 ARC-U238 pCi/g 2.5 0.044 0.48						2.5		0.048	0.51	2.3		0.015	0.44	4.9		0.037	0.87	4		0.051	0.72	2.6		0.04	0.48

ARCADIS Page 10 of 14

	Loca	tion Subarea	For	rmer Evap	oration Po	ond	Fo	rmer Evap	oration Po	ond	For	mer Evap	oration Po	ond	Foi	rmer Evap	oration Po	ond		Old D	Pond			Old D	Pond	
	Location ID EV-JS01							EV-	JS02			EV-	JS02			EV-	IS02			OD-	JS01			OD-	JS01	
	Sample ID EV-JS-01-5-7_07142008						E۱	/-JS-02-0-	1_071420	80	EV	/-JS-02-1-	3_071420	800	E۱	/-JS-02-5-	7_071420	80	OD)-JS-01-0-	-1_072920	800	10	D-JS-01-1-	3_072920	80
	Sample Date 7/14/2008							7/14	2008			7/14/	/2008			7/14/	2008			7/29	/2008			7/29	/2008	
	Sample Date 7/14/2008 Sample Depth (feet bgs) 5-7							0	-1			1	-3			5	-7			0	-1			1	-3	
Analyte	Sample Depth (feet bgs) 5-7						Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU
Radium-226	13982-63-3	pCi/g	5.2		0.64	0.76	0.43		0.35	0.3	2.5		0.47	0.43	2.6	J	0.59	0.48	3.1		0.41	0.91	1.5		0.37	0.46
Radium-228	15262-20-1	pCi/g	2.5		1	0.69	1.5	J	0.84	0.56	1.6		0.77	0.51	1.9	J	0.95	0.58	1.8	J	0.99	0.66	2.1	J	1.1	0.71
Uranium-234	13966-29-5	pCi/g	6.1		0.031	1.1	2		0.037	0.39	2.7		0.047	0.51	2		0.016	0.39	2.8		0.033	0.52	2.3		0.05	0.47
Uranium-235	15117-96-1	pCi/g	i/g 0.4 0.036 0.16				0.15		0.044	0.07	0.21		0.041	0.087	0.069		0.038	0.047	< 0.11	U	0.11	0.057	0.17		0.049	0.084
Uranium-238	ARC-U238	pCi/g	6.6		0.071	1.2	2		0.046	0.4	2.6		0.042	0.5	2.3		0.032	0.45	2.9		0.014	0.52	2		0.062	0.42

ARCADIS Page 11 of 14

	Location Subarea Old D Pond							Old D	Pond			Old D	Pond			Old D	Pond			Old D	Pond			Old D	Pond	
Location ID OD-JS02								OD-	JS02			OD-	JS02			OD-	JS03			OD-S	SD01			OD-S	SD01	
Sample ID OD-JS-02-0-1_07292008						80	OD	-JS-02-1	3_072920	800	OD	-JS-02-5	-7_072920	800	OE)-JS-03-0-	1_082720	80	OD-	SD-01-0-1	1.5_07282	800	OD-S	SD-01-1.5-	3.0_0728	2008
	:		7/29	/2008			7/29	/2008			7/29	/2008			8/27/	2008			7/28/	/2008			7/28/	2008		
	Sample Date 7/29/2008 Sample Depth (feet bgs) 0-1							1	-3			5	-7			0-	-1			0-	1.5			1.5	5-3	
Analyte							Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU
Radium-226	13982-63-3	3.5		0.79	1.1	3.3		0.22	0.79	2.2		0.42	0.6	2.3		0.52	0.42	2		0.4	0.59	1.6		0.31	0.5	
Radium-228	13982-63-3 pCi/g 3.5 0.79 1.1 15262-20-1 pCi/g 1.2 J 0.67 0.46				0.46	2.6		1	0.69	3.5	J	1.3	0.84	1.7		1.1	0.54	2.6		1.1	0.68	1.8		1	0.57	
Uranium-234	ium-234 13966-29-5 pCi/g 1.8 0.015 0.3				0.36	2.5		0.036	0.47	2.7	J	0.026	0.57	3		0.037	0.53	1.9		0.029	0.37	1.8		0.039	0.35	
Uranium-235					< 0.079	Ū	0.079	0.049	0.12	J	0.083	0.084	0.16		0.044	0.072	< 0.099	U	0.099	0.055	< 0.091	U	0.091	0.051		
Uranium-238	nium-238 ARC-U238 pCi/g 2.1 0.015 0.4					2.4	·	0.016	0.46	3	J	0.1	0.63	3		0.053	0.54	2.2		0.035	0.42	1.9		0.029	0.38	

ARCADIS Page 12 of 14

	Loca	cation Subarea Old D Pond						Old D	Pond			Old D	Pond			Old D	Pond			Old D	Pond			Old D	Pond	
	Location ID OD-SD02							OD-	SD02			OD-S	SD03			OD-	SD03			OD-	SD04			OD-S	SD04	
	Sample ID						OD-S	SD-02-1.5	-3.0_0728	2008	OD-	SD-03-0-1	1.5_07282	2008	OD-S	D-03-1.5	-3.0_0728	2008	OD-	SD-04-0-	1.5_07282	8008	OD-S	SD-04-1.5-	3.0_0728	2008
	Sample Date 7/28/2008							7/28	/2008			7/28/	/2008			7/28	/2008			7/28	/2008			7/28/	2008	
	Sample Depth (feet bgs) 0-1.5							1.	5-3			0-	1.5			1.!	5-3			0-	1.5			1.5	5-3	
Analyte	CAS	Units	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU
Radium-226	13982-63-3	pCi/g	1.9		0.58	0.61	2.5		0.69	0.83	2.9		0.25	0.7	2.2		0.49	0.42	2.6		0.39	0.66	2.6		0.22	0.63
Radium-228	15262-20-1	pCi/g	2.7		0.85	0.62	2.3		0.79	0.56	3		0.88	0.65	2		1.1	0.59	2.1		1.1	0.63	1.6	J	0.81	0.56
Uranium-234	13966-29-5	pCi/g 1.7 0.16 0.35				1.7		0.05	0.34	3.7		0.11	0.72	4.5		0.038	0.8	2.5		0.05	0.49	1.6		0.054	0.34	
Uranium-235	15117-96-1					0.058	< 0.11	U	0.11	0.059	0.31		0.097	0.14	< 0.23	U	0.23	0.089	< 0.18	U	0.18	0.079	< 0.1	U	0.1	0.059
Uranium-238	ARC-U238	pCi/g	Ci/g 1.9 0.1 0.38						0.042	0.36	4		0.12	0.77	4.8		0.042	0.85	2.6		0.05	0.49	1.6		0.066	0.34

ARCADIS Page 13 of 14

	Locat	tion Subarea		Old D	Pond			Old D	Pond			Old D	Pond			Old D	Pond	
		Location ID		OD-S	SD05			OD-	SD05			OD-	SD06			OD-S	SD06	
		Sample ID	OD-	SD-05-0-1	1.5_07292	2008	OD-S	D-05-1.5	-3.0_0729	2008	OD-	SD-06-0-	1.5_07292	800	OD-S	D-06-1.5	-3.0_0729	2008
	:	Sample Date		7/29/	/2008			7/29	/2008			7/29	/2008			7/29/	/2008	
	Sample Dep	th (feet bgs)		0-	1.5			1.	5-3			0-	1.5			1.5	5-3	
Analyte	CAS	Units	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU
Radium-226	13982-63-3	pCi/g	2.1		0.39	0.68	1.5		0.77	0.68	0.64		0.18	0.29	2.6		0.54	0.45
Radium-228	15262-20-1	pCi/g	2.9		1	0.72	3.2	J	1.2	0.77	3.2	J	0.96	0.77	2		0.88	0.57
Uranium-234	13966-29-5	pCi/g	3.9		0.054	0.7	3.1		0.049	0.6	2.7		0.039	0.5	4.4		0.016	0.79
Uranium-235	15117-96-1	pCi/g	< 0.18	U	0.18	0.079	0.23		0.043	0.096	< 0.18	U	0.18	0.075	< 0.23	U	0.23	0.088
Uranium-238	ARC-U238	pCi/q	3.7		0.061	0.67	3		0.019	0.59	3.1		0.015	0.56	4.5		0.037	0.8

ARCADIS Page 14 of 14

	Locatio	n Subarea		Espera	nza Mill			Espera	nza Mill			Espera	nza Mill			Espera	nza Mill			Espera	nza Mill			Espera	nza Mill	
	Lo	ocation ID		EM-	JS01			EM-	JS01			C	22			C	22			E2	24			E:	24	
	9	Sample ID	EM	I-JS-01-0-	-1_080120	800	EM	-JS-01-1-	3_080120	800	ΕN	И-C22-0-1	1_072920	80	ΕN	Л-C22-1-3	3_072920	80	EN	1-E24-0- 1	1_072920	08	Εſ	Л-E24-1-3	3_0729200	ე8
	Sar	mple Date		8/1/	2008			8/1/	2008			7/29	/2008			7/29/	2008			7/29/	/2008			7/29	2008	
	Sample Date 8/ Sample Depth (feet bgs)							1	-3			0	-1			1.	-3			0-	-1			1	-3	
Analyte	CASRN	Units	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU
Radium-226	13982-63-3	pCi/g	2.7	J	0.55	0.48	1.6	J	0.32	0.5	2.4		0.2	0.61	1.6		0.76	0.73	0.54		0.2	0.25	2.1		0.47	0.68
Radium-228					1.2	0.6	2.8	J	1.2	0.84	1.4		1.1	0.52	2.4	J	1	0.66	1.7		1.2	0.6	1.3	J	1	0.56
Uranium-234					0.079	0.32	2.9		0.053	0.55	2.2		0.045	0.42	2.3		0.052	0.48	1.8		0.053	0.35	1.9		0.057	0.41
Uranium-235					0.05	0.11		0.042	0.058	< 0.11	U	0.11	0.059	0.12		0.061	0.073	< 0.086	U	0.086	0.052	< 0.11	U	0.11	0.074	
Uranium-238	ARC-U238	pCi/q	1.7		0.058	0.35	2.9		0.044	0.54	1.9		0.052	0.37	2.4		0.064	0.5	1.7		0.037	0.35	1.8		0.065	0.41

ARCADIS Page 1 of 15

	Location Subarea Esperanza Mill							Espera	nza Mill			Espera	nza Mill			Espera	nza Mill			Espera	nza Mill			Espera	nza Mill	
	Lo	ocation ID		G	27			G	27			H:	22			H:	22			H:	22			K:	24	
	9	Sample ID	EN	M-G27-0-	1_080720	08	ΕN	Л-G27-1-3	3_080720	80	EN	Л-H22-0-1	1_073020	08	EN	И-H22-1-3	3_073020	80	EN	Л-H22-5-7	7_073120	80	EN	M-K24-0-1	1_073120	08
	Sar	nple Date		8/7/	2008			8/7/	2008			7/30/	/2008			7/30/	/2008			7/31/	/2008			7/31	/2008	
	Sample Depth	(feet bgs)		0	-1			1	-3			0-	-1			1-	-3			5-	-7			0	-1	
Analyte	CASRN	Units	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU
Radium-226	13982-63-3	pCi/g	2.1		0.87	0.83	2		0.56	0.69	1.8	J	0.53	0.38	1.6		0.42	0.55	2.4		0.43	0.41	1.8		0.47	0.35
Radium-228					0.95	0.77	2.2	J	1.6	0.9	2	J	0.9	0.6	1	J	0.82	0.63	1.3	J	0.89	0.54	1.7	J	0.84	0.57
Uranium-234					0.052	0.54	1.6		0.043	0.32	1.9		0.045	0.37	1.5		0.062	0.31	2.7		0.051	0.51	1.7		0.052	0.34
Uranium-235	ranium-235 15117-96-1 pCi/g 0.18 0.052 0.				0.078	0.074		0.045	0.049	0.096		0.049	0.056	< 0.055	U	0.055	0.044	0.13		0.018	0.064	0.12		0.052	0.063	
Uranium-238	ARC-U238	pCi/q	2.7		0.052	0.51	1.7		0.016	0.34	1.9		0.037	0.39	1.3		0.05	0.28	2.6		0.036	0.49	1.7		0.039	0.34

ARCADIS Page 2 of 15

	Location Subarea Esperanza Mill							Espera	nza Mill			Espera	nza Mill			Espera	nza Mill			Espera	nza Mill			Espera	nza Mill	
	Lo	cation ID		K	24			K	24			M	26			M:	26			M	26			N.	29	
	5	Sample ID	EI	M-K24-1-3	3_073120	80	E۱	Л-K24-5-7	7_073120	80	EN	Л-M26-0-	1_080120	08	EN	И-M26-1-3	3_080120	08	EM	И-M26-5-	7_080120	80	EN	Л-N29-0-1	_080620	08
	Sar	nple Date		7/31	/2008			7/31	/2008			8/1/	2008			8/1/	2008			8/1/	2008			8/6/	2008	
	Sample Depth	(feet bgs)		1	-3			5	-7			0	-1			1.	-3			5	-7			0	-1	
Analyte	CASRN	Units	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU
Radium-226	13982-63-3	pCi/g	2		0.45	0.37	2.2		0.41	0.39	2.5		0.43	0.68	1.6		0.35	0.5	2.7	J	0.58	0.49	0.79		0.32	0.34
Radium-228				J	0.74	0.57	2.3		0.7	0.59	2.2	J	1.1	0.83	1.7	J	0.96	0.56	2.9	J	1	0.79	1.5		1	0.48
Uranium-234	nium-234 13966-29-5 pCi/g 1.4			0.041	0.29	1.7		0.046	0.35	1.7		0.054	0.35	2.4		0.045	0.46	2.7		0.029	0.51	1.4		0.084	0.29	
Uranium-235	ranium-235 15117-96-1 pCi/g 0.081 0.018				0.049	< 0.049	U	0.049	0.041	0.11	•	0.058	0.064	0.13		0.036	0.063	0.25		0.034	0.09	0.056		0.05	0.043	
Uranium-238	ARC-U238	pCi/g	1.3		0.052	0.28	1.6		0.037	0.32	1.7		0.054	0.36	2.5		0.045	0.48	2.9		0.035	0.54	1.4		0.061	0.29

ARCADIS Page 3 of 15

	Location Subarea Esperanza Mill							Espera	nza Mill			Espera	nza Mill			Espera	nza Mill			Espera	nza Mill			Espera	nza Mill	
	Lo	ocation ID		N	29			P:	24			P:	24			P2	24			P:	24			X	26	
	9	Sample ID	EN	M-N29-1-	3_0806200	08	EN	Л-P24-0-1	1_080720	80	EM	-P24-10-1	11_08072	800	ΕN	M-P24-1-3	_080720	80	EN	Л-Р24-5-7	7_080720	08	EN	Л-X26-0- 1	_0806200	J8
	Sar	mple Date		8/6/	2008			8/7/	2008			8/7/	2008			8/7/	2008			8/7/	2008			8/6/	2008	
	Sample Depth	(feet bgs)		1	-3			0	-1			10	-11			1.	-3			5	-7			0-	-1	
Analyte	CASRN	Units	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU
Radium-226	13982-63-3	pCi/g	2		0.29	0.58	2.4		0.53	0.42	2.8		0.41	0.75	1.8		0.2	0.55	2.6		0.23	0.73	3.5		0.37	0.91
Radium-228				0.75	1.9		0.97	0.56	3	J	1	0.78	2.1		0.87	0.6	2		0.87	0.58	1.8	J	0.94	0.67		
Uranium-234				0.048	0.27	2.2		0.03	0.43	2		0.048	0.38	3.3		0.043	0.57	2.1		0.042	0.41	1.7		0.046	0.33	
Uranium-235	ranium-235 15117-96-1 pCi/g 0.078 0.038 0.05				0.05	< 0.078	Ū	0.078	0.048	0.12		0.062	0.064	0.14		0.04	0.066	< 0.12	U	0.12	0.059	0.063		0.05	0.044	
Uranium-238	ARC-U238	pCi/q	1.3		0.039	0.28	2.1		0.036	0.41	2.2		0.053	0.41	3.4		0.036	0.6	2.2		0.015	0.42	1.8		0.049	0.35

ARCADIS Page 4 of 15

Location Subarea Esperanza Mill							Espera	nza Mill			СР	ond			C P	ond			СР	ond			СР	ond		
	Lo	cation ID		Х	26			X	26			C-J	S01			C-J	S01			C-J	S02			C-J	S02	
	5	Sample ID	EI	M-X26-1-	3_080620	80	EN	И-X26-5-	7_080620	800	C-	JS-01-0-1	1_080120	08	C-	JS-01-1-3	3_080120	80	C-	JS-02-1-3	3_080120	08	C-	JS-02-5-7	_080120	08
	Sar	nple Date		8/6/	2008			8/6/	2008			8/1/	2008			8/1/	2008			8/1/	2008			8/1/	2008	
	Sample Depth	(feet bgs)		1	-3			5	-7			0	-1			1.	-3			1-	-3			5-	-7	
Analyte	CASRN	Units	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU
Radium-226	13982-63-3	pCi/g	0.72		0.63	0.47	1.1		0.072	0.38	1.5		0.48	0.53	2.1		0.29	0.62	2.3	J	0.42	0.41	4		0.46	0.98
Radium-228			2	1.4	2.2		1.1	0.69	2.1	J	1.1	0.77	2.2	J	1.1	0.69	1.8	J	0.94	0.56	5.2	J	1.3	1.2		
Uranium-234	nium-234 13966-29-5 pCi/g 0.85		0.061	0.2	2.1		0.11	0.49	1.6		0.032	0.32	1.8		0.03	0.36	2.6		0.036	0.49	3.3		0.029	0.62		
Uranium-235	anium-235 15117-96-1 pCi/g 0.059 0.052 0.04			0.044	0.084		0.083	0.072	0.092		0.019	0.053	0.11		0.018	0.058	0.088		0.018	0.051	0.2		0.047	0.082		
Uranium-238	ARC-U238	pCi/g	0.9		0.041	0.21	2.2		0.087	0.5	1.5		0.016	0.31	1.7		0.03	0.34	2.6		0.03	0.5	4		0.035	0.72

ARCADIS Page 5 of 15

	Location	n Subarea		C P	ond			СР	ond			СР	ond			C P	ond			СР	ond			СР	ond	
	Lo	ocation ID		C-J	S03			C-J	S03			C-J	S03			C-J	S03			C-J	S04			C-J	S04	
	9	Sample ID	C-	-JS-03-0-	1_080420	08	C-J	S-03-10-	12_08042	2008	C-	JS-03-1-3	3_080420	80	C-	JS-03-5-7	_080420	80	C-	JS-04-0-1	1_080520	80	C-J	S-04-10-1	2_080520	308
	Sar	nple Date		8/4/	2008			8/4/	2008			8/4/	2008			8/4/	2008			8/5/	2008			8/5/	2008	
	Sample Depth	(feet bgs)		0	-1			10	-12			1	-3			5-	-7			0	-1			10	-12	
Analyte	CASRN	Units	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU
Radium-226	13982-63-3	pCi/g	1.9		0.39	0.61	2.2	J	0.7	0.45	0.91		0.073	0.35	2.6		0.29	0.65	0.82		0.18	0.33	3.1		0.86	1
Radium-228	15262-20-1	pCi/g	1.8	J	1.2	0.8	2.7	J	0.99	0.74	1.9	J	1.1	0.69	2.1	J	1.1	0.66	< 2.4	U	2.4	1.5	2.3	J	1.2	0.77
Uranium-234	13966-29-5	pCi/g	1.9		0.045	0.38	3.6		0.032	0.67	1.9		0.046	0.37	1.9		0.029	0.38	1.6		0.045	0.33	3		0.034	0.55
Uranium-235			0.018	0.059	0.21		0.019	0.084	0.14		0.041	0.066	0.1		0.018	0.055	0.071	•	0.043	0.047	0.15		0.033	0.067		
Uranium-238	ARC-U238	pCi/q	1.9		0.036	0.38	3.5		0.032	0.66	2		0.034	0.39	2.1		0.015	0.41	1.5		0.041	0.31	3.1		0.038	0.56

ARCADIS Page 6 of 15

	Location	n Subarea		СР	ond			СР	ond			СР	ond			C Pond	Spoils			C Pond	d Spoils			C Pond	l Spoils	
	Lo	cation ID		C-J	S04			C-J	S04			C-J	S05			CS-J	IS01			CS-	JS01			CS-	IS01	
	5	Sample ID	C-	-JS-04-1-3	3_080520	80	C-	JS-04-5-7	7_080520	08	C-	JS-05-1-3	3_080520	80	CS-J	JS-01-10-	12_08042	8008	CS-	-JS-01-1-	3_080420	800	CS	-JS-01-5-	7_080420	108
	Sar	nple Date		8/5/	2008			8/5/	2008			8/5/	2008			8/4/	2008			8/4/	2008			8/4/	2008	
	Sample Depth	(feet bgs)		1	-3			5	-7			1	-3			10-	-12			1	-3			5-	-7	
Analyte	CASRN	Units	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU
Radium-226	13982-63-3	pCi/g	2.6		0.53	0.85	1.4		0.55	0.62	5	J	0.34	1.1	1.9		0.61	0.64	1.8	J	0.28	0.53	3.6		0.45	0.92
Radium-228	15262-20-1	pCi/g	2.6		1	0.73	2.4		0.73	0.64	4.6		2.7	2	2.7	J	0.98	0.77	2	J	1.5	0.79	3.4	J	1.1	0.91
Uranium-234	13966-29-5	pCi/g	1.9		0.056	0.38	1.5		0.038	0.3	2.2		0.055	0.44	2.2		0.042	0.42	2.2		0.031	0.43	2.1		0.049	0.43
Uranium-235	15117-96-1	pCi/g	0.19		0.061	0.084	0.092		0.033	0.051	0.085	J	0.038	0.052	0.087		0.034	0.05	< 0.042	U	0.042	0.038	0.14		0.053	0.071
Uranium-238	ARC-U238	pCi/q	2.1		0.064	0.42	1.6		0.028	0.32	2.1		0.048	0.42	2.4		0.039	0.46	2		0.037	0.39	2.1		0.04	0.41

Page 7 of 15

	Location	n Subarea		C Pond	d Spoils			C Pond	Spoils			C Pond	d Spoils			C Pond	l Spoils			C Pond	l Spoils			C Pond	l Spoils	
	Lo	cation ID		CS-	JS02			CS-	JS02			CS-	JS02			CS-	IS02			CS-J	JS03			CS-	IS03	
	5	Sample ID	CS	-JS-02-0	1_080420	800	CS-	JS-02-10-	11_08042	2008	CS	-JS-02-1-	3_080420	800	CS	-JS-02-5-	7_080420	800	CS	-JS-03-0-	1_080520	800	CS	JS-03-10-	12_08052	:008
	Sar	nple Date		8/4/	2008			8/4/	2008			8/4/	2008			8/4/	2008			8/5/	2008			8/5/	2008	
	Sample Depth	(feet bgs)		0	-1			10	-11			1	-3			5	-7			0-	-1			10	-12	
Analyte	CASRN	Units	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU
Radium-226	13982-63-3	pCi/g	2.2		0.33	0.62	3.7		0.33	0.93	1.9		0.39	0.6	1.7		0.61	0.38	2.3		0.45	0.65	2.7	J	0.51	0.46
Radium-228	15262-20-1	pCi/g	2.2	J	0.94	0.74	2.2		0.94	0.64	1.9		0.73	0.53	2.1	J	0.77	0.63	2		1	0.64	2.6		0.99	0.66
Uranium-234	13966-29-5	pCi/g	1.6		0.042	0.32	2.5		0.015	0.48	2.4		0.066	0.45	1.6		0.039	0.34	1.5		0.042	0.31	1.7		0.037	0.35
Uranium-235	15117-96-1	pCi/g	< 0.056	U	0.056	0.046	0.093		0.018	0.052	0.11		0.054	0.059	0.098		0.046	0.058	0.077		0.049	0.05	0.11		0.043	0.058
Uranium-238	ARC-U238	pCi/q	1.8		0.037	0.37	2.7		0.03	0.51	2.5		0.056	0.47	1.9		0.049	0.38	1.8		0.031	0.37	1.8		0.046	0.36

ARCADIS Page 8 of 15

	Location	n Subarea		C Pond	d Spoils			C Pond	d Spoils			C Pond	d Spoils			C Pond	l Spoils			C Pond	d Spoils			C Pond	l Spoils	
	Lo	ocation ID		CS-	JS03			CS-	JS03			CS-	JS04			CS-	IS04			CS-	JS04			CS-	IS05	
	9	Sample ID	CS	S-JS-03-1-	3_080520	800	CS	-JS-03-5-	7_080520	800	CS	-JS-04-0-	1_080620	800	CS	-JS-04-1-	3_080620	800	CS	-JS-04-5-	7_080620	800	CS	-JS-05-0-	1_082720	08
	Sar	nple Date		8/5/	2008			8/5/	2008			8/6/	2008			8/6/	2008			8/6/	2008			8/27/	2008	
	Sample Depth	(feet bgs)		1	-3			5	-7			0	-1			1-	-3			5-	-7			0-	-1	
Analyte	CASRN	Units	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU
Radium-226	13982-63-3	pCi/g	0.92		0.76	0.54	1.9		0.67	0.69	0.89		0.75	0.55	1.7		0.5	0.56	1.5		0.31	0.51	2.1		0.44	0.37
Radium-228	15262-20-1	pCi/g	1.7	J	1	0.62	1.9		1.4	0.67	2.6		0.82	0.65	2.4	J	0.81	0.71	2		1.2	0.62	2.4	J	0.69	0.64
Uranium-234	13966-29-5	pCi/g	1.5		0.098	0.35	1.3		0.016	0.27	1.8		0.027	0.35	1.7		0.027	0.34	1.4		0.091	0.35	3.3		0.042	0.62
Uranium-235	15117-96-1	pCi/g	0.12		0.083	0.081	0.071		0.043	0.047	0.14		0.016	0.063	0.096		0.032	0.051	0.088		0.087	0.075	0.19		0.044	0.08
Uranium-238	ARC-U238	pCi/q	1.5		0.063	0.36	1.4		0.037	0.29	1.8		0.027	0.35	1.8		0.033	0.35	1.8		0.032	0.41	3.3		0.016	0.62

ARCADIS Page 9 of 15

	Locatio	n Subarea		C Pond	d Spoils			C Pond	l Spoils			C Pond	d Spoils			C Pond	l Spoils			C Pond	l Spoils			Laydov	n Yard	
	Lo	ocation ID		CS-	JS05			CS-	JS06			U.	25			U:	25			U:	25			EM-	JS02	
	9	Sample ID	CS	S-JS-05-1-	3_082720	800	CS	-JS-06-0-	1_082720	800	EN	Л-U25-0-1	1_080620	08	EN	И-U25-1-3	3_080620	80	EM	-U25-5-5.	.5_080620	800	EM	-JS-02-0-	1_080120	008
	Sar	nple Date		8/27	/2008			8/27	/2008			8/6/	2008			8/6/	2008			8/6/	2008			8/1/	2008	
	Sample Depth	(feet bgs)		1	-3			0	-1			0	-1			1-	-3			5-	5.5			0-	-1	
Analyte	CASRN	Units	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU
Radium-226	13982-63-3	pCi/g	4.6		0.5	1.2	1.7		0.39	0.33	0.67	J	0.3	0.31	1.6		0.38	0.52	5.1		0.63	0.74	3		0.31	0.74
Radium-228	15262-20-1	pCi/g	2.6	J	0.91	0.61	1.5	J	0.65	0.44	2	J	0.92	0.7	2.1	J	1.1	0.69	3.5		1.3	0.78	3.7	J	1.5	0.96
Uranium-234	13966-29-5	pCi/g	6.6		0.032	1.2	1.5		0.046	0.31	2.1		0.046	0.4	1.7		0.072	0.35	5.4		0.07	1	2.1		0.043	0.41
Uranium-235	15117-96-1	pCi/g	0.34		0.02	0.11	0.096	•	0.019	0.054	0.13	•	0.019	0.062	0.11		0.045	0.065	0.26		0.051	0.11	0.13		0.034	0.062
Uranium-238	ARC-U238	pCi/q	6.6		0.044	1.2	1.6		0.046	0.33	2.2		0.037	0.42	1.8		0.052	0.37	6.1		0.052	1.1	2.5		0.043	0.47

ARCADIS Page 10 of 15

	Location	n Subarea		Laydov	vn Yard			Laydov	vn Yard			Laydov	n Yard			Laydov	vn Yard			Laydov	vn Yard			Laydov	vn Yard	
	Lo	ocation ID		EM-	JS02			EM-	JS06			EM-	JS06			EM-	JS06			EM-	JS06			EM-	JS07	
	9	Sample ID	EM	I-JS-02-1-	-3_080120	800	EM	-JS-06-0-	1_081320	800	EM-	JS-06-10-	11_08132	2008	EM	1-JS-06-1-	3_081320	800	EM	-JS-06-5	-7_081320	800	EM	-JS-07-0-	1_081320	308
	Sar	nple Date	:	8/1/	2008			8/13/	/2008			8/13/	2008			8/13	/2008			8/13	/2008			8/13	/2008	
Ç	Sample Depth	(feet bgs)		1	-3			0-	-1			10	-11			1	-3			5	-7			0	-1	
Analyte	CASRN	Units	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU
Radium-226	13982-63-3	pCi/g	3		0.44	0.81	2.9		0.53	0.49	1.4	J	0.21	0.38	1.3	J	0.28	0.4	1.8	J	0.44	0.54	4.6		0.29	1.1
Radium-228	15262-20-1	pCi/g	4		2.3	1.7	2.1	J	0.86	0.63	4.6	J	1.4	1.2	1.5		0.8	0.49	1.9	J	0.93	0.67	1.9		0.92	0.58
Uranium-234	13966-29-5	pCi/g	4.5		0.046	0.82	1.9		0.031	0.39	4.4		0.016	0.79	5.5		0.015	0.96	2.4		0.039	0.47	2.8		0.065	0.51
Uranium-235	15117-96-1	pCi/g	0.2		0.021	0.085	0.094		0.036	0.054	0.19		0.049	0.079	0.23		0.018	0.086	0.086		0.019	0.052	0.19		0.064	0.084
Uranium-238	ARC-U238	pCi/g	4.4		0.058	0.81	1.9		0.037	0.38	5		0.037	0.89	5.5		0.035	0.96	2		0.017	0.41	2.5		0.054	0.47

ARCADIS Page 11 of 15

	Locatio	n Subarea		Laydov	vn Yard			Laydov	vn Yard			Laydov	vn Yard			Laydow	n Yard			Laydov	vn Yard			Laydov	n Yard	
	Lo	ocation ID		EM-	JS07			EM-	JS07			EM-	JS07			EM-	JS08			EM-	JS08			EM-	JS08	
	9	Sample ID	EM-	JS-07-10-	12_08132	2008	EM	-JS-07-1-	3_081320	800	EM	I-JS-07-5-	7_081320	800	EM	-JS-08-0-	1_081220	800	EM	JS-08-10-	-12_08122	2008	EM	-JS-08-1-	3_081220	008
	Sar	nple Date		8/13	/2008			8/13/	/2008			8/13	/2008			8/12/	2008			8/12	/2008			8/12	2008	
	Sample Depth	(feet bgs)		10	-12			1	-3			5	-7			0-	-1			10	-12			1	-3	
Analyte	CASRN	Units	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU
Radium-226	13982-63-3	pCi/g	1.4	J	0.4	0.49	2	J	0.25	0.59	2.3	J	0.36	0.6	1.9		0.43	0.61	3.4	J	0.27	0.86	2.9	J	0.52	0.49
Radium-228	15262-20-1	pCi/g	1.8	J	0.99	0.66	1.6	J	0.99	0.62	2.1	J	1.2	0.78	1.6	J	0.87	0.63	1.8	J	0.96	0.75	1.1	J	0.71	0.6
Uranium-234	13966-29-5	pCi/g	3.6		0.045	0.68	3.2		0.016	0.59	2.8		0.038	0.52	1.2		0.034	0.25	12		0.095	2.1	0.93		0.026	0.18
Uranium-235	15117-96-1	pCi/g	0.12		0.052	0.068	0.16		0.037	0.073	0.14		0.037	0.068	0.055		0.049	0.042	0.57		0.068	0.17	0.042		0.031	0.029
Uranium-238	ARC-U238	pCi/q	3.3		0.037	0.64	3.7		0.031	0.67	2.7		0.032	0.51	1.2		0.072	0.25	12		0.044	2.1	0.97		0.021	0.19

ARCADIS Page 12 of 15

	Location	n Subarea		Laydov	vn Yard			Raffina	te Pond			Raffina	te Pond			Raffina	te Pond			Raffina	te Pond			Raffina	te Pond	
	Lo	cation ID		EM-	JS08			RA	JS01			RA	JS01			RA	JS01			RA	JS02			RA-	JS02	
	5	Sample ID	EN	1-JS-08-5-	-7_081220	800	RA	-JS-01-0-	1_080720	800	RA	-JS-01-1-	3_080720	800	RA	-JS-01-5-	7_080720	800	RA-	-JS-02-0-	1_081120	800	RA	-JS-02-1-	3_081120	08
	Sar	nple Date		8/12	/2008			8/7/	2008			8/7/	2008			8/7/	2008			8/11	/2008			8/11	/2008	
	Sample Depth	(feet bgs)		5	-7			0	-1			1	-3			5-	-7			0	-1			1	-3	
Analyte	CASRN	Units	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU
Radium-226	13982-63-3	pCi/g	1	J	0.34	0.41	1.4		0.66	0.61	2.1		0.2	0.61	0.9		0.24	0.39	3.4	J	0.85	0.62	1.5		0.35	0.55
Radium-228	15262-20-1	pCi/g	2.5	J	1.1	0.76	< 2.5	U	2.5	1.5	1.9	J	1.4	0.84	1.7	J	1.2	0.64	2	J	1.5	0.75	8.9		2.7	3.1
Uranium-234	13966-29-5	pCi/g	2.8		0.069	0.54	1.6		0.044	0.32	2.9		0.025	0.56	3.3		0.059	0.59	2		0.051	0.4	3.8		0.048	0.7
Uranium-235	15117-96-1	pCi/g	0.22		0.051	0.094	< 0.087	U	0.087	0.052	0.21		0.086	0.11	< 0.16	U	0.16	0.071	< 0.082	U	0.082	0.053	0.19		0.051	0.081
Uranium-238	ARC-U238	pCi/q	2.8		0.058	0.54	1.6		0.053	0.32	3.2		0.073	0.62	3.4		0.039	0.61	2.1		0.034	0.43	3.8		0.063	0.7

ARCADIS Page 13 of 15

	Location	n Subarea		Raffina	ite Pond			Raffina	te Pond			Raffina	te Pond			Raffina	te Pond			Raffina	te Pond			Raffina	te Pond	
	Lo	cation ID		RA-	JS03			RA	JS03			RA-	JS04			RA	JS04			RA	JS05			RA	JS05	
	5	Sample ID	RA	-JS-03-0	-1_080720	80	RA	-JS-03-1-	3_080720	800	RA	-JS-04-0-	1_080720	800	RA-	JS-04-1-2	.5_08072	800	RA-	-JS-05-0-	1_080720	800	RA	-JS-05-1-	3_080720	008
	Sar	nple Date		8/7/	2008			8/7/	2008			8/7/	2008			8/7/	2008			8/7/	2008			8/7/	2008	
	Sample Depth	(feet bgs)		0	-1			1.	-3			0	-1			1-2	2.5			0-	-1			1	-3	
Analyte	CASRN	Units	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU
Radium-226	13982-63-3	pCi/g	5.8		0.82	1.5	0.84		0.43	0.36	2.7		0.56	0.47	2.7		0.46	0.8	1.8		0.49	0.65	3.8		0.44	0.95
Radium-228	15262-20-1	pCi/g	2.9	J	1.4	0.88	2.2	J	1.1	0.73	2.4		0.97	0.64	2.6		0.87	0.67	2.6	J	1.5	0.83	3.1		1.5	0.84
Uranium-234	13966-29-5	pCi/g	1.8		0.029	0.32	1.8		0.035	0.35	1.5		0.041	0.3	2		0.039	0.39	3.7		0.015	0.63	3.7		0.027	0.66
Uranium-235	15117-96-1	pCi/g	0.092		0.0092	0.038	< 0.1	U	0.1	0.056	< 0.079	U	0.079	0.049	< 0.083	U	0.083	0.049	0.2		0.052	0.082	< 0.12	U	0.12	0.056
Uranium-238	ARC-U238	pCi/g	1.8		0.0078	0.31	1.9		0.03	0.38	1.6		0.03	0.32	2		0.039	0.39	3.5		0.036	0.6	3.5		0.027	0.62

ARCADIS Page 14 of 15

Sierrita Mine, Green Valley, Arizona

	Location	n Subarea		Raffina	te Pond			Raffina	te Pond			Raffina	te Pond			Raffina	te Pond	
	Lo	ocation ID		RA-S	SD01			RA-S	SD01			RA-S	SD02			RA-S	SD02	
	9	Sample ID	RA-S	SD-01-0-1	.5_08112	2008	RA-S	D-01-1.5-	3.0_0811	2008	RA-S	SD-02-0-1	1.5_08112	2008	RA-S	D-02-1.5	-3.0_0811	2008
	Sar	mple Date		8/11/	2008			8/11/	/2008			8/11	/2008			8/11	/2008	
!	Sample Depth	(feet bgs)		0-1	1.5			1.5	5-3			0-	1.5			1.!	5-3	
Analyte	CASRN	Units	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU
Radium-226	13982-63-3	pCi/g	3	J	0.47	0.49	3.1	J	0.54	0.52	2.5	J	0.59	0.47	2	J	0.65	0.44
Radium-228	15262-20-1	pCi/g	1.6	J	0.91	0.6	2.4	J	1.2	0.65	1.6	J	1	0.65	1.1	J	1.1	0.6
Uranium-234	13966-29-5	pCi/g	2.3		0.047	0.44	4.2		0.05	0.75	1		0.043	0.22	1.3		0.058	0.28
Uranium-235	15117-96-1	pCi/g	< 0.091	U	0.091	0.052	< 0.2	U	0.2	0.083	< 0.052	U	0.052	0.038	< 0.06	U	0.06	0.043
Uranium-238	ARC-U238	pCi/g	2.3		0.036	0.44	3.9		0.047	0.71	0.92		0.035	0.21	1.2		0.042	0.25

ARCADIS Page 15 of 15

	Loca	tion Subarea		Rheniu	m Ponds			Rheniur	n Ponds			Rheniu	m Ponds			Rheniu	n Ponds			Rheniun	n Ponds			Rheniur	m Ponds			Rheniun	n Ponds	-
		Location ID)	RP-	JS01			RP-J	S01			RP-	JS01			RP-	JS01			RP-J	S02			RP-	JS02			RP-J	S02	
		Sample ID	RP-	-JS-01-0-	1_08122	800	RP-JS	S-01-10-	12_0812	2008	RP-J	S-01-1-	3_08122	800	RP-	JS-01-5-	7_081220	800	RP-J	S-02-10-	12_0812	2008	RP-	JS-02-1-	3_08122	800	RP	JS-02-5-	7_08122	800
		Sample Date	:	8/12	/2008			8/12/	2008			8/12	/2008			8/12	2008			8/12/	2008			8/12	/2008			8/12/	2008	
	Sample Dep	th (feet bgs)		0	-1			10-	12			1	-3			5	-7			10-	12			1	-3			5-	-7	
Analyte	CASRN	Units	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU	Result	Qual	MDC	TPU
Radium-226	13982-63-3	pCi/g	1.9		0.49	0.65	2.8	J	0.69	0.53	2.6	J	0.55	0.47	1.6		0.32	0.54	2.5	J	0.49	0.45	2.6		0.43	0.79	1.5		0.65	0.69
Radium-228	15262-20-1	pCi/g	1.4	J	1.1	0.53	1.9	J	1.3	0.77	1.6	J	1.2	0.64	0.82	J	0.77	0.4	1.6	J	1.2	0.66	1.7	J	1	0.74	1.5	J	1.2	0.71
Uranium-234	13966-29-5	pCi/g	1.3		0.043	0.28	1.2		0.016	0.21	1.4		0.041	0.29	0.7		0.063	0.19	3.1		0.054	0.56	1		0.033	0.19	1.3		0.084	0.27
Uranium-235	15117-96-1	pCi/g	< 0.18	U	0.18	0.077	0.057		0.0081	0.027	< 0.084	U	0.084	0.051	< 0.042	U	0.042	0.044	< 0.11	U	0.11	0.058	0.046		0.0096	0.027	< 0.075	U	0.075	0.049
Uranium-238	ARC-U238	pCi/g	1.2		0.032	0.26	1.2		0.0069	0.21	1.2		0.016	0.26	0.8		0.057	0.21	3.2		0.044	0.59	0.94		0.03	0.18	1.4	_	0.06	0.28

ARCADIS Page 1 of 1

Notes

Sources of data presented in this appendix include:

ARCADIS. 2013a. Addendum to the Soil and Sediment Characterization Report. Prepared for Freeport-McMoRan Sierrita Inc., Green Valley, Arizona. August 2013.

ARCADIS. 2013c. Voluntary Remediation Program Former CLEAR Plant Area Soil Excavation and Tier I Screening Risk Evaluation Report. Prepared for Sierrita Mine, Green Valley, Arizona.

ARCADIS. 2015c. Former CLEAR Plant Area Paving Project Soil Excavation and Tier I Screening Risk Evaluation Report. Prepared for Sierrita Mine, Green Valley, Arizona. July 2015.

HGC. 2008. Soil, Surface Water, and Groundwater Sampling in the CLEAR Plant and Esperanza Mill Areas, Prepared for Freeport-McMoRan Sierrita Inc., Green Valley, Arizona. April 2008.

URS. 2012. Voluntary Remediation Program Soil and Sediment Characterization Report, Freeport-McMoRan Sierrita Inc., Green Valley, Arizona. Final. December 2012.

For samples collected in 2004, please see Appendix C of HGC 2008 for additional data qualifiers and associated definitions.

Acronyms and Abbreviations

bgs = below ground surface.

CASRN = Chemical Abstracts Service Registry Number.

MDL = method detection limit.
mg/kg = milligram(s) per kilogram.

NA = not available.

pCi/g = picoCurie(s) per gram.

PQL = practical quantitation limit.

Qual = qualifier.

TPU = total propagated uncertainty.

Qualifier Definitions

J = Analyte concentration detected at a value between MDL and PQL.
 U = Analyte was analyzed for but was not detected at the indicated MDL.

ARCADIS Page 1 of 1

APPENDIX B ProUCL 5.1 Input and Output Files (ProUCL input files are provided electronically on CD)

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 9:47:19 AM

From File Former CLEAR Plant_Metals_All (Soil and Sediment) 0-15.xls

Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

Result (antimony)

General Statistics

Total Number of Observations	116	Number of Distinct Observations	26
Number of Detects	62	Number of Non-Detects	54
Number of Distinct Detects	26	Number of Distinct Non-Detects	2
Minimum Detect	0.2	Minimum Non-Detect	1
Maximum Detect	66	Maximum Non-Detect	2
Variance Detects	112	Percent Non-Detects	46.55%
Mean Detects	3.255	SD Detects	10.58
Median Detects	0.4	CV Detects	3.251
Skewness Detects	5.184	Kurtosis Detects	27.35
Mean of Logged Detects	-0.275	SD of Logged Detects	1.344

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.311	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.386	Lilliefors GOF Test
5% Lilliefors Critical Value	0.112	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	1.924	KM Standard Error of Mean	0.731
KM SD	7.807	95% KM (BCA) UCL	3.38
95% KM (t) UCL	3.137	95% KM (Percentile Bootstrap) UCL	3.272
95% KM (z) UCL	3.127	95% KM Bootstrap t UCL	7.074
90% KM Chebyshev UCL	4.117	95% KM Chebyshev UCL	5.111
97.5% KM Chebyshev UCL	6.489	99% KM Chebyshev UCL	9.198

Gamma GOF Tests on Detected Observations Only

8.091	Anderson-Darling GOF Test
0.829	Detected Data Not Gamma Distributed at 5% Significance Level
0.261	Kolmogorov-Smirnov GOF
0 12	Detected Data Not Gamma Distributed at 5% Significance Level
	0.261

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.434	k star (bias corrected MLE)	0.445	k hat (MLE)
7.503	Theta star (bias corrected MLE)	7.322	Theta hat (MLE)
53.79	nu star (bias corrected)	55.12	nu hat (MLE)
		3.255	Mean (detects)

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 9:47:19 AM

From File Former CLEAR Plant_Metals_All (Soil and Sediment) 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

1.983	Mean	0.01	Minimum
0.3	Median	66	Maximum
3.967	CV	7.865	SD
0.289	k star (bias corrected MLE)	0.291	k hat (MLE)
6.856	Theta star (bias corrected MLE)	6.814	Theta hat (MLE)
67.09	nu star (bias corrected)	67.51	nu hat (MLE)
		0.0479	Adjusted Level of Significance (β)
49.05	Adjusted Chi Square Value (67.09, β)	49.24	Approximate Chi Square Value (67.09, α)
2.712	95% Gamma Adjusted UCL (use when n<50)	2.702	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

M (IZM)	1.004	OD (((AA))	7 007
Mean (KM)	1.924	SD (KM)	7.807
Variance (KM)	60.95	SE of Mean (KM)	0.731
k hat (KM)	0.0608	k star (KM)	0.0649
nu hat (KM)	14.1	nu star (KM)	15.07
theta hat (KM)	31.67	theta star (KM)	29.63
80% gamma percentile (KM)	0.574	90% gamma percentile (KM)	3.9
95% gamma percentile (KM)	10.95	99% gamma percentile (KM)	37.51

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (15.07, α)	7.308	Adjusted Chi Square Value (15.07, β)	7.24
95% Gamma Approximate KM-UCL (use when n>=50)	3.968	95% Gamma Adjusted KM-UCL (use when n<50)	4.005

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic 0.831	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value 2.0443E-9	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic 0.199	Lilliefors GOF Test
5% Lilliefors Critical Value 0.112	Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

ProUCL 5.1 Former CLEAR Plant Metals

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 9:47:19 AM

From File Former CLEAR Plant_Metals_All (Soil and Sediment) 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	1.992	Mean in Log Scale	-0.57
SD in Original Scale	7.831	SD in Log Scale	1.176
95% t UCL (assumes normality of ROS data)	3.198	95% Percentile Bootstrap UCL	3.453
95% BCA Bootstrap UCL	4.047	95% Bootstrap t UCL	6.866
95% H-UCL (Loa ROS)	1.467		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-0.624	KM Geo Mean	0.536
KM SD (logged)	1.085	95% Critical H Value (KM-Log)	2.299
KM Standard Error of Mean (logged)	0.109	95% H-UCL (KM -Log)	1.218
KM SD (logged)	1.085	95% Critical H Value (KM-Log)	2.299
KM Standard Error of Mean (logged)	0.109		

DL/2 Statistics

DL/2 Normal			DL/2 Log-Transformed		
	Mean in Original Scale	2.003	Mean in Log Scale	-0.428	
	SD in Original Scale	7.826	SD in Log Scale	1.005	
	95% t UCL (Assumes normality)	3.207	95% H-Stat UCL	1.331	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 5.111

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 9:47:19 AM

From File Former CLEAR Plant_Metals_All (Soil and Sediment) 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (arsenic)

General Statistics

Total Number of Observations	226	Number of Distinct Observations	117
Number of Detects	216	Number of Non-Detects	10
Number of Distinct Detects	117	Number of Distinct Non-Detects	1
Minimum Detect	0.7	Minimum Non-Detect	2.5
Maximum Detect	166	Maximum Non-Detect	2.5
Variance Detects	211.1	Percent Non-Detects	4.425%
Mean Detects	8.617	SD Detects	14.53
Median Detects	5.285	CV Detects	1.686
Skewness Detects	7.555	Kurtosis Detects	72.55
Mean of Logged Detects	1.662	SD of Logged Detects	0.925

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.439	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.293	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0607	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	8.303	KM Standard Error of Mean	0.95
KM SD	14.25	95% KM (BCA) UCL	9.982
95% KM (t) UCL	9.872	95% KM (Percentile Bootstrap) UCL	9.933
95% KM (z) UCL	9.865	95% KM Bootstrap t UCL	11.02
90% KM Chebyshev UCL	11.15	95% KM Chebyshev UCL	12.44
97.5% KM Chebyshev UCL	14.24	99% KM Chebyshev UCL	17.75

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	4.37	Anderson-Darling GOF Test
5% A-D Critical Value	0.78	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.105	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.0634	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 9:47:19 AM

From File Former CLEAR Plant_Metals_All (Soil and Sediment) 0-15.xls

Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

Gamma Statistics on Detected Data Only

1.141	k star (bias corrected MLE)	1.154	k hat (MLE)
7.551	Theta star (bias corrected MLE)	7.466	Theta hat (MLE)
493	nu star (bias corrected)	498.6	nu hat (MLE)
		8 617	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

8.236	Mean	0.01	Minimum
4.805	Median	166	Maximum
1.738	CV	14.31	SD
0.809	k star (bias corrected MLE)	0.817	k hat (MLE)
10.18	Theta star (bias corrected MLE)	10.08	Theta hat (MLE)
365.8	nu star (bias corrected)	369.4	nu hat (MLE)
		0.0489	Adjusted Level of Significance (β)
322.2	Adjusted Chi Square Value (365.81, β)	322.5	Approximate Chi Square Value (365.81, α)
9.35	95% Gamma Adjusted UCL (use when n<50)	9.343	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

		——————————————————————————————————————	
Mean (KM)	8.303	SD (KM)	14.25
Variance (KM)	203	SE of Mean (KM)	0.95
k hat (KM)	0.34	k star (KM)	0.338
nu hat (KM)	153.5	nu star (KM)	152.8
theta hat (KM)	24.45	theta star (KM)	24.56
80% gamma percentile (KM)	13.07	90% gamma percentile (KM)	24.1
95% gamma percentile (KM)	36.53	99% gamma percentile (KM)	68.35

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (152.82, α)	125.2	Adjusted Chi Square Value (152.82, β)	125.1
95% Gamma Approximate KM-UCL (use when n>=50)	10.13	95% Gamma Adjusted KM-UCL (use when n<50)	10.14

ProUCL 5.1 Former CLEAR Plant Metals

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 9:47:19 AM

From File Former CLEAR Plant_Metals_All (Soil and Sediment) 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.98	Shapiro Wilk GOF Test
---	------	-----------------------

5% Shapiro Wilk P Value 0.31 Detected Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.0366 Lilliefors GOF Test

5% Lilliefors Critical Value 0.0607 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	8.302	Mean in Log Scale	1.604
SD in Original Scale	14.28	SD in Log Scale	0.946
95% t UCL (assumes normality of ROS data)	9.871	95% Percentile Bootstrap UCL	9.994
95% BCA Bootstrap UCL	10.45	95% Bootstrap t UCL	11
95% H-UCL (Log ROS)	8.885		
· ·		95% Bootstrap t UCL	11

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

4.975	KM Geo Mean	1.604	KM Mean (logged)
2.103	95% Critical H Value (KM-Log)	0.943	KM SD (logged)
8.857	95% H-UCL (KM -Log)	0.0631	KM Standard Error of Mean (logged)
2.103	95% Critical H Value (KM-Log)	0.943	KM SD (logged)
		0.0004	ICM Other dead Farmer (Manage (Incomed)

KM Standard Error of Mean (logged) 0.0631

DL/2 Statistics

DL/2 Normal			DL/2 Log-Transformed		
	Mean in Original Scale	8.291	Mean in Log Scale	1.598	
	SD in Original Scale	14.28	SD in Log Scale	0.951	
	95% t UCL (Assumes normality)	9.86	95% H-Stat UCL	8.886	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 8.857

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 9:47:19 AM

From File Former CLEAR Plant_Metals_All (Soil and Sediment) 0-15.xls

Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

Result (copper)

General Statistics

Total Number of Observations	226	Number of Distinct Observations	196
		Number of Missing Observations	0
Minimum	27	Mean	3589
Maximum	109000	Median	1560
SD	10024	Std. Error of Mean	666.8
Coefficient of Variation	2.793	Skewness	7.302

Normal GOF Test

Shapiro Wilk Test Statistic	0.313	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.368	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0594	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	4690	95% Adjusted-CLT UCL (Chen-1995)	5032

95% Modified-t UCL (Johnson-1978) 4744

Gamma GOF Test

Anderson-Darling Gamma GOF Test	13.69	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.803	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.191	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.0634	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	0.684	k star (bias corrected MLE)	0.678
Theta hat (MLE)	5244	Theta star (bias corrected MLE)	5291
nu hat (MLE)	309.3	nu star (bias corrected)	306.6
MLE Mean (bias corrected)	3589	MLE Sd (bias corrected)	4357
		Approximate Chi Square Value (0.05)	267
Adjusted Level of Significance	0.0489	Adjusted Chi Square Value	266.8

ProUCL 5.1 Former CLEAR Plant Metals

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 9:47:19 AM

From File Former CLEAR Plant_Metals_All (Soil and Sediment) 0-15.xls

Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 4120

95% Adjusted Gamma UCL (use when n<50) 4124

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.97	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk P Value	0.0106	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.072	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.0594	Data Not Lognormal at 5% Significance Level

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	3.296	Mean of logged Data	7.3
Maximum of Logged Data	11.6	SD of logged Data	1.165

Assuming Lognormal Distribution

95% H-UCL	3486	90% Chebyshev (MVUE) UCL	3765
95% Chebyshev (MVUE) UCL	4156	97.5% Chebyshev (MVUE) UCL	4699
99% Chebyshev (MVUE) UCL	5764		

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

95% CLT UCL	4685	95% Jackknife UCL	4690
95% Standard Bootstrap UCL	4666	95% Bootstrap-t UCL	5371
95% Hall's Bootstrap UCL	5407	95% Percentile Bootstrap UCL	4836
95% BCA Bootstrap UCL	5029		
90% Chebyshev(Mean, Sd) UCL	5589	95% Chebyshev(Mean, Sd) UCL	6495
97.5% Chebyshev(Mean, Sd) UCL	7753	99% Chebyshev(Mean, Sd) UCL	10223

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 6495

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 9:47:19 AM

From File Former CLEAR Plant_Metals_All (Soil and Sediment) 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (lead)

General Statistics

Total Number of Observations	226	Number of Distinct Observations	208
		Number of Missing Observations	0
Minimum	1.2	Mean	100.2
Maximum	3220	Median	19.2
SD	286	Std. Error of Mean	19.02
Coefficient of Variation	2.855	Skewness	7.327

Normal GOF Test

Shapiro Wilk Test Statistic	0.371	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.365	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0594	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	131.6	95% Adjusted-CLT UCL (Chen-1995)	141.4

95% Modified-t UCL (Johnson-1978) 133.1

Gamma GOF Test

Anderson-Darling Gamma GOF Test	13.72	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.832	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.198	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.0645	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	0.453	k star (bias corrected MLE)	0.45
Theta hat (MLE)	220.9	Theta star (bias corrected MLE)	222.4
nu hat (MLE)	204.9	nu star (bias corrected)	203.6
MLE Mean (bias corrected)	100.2	MLE Sd (bias corrected)	149.3
		Approximate Chi Square Value (0.05)	171.5
Adjusted Level of Significance	0.0489	Adjusted Chi Square Value	171.4

ProUCL 5.1 Former CLEAR Plant Metals

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 9:47:19 AM

From File Former CLEAR Plant_Metals_All (Soil and Sediment) 0-15.xls

Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 118.9 95% Adjusted Gamma UCL (use when n<50) 119

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.956	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk P Value 6.1565E-6	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic 0.0717	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value 0.0594	Data Not Lognormal at 5% Significance Level

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.182	Mean of logged Data	3.184
Maximum of Logged Data	8.077	SD of logged Data	1.567

Assuming Lognormal Distribution

95% H-UCL	109.3	90% Chebyshev (MVUE) UCL	118.6
95% Chebyshev (MVUE) UCL	135.4	97.5% Chebyshev (MVUE) UCL	158.7
99% Chebyshev (MVUE) UCL	204.5		

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

95% CLT UCL	131.5	95% Jackknife UCL	131.6
95% Standard Bootstrap UCL	131.6	95% Bootstrap-t UCL	146.4
95% Hall's Bootstrap UCL	261.7	95% Percentile Bootstrap UCL	132.8
95% BCA Bootstrap UCL	147.3		
90% Chebyshev(Mean, Sd) UCL	157.2	95% Chebyshev(Mean, Sd) UCL	183.1
97.5% Chebyshev(Mean, Sd) UCL	219	99% Chebyshev(Mean, Sd) UCL	289.5

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 183.1

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 9:47:19 AM

From File Former CLEAR Plant_Metals_All (Soil and Sediment) 0-15.xls

Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

Result (molybdenum)

General Statistics

Total Number of Observations	131	Number of Distinct Observations	108
		Number of Missing Observations	0
Minimum	2	Mean	246.4
Maximum	3020	Median	84
SD	518.7	Std. Error of Mean	45.32
Coefficient of Variation	2.105	Skewness	3.829

Normal GOF Test

Shapiro Wilk Test Statistic	0.468	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.319	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0778	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	321.4	95% Adjusted-CLT UCL (Chen-1995)	337.1

95% Modified-t UCL (Johnson-1978) 324

Gamma GOF Test

A-D Test Statistic	4.367	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.815	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.154	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.0859	Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

0.535	k star (bias corrected MLE)	0.542	k hat (MLE)
460.5	Theta star (bias corrected MLE)	454.3	Theta hat (MLE)
140.2	nu star (bias corrected)	142.1	nu hat (MLE)
336.8	MLE Sd (bias corrected)	246.4	MLE Mean (bias corrected)
113.8	Approximate Chi Square Value (0.05)		
113.6	Adjusted Chi Square Value	0.0482	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 303.4 95% Adjusted Gamma UCL (use when n<50) 304.1

Lognormal GOF Test

Shapiro Wilk Lognormal GOF Test	0.973	Shapiro Wilk Test Statistic
Data appear Lognormal at 5% Significance Lev	0.145	5% Shapiro Wilk P Value
Lilliefors Lognormal GOF Test	0.0495	Lilliefors Test Statistic
Data appear Lognormal at 5% Significance Lev	0.0778	5% Lilliefors Critical Value

Data appear Lognormal at 5% Significance Level

ProUCL 5.1 Former CLEAR Plant Metals

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 9:47:19 AM

From File Former CLEAR Plant_Metals_All (Soil and Sediment) 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Lognormal Statistics

Minimum of Logged Data	0.693	Mean of logged Data	4.35
Maximum of Logged Data	8.013	SD of logged Data	1.552

Assuming Lognormal Distribution

95% H-UCL	375.6	90% Chebyshev (MVUE) UCL	400
95% Chebyshev (MVUE) UCL	466.4	97.5% Chebyshev (MVUE) UCL	558.6
99% Chebyshev (MVUE) UCL	739.7		

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	320.9	95% Jackknife UCL	321.4
95% Standard Bootstrap UCL	319.2	95% Bootstrap-t UCL	343.5
95% Hall's Bootstrap UCL	333.1	95% Percentile Bootstrap UCL	321.8
95% BCA Bootstrap UCL	346.9		
90% Chebyshev(Mean, Sd) UCL	382.3	95% Chebyshev(Mean, Sd) UCL	443.9
97.5% Chebyshev(Mean, Sd) UCL	529.4	99% Chebyshev(Mean, Sd) UCL	697.3

Suggested UCL to Use

95% H-UCL 375.6

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ProUCL computes and outputs H-statistic based UCLs for historical reasons only.

H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples in the Technical Guide.

It is therefore recommended to avoid the use of H-statistic based 95% UCLs.

Use of nonparametric methods are preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution.

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:20:47 AM

From File Former CLEAR Plant_Metals_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (antimony)

General Statistics

Total Number of Observations	84	Number of Distinct Observations	26
Number of Detects	50	Number of Non-Detects	34
Number of Distinct Detects	26	Number of Distinct Non-Detects	2
Minimum Detect	0.2	Minimum Non-Detect	1
Maximum Detect	66	Maximum Non-Detect	2
Variance Detects	136.8	Percent Non-Detects	40.48%
Mean Detects	3.96	SD Detects	11.7
Median Detects	0.6	CV Detects	2.954
Skewness Detects	4.635	Kurtosis Detects	21.64
Mean of Logged Detects	-0.0417	SD of Logged Detects	1.385

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.344	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.947	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.374	Lilliefors GOF Test
5% Lilliefors Critical Value	0.125	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	2.533	KM Standard Error of Mean	1.003
KM SD	9.1	95% KM (BCA) UCL	4.44
95% KM (t) UCL	4.202	95% KM (Percentile Bootstrap) UCL	4.326
95% KM (z) UCL	4.183	95% KM Bootstrap t UCL	9.822
90% KM Chebyshev UCL	5.542	95% KM Chebyshev UCL	6.906
97.5% KM Chebyshev UCL	8.798	99% KM Chebyshev UCL	12.51

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	5.736	Anderson-Darling GOF Test
5% A-D Critical Value	0.825	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.24	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.133	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.441	k star (bias corrected MLE)	0.455	k hat (MLE)
8.985	Theta star (bias corrected MLE)	8.709	Theta hat (MLE)
44.07	nu star (bias corrected)	45.47	nu hat (MLE)
		3.96	Mean (detects)

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:20:47 AM

From File Former CLEAR Plant_Metals_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

2.491	Mean	0.01	Minimum
0.4	Median	66	Maximum
3.684	CV	9.177	SD
0.285	k star (bias corrected MLE)	0.288	k hat (MLE)
8.731	Theta star (bias corrected MLE)	8.66	Theta hat (MLE)
47.93	nu star (bias corrected)	48.32	nu hat (MLE)
		0.0471	Adjusted Level of Significance (β)
32.83	Adjusted Chi Square Value (47.93, β)	33.04	Approximate Chi Square Value (47.93, α)
3.637	95% Gamma Adjusted UCL (use when n<50)	3.614	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	2.533	SD (KM)	9.1
Variance (KM)	82.81	SE of Mean (KM)	1.003
k hat (KM)	0.0775	k star (KM)	0.0826
nu hat (KM)	13.01	nu star (KM)	13.88
theta hat (KM)	32.7	theta star (KM)	30.65
80% gamma percentile (KM)	1.282	90% gamma percentile (KM)	6.126
95% gamma percentile (KM)	14.75	99% gamma percentile (KM)	44.17

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (13.88, α)	6.491	Adjusted Chi Square Value (13.88, β)	6.403
95% Gamma Approximate KM-UCL (use when n>=50)	5.417	95% Gamma Adjusted KM-UCL (use when n<50)	5.492

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.86	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.947	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.176	Lilliefors GOF Test
5% Lilliefors Critical Value	0.125	Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:20:47 AM

From File Former CLEAR Plant_Metals_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	2.591	Mean in Log Scale	-0.362
SD in Original Scale	9.144	SD in Log Scale	1.248
95% t UCL (assumes normality of ROS data)	4.251	95% Percentile Bootstrap UCL	4.348
95% BCA Bootstrap UCL	5.082	95% Bootstrap t UCL	9.734
95% H-UCL (Loa ROS)	2.134		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-0.401	KM Geo Mean	0.67
KM SD (logged)	1.175	95% Critical H Value (KM-Log)	2.409
KM Standard Error of Mean (logged)	0.136	95% H-UCL (KM -Log)	1.822
KM SD (logged)	1.175	95% Critical H Value (KM-Log)	2.409
KM Standard Error of Mean (logged)	0.136		

DL/2 Statistics

DL/2 Normal			DL/2 Log-Transformed		
	Mean in Original Scale	2.595	Mean in Log Scale	-0.256	
	SD in Original Scale	9.141	SD in Log Scale	1.109	
	95% t UCL (Assumes normality)	4.254	95% H-Stat UCL	1.904	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 6.906

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:20:47 AM

From File Former CLEAR Plant_Metals_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (arsenic)

General Statistics

Total Number of Observations	194	Number of Distinct Observations	108
Number of Detects	184	Number of Non-Detects	10
Number of Distinct Detects	108	Number of Distinct Non-Detects	1
Minimum Detect	8.0	Minimum Non-Detect	2.5
Maximum Detect	166	Maximum Non-Detect	2.5
Variance Detects	240	Percent Non-Detects	5.155%
Mean Detects	9.678	SD Detects	15.49
Median Detects	6	CV Detects	1.601
Skewness Detects	7.138	Kurtosis Detects	63.95
Mean of Logged Detects	1.819	SD of Logged Detects	0.882

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.448	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.283	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0657	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	9.259	KM Standard Error of Mean	1.091
KM SD	15.15	95% KM (BCA) UCL	11.1
95% KM (t) UCL	11.06	95% KM (Percentile Bootstrap) UCL	11.16
95% KM (z) UCL	11.05	95% KM Bootstrap t UCL	12.58
90% KM Chebyshev UCL	12.53	95% KM Chebyshev UCL	14.01
97.5% KM Chebyshev UCL	16.07	99% KM Chebyshev UCL	20.11

Gamma GOF Tests on Detected Observations Only

91 Anderson-Darling GOF	Test
77 Detected Data Not Gamma Distributed at	5% Significance Level
03 Kolmogorov-Smirnov G	OF
Detected Data Not Gamma Distributed at	5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:20:47 AM

From File Former CLEAR Plant_Metals_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Gamma Statistics on Detected Data Only

1.232	k star (bias corrected MLE)	1.248	k hat (MLE)
7.858	Theta star (bias corrected MLE)	7.753	Theta hat (MLE)
453.2	nu star (bias corrected)	459.4	nu hat (MLE)
		9 678	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

9.179	Mean	0.01	Minimum
5.6	Median	166	Maximum
1.66	CV	15.24	SD
0.803	k star (bias corrected MLE)	0.812	k hat (MLE)
11.43	Theta star (bias corrected MLE)	11.31	Theta hat (MLE)
311.5	nu star (bias corrected)	315	nu hat (MLE)
		0.0488	Adjusted Level of Significance (β)
271.3	Adjusted Chi Square Value (311.49, β)	271.6	Approximate Chi Square Value (311.49, α)
10.54	95% Gamma Adjusted UCL (use when n<50)	10.53	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	9.259	SD (KM)	15.15
Variance (KM)	229.7	SE of Mean (KM)	1.091
k hat (KM)	0.373	k star (KM)	0.371
nu hat (KM)	144.8	nu star (KM)	143.9
theta hat (KM)	24.8	theta star (KM)	24.96
80% gamma percentile (KM)	14.8	90% gamma percentile (KM)	26.49
95% gamma percentile (KM)	39.48	99% gamma percentile (KM)	72.4

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (143.93, α)	117.2	Adjusted Chi Square Value (143.93, β)	117
95% Gamma Approximate KM-UCL (use when n>=50)	11.37	95% Gamma Adjusted KM-UCL (use when n<50)	11.39

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:20:47 AM

From File Former CLEAR Plant_Metals_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Lognormal GOF Test on Detected Observations Only

5% Shapiro Wilk P Value 0.471 Detected Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.0377 Lilliefors GOF Test

5% Lilliefors Critical Value 0.0657 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

9.257	Mean in Log Scale	1.744
15.19	SD in Log Scale	0.919
11.06	95% Percentile Bootstrap UCL	11.16
11.87	95% Bootstrap t UCL	12.4
10.03		
	15.19 11.06 11.87	15.19 SD in Log Scale 11.06 95% Percentile Bootstrap UCL 11.87 95% Bootstrap t UCL

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

5.728	KM Geo Mean	1.745	KM Mean (logged)
2.101	95% Critical H Value (KM-Log)	0.915	KM SD (logged)
9.993	95% H-UCL (KM -Log)	0.0661	KM Standard Error of Mean (logged)
2.101	95% Critical H Value (KM-Log)	0.915	KM SD (logged)
		0.0004	1010: 1 15 (11 (1 1)

KM Standard Error of Mean (logged) 0.0661

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed			
	Mean in Original Scale	9.243	Mean in Log Scale	1.736	
	SD in Original Scale	15.2	SD in Log Scale	0.929	
	95% t UCL (Assumes normality)	11.05	95% H-Stat UCL	10.06	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 9.993

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:20:47 AM

Former CLEAR Plant_Metals_Soil Only 0-15.xls From File

Full Precision

Confidence Coefficient 95% Number of Bootstrap Operations 2000

Result (copper)

General Statistics

3	1	Number of Distinct Observations	194	Total Number of Observations	
		Number of Missing Observations			
5	40	Mean	110	Minimum	
5	17	Median	109000	Maximum	
2	7	Std. Error of Mean	10753	SD	
.787		Skewness	2.672	Coefficient of Variation	

Normal GOF Test

Shapiro Wilk Test Statistic	0.327	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.374	Lilliefors GOF Test
5% Lilliefors Critical Value	0.064	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	5301	95% Adjusted-CLT UCL (Chen-1995)	5697

95% Modified-t UCL (Johnson-1978) 5363

Gamma GOF Test

Anderson-Darling Gamma GOF Test	13.6	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.8	5% A-D Critical Value
5 Kolmogorov-Smirnov Gamma GOF Test	0.205	K-S Test Statistic
B Data Not Gamma Distributed at 5% Significance Level	0.068	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

0.703	k star (bias corrected MLE)	0.71	k hat (MLE)
5726	Theta star (bias corrected MLE)	5665	Theta hat (MLE)
272.7	nu star (bias corrected)	275.7	nu hat (MLE)
4800	MLE Sd (bias corrected)	4025	MLE Mean (bias corrected)
235.5	Approximate Chi Square Value (0.05)		
235.2	Adjusted Chi Square Value	0.048	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 4661 95% Adjusted Gamma UCL (use when n<50) 4666

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:20:47 AM

From File Former CLEAR Plant_Metals_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.951 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk P Value 3.8258E-6 Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic 0.0824 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.064 Data Not Lognormal at 5% Significance Level

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 4.7 Mean of logged Data 7.451

Maximum of Logged Data 11.6 SD of logged Data 1.116

Assuming Lognormal Distribution

 95% H-UCL
 3854
 90% Chebyshev (MVUE) UCL
 4157

 95% Chebyshev (MVUE) UCL
 4594
 97.5% Chebyshev (MVUE) UCL
 5200

 99% Chebyshev (MVUE) UCL
 6390

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

95% CLT UCL	5295	95% Jackknife UCL	5301
95% Standard Bootstrap UCL	5323	95% Bootstrap-t UCL	6156
95% Hall's Bootstrap UCL	6080	95% Percentile Bootstrap UCL	5367
95% BCA Bootstrap UCL	5900		
90% Chebyshev(Mean, Sd) UCL	6341	95% Chebyshev(Mean, Sd) UCL	7390
97.5% Chebyshev(Mean, Sd) UCL	8846	99% Chebyshev(Mean, Sd) UCL	11706

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 7390

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:20:47 AM

From File Former CLEAR Plant_Metals_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (lead)

General Statistics

Total Number of Observations	194	Number of Distinct Observations	180
		Number of Missing Observations	0
Minimum	1.2	Mean	113.5
Maximum	3220	Median	22.45
SD	306.2	Std. Error of Mean	21.98
Coefficient of Variation	2.699	Skewness	6.843

Normal GOF Test

Shapiro Wilk Test Statistic	0.39	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.357	Lilliefors GOF Test
5% Lilliefors Critical Value	0.064	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	149.8	95% Adjusted-CLT UCL (Chen-1995)	161.2

95% Modified-t UCL (Johnson-1978) 151.6

Gamma GOF Test

Anderson-Darling Gamma GOF Test	11.29	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.827	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.198	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.0692	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

k hat (MLE)	0.475	k star (bias corrected MLE)	0.471
Theta hat (MLE)	238.7	Theta star (bias corrected MLE)	240.7
nu hat (MLE)	184.4	nu star (bias corrected)	182.9
MLE Mean (bias corrected)	113.5	MLE Sd (bias corrected)	165.3
		Approximate Chi Square Value (0.05)	152.6
Adjusted Level of Significance	0.0488	Adjusted Chi Square Value	152.4

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:20:47 AM

From File Former CLEAR Plant_Metals_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 136 95% Adjusted Gamma UCL (use when n<50) 136.2

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.962 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk P Value 8.5239E-4 Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic 0.0771 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.064 Data Not Lognormal at 5% Significance Level

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.182	Mean of logged Data	3.385
Maximum of Logged Data	8.077	SD of logged Data	1.535

Assuming Lognormal Distribution

95% H-UCL	129	90% Chebyshev (MVUE) UCL	139.4
95% Chebyshev (MVUE) UCL	159.7	97.5% Chebyshev (MVUE) UCL	187.9
99% Chebyshev (MVUE) UCL	243.3		

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

149.6 95% Jackknife UCL 149.8	95% CLT UCL
148.5 95% Bootstrap-t UCL 176.5	95% Standard Bootstrap UCL
272.2 95% Percentile Bootstrap UCL 149.7	95% Hall's Bootstrap UCL
165.2	95% BCA Bootstrap UCL
179.4 95% Chebyshev(Mean, Sd) UCL 209.3	90% Chebyshev(Mean, Sd) UCL
250.8 99% Chebyshev(Mean, Sd) UCL 332.2	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 209.3

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:20:47 AM

From File Former CLEAR Plant_Metals_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (molybdenum)

General Statistics

Total Number of Observations	99	Number of Distinct Observations	89
		Number of Missing Observations	0
Minimum	2	Mean	305.4
Maximum	3020	Median	97
SD	584.3	Std. Error of Mean	58.73
Coefficient of Variation	1.913	Skewness	3.273

Normal GOF Test

Shapiro Wilk Test Statistic	0.517	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.302	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0893	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)
----------------	----------------------------------

95% Student's-t UCL 403 95% Adjusted-CLT UCL (Chen-1995) 422.7 95% Modified-t UCL (Johnson-1978) 406.2

Gamma GOF Test

Anderson-Darling Gamma GOF Test	3.189	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.813	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.14	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.0947	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

k hat (MLE)	0.563	k star (bias corrected MLE)	0.552
Theta hat (MLE)	542.8	Theta star (bias corrected MLE)	552.9
nu hat (MLE)	111.4	nu star (bias corrected)	109.4
MLE Mean (bias corrected)	305.4	MLE Sd (bias corrected)	411
		Approximate Chi Square Value (0.05)	86.23
Adjusted Level of Significance	0.0476	Adjusted Chi Square Value	85.93

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:20:47 AM

From File Former CLEAR Plant_Metals_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 387.4 95% Adjusted Gamma UCL (use when n<50) 388.

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.979	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk P Value	0.493	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0424	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.0893	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.693	Mean of logged Data	4.613
Maximum of Logged Data	8.013	SD of logged Data	1.529

Assuming Lognormal Distribution

95% H-UCL	502.6	90% Chebyshev (MVUE) UCL	520.4
95% Chebyshev (MVUE) UCL	612.8	97.5% Chebyshev (MVUE) UCL	741
99% Chebyshev (MVUE) UCL	992.7		

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	402	95% Jackknife UCL	403
95% Standard Bootstrap UCL	399.9	95% Bootstrap-t UCL	438
95% Hall's Bootstrap UCL	421.1	95% Percentile Bootstrap UCL	403.5
95% BCA Bootstrap UCL	426.6		
90% Chebyshev(Mean, Sd) UCL	481.6	95% Chebyshev(Mean, Sd) UCL	561.4
97.5% Chebyshev(Mean, Sd) UCL	672.2	99% Chebyshev(Mean, Sd) UCL	889.7

Suggested UCL to Use

95% H-UCL 502.6

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ProUCL computes and outputs H-statistic based UCLs for historical reasons only.

H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples in the Technical Guide.

It is therefore recommended to avoid the use of H-statistic based 95% UCLs.

Use of nonparametric methods are preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution.

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:53:36 PM

From File Former CLEAR Plant_Metals_Exposed 0-2.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (arsenic)

General Statisti	ics
------------------	-----

Total Number of Observations	89	Number of Distinct Observations	59
		Number of Missing Observations	0
Minimum	0.7	Mean	7.75
Maximum	166	Median	3.1
SD	20.89	Std. Error of Mean	2.214
Coefficient of Variation	2.695	Skewness	6.276

Normal GOF Test

Shapiro Wilk Test Statistic	0.318	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.368	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0941	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	11.43	95% Adjusted-CLT UCL (Chen-1995)	12.97

95% Modified-t UCL (Johnson-1978) 11.68

Gamma GOF Test

Anderson-Darling Gamma GOF Test	7.778	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Leve	0.794	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.239	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance Leve	0.0986	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

0.742	k star (bias corrected MLE)	0.724
10.44	Theta star (bias corrected MLE)	10.7
132.1	nu star (bias corrected)	129
7.75	MLE Sd (bias corrected)	9.105
	Approximate Chi Square Value (0.05)	103.7
0.0473	Adjusted Chi Square Value	103.4
	10.44 132.1 7.75	10.44 Theta star (bias corrected MLE) 132.1 nu star (bias corrected) 7.75 MLE Sd (bias corrected) Approximate Chi Square Value (0.05)

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:53:36 PM

From File Former CLEAR Plant_Metals_Exposed 0-2.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 9.636 95% Adjusted Gamma UCL (use when n<50) 9.67

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.913	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk P Value 1	.8861E-6	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.108	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.0941	Data Not Lognormal at 5% Significance Level

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-0.357	Mean of logged Data	1.24
Maximum of Logged Data	5.112	SD of logged Data	1.004

Assuming Lognormal Distribution

95% H-UCL	7.278	90% Chebyshev (MVUE) UCL	7.845
95% Chebyshev (MVUE) UCL	8.828	97.5% Chebyshev (MVUE) UCL	10.19
99% Chebyshev (MVUE) UCL	12.87		

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

95% CLT UCL	11.39	95% Jackknife UCL	11.43
95% Standard Bootstrap UCL	11.31	95% Bootstrap-t UCL	18.89
95% Hall's Bootstrap UCL	26.35	95% Percentile Bootstrap UCL	11.77
95% BCA Bootstrap UCL	13.41		
90% Chebyshev(Mean, Sd) UCL	14.39	95% Chebyshev(Mean, Sd) UCL	17.4
97.5% Chebyshev(Mean, Sd) UCL	21.58	99% Chebyshev(Mean, Sd) UCL	29.78

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 17.4

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:53:36 PM

From File Former CLEAR Plant_Metals_Exposed 0-2.xls

Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

Result (copper)

General Statistics

	88	Number of Distinct Observations	89	Total Number of Observations
	0	Number of Missing Observations		
	4198	Mean	27	Minimum
	1070	Median	59300	Maximum
	1145	Std. Error of Mean	10805	SD
66	4.0	Skewness	2.574	Coefficient of Variation

Normal GOF Test

Shapiro Wilk Test Statistic	0.388	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.383	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0941	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	6102	95% Adjusted-CLT UCL (Chen-1995)	6609

95% Students-t UCL 6102 95% Adjusted-CL1 UCL (Chen-1995) 6009 95% Modified-t UCL (Johnson-1978) 6184

Gamma GOF Test

A-D Test Statistic	7.845	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.818	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.248	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.1	Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

0.494	k star (bias corrected MLE)	0.503	k hat (MLE)
8499	Theta star (bias corrected MLE)	8339	Theta hat (MLE)
87.91	nu star (bias corrected)	89.6	nu hat (MLE)
5973	MLE Sd (bias corrected)	4198	MLE Mean (bias corrected)
67.3	Approximate Chi Square Value (0.05)		
67	Adjusted Chi Square Value	0.0473	Adjusted Level of Significance

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:53:36 PM

From File Former CLEAR Plant_Metals_Exposed 0-2.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 5484 95% Adjusted Gamma UCL (use when n<50) 5508

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.952	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk P Value	0.00829	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.103	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.0941	Data Not Lognormal at 5% Significance Level

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	3.296	Mean of logged Data	7.082
Maximum of Logged Data	10.99	SD of logged Data	1.392

Assuming Lognormal Distribution

95% H-UCL	4648	90% Chebyshev (MVUE) UCL	4889
95% Chebyshev (MVUE) UCL	5713	97.5% Chebyshev (MVUE) UCL	6856
99% Chebyshev (MVUE) UCL	9102		

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

95% CLT UCL	6081	95% Jackknife UCL	6102
95% Standard Bootstrap UCL	6069	95% Bootstrap-t UCL	7237
95% Hall's Bootstrap UCL	6409	95% Percentile Bootstrap UCL	6154
95% BCA Bootstrap UCL	6617		
90% Chebyshev(Mean, Sd) UCL	7634	95% Chebyshev(Mean, Sd) UCL	9190
97.5% Chebyshev(Mean, Sd) UCL	11350	99% Chebyshev(Mean, Sd) UCL	15593

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 9190

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:53:36 PM

From File Former CLEAR Plant_Metals_Exposed 0-2.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (lead)

General Statistics

Total Number of Observations	89	Number of Distinct Observations	85
		Number of Missing Observations	0
Minimum	1.2	Mean	53.94
Maximum	1820	Median	9.49
SD	205.3	Std. Error of Mean	21.77
Coefficient of Variation	3.807	Skewness	7.675

Normal GOF Test

Shapiro Wilk Test Statistic	0.264	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.399	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0941	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	90.13	95% Adjusted-CLT UCL (Chen-1995)	108.7

95% Modified-t UCL (Johnson-1978) 93.08

Gamma GOF Test

Anderson-Darling Gamma GOF Test	8.175	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.834	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.237	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.101	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

0.431	k star (bias corrected MLE)	0.439	k hat (MLE)
125.1	Theta star (bias corrected MLE)	123	Theta hat (MLE)
76.78	nu star (bias corrected)	78.07	nu hat (MLE)
82.14	MLE Sd (bias corrected)	53.94	MLE Mean (bias corrected)
57.59	Approximate Chi Square Value (0.05)		
57.32	Adjusted Chi Square Value	0.0473	Adjusted Level of Significance

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:53:36 PM

From File Former CLEAR Plant_Metals_Exposed 0-2.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n<=50)) 71.91 95% Adjusted Gamma UCL (use when n<50) 72.25

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.94	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk P Value 6.3981E-4	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic 0.0963	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value 0.0941	Data Not Lognormal at 5% Significance Level

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.182	Mean of logged Data	2.51
Maximum of Logged Data	7.507	SD of logged Data	1.422

Assuming Lognormal Distribution

95% H-UCL	50.83	90% Chebyshev (MVUE) UCL	53.27
95% Chebyshev (MVUE) UCL	62.42	97.5% Chebyshev (MVUE) UCL	75.11
99% Chebyshev (MVUE) UCL	100		

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

95% CLT UCL	89.75	95% Jackknife UCL	90.13
95% Standard Bootstrap UCL	90.15	95% Bootstrap-t UCL	197.6
95% Hall's Bootstrap UCL	224.4	95% Percentile Bootstrap UCL	93.56
95% BCA Bootstrap UCL	127.7		
90% Chebyshev(Mean, Sd) UCL	119.2	95% Chebyshev(Mean, Sd) UCL	148.8
97.5% Chebyshev(Mean, Sd) UCL	189.9	99% Chebyshev(Mean, Sd) UCL	270.5

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 148.8

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:51:37 PM

From File Former CLEAR Plant_Metals_All 0-2.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (arsenic)

General Statistics

Total Number of Observations	195	Number of Distinct Observations	100
Number of Detects	185	Number of Non-Detects	10
Number of Distinct Detects	100	Number of Distinct Non-Detects	1
Minimum Detect	0.7	Minimum Non-Detect	2.5
Maximum Detect	166	Maximum Non-Detect	2.5
Variance Detects	224.9	Percent Non-Detects	5.128%
Mean Detects	8.264	SD Detects	15
Median Detects	5.1	CV Detects	1.815
Skewness Detects	7.971	Kurtosis Detects	75.61
Mean of Logged Detects	1.628	SD of Logged Detects	0.902

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.389	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.307	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0656	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	7.917	KM Standard Error of Mean	1.052
KM SD	14.64	95% KM (BCA) UCL	9.934
95% KM (t) UCL	9.655	95% KM (Percentile Bootstrap) UCL	9.89
95% KM (z) UCL	9.647	95% KM Bootstrap t UCL	11.58
90% KM Chebyshev UCL	11.07	95% KM Chebyshev UCL	12.5
97.5% KM Chebyshev UCL	14.48	99% KM Chebyshey UCL	18.38

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	.937	3.937	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance	.779	0.779	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0955	0.0955	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance	0692	0.0692	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:51:37 PM

From File Former CLEAR Plant_Metals_All 0-2.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Gamma Statistics on Detected Data Only

1.155	k star (bias corrected MLE)	1.171	k hat (MLE)
7.152	Theta star (bias corrected MLE)	7.058	Theta hat (MLE)
427.5	nu star (bias corrected)	433.2	nu hat (MLE)
		8.264	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

7.841	Mean	0.01	Minimum
4.7	Median	166	Maximum
1.877	CV	14.72	SD
0.782	k star (bias corrected MLE)	0.791	k hat (MLE)
10.02	Theta star (bias corrected MLE)	9.912	Theta hat (MLE)
305.1	nu star (bias corrected)	308.5	nu hat (MLE)
		0.0488	Adjusted Level of Significance (β)
265.4	Adjusted Chi Square Value (305.08, β)	265.6	Approximate Chi Square Value (305.08, α)
9.015	95% Gamma Adjusted UCL (use when n<50)	9.006	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	7.917	SD (KM)	14.64
Variance (KM)	214.5	SE of Mean (KM)	1.052
k hat (KM)	0.292	k star (KM)	0.291
nu hat (KM)	114	nu star (KM)	113.6
theta hat (KM)	27.09	theta star (KM)	27.19
80% gamma percentile (KM)	12.05	90% gamma percentile (KM)	23.43
95% gamma percentile (KM)	36.56	99% gamma percentile (KM)	70.82

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (113.56, α)	89.96	Adjusted Chi Square Value (113.56, β)	89.8
95% Gamma Approximate KM-UCL (use when n>=50)	9.994	95% Gamma Adjusted KM-UCL (use when n<50)	10.01

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.977	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0.19	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0383	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0656	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:51:37 PM

From File Former CLEAR Plant_Metals_All 0-2.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	7.917	Mean in Log Scale	1.562
SD in Original Scale	SD in Original Scale 14.68 SD in Log Scale		0.926
95% t UCL (assumes normality of ROS data)	9.655	95% Percentile Bootstrap UCL	9.807
95% BCA Bootstrap UCL	10.52	95% Bootstrap t UCL	11.67
95% H-UCL (Log ROS)	8.429		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	1.562	KM Geo Mean	4.769
KM SD (logged)	0.923	95% Critical H Value (KM-Log)	2.109
KM Standard Error of Mean (logged)	0.0666	95% H-UCL (KM -Log)	8.401
KM SD (logged)	0.923	95% Critical H Value (KM-Log)	2.109
KM Standard Error of Mean (logged)	0.0666		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	7.905	Mean in Log Scale	1.556
SD in Original Scale	14.69	SD in Log Scale	0.932
95% t UCL (Assumes normality)	9.643	95% H-Stat UCL	8.427

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 8.401

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:51:37 PM

From File Former CLEAR Plant_Metals_All 0-2.xls

Coefficient of Variation

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (copper)

General Statistics

176	Number of Distinct Observations	195	Total Number of Observations
0	Number of Missing Observations		
3851	Mean	27	Minimum
1640	Median	109000	Maximum
768.4	Std. Error of Mean	10731	SD

Skewness 6.837

Normal GOF Test

2.786

Shapiro Wilk Test Statistic	0.323	Shapiro Wilk GOF Test	
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.374	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.0639	Data Not Normal at 5% Significance Level	

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 5121
 95% Adjusted-CLT UCL (Chen-1995)
 5517

 95% Modified-t UCL (Johnson-1978)
 5184

Gamma GOF Test

Anderson-Darling Gamma GOF Test		A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Leve		5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test		K-S Test Statistic
Data Not Gamma Distributed at 5% Significance Leve	0.068	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

0.639	k star (bias corrected MLE)	0.646	k hat (MLE)
6022	Theta star (bias corrected MLE)		Theta hat (MLE)
249.4	nu star (bias corrected)	251.9	nu hat (MLE)
4816	MLE Sd (bias corrected)	3851	MLE Mean (bias corrected)
213.8	Approximate Chi Square Value (0.05)		
213.6	Adjusted Chi Square Value	0.0488	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 4491 95% Adjusted Gamma UCL (use when n<50) 4497

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:51:37 PM

From File Former CLEAR Plant_Metals_All 0-2.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.973	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk P Value	0.0531	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.0764	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.0639	Data Not Lognormal at 5% Significance Level	

Data appear Approximate Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	3.296	Mean of logged Data	7.31
Maximum of Logged Data	11.6	SD of logged Data	1.214

Assuming Lognormal Distribution

95% H-UCL	3839	90% Chebyshev (MVUE) UCL	4150
95% Chebyshev (MVUE) UCL	4625	97.5% Chebyshev (MVUE) UCL	5284
99% Chebyshev (MVUE) UCL	6579		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% Jackknife UCL 5121		95% CLT UCL 5115	
95% Bootstrap-t UCL 6058		Bootstrap UCL 5101	95% Standard
Percentile Bootstrap UCL 5135	95% Per	Bootstrap UCL 5845	95% Hall's
		Bootstrap UCL 5665	95% BCA
ebyshev(Mean, Sd) UCL 7201	95% Cheb	Mean, Sd) UCL 6156	90% Chebyshev
ebyshev(Mean, Sd) UCL 11497	99% Cheb	Mean, Sd) UCL 8650	97.5% Chebyshev

Suggested UCL to Use

95% H-UCL 3839

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ProUCL computes and outputs H-statistic based UCLs for historical reasons only.

H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples in the Technical Guide.

It is therefore recommended to avoid the use of H-statistic based 95% UCLs.

Use of nonparametric methods are preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:51:37 PM

From File Former CLEAR Plant_Metals_All 0-2.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (lead)

General Statistics

Total Number of Observations	195	Number of Distinct Observations	182
		Number of Missing Observations	0
Minimum	1.2	Mean	107.9
Maximum	3220	Median	20.3
SD	304.5	Std. Error of Mean	21.8
Coefficient of Variation	2.821	Skewness	6.965

Normal GOF Test

Shapiro Wilk Test Statistic	0.378	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.363	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0639	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	144	95% Adjusted-CLT UCL (Chen-1995)	155.4

95% Modified-t UCL (Johnson-1978) 145.8

Gamma GOF Test

A-D Test Statistic	11.18	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.834	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.187	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.0692	Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	0.446	k star (bias corrected MLE)	0.443
Theta hat (MLE)	242	Theta star (bias corrected MLE)	243.9
nu hat (MLE)	174	nu star (bias corrected)	172.6
MLE Mean (bias corrected)	107.9	.9 MLE Sd (bias corrected	
		Approximate Chi Square Value (0.05)	143.2
Adjusted Level of Significance	0.0488	Adjusted Chi Square Value	143

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50))	130.1	95% Adjusted Gamma UCL (use when n<50) 130.3
---	-------	--

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:51:37 PM

From File Former CLEAR Plant_Metals_All 0-2.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.96	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk P Value 2.7069E-4	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic 0.0693	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value 0.0639	Data Not Lognormal at 5% Significance Level

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.182	Mean of logged Data	3.232
Maximum of Logged Data	8.077	SD of logged Data	1.602

Assuming Lognormal Distribution

95% H-UCL	125.6	90% Chebyshev (MVUE) UCL	135.4
95% Chebyshev (MVUE) UCL	155.9	97.5% Chebyshev (MVUE) UCL	184.4
99% Chebyshev (MVUE) UCL	240.5		

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

95% CLT UCL 143.8 95% Jackknife UCL 144	95% CLT LICE	11
33 % GET GGE 143.5	33 % CET OCE	
andard Bootstrap UCL 143.7 95% Bootstrap-t UCL 165	95% Standard Bootstrap UCL	35.8
Hall's Bootstrap UCL 299.6 95% Percentile Bootstrap UCL 147	95% Hall's Bootstrap UCL	47
6 BCA Bootstrap UCL 159.7	95% BCA Bootstrap UCL	
yshev(Mean, Sd) UCL 173.4 95% Chebyshev(Mean, Sd) UCL 203	00% Chebyshev(Mean, Sd) UCL	03
shev(Mean, Sd) UCL 244.1 99% Chebyshev(Mean, Sd) UCL 324	.5% Chebyshev(Mean, Sd) UCL	24.9

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 203

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:00:32 AM

From File Former CLEAR Plant_Metals_Exposed 0-0.5.xls

Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

Result (arsenic)

Genera	al Sta	ticti	00

Total Number of Observations		46	Number of Distinct Observations	40
			Number of Missing Observations	0
	Minimum	1.1	Mean	11.79
	Maximum	166	Median	3.55
	SD	28.43	Std. Error of Mean	4.191
	Coefficient of Variation	2.412	Skewness	4.534

Normal GOF Test

Shapiro Wilk Test Statistic	0.383	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.945	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.353	Lilliefors GOF Test
5% Lilliefors Critical Value	0.129	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness)			
95% Student's-t UCL	18.83	95% Adjusted-CLT UCL (Chen-1995)	21.68
		95% Modified-t UCL (Johnson-1978)	19.29

Gamma GOF Test

1 Anderson-Darling Gamma GOF Test	5.401	A-D Test Statistic
7 Data Not Gamma Distributed at 5% Significance Lev	0.797	5% A-D Critical Value
1 Kolmogorov-Smirnov Gamma GOF Test	0.291	K-S Test Statistic
6 Data Not Gamma Distributed at 5% Significance Lev	0.136	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

0.646	k star (bias corrected MLE)	0.675	k hat (MLE)
18.25	Theta star (bias corrected MLE)	17.45	Theta hat (MLE)
59.42	nu star (bias corrected)	62.14	nu hat (MLE)
14.67	MLE Sd (bias corrected)	11.79	MLE Mean (bias corrected)
42.7	Approximate Chi Square Value (0.05)		
42.24	Adjusted Chi Square Value	0.0448	Adjusted Level of Significance

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:00:32 AM

From File Former CLEAR Plant_Metals_Exposed 0-0.5.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 16.4 95% Adjusted Gamma UCL (use when n<50) 16.58

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.856	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.945	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.188	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.129	Data Not Lognormal at 5% Significance Level

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.0953	Mean of logged Data	1.568
Maximum of Logged Data	5.112	SD of logged Data	1.066

Assuming Lognormal Distribution

95% H-UCL	12.39	90% Chebyshev (MVUE) UCL	12.98
95% Chebyshev (MVUE) UCL	15.09	97.5% Chebyshev (MVUE) UCL	18.03
99% Chebyshev (MVUE) UCL	23.79		

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

95% CLT UCL	18.68	95% Jackknife UCL	18.83
95% Standard Bootstrap UCL	18.65	95% Bootstrap-t UCL	36.9
95% Hall's Bootstrap UCL	45.7	95% Percentile Bootstrap UCL	19.12
95% BCA Bootstrap UCL	22.95		
90% Chebyshev(Mean, Sd) UCL	24.36	95% Chebyshev(Mean, Sd) UCL	30.06
97.5% Chebyshev(Mean, Sd) UCL	37.96	99% Chebyshev(Mean, Sd) UCL	53.49

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 30.06

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:00:32 AM

From File Former CLEAR Plant_Metals_Exposed 0-0.5.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (copper)

General Statistics

Total Number of Observations	46	Number of Distinct Observations	45
		Number of Missing Observations	0
Minimum	207	Mean	5036
Maximum	59300	Median	1555
SD	11230	Std. Error of Mean	1656
Coefficient of Variation	2.23	Skewness	3.814

Normal GOF Test

Shapiro Wilk Test Statistic	0.444	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.945	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.367	Lilliefors GOF Test
5% Lilliefors Critical Value	0.129	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)
95% Normai UCL	95% UCLS (Adjusted for Skewness)

95% Student's-t UCL 7817 95% Adjusted-CLT UCL (Chen-1995) 8755 95% Modified-t UCL (Johnson-1978) 7972

Gamma GOF Test

Anderson-Darling Gamma GOF Test	4.364	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Lev	0.805	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.282	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance Lev	0.137	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

E) 0.572	k star (bias corrected MLE)	0.596	k hat (MLE)
E) 8805	Theta star (bias corrected MLE)	8444	Theta hat (MLE)
d) 52.62	nu star (bias corrected)	54.87	nu hat (MLE)
d) 6659	MLE Sd (bias corrected)	5036	MLE Mean (bias corrected)
5) 36.96	Approximate Chi Square Value (0.05)		
e 36.53	Adjusted Chi Square Value	0.0448	Adjusted Level of Significance

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:00:32 AM

From File Former CLEAR Plant_Metals_Exposed 0-0.5.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 7171

95% Adjusted Gamma UCL (use when n<50) 7254

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.915	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.945	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.158	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.129	Data Not Lognormal at 5% Significance Level

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	5.333	Mean of logged Data	7.487
Maximum of Logged Data	10.99	SD of logged Data	1.242

Assuming Lognormal Distribution

95% H-UCL	6248	90% Chebyshev (MVUE) UCL	6318
95% Chebyshev (MVUE) UCL	7480	97.5% Chebyshev (MVUE) UCL	9092
99% Chebyshev (MVUE) UCL	12258		

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

95% CLT UCL	7760	95% Jackknife UCL 7817
95% Standard Bootstrap UCL	7774	95% Bootstrap-t UCL 11856
95% Hall's Bootstrap UCL	16980	95% Percentile Bootstrap UCL 7944
95% BCA Bootstrap UCL	9118	
90% Chebyshev(Mean, Sd) UCL	10004	95% Chebyshev(Mean, Sd) UCL 12254
97.5% Chebyshev(Mean, Sd) UCL	15377	99% Chebyshev(Mean, Sd) UCL 21512

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 12254

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:00:32 AM

From File Former CLEAR Plant_Metals_Exposed 0-0.5.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (lead)

General Statistics

Total Number of Observations	46	Number of Distinct Observations	46
		Number of Missing Observations	0
Minimum	4	Mean	87.05
Maximum	1820	Median	13.25
SD	280.4	Std. Error of Mean	41.34
Coefficient of Variation	3 221	Skewness	5 649

Normal GOF Test

Shapiro Wilk Test Statistic	0.318	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.945	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.384	Lilliefors GOF Test
5% Lilliefors Critical Value	0.129	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	156.5	95% Adjusted-CLT UCL (Chen-1995)	191.8

95% Modified-t UCL (Johnson-1978) 162.2

Gamma GOF Test

Anderson-Darling Gamma GOF Test	4.937	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Leve	0.828	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.258	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance Leve	0.139	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

k hat (MLE)	0.441	k star (bias corrected MLE)	0.427
Theta hat (MLE)	197.3	Theta star (bias corrected MLE)	203.9
nu hat (MLE)	40.58	nu star (bias corrected)	39.27
MLE Mean (bias corrected)	87.05	MLE Sd (bias corrected)	133.2
		Approximate Chi Square Value (0.05)	25.92
Adjusted Level of Significance	0.0448	Adjusted Chi Square Value	25.56

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:00:32 AM

From File Former CLEAR Plant_Metals_Exposed 0-0.5.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 131.9 95% Adjusted Gamma UCL (use when n<50) 133.7

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.881	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.945	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.141	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.129	Data Not Lognormal at 5% Significance Level

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	1.386	Mean of logged Data	2.998
Maximum of Logged Data	7.507	SD of logged Data	1.418

Assuming Lognormal Distribution

95% H-UCL	99.18	90% Chebyshev (MVUE) UCL	95.19
95% Chebyshev (MVUE) UCL	114.5	97.5% Chebyshev (MVUE) UCL	141.3
99% Chebyshev (MVUE) UCL	194		

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

95% CLT UCL	155	95% Jackknife UCL	156.5
95% Standard Bootstrap UCL	155.4	95% Bootstrap-t UCL	429.5
95% Hall's Bootstrap UCL	414.5	95% Percentile Bootstrap UCL	164
95% BCA Bootstrap UCL	219.8		
90% Chebyshev(Mean, Sd) UCL	211.1	95% Chebyshev(Mean, Sd) UCL	267.2
97.5% Chebyshev(Mean, Sd) UCL	345.2	99% Chebyshev(Mean, Sd) UCL	498.4

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 267.2

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:03:08 AM

From File Former CLEAR Plant_Metals_All 0-0.5.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (arsenic)

General Statistics

Total Number of Observations	149	Number of Distinct Observations	86
Number of Detects	139	Number of Non-Detects	10
Number of Distinct Detects	86	Number of Distinct Non-Detects	1
Minimum Detect	1.1	Minimum Non-Detect	2.5
Maximum Detect	166	Maximum Non-Detect	2.5
Variance Detects	285.5	Percent Non-Detects	6.711%
Mean Detects	9.726	SD Detects	16.9
Median Detects	6.2	CV Detects	1.737
Skewness Detects	7.202	Kurtosis Detects	60.1
Mean of Logged Detects	1.85	SD of Logged Detects	0.806

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.387	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.306	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0755	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	9.199	KM Standard Error of Mean	1.347
KM SD	16.38	95% KM (BCA) UCL	11.49
95% KM (t) UCL	11.43	95% KM (Percentile Bootstrap) UCL	11.65
95% KM (z) UCL	11.41	95% KM Bootstrap t UCL	14.7
90% KM Chebyshev UCL	13.24	95% KM Chebyshev UCL	15.07
97.5% KM Chebyshev UCL	17.61	99% KM Chebyshev UCL	22.6

Gamma GOF Tests on Detected Observations Only

-D Test Statistic 4.481	Anderson-Darling GOF Test
D Critical Value 0.775 Detected Dat	a Not Gamma Distributed at 5% Significance Level
-S Test Statistic 0.128	Kolmogorov-Smirnov GOF
S Critical Value 0.0812 Detected Dat	ta Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

1.294	k star (bias corrected MLE)	1.317	k hat (MLE)
7.519	Theta star (bias corrected MLE)	7.384	Theta hat (MLE)
359.6	nu star (bias corrected)	366.2	nu hat (MLE)
		9.726	Mean (detects)

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:03:08 AM

From File Former CLEAR Plant_Metals_All 0-0.5.xls

Minimum

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Maximum	166	Median	5.6
SD	16.5	CV	1.818
k hat (MLE)	0.758	k star (bias corrected MLE)	0.747
Theta hat (MLE)	11.98	Theta star (bias corrected MLE)	12.15
nu hat (MLE)	225.8	nu star (bias corrected)	222.5
Adjusted Level of Significance (β)	0.0484		
Approximate Chi Square Value (222.54, α)	189	Adjusted Chi Square Value (222.54, β)	188.7
95% Gamma Approximate UCL (use when n>=50)	10.68	95% Gamma Adjusted UCL (use when n<50)	10.7

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	9.199	SD (KM)	16.38
Variance (KM)	268.3	SE of Mean (KM)	1.347
k hat (KM)	0.315	k star (KM)	0.313
nu hat (KM)	93.98	nu star (KM)	93.42
theta hat (KM)	29.17	theta star (KM)	29.34
80% gamma percentile (KM)	14.25	90% gamma percentile (KM)	26.98
95% gamma percentile (KM)	41.49	99% gamma percentile (KM)	78.98

Mean

9.074

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (93.42, α)	72.13	Adjusted Chi Square Value (93.42, β)	71.95
95% Gamma Approximate KM-UCL (use when n>=50)	11.91	95% Gamma Adjusted KM-UCL (use when n<50)	11.94

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.963	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0.0109	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.062	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0755	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Approximate Lognormal at 5% Significance Level

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:03:08 AM

From File Former CLEAR Plant_Metals_All 0-0.5.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Lognormal ROS Statistics Using Imputed Non-Detects

1.754	Mean in Log Scale	9.181	Mean in Original Scale
0.86	SD in Log Scale	16.44	SD in Original Scale
11.47	95% Percentile Bootstrap UCL	11.41	95% t UCL (assumes normality of ROS data)
14.5	95% Bootstrap t UCL	12.54	95% BCA Bootstrap UCL
		9.688	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	1.766	KM Geo Mean	5.847
KM SD (logged)	0.838	95% Critical H Value (KM-Log)	2.064
KM Standard Error of Mean (logged)	0.0692	95% H-UCL (KM -Log)	9.575
KM SD (logged)	0.838	95% Critical H Value (KM-Log)	2.064
KM Standard Error of Mean (logged)	0.0692		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	9.158	Mean in Log Scale	1.74
SD in Original Scale	16.46	SD in Log Scale	0.879
95% t UCL (Assumes normality)	11.39	95% H-Stat UCL	9.762

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Detected Data appear Approximate Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 9.575

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:03:08 AM

From File Former CLEAR Plant_Metals_All 0-0.5.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (copper)

General Statistics

	133	Number of Distinct Observations	149	Total Number of Observations
	0	Number of Missing Observations		
	4048	Mean	133	Minimum
	1800	Median	109000	Maximum
3	897.6	Std. Error of Mean	10957	SD
55	7.3	Skewness	2.707	Coefficient of Variation

Normal GOF Test

Shapiro Wilk Test Statistic	0.312	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.375	Lilliefors GOF Test
5% Lilliefors Critical Value	0.073	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	5533	95% Adjusted-CLT UCL (Chen-1995)	6102

95% Modified-t UCL (Johnson-1978) 5624

Gamma GOF Test

A-D Test Statistic	9.627	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.795	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.195	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.0798	Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

0.752	k star (bias corrected MLE)	0.742
5381	Theta star (bias corrected MLE)	5458
224.2	nu star (bias corrected)	221
4048	MLE Sd (bias corrected)	4700
	Approximate Chi Square Value (0.05)	187.6
0.0484	Adjusted Chi Square Value	187.3
	5381 224.2 4048	5381 Theta star (bias corrected MLE) 224.2 nu star (bias corrected) 4048 MLE Sd (bias corrected) Approximate Chi Square Value (0.05)

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:03:08 AM

From File Former CLEAR Plant_Metals_All 0-0.5.xls

Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 4769

95% Adjusted Gamma UCL (use when n<50) 4776

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.96	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk P Value	0.00284	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0838	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.073	Data Not Lognormal at 5% Significance Level

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	4.89	Mean of logged Data	7.51
Maximum of Logged Data	11.6	SD of logged Data	1.07

Assuming Lognormal Distribution

95% H-UCL	3953	90% Chebyshev (MVUE) UCL	4262
95% Chebyshev (MVUE) UCL	4735	97.5% Chebyshev (MVUE) UCL	5391
99% Chebyshev (MVUE) UCL	6680		

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

95% CLT UCL	5524	95% Jackknife UCL	5533
95% Standard Bootstrap UCL	5523	95% Bootstrap-t UCL	7362
95% Hall's Bootstrap UCL	10725	95% Percentile Bootstrap UCL	5534
95% BCA Bootstrap UCL	6224		
90% Chebyshev(Mean, Sd) UCL	6741	95% Chebyshev(Mean, Sd) UCL	7960
97.5% Chebyshev(Mean, Sd) UCL	9653	99% Chebyshev(Mean, Sd) UCL	12979

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 7960

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:03:08 AM

From File Former CLEAR Plant_Metals_All 0-0.5.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (lead)

General Statistics

Total Number of Observations	149	Number of Distinct Observations	142
		Number of Missing Observations	0
Minimum	2.7	Mean	135.6
Maximum	3220	Median	33.1
SD	343.2	Std. Error of Mean	28.12
Coefficient of Variation	2.531	Skewness	6.157

Normal GOF Test

Shapiro Wilk Test Statistic	0.416	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.349	Lilliefors GOF Test
5% Lilliefors Critical Value	0.073	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)

95% Student's-t UCL 182.2 95% Adjusted-CLT UCL (Chen-1995) 197 95% Modified-t UCL (Johnson-1978) 184.5

Gamma GOF Test

Anderson-Darling Gamma GOF Test	8.091	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Lev	0.822	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.182	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance Lev	0.0814	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

0.484	k star (bias corrected MLE)	0.489	k hat (MLE)
280.2	Theta star (bias corrected MLE)	277.1	Theta hat (MLE)
144.2	nu star (bias corrected)	145.8	nu hat (MLE)
194.9	MLE Sd (bias corrected)	135.6	MLE Mean (bias corrected)
117.5	Approximate Chi Square Value (0.05)		
117.3	Adjusted Chi Square Value	0.0484	Adjusted Level of Significance

ProUCL 5.1 Former CLEAR Plant Metals

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:03:08 AM

From File Former CLEAR Plant_Metals_All 0-0.5.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 166.5 95% Adjusted Gamma UCL (use when n<50) 166.8

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.948 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk P Value 3.3820E-5 Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic 0.0855 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.073 Data Not Lognormal at 5% Significance Level

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 0.993 Mean of logged Data 3.608

Maximum of Logged Data 8.077 SD of logged Data 1.519

Assuming Lognormal Distribution

 95% H-UCL
 164.5
 90% Chebyshev (MVUE) UCL
 175.9

 95% Chebyshev (MVUE) UCL
 203.4
 97.5% Chebyshev (MVUE) UCL
 241.7

 99% Chebyshev (MVUE) UCL
 316.8

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

182.2	95% Jackknife UCL	CL	95% CLT UCL
219.3	95% Bootstrap-t UCL	CL	95% Standard Bootstrap UCL
187.4	95% Percentile Bootstrap UCL	CL	95% Hall's Bootstrap UCL
		CL	95% BCA Bootstrap UCL
258.2	95% Chebyshev(Mean, Sd) UCL	CL	90% Chebyshev(Mean, Sd) UCL
415.4	99% Chebyshev(Mean, Sd) UCL	CL	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 258.2

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:08:59 AM

From File Former CLEAR Plant_Rad_All (Soil and Sediment) 0-15.xls

Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

Result (radium-226)

General Statistics

Total Number of Observations	82	Number of Distinct Observations	38
Number of Detects	80	Number of Non-Detects	2
Number of Distinct Detects	36	Number of Distinct Non-Detects	2
Minimum Detect	0.43	Minimum Non-Detect	0.4
Maximum Detect	5.3	Maximum Non-Detect	0.84
Variance Detects	1.116	Percent Non-Detects	2.439%
Mean Detects	2.243	SD Detects	1.056
Median Detects	2.15	CV Detects	0.471
Skewness Detects	0.939	Kurtosis Detects	1.249
Mean of Logged Detects	0.689	SD of Logged Detects	0.52

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic 0.925	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value 9.3872E-5	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic 0.105	Lilliefors GOF Test
5% Lilliefors Critical Value 0.0991	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	2.2	KM Standard Error of Mean	0.119
KM SD	1.072	95% KM (BCA) UCL	2.38
95% KM (t) UCL	2.398	95% KM (Percentile Bootstrap) UCL	2.396
95% KM (z) UCL	2.396	95% KM Bootstrap t UCL	2.416
90% KM Chebyshev UCL	2.557	95% KM Chebyshev UCL	2.719
97.5% KM Chebyshev UCL	2.944	99% KM Chebyshev UCL	3.385

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.678	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.756	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.0805	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.1	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	4.371	k star (bias corrected MLE)	4.215
Theta hat (MLE)	0.513	Theta star (bias corrected MLE)	0.532
nu hat (MLE)	699.3	nu star (bias corrected)	674.5
Mean (detects)	2.243		

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:08:59 AM

Chanica Wills Anneasimata Tast Ctatistia

From File Former CLEAR Plant_Rad_All (Soil and Sediment) 0-15.xls

Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

2.201	Mean	0.364	Minimum
2.1	Median	5.3	Maximum
0.489	CV	1.076	SD
3.78	k star (bias corrected MLE)	3.915	k hat (MLE)
0.582	Theta star (bias corrected MLE)	0.562	Theta hat (MLE)
619.9	nu star (bias corrected)	642	nu hat (MLE)
		0.0471	Adjusted Level of Significance (β)
562.2	Adjusted Chi Square Value (619.89, β)	563.1	Approximate Chi Square Value (619.89, α)
2.427	95% Gamma Adjusted UCL (use when n<50)	2.423	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

		•	
Mean (KM)	2.2	SD (KM)	1.072
Variance (KM)	1.149	SE of Mean (KM)	0.119
k hat (KM)	4.209	k star (KM)	4.064
nu hat (KM)	690.3	nu star (KM)	666.4
theta hat (KM)	0.523	theta star (KM)	0.541
80% gamma percentile (KM)	3.027	90% gamma percentile (KM)	3.662
95% gamma percentile (KM)	4.246	99% gamma percentile (KM)	5.492

Chamira Wills COE Took

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (666.42, α)	607.5	Adjusted Chi Square Value (666.42, β)	606.5
95% Gamma Approximate KM-UCL (use when n>=50)	2.413	95% Gamma Adjusted KM-UCL (use when n<50)	2.417

Lognormal GOF Test on Detected Observations Only

Snapiro Wilk GOF Test	0.941	Snapiro Wilk Approximate Test Statistic
Detected Data Not Lognormal at 5% Significance Level	0.00189	5% Shapiro Wilk P Value
Lilliefors GOF Test	0.114	Lilliefors Test Statistic
Detected Data Not Lognormal at 5% Significance Level	0.0991	5% Lilliefors Critical Value

Detected Data Not Lognormal at 5% Significance Level

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:08:59 AM

From File Former CLEAR Plant_Rad_All (Soil and Sediment) 0-15.xls

Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	2.204	Mean in Log Scale	0.661
SD in Original Scale	1.073	SD in Log Scale	0.545
95% t UCL (assumes normality of ROS data)	2.401	95% Percentile Bootstrap UCL	2.408
95% BCA Bootstrap UCL	2.414	95% Bootstrap t UCL	2.421
95% H-UCL (Log ROS)	2.515		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.654	KM Geo Mean	1.922
KM SD (logged)	0.558	95% Critical H Value (KM-Log)	1.879
KM Standard Error of Mean (logged)	0.0621	95% H-UCL (KM -Log)	2.524
KM SD (logged)	0.558	95% Critical H Value (KM-Log)	1.879

KM Standard Error of Mean (logged) 0.0621

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	2.195	Mean in Log Scale	0.642
SD in Original Scale	1.086	SD in Log Scale	0.597
95% t UCL (Assumes normality)	2.395	95% H-Stat UCL	2.577

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 2.413 95% GROS Approximate Gamma UCL 2.423

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:08:59 AM

From File Former CLEAR Plant_Rad_All (Soil and Sediment) 0-15.xls

Full Precision OFF
Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (radium-228)

al Statistics	

23	Number of Distinct Observations	82	Total Number of Observations
0	Number of Missing Observations		
2.261	Mean	1.2	Minimum
2.1	Median	7.6	Maximum
0.0935	Std. Error of Mean	0.847	SD
3.385	Skewness	0.375	Coefficient of Variation

Normal GOF Test

Shapiro Wilk Test Statistic	0.764	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.157	Lilliefors GOF Test
5% Lilliefors Critical Value	0.098	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL	2.417	95% Adjusted-CLT UCL (Chen-1995)	2.452	
		95% Modified-t UCL (Johnson-1978)	2.422	

Gamma GOF Test

3 Anderson-Darling Gamma GOF Test	1.163	A-D Test Statistic
1 Data Not Gamma Distributed at 5% Significance L	0.751	5% A-D Critical Value
1 Kolmogorov-Smirnov Gamma GOF Test	0.101	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance L	0.0986	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

9.948	k star (bias corrected MLE)	10.32	k hat (MLE)
0.227	Theta star (bias corrected MLE)	0.219	Theta hat (MLE)
1632	nu star (bias corrected)	1692	nu hat (MLE)
0.717	MLE Sd (bias corrected)	2.261	MLE Mean (bias corrected)
1539	Approximate Chi Square Value (0.05)		
1537	Adjusted Chi Square Value	0.0471	Adjusted Level of Significance

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:08:59 AM

From File Former CLEAR Plant_Rad_All (Soil and Sediment) 0-15.xls

Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 2.397 95% Adjusted Gamma UCL (use when n<50) 2.4

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.957	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk P Value	0.0264	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0816	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.098	Data appear Lognormal at 5% Significance Level

Data appear Approximate Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.182	Mean of logged Data	0.767
Maximum of Logged Data	2.028	SD of logged Data	0.299

Assuming Lognormal Distribution

95% H-UCL	2.384	90% Chebyshev (MVUE) UCL	2.476
95% Chebyshev (MVUE) UCL	2.579	97.5% Chebyshev (MVUE) UCL	2.722
99% Chebyshev (MVUE) UCL	3.002		

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	2.415	95% Jackknife UCL	2.417
95% Standard Bootstrap UCL	2.412	95% Bootstrap-t UCL	2.461
95% Hall's Bootstrap UCL	2.57	95% Percentile Bootstrap UCL	2.43
95% BCA Bootstrap UCL	2.446		
90% Chebyshev(Mean, Sd) UCL	2.542	95% Chebyshev(Mean, Sd) UCL	2.669
97.5% Chebyshev(Mean, Sd) UCL	2.845	99% Chebyshev(Mean, Sd) UCL	3.192

Suggested UCL to Use

95% Student's-t UCL	2.417	or 95% Modified-t UCL	2.422
or 95% H-UCL	2.384		

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ProUCL computes and outputs H-statistic based UCLs for historical reasons only.

H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples in the Technical Guide.

It is therefore recommended to avoid the use of H-statistic based 95% UCLs.

Use of nonparametric methods are preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:08:59 AM

From File Former CLEAR Plant_Rad_All (Soil and Sediment) 0-15.xls

Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

Result (uranium-234)

General Sta	atistics
-------------	----------

Total Number of Observations	82	Number of Distinct Observations	36
		Number of Missing Observations	0
Minimum	0.84	Mean	2.511
Maximum	12	Median	2.2
SD	1.486	Std. Error of Mean	0.164
Coefficient of Variation	0.592	Skewness	3.703

Normal GOF Test

Shapiro Wilk Test Statistic	0.712	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.193	Lilliefors GOF Test
5% Lilliefors Critical Value	0.098	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	2.784	95% Adjusted-CLT UCL (Chen-1995)	2.853
		95% Modified-t UCL (Johnson-1978)	2.795

Gamma GOF Test

1.62 Anderson-Darling Gamma GOF Test	1.62	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.755	5% A-D Critical Value
0.125 Kolmogorov-Smirnov Gamma GOF Test	0.125	K-S Test Statistic
.0989 Data Not Gamma Distributed at 5% Significance Level	0.0989	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

4.512	k star (bias corrected MLE)	4.675	k hat (MLE)
0.557	Theta star (bias corrected MLE)	0.537	Theta hat (MLE)
740	nu star (bias corrected)	766.7	nu hat (MLE)
1.182	MLE Sd (bias corrected)	2.511	MLE Mean (bias corrected)
677.8	Approximate Chi Square Value (0.05)		
676.8	Adjusted Chi Square Value	0.0471	Adjusted Level of Significance

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:08:59 AM

From File Former CLEAR Plant_Rad_All (Soil and Sediment) 0-15.xls

Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 2.741 95% Adjusted Gamma UCL (use when n<50) 2.745

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.967	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk P Value	0.133	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0956	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.098	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-0.174	Mean of logged Data	0.81
Maximum of Logged Data	2.485	SD of logged Data	0.448

Assuming Lognormal Distribution

95% H-UCL	2.719	90% Chebyshev (MVUE) UCL	2.865
95% Chebyshev (MVUE) UCL	3.039	97.5% Chebyshev (MVUE) UCL	3.281
99% Chebyshev (MVUE) UCL	3.755		

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	2.781	95% Jackknife UCL	2.784
95% Standard Bootstrap UCL	2.783	95% Bootstrap-t UCL	2.879
95% Hall's Bootstrap UCL	3.057	95% Percentile Bootstrap UCL	2.792
95% BCA Bootstrap UCL	2.869		
90% Chebyshev(Mean, Sd) UCL	3.003	95% Chebyshev(Mean, Sd) UCL	3.226
97.5% Chebyshev(Mean, Sd) UCL	3.536	99% Chebyshev(Mean, Sd) UCL	4.143

Suggested UCL to Use

95% Student's-t UCL	2.784	or 95% Modified-t UCL	2.795
or 95% H-UCL	2.719		

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ProUCL computes and outputs H-statistic based UCLs for historical reasons only.

H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples in the Technical Guide.

It is therefore recommended to avoid the use of H-statistic based 95% UCLs.

Use of nonparametric methods are preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution.

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:08:59 AM

From File Former CLEAR Plant_Rad_All (Soil and Sediment) 0-15.xls

Full Precision OFF
Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (uranium-235)

General Statistics

Total Number of Observations	82	Number of Distinct Observations	40
Number of Detects	63	Number of Non-Detects	19
Number of Distinct Detects	32	Number of Distinct Non-Detects	15
Minimum Detect	0.02	Minimum Non-Detect	0.039
Maximum Detect	0.74	Maximum Non-Detect	0.23
Variance Detects	0.0111	Percent Non-Detects	23.17%
Mean Detects	0.157	SD Detects	0.105
Median Detects	0.14	CV Detects	0.671
Skewness Detects	2.991	Kurtosis Detects	14.37
Mean of Logged Detects	-2.021	SD of Logged Detects	0.592

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.779	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	.426E-12	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0 15	Lilliefors GOF Test
Lilliciois rest otatistic	0.15	Lillelois GOF Test

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.136	KM Standard Error of Mean	0.0114
KM SD	0.101	95% KM (BCA) UCL	0.157
95% KM (t) UCL	0.155	95% KM (Percentile Bootstrap) UCL	0.157
95% KM (z) UCL	0.155	95% KM Bootstrap t UCL	0.16
90% KM Chebyshev UCL	0.17	95% KM Chebyshev UCL	0.186
97.5% KM Chebyshev UCL	0.208	99% KM Chebyshev UCL	0.25

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.484	Anderson-Darling GOF Test
5% A-D Critical Value	0.758	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.0829	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.113	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

2.959	k star (bias corrected MLE)	3.096	k hat (MLE)
0.0531	Theta star (bias corrected MLE)	0.0508	Theta hat (MLE)
372.8	nu star (bias corrected)	390.1	nu hat (MLE)
		0.157	Mean (detects)

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:08:59 AM

From File Former CLEAR Plant_Rad_All (Soil and Sediment) 0-15.xls

Full Precision OFF
Confidence Coefficient 95%

95% Gamma Approximate UCL (use when n>=50)

Number of Bootstrap Operations 2000

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.133	Mean	0.01	Minimum
0.11	Median	0.74	Maximum
0.778	CV	0.104	SD
1.916	k star (bias corrected MLE)	1.98	k hat (MLE)
0.0695	Theta star (bias corrected MLE)	0.0673	Theta hat (MLE)
314.2	nu star (bias corrected)	324.7	nu hat (MLE)
		0.0471	Adjusted Level of Significance (β)
273.4	Adjusted Chi Square Value (314.15, β)	274.1	Approximate Chi Square Value (314.15, α)

95% Gamma Adjusted UCL (use when n<50)

0.153

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.136	SD (KM)	0.101
Variance (KM)	0.0103	SE of Mean (KM)	0.0114
k hat (KM)	1.805	k star (KM)	1.747
nu hat (KM)	296	nu star (KM)	286.5
theta hat (KM)	0.0754	theta star (KM)	0.0779
80% gamma percentile (KM)	0.207	90% gamma percentile (KM)	0.273
95% gamma percentile (KM)	0.337	99% gamma percentile (KM)	0.48

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (286.53, α)	248.3	Adjusted Chi Square Value (286.53, β)	247.7
95% Gamma Approximate KM-UCL (use when n>=50)	0.157	95% Gamma Adjusted KM-UCL (use when n<50)	0.158

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.987	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0.906	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0649	Lilliefors GOF Test
5% Lilliefors Critical Value	0.111	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:08:59 AM

From File Former CLEAR Plant_Rad_All (Soil and Sediment) 0-15.xls

Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.136	Mean in Log Scale	-2.19
SD in Original Scale	0.1	SD in Log Scale	0.627
95% t UCL (assumes normality of ROS data)	0.155	95% Percentile Bootstrap UCL	0.156
95% BCA Bootstrap UCL	0.159	95% Bootstrap t UCL	0.16
95% H-UCL (Log ROS)	0.156		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.228	KM Geo Mean	0.108
KM SD (logged)	0.714	95% Critical H Value (KM-Log)	2.009
KM Standard Error of Mean (logged)	0.0869	95% H-UCL (KM -Log)	0.163
KM SD (logged)	0.714	95% Critical H Value (KM-Log)	2.009

KM Standard Error of Mean (logged) 0.0869

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.135	Mean in Log Scale	-2.234
SD in Original Scale	0.102	SD in Log Scale	0.694
95% t UCL (Assumes normality)	0.153	95% H-Stat UCL	0.159

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 0.157 95% GROS Approximate Gamma UCL 0.153

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:08:59 AM

From File Former CLEAR Plant_Rad_All (Soil and Sediment) 0-15.xls

Full Precision OFF
Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (uranium-238)

al Statistics	

Total Number of Observations	82	Number of Distinct Observations	34
		Number of Missing Observations	0
Minimum	0.84	Mean	2.591
Maximum	12	Median	2.2
SD	1.509	Std. Error of Mean	0.167
Coefficient of Variation	0.582	Skewness	3.51

Normal GOF Test

Shapiro Wilk Test Statistic	0.727	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.209	Lilliefors GOF Test
5% Lilliefors Critical Value	0.098	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	2.868	95% Adjusted-CLT UCL (Chen-1995)	2.934
		95% Modified-t UCL (Johnson-1978)	2.879

Gamma GOF Test

A-D Test Statistic	1.487	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.755	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.131	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.0989	Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

4.548	k star (bias corrected MLE)	4.712	k hat (MLE)
0.57	Theta star (bias corrected MLE)	0.55	Theta hat (MLE)
745.8	nu star (bias corrected)	772.8	nu hat (MLE)
1.215	MLE Sd (bias corrected)	2.591	MLE Mean (bias corrected)
683.5	Approximate Chi Square Value (0.05)		
682.4	Adjusted Chi Square Value	0.0471	Adjusted Level of Significance

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:08:59 AM

From File Former CLEAR Plant_Rad_All (Soil and Sediment) 0-15.xls

Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 2.827 95% Adjusted Gamma UCL (use when n<50) 2.832

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.972	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk P Value	0.256	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.1	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.098	Data Not Lognormal at 5% Significance Level

Data appear Approximate Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-0.174	Mean of logged Data	0.842
Maximum of Logged Data	2.485	SD of logged Data	0.446

Assuming Lognormal Distribution

95% H-UCL	2.806	90% Chebyshev (MVUE) UCL	2.956
95% Chebyshev (MVUE) UCL	3.136	97.5% Chebyshev (MVUE) UCL	3.384
99% Chebyshev (MVUE) UCL	3.872		

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	2.865	95% Jackknife UCL	2.868
95% Standard Bootstrap UCL	2.865	95% Bootstrap-t UCL	2.957
95% Hall's Bootstrap UCL	3.1	95% Percentile Bootstrap UCL	2.873
95% BCA Bootstrap UCL	2.952		
90% Chebyshev(Mean, Sd) UCL	3.091	95% Chebyshev(Mean, Sd) UCL	3.317
97.5% Chebyshev(Mean, Sd) UCL	3.631	99% Chebyshev(Mean, Sd) UCL	4.249

Suggested UCL to Use

95% Student's-t UCL	2.868	or 95% Modified-t UCL	2.879
or 95% H-UCL	2.806		

 $Note: Suggestions \ regarding \ the \ selection \ of a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ProUCL computes and outputs H-statistic based UCLs for historical reasons only.

H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples in the Technical Guide.

It is therefore recommended to avoid the use of H-statistic based 95% UCLs.

Use of nonparametric methods are preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:12:59 AM

From File Former CLEAR Plant_Rad_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (radium-226)

General Statistics

Total Number of Observations	54	Number of Distinct Observations	35
Number of Detects	52	Number of Non-Detects	2
Number of Distinct Detects	33	Number of Distinct Non-Detects	2
Minimum Detect	0.43	Minimum Non-Detect	0.4
Maximum Detect	5.3	Maximum Non-Detect	0.84
Variance Detects	1.452	Percent Non-Detects	3.704%
Mean Detects	2.34	SD Detects	1.205
Median Detects	2.15	CV Detects	0.515
Skewness Detects	0.884	Kurtosis Detects	0.403
Mean of Logged Detects	0.711	SD of Logged Detects	0.563

Normal GOF Test on Detects Only

Shapiro Wilk Test S	Statistic	0.921	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk F	^o Value	0.00192	Detected Data Not Normal at 5% Significance Level
Lilliefors Test S	Statistic	0.126	Lilliefors GOF Test
5% Lilliefors Critica	l Value	0.122	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	2.27	KM Standard Error of Mean	0.168
KMSD	1.225	95% KM (BCA) UCL	2.544
95% KM (t) UCL	2.552	95% KM (Percentile Bootstrap) UCL	2.549
95% KM (z) UCL	2.547	95% KM Bootstrap t UCL	2.578
90% KM Chebyshev UCL	2.775	95% KM Chebyshev UCL	3.004
97.5% KM Chebyshev UCL	3.321	99% KM Chebyshev UCL	3.945

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.278	Anderson-Darling GOF Test
5% A-D Critical Value	0.754	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.0639	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.124	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:12:59 AM

From File Former CLEAR Plant_Rad_Soil Only 0-15.xls

Full Precision OFF
Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Gamma Statistics on Detected Data Only

k hat (MLE)	3.743	k star (bias corrected MLE)	3.54
Theta hat (MLE)	0.625	Theta star (bias corrected MLE)	0.661
nu hat (MLE)	389.2	nu star (bias corrected)	368.1
Mean (detects)	2.34		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.269	Mean	2.269
Maximum	5.3	Median	2.1
SD	1.238	CV	0.546
k hat (MLE)	3.101	k star (bias corrected MLE)	2.941
Theta hat (MLE)	0.732	Theta star (bias corrected MLE)	0.771
nu hat (MLE)	334.9	nu star (bias corrected)	317.6
Adjusted Level of Significance (β)	0.0456		
Approximate Chi Square Value (317.65, α)	277.4	Adjusted Chi Square Value (317.65, β)	276.3
95% Gamma Approximate UCL (use when n>=50)	2.599	95% Gamma Adjusted UCL (use when n<50)	2.608

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	2.27	SD (KM)	1.225
Variance (KM)	1.501	SE of Mean (KM)	0.168
k hat (KM)	3.432	k star (KM)	3.254
nu hat (KM)	370.7	nu star (KM)	351.4
theta hat (KM)	0.661	theta star (KM)	0.698
80% gamma percentile (KM)	3.206	90% gamma percentile (KM)	3.957
95% gamma percentile (KM)	4.655	99% gamma percentile (KM)	6.16

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (351.44, α)	309	Adjusted Chi Square Value (351.44, β)	307.9
95% Gamma Approximate KM-UCL (use when n>=50)	2.582	95% Gamma Adjusted KM-UCL (use when n<50)	2.591

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:12:59 AM

From File Former CLEAR Plant_Rad_Soil Only 0-15.xls

Full Precision OFF
Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.953	Shapiro Wilk GOF Test
---	-------	-----------------------

5% Shapiro Wilk P Value 0.0733 Detected Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.0866 Lilliefors GOF Test

5% Lilliefors Critical Value 0.122 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	2.275	Mean in Log Scale	0.664
SD in Original Scale	1.229	SD in Log Scale	0.603
95% t UCL (assumes normality of ROS data)	2.555	95% Percentile Bootstrap UCL	2.556
95% BCA Bootstrap UCL	2.558	95% Bootstrap t UCL	2.585
95% H-UCL (Log ROS)	2.74		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.653	KM Geo Mean	1.922
KM SD (logged)	0.621	95% Critical H Value (KM-Log)	1.967
KM Standard Error of Mean (logged)	0.0854	95% H-UCL (KM -Log)	2.756
KM SD (logged)	0.621	95% Critical H Value (KM-Log)	1.967

KM Standard Error of Mean (logged) 0.0854

DL /2 Normal

DL/2 Statistics

DL/2 Normal		DL/2 Log-Hansionned	
Mean in Original Scale	2.265	Mean in Log Scale	0.639
SD in Original Scale	1.244	SD in Log Scale	0.669
95% t UCL (Assumes normality)	2.548	95% H-Stat UCL	2.849

DL/2 Log Transformed

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 2.582 95% GROS Approximate Gamma UCL 2.599

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:12:59 AM

From File Former CLEAR Plant_Rad_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (radium-228)

Statistics

Total Number of Observations	54	Number of Distinct Observations	21
		Number of Missing Observations	0
Minimum	1.2	Mean	2.296
Maximum	7.6	Median	2.1
SD	0.973	Std. Error of Mean	0.132
Coefficient of Variation	0.424	Skewness	3.355

Normal GOF Test

Shapiro Wilk Test Statistic 0.723	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value 7.974E-13	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic 0.213	Lilliefors GOF Test
5% Lilliefors Critical Value 0.12	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	2.518	95% Adjusted-CLT UCL (Chen-1995)	2.579
		95% Modified-t UCL (Johnson-1978)	2.528

Gamma GOF Test

1.415	A-D Test Statistic
0.751	5% A-D Critical Value
0.153	K-S Test Statistic
0.121	5% K-S Critical Value
	0.751 0.153

Data Not Gamma Distributed at 5% Significance Level

k hat (MLE)	8.603	k star (bias corrected MLE)	8.137
Theta hat (MLE)	0.267	Theta star (bias corrected MLE)	0.282
nu hat (MLE)	929.1	nu star (bias corrected)	878.8
MLE Mean (bias corrected)	2.296	MLE Sd (bias corrected)	0.805
		Approximate Chi Square Value (0.05)	811
Adjusted Level of Significance	0.0456	Adjusted Chi Square Value	809.3

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:12:59 AM

From File Former CLEAR Plant_Rad_Soil Only 0-15.xls

Full Precision OFF
Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 2.488 95% Adjusted Gamma UCL (use when n<50) 2.494

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.936	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk P Value	0.00944	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.124	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.12	Data Not Lognormal at 5% Significance Level

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.182	Mean of logged Data	0.772
Maximum of Logged Data	2.028	SD of logged Data	0.324

Assuming Lognormal Distribution

95% H-UCL	2.462	90% Chebyshev (MVUE) UCL	2.586
95% Chebyshev (MVUE) UCL	2.726	97.5% Chebyshev (MVUE) UCL	2.919
99% Chebyshev (MVUE) UCL	3.299		

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

95% CLT UCL	2.514	95% Jackknife UCL	2.518
95% Standard Bootstrap UCL	2.511	95% Bootstrap-t UCL	2.634
95% Hall's Bootstrap UCL	2.921	95% Percentile Bootstrap UCL	2.528
95% BCA Bootstrap UCL	2.581		
90% Chebyshev(Mean, Sd) UCL	2.694	95% Chebyshev(Mean, Sd) UCL	2.873
97.5% Chebyshev(Mean, Sd) UCL	3.123	99% Chebyshev(Mean, Sd) UCL	3.614

Suggested UCL to Use

95% Student's-t UCL 2.518 or 95% Modified-t UCL 2.528

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:12:59 AM

From File Former CLEAR Plant_Rad_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (uranium-234)

Statistics

-	Total Number of Observations	54	Number of Distinct Observations	31
			Number of Missing Observations	0
	Minimum	0.84	Mean	2.68
	Maximum	12	Median	2.35
	SD	1.688	Std. Error of Mean	0.23
	Coefficient of Variation	0.63	Skewness	3.584

Normal GOF Test

Shapiro Wilk Test Statistic 0.684	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value 2.021E-14	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic 0.24	Lilliefors GOF Test
5% Lilliefors Critical Value 0.12	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	3.065	95% Adjusted-CLT UCL (Chen-1995)	3.178
		95% Modified-t UCL (Johnson-1978)	3.083

Gamma GOF Test

Anderson-Darling Gamma GOF Test	1.575	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Lev	0.754	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.16	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance Lev	0.121	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

k hat (MLE)	4.235	k star (bias corrected MLE)	4.012
Theta hat (MLE)	0.633	Theta star (bias corrected MLE)	0.668
nu hat (MLE)	457.3	nu star (bias corrected)	433.3
MLE Mean (bias corrected)	2.68	MLE Sd (bias corrected)	1.338
		Approximate Chi Square Value (0.05)	386
Adjusted Level of Significance	0.0456	Adjusted Chi Square Value	384.8

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:12:59 AM

From File Former CLEAR Plant_Rad_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 3.008 95% Adjusted Gamma UCL (use when n<50) 3.018

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.95	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk P Value	0.0438	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.124	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.12	Data Not Lognormal at 5% Significance Level

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-0.174	Mean of logged Data	0.863
Maximum of Logged Data	2.485	SD of logged Data	0.473

Assuming Lognormal Distribution

95% H-UCL	2.994	90% Chebyshev (MVUE) UCL	3.18
95% Chebyshev (MVUE) UCL	3.422	97.5% Chebyshev (MVUE) UCL	3.758
99% Chebyshev (MVUE) UCL	4.418		

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

95% CLT UCL	3.058	95% Jackknife UCL	3.065
95% Standard Bootstrap UCL	3.064	95% Bootstrap-t UCL	3.293
95% Hall's Bootstrap UCL	4.826	95% Percentile Bootstrap UCL	3.058
95% BCA Bootstrap UCL	3.191		
90% Chebyshev(Mean, Sd) UCL	3.369	95% Chebyshev(Mean, Sd) UCL	3.681
97.5% Chebyshev(Mean, Sd) UCL	4.114	99% Chebyshev(Mean, Sd) UCL	4.965

Suggested UCL to Use

95% Student's-t UCL 3.065 or 95% Modified-t UCL 3.083

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:12:59 AM

From File Former CLEAR Plant_Rad_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (uranium-235)

General Statistics

Total Number of Observations	54	Number of Distinct Observations	32
Number of Detects	48	Number of Non-Detects	6
Number of Distinct Detects	28	Number of Distinct Non-Detects	6
Minimum Detect	0.02	Minimum Non-Detect	0.039
Maximum Detect	0.74	Maximum Non-Detect	0.19
Variance Detects	0.0128	Percent Non-Detects	11.11%
Mean Detects	0.168	SD Detects	0.113
Median Detects	0.16	CV Detects	0.673
Skewness Detects	2.921	Kurtosis Detects	13.31
Mean of Logged Detects	-1.96	SD of Logged Detects	0.617

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.772	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.947	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.189	Lilliefors GOF Test
5% Lilliefors Critical Value	0.127	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.155	KM Standard Error of Mean	0.0155
KMSD	0.112	95% KM (BCA) UCL	0.183
95% KM (t) UCL	0.181	95% KM (Percentile Bootstrap) UCL	0.183
95% KM (z) UCL	0.181	95% KM Bootstrap t UCL	0.19
90% KM Chebyshev UCL	0.202	95% KM Chebyshev UCL	0.223
97.5% KM Chebyshev UCL	0.252	99% KM Chebyshev UCL	0.31

Gamma GOF Tests on Detected Observations Only

0.545	Anderson-Darling GOF Test
0.757	Detected data appear Gamma Distributed at 5% Significance Level
0.111	Kolmogorov-Smirnov GOF
0.129	Detected data appear Gamma Distributed at 5% Significance Level
	0.757 0.111

Detected data appear Gamma Distributed at 5% Significance Level

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:12:59 AM

From File Former CLEAR Plant_Rad_Soil Only 0-15.xls

Full Precision OFF Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Gamma Statistics on Detected Data Only

2.806	k star (bias corrected MLE)	2.978	k hat (MLE)
0.0599	Theta star (bias corrected MLE)	0.0565	Theta hat (MLE)
269.4	nu star (bias corrected)	285.9	nu hat (MLE)
		0.168	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	0.154
Maximum	0.74	Median	0.14
SD	0.114	CV	0.742
k hat (MLE)	2.121	k star (bias corrected MLE)	2.015
Theta hat (MLE)	0.0727	Theta star (bias corrected MLE)	0.0765
nu hat (MLE)	229	nu star (bias corrected)	217.6
Adjusted Level of Significance (β)	0.0456		
Approximate Chi Square Value (217.65, α)	184.5	Adjusted Chi Square Value (217.65, β)	183.7
95% Gamma Approximate UCL (use when n>=50)	0.182	95% Gamma Adjusted UCL (use when n<50)	0.183

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.155	SD (KM)	0.112
Variance (KM)	0.0126	SE of Mean (KM)	0.0155
k hat (KM)	1.908	k star (KM)	1.814
nu hat (KM)	206.1	nu star (KM)	196
theta hat (KM)	0.0814	theta star (KM)	0.0856
80% gamma percentile (KM)	0.235	90% gamma percentile (KM)	0.309
95% gamma percentile (KM)	0.38	99% gamma percentile (KM)	0.538

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (195.96, α)	164.6	Adjusted Chi Square Value (195.96, β)	163.8
95% Gamma Approximate KM-UCL (use when n>=50)	0.185	95% Gamma Adjusted KM-UCL (use when n<50)	0.186

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:12:59 AM

From File Former CLEAR Plant_Rad_Soil Only 0-15.xls

Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.97	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.947	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.103	Lilliefors GOF Test
5% Lilliefors Critical Value	0.127	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.156	Mean in Log Scale	-2.063
SD in Original Scale	0.112	SD in Log Scale	0.66
95% t UCL (assumes normality of ROS data)	0.182	95% Percentile Bootstrap UCL	0.184
95% BCA Bootstrap UCL	0.189	95% Bootstrap t UCL	0.19
95% H-UCL (Log ROS)	0.189		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.096	KM Geo Mean	0.123
KM SD (logged)	0.728	95% Critical H Value (KM-Log)	2.055
KM Standard Error of Mean (logged)	0.103	95% H-UCL (KM -Log)	0.197
KM SD (logged)	0.728	95% Critical H Value (KM-Log)	2.055
KM Standard Error of Mean (logged)	0.103		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.155	Mean in Log Scale	-2.101
SD in Original Scale	0.114	SD in Log Scale	0.727
95% t UCL (Assumes normality)	0.18	95% H-Stat UCL	0.196

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 0.185 95% GROS Approximate Gamma UCL 0.182

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:12:59 AM

From File Former CLEAR Plant_Rad_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (uranium-238)

Statistics	

Total Number of Observations	54	Number of Distinct Observations	30
		Number of Missing Observations	0
Minimum	0.84	Mean	2.756
Maximum	12	Median	2.5
SD	1.712	Std. Error of Mean	0.233
Coefficient of Variation	0.621	Skewness	3.395

Normal GOF Test

Shapiro Wilk Test Statistic 0.704	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value 1.316E-13	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic 0.254	Lilliefors GOF Test
5% Lilliefors Critical Value 0.12	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	3.146	95% Adjusted-CLT UCL (Chen-1995)	3.255
		95% Modified-t UCL (Johnson-1978)	3.164

Gamma GOF Test

Anderson-Darling Gamma GOF Test	1.348	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Leve	0.754	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.175	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance Leve	0.121	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

4.005	k star (bias corrected MLE)	4.228	k hat (MLE)
0.688	Theta star (bias corrected MLE)	0.652	Theta hat (MLE)
432.6	nu star (bias corrected)	456.6	nu hat (MLE)
1.377	MLE Sd (bias corrected)	2.756	MLE Mean (bias corrected)
385.4	Approximate Chi Square Value (0.05)		
384.2	Adjusted Chi Square Value	0.0456	Adjusted Level of Significance

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:12:59 AM

From File Former CLEAR Plant_Rad_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 3.094 95% Adjusted Gamma UCL (use when n<50) 3.104

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.96	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk P Value	0.139	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.14	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.12	Data Not Lognormal at 5% Significance Level

Data appear Approximate Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-0.174	Mean of logged Data	0.891
Maximum of Logged Data	2.485	SD of logged Data	0.475

Assuming Lognormal Distribution

95% H-UCL	3.082	90% Chebyshev (MVUE) UCL	3.274
95% Chebyshev (MVUE) UCL	3.525	97.5% Chebyshev (MVUE) UCL	3.872
99% Chebyshev (MVUE) UCL	4.554		

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	3.14	95% Jackknife UCL	3.146
95% Standard Bootstrap UCL	3.145	95% Bootstrap-t UCL	3.338
95% Hall's Bootstrap UCL	4.96	95% Percentile Bootstrap UCL	3.16
95% BCA Bootstrap UCL	3.234		
90% Chebyshev(Mean, Sd) UCL	3.455	95% Chebyshev(Mean, Sd) UCL	3.772
97.5% Chebyshev(Mean, Sd) UCL	4.211	99% Chebyshev(Mean, Sd) UCL	5.074

Suggested UCL to Use

95% Student's-t UCL	3.146	or 95% Modified-t UCL	3.164
or 95% H-UCL	3.082		

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ProUCL computes and outputs H-statistic based UCLs for historical reasons only.

H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples in the Technical Guide.

It is therefore recommended to avoid the use of H-statistic based 95% UCLs.

Use of nonparametric methods are preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution.

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:55:57 PM

From File Former CLEAR Plant_Rad_Exposed 0-2.xls

Full Precision OFF
Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (radium-226)

General Statistics

Total Number of Observations	66	Number of Distinct Observations	30
Number of Detects	65	Number of Non-Detects	1
Number of Distinct Detects	29	Number of Distinct Non-Detects	1
Minimum Detect	0.43	Minimum Non-Detect	0.84
Maximum Detect	4.8	Maximum Non-Detect	0.84
Variance Detects	0.829	Percent Non-Detects	1.515%
Mean Detects	2.119	SD Detects	0.911
Median Detects	2.1	CV Detects	0.43
Skewness Detects	0.614	Kurtosis Detects	1.095
Mean of Logged Detects	0.643	SD of Logged Detects	0.506

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.957	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0.0623	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.0679	Lilliefors GOF Test
5% Lilliefors Critical Value	0.11	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	2.096	KM Standard Error of Mean	0.114
KM SD	0.916	95% KM (BCA) UCL	2.269
95% KM (t) UCL	2.285	95% KM (Percentile Bootstrap) UCL	2.286
95% KM (z) UCL	2.283	95% KM Bootstrap t UCL	2.3
90% KM Chebyshev UCL	2.437	95% KM Chebyshev UCL	2.591
97.5% KM Chebyshev UCL	2.806	99% KM Chebyshev UCL	3.227

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.801	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.754	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.0987	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.111	5% K-S Critical Value

Detected data follow Appr. Gamma Distribution at 5% Significance Level

Gamma Statistics on Detected Data Only

4.587	k star (bias corrected MLE)	4.798	k hat (MLE)
0.462	Theta star (bias corrected MLE)	0.442	Theta hat (MLE)
596.3	nu star (bias corrected)	623.7	nu hat (MLE)
		2 119	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:55:57 PM

80% gamma 95% gamma

From File Former CLEAR Plant_Rad_Exposed 0-2.xls

Minimum

Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

2.1	Wedn	0.40	William
2.1	Median	4.8	Maximum
0.437	CV	0.917	SD
4.462	k star (bias corrected MLE)	4.664	k hat (MLE)
0.471	Theta star (bias corrected MLE)	0.45	Theta hat (MLE)
588.9	nu star (bias corrected)	615.6	nu hat (MLE)
		0.0464	Adjusted Level of Significance (β)
532.5	Adjusted Chi Square Value (588.95, β)	533.7	Approximate Chi Square Value (588.95, α)
2.322	95% Gamma Adjusted UCL (use when n<50)	2.317	95% Gamma Approximate UCL (use when n>=50)

Mean

21

Estimates of Gamma Parameters using KM Estimates

	——————————————————————————————————————		
0.916	SD (KM)	2.096	Mean (KM)
0.114	SE of Mean (KM)	0.839	Variance (KM)
5.004	k star (KM)	5.232	k hat (KM)
660.6	nu star (KM)	690.6	nu hat (KM)
0.419	theta star (KM)	0.401	theta hat (KM)
3.35	90% gamma percentile (KM)	2.817	a percentile (KM)
4.863	99% gamma percentile (KM)	3.836	a percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (660.56, α)	601.9	Adjusted Chi Square Value (660.56, β)	600.7
95% Gamma Approximate KM-UCL (use when n>=50)	2.3	95% Gamma Adjusted KM-UCL (use when n<50)	2.305

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk GOF Test	0.91/	Shapiro Wilk Approximate Test Statistic
Detected Data Not Lognormal at 5% Significance Level	1.9803E-4	5% Shapiro Wilk P Value
Lilliefors GOF Test	0.13	Lilliefors Test Statistic
Detected Data Not Lognormal at 5% Significance Level	0.11	5% Lilliefors Critical Value

Detected Data Not Lognormal at 5% Significance Level

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:55:57 PM

From File Former CLEAR Plant_Rad_Exposed 0-2.xls

Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	2.099	Mean in Log Scale	0.63
SD in Original Scale	0.918	SD in Log Scale	0.513
95% t UCL (assumes normality of ROS data)	2.288	95% Percentile Bootstrap UCL	2.286
95% BCA Bootstrap UCL	2.291	95% Bootstrap t UCL	2.302
95% H-UCL (Log ROS)	2.413		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.625	KM Geo Mean	1.868
KM SD (logged)	0.52	95% Critical H Value (KM-Log)	1.879
KM Standard Error of Mean (logged)	0.0646	95% H-UCL (KM -Log)	2.414
KM SD (logged)	0.52	95% Critical H Value (KM-Log)	1.879

KM Standard Error of Mean (logged) 0.0646

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	2.093	Mean in Log Scale	0.62
SD in Original Scale	0.928	SD in Log Scale	0.535
95% t UCL (Assumes normality)	2.284	95% H-Stat UCL	2.433

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 2.285

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:55:57 PM

From File Former CLEAR Plant_Rad_Exposed 0-2.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (radium-228)

Statistics

Total Number of Observations	66	Number of Distinct Observations	23
		Number of Missing Observations	0
Minimum	1.2	Mean	2.258
Maximum	7.6	Median	2.1
SD	0.905	Std. Error of Mean	0.111
Coefficient of Variation	0.401	Skewness	3.425

Normal GOF Test

Shapiro Wilk Test Statistic 0.744	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value 2.109E-15	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic 0.148	Lilliefors GOF Test
5% Lilliefors Critical Value 0.109	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)		
95% Student's-t U	ICL 2.443	95% Adjusted-CLT UCL (Chen-1995)	2.491	
		95% Modified-t UCL (Johnson-1978)	2.451	

Gamma GOF Test

A-D Test Statistic	1.072	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.751	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.119	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.11	Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

8.89	k star (bias corrected MLE)	9.303	k hat (MLE)
0.254	Theta star (bias corrected MLE)	0.243	Theta hat (MLE)
1174	nu star (bias corrected)	1228	nu hat (MLE)
0.757	MLE Sd (bias corrected)	2.258	MLE Mean (bias corrected)
1095	Approximate Chi Square Value (0.05)		
1093	Adjusted Chi Square Value	0.0464	Adjusted Level of Significance

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:55:57 PM

From File Former CLEAR Plant_Rad_Exposed 0-2.xls

Full Precision OFF
Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 2.419 95% Adjusted Gamma UCL (use when n<50) 2.423

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.95	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk P Value	0.0218	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0982	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.109	Data appear Lognormal at 5% Significance Level

Data appear Approximate Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.182	Mean of logged Data	0.76
Maximum of Logged Data	2.028	SD of logged Data	0.314

Assuming Lognormal Distribution

95% H-UCL	2.404	90% Chebyshev (MVUE) UCL	2.509
95% Chebyshev (MVUE) UCL	2.629	97.5% Chebyshev (MVUE) UCL	2.795
99% Chebyshev (MVUE) UCL	3.123		

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	2.441	95% Jackknife UCL	2.443
95% Standard Bootstrap UCL	2.442	95% Bootstrap-t UCL	2.526
95% Hall's Bootstrap UCL	2.706	95% Percentile Bootstrap UCL	2.452
95% BCA Bootstrap UCL	2.521		
90% Chebyshev(Mean, Sd) UCL	2.592	95% Chebyshev(Mean, Sd) UCL	2.743
'.5% Chebyshev(Mean, Sd) UCL	2.953	99% Chebyshev(Mean, Sd) UCL	3.366

Suggested UCL to Use

95% Student's-t UCL	2.443	or 95% Modified-t UCL	2.451
or 95% H-UCL	2.404		

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ProUCL computes and outputs H-statistic based UCLs for historical reasons only.

H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples in the Technical Guide.

It is therefore recommended to avoid the use of H-statistic based 95% UCLs.

Use of nonparametric methods are preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution.

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:55:57 PM

From File Former CLEAR Plant_Rad_Exposed 0-2.xls

Full Precision OFF
Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (uranium-235)

General Statistics

Total Number of Observations	66	Number of Distinct Observations	37
Number of Detects	48	Number of Non-Detects	18
Number of Distinct Detects	28	Number of Distinct Non-Detects	14
Minimum Detect	0.02	Minimum Non-Detect	0.039
Maximum Detect	0.31	Maximum Non-Detect	0.23
Variance Detects	0.00494	Percent Non-Detects	27.27%
Mean Detects	0.142	SD Detects	0.0703
Median Detects	0.135	CV Detects	0.496
Skewness Detects	0.613	Kurtosis Detects	-0.176
Mean of Logged Detects	-2.089	SD of Logged Detects	0.562

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.95	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.947	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.133	Lilliefors GOF Test
5% Lilliefors Critical Value	0.127	Detected Data Not Normal at 5% Significance Level

Detected Data appear Approximate Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.121	KM Standard Error of Mean	0.00926
KMSD	0.0717	95% KM (BCA) UCL	0.137
95% KM (t) UCL	0.137	95% KM (Percentile Bootstrap) UCL	0.137
95% KM (z) UCL	0.136	95% KM Bootstrap t UCL	0.137
90% KM Chebyshev UCL	0.149	95% KM Chebyshev UCL	0.161
97.5% KM Chebyshev UCL	0.179	99% KM Chebyshev UCL	0.213

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.22	Anderson-Darling GOF Test
5% A-D Critical Value	0.754	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.0773	Kolmogorov-Smirnov GOF
	0.0	. togerev enimiter der

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

3.6	k star (bias corrected MLE)	3.825	k hat (MLE)
0.0394	Theta star (bias corrected MLE)	0.0371	Theta hat (MLE)
345.6	nu star (bias corrected)	367.2	nu hat (MLE)
		0.142	Mean (detects)

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:55:57 PM

From File Former CLEAR Plant_Rad_Exposed 0-2.xls

Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.02	Mean	0.122
Maximum	0.31	Median	0.098
SD	0.07	CV	0.576
k hat (MLE)	3.054	k star (bias corrected MLE)	2.925
Theta hat (MLE)	0.0398	Theta star (bias corrected MLE)	0.0416
nu hat (MLE)	403.1	nu star (bias corrected)	386.1

Adjusted Level of Significance (β) 0.0464

Approximate Chi Square Value (386.13, α) 341.6 Adjusted Chi Square Value (386.13, β) 340.7 95% Gamma Approximate UCL (use when n>=50) 0.137 95% Gamma Adjusted UCL (use when n<50) 0.138

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.121	SD (KM)	0.0717
Variance (KM)	0.00514	SE of Mean (KM)	0.00926
k hat (KM)	2.851	k star (KM)	2.731
nu hat (KM)	376.3	nu star (KM)	360.5
theta hat (KM)	0.0425	theta star (KM)	0.0443
80% gamma percentile (KM)	0.175	90% gamma percentile (KM)	0.219
95% gamma percentile (KM)	0.261	99% gamma percentile (KM)	0.352

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (360.54, α)	317.5	Adjusted Chi Square Value (360.54, β)	316.6
95% Gamma Approximate KM-UCL (use when n>=50)	0.138	95% Gamma Adjusted KM-UCL (use when n<50)	0.138

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.959	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.947	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0866	Lilliefors GOF Test
5% Lilliefors Critical Value	0 127	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.122	Mean in Log Scale	-2.269
SD in Original Scale	0.0695	SD in Log Scale	0.589
95% t UCL (assumes normality of ROS data)	0.136	95% Percentile Bootstrap UCL	0.136
95% BCA Bootstrap UCL	0.137	95% Bootstrap t UCL	0.138
95% H-UCL (Log ROS)	0.142		

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:55:57 PM

From File Former CLEAR Plant_Rad_Exposed 0-2.xls

Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.32	KM Geo Mean	0.0983
KM SD (logged)	0.702	95% Critical H Value (KM-Log)	2.015
KM Standard Error of Mean (logged)	0.0982	95% H-UCL (KM -Log)	0.15
KM SD (logged)	0.702	95% Critical H Value (KM-Log)	2.015
KM Standard Error of Mean (logged)	0.0982		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.12	Mean in Log Scale	-2.316
SD in Original Scale	0.0716	SD in Log Scale	0.665
95% t UCL (Assumes normality)	0.135	95% H-Stat UCL	0.145

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Detected Data appear Approximate Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.137

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

 $Note: Suggestions \ regarding \ the \ selection \ of a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:55:57 PM

From File Former CLEAR Plant_Rad_Exposed 0-2.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (uranium-238)

Statistics

Total Number of Observations	66	Number of Distinct Observations	28
		Number of Missing Observations	0
Minimum	0.84	Mean	2.322
Maximum	4.9	Median	2.2
SD	0.884	Std. Error of Mean	0.109
Coefficient of Variation	0.381	Skewness	1.001

Normal GOF Test

Shapiro Wilk Test Statistic 0.923	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value 4.2812E-4	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic 0.115	Lilliefors GOF Test
5% Lilliefors Critical Value 0.109	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	2.503	95% Adjusted-CLT UCL (Chen-1995)	2.515
		95% Modified-t UCL (Johnson-1978)	2.506

Gamma GOF Test

A-D Test Statistic 0	.434	Anderson-Darling Gamma GOF Test
% A-D Critical Value 0	.752 Detected	data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic 0.	0698	Kolmogorov-Smirnov Gamma GOF Test
% K-S Critical Value 0	.11 Detected	data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

k hat (MLE)	7.461	k star (bias corrected MLE)	7.132
Theta hat (MLE)	0.311	Theta star (bias corrected MLE)	0.326
nu hat (MLE)	984.8	nu star (bias corrected)	941.4
MLE Mean (bias corrected)	2.322	MLE Sd (bias corrected)	0.869
		Approximate Chi Square Value (0.05)	871.2
Adjusted Level of Significance	0.0464	Adjusted Chi Square Value	869.7

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:55:57 PM

From File Former CLEAR Plant_Rad_Exposed 0-2.xls

Full Precision OFF
Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 2.509 95% Adjusted Gamma UCL (use when n<50) 2.513

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.978	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk P Value	0.579	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0827	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.109	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-0.174	Mean of logged Data	0.774
Maximum of Logged Data	1.589	SD of logged Data	0.375

Assuming Lognormal Distribution

95% H-UCL	2.529	90% Chebyshev (MVUE) UCL	2.655
95% Chebyshev (MVUE) UCL	2.805	97.5% Chebyshev (MVUE) UCL	3.014
99% Chebyshev (MVUE) UCL	3.424		

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	2.501	95% Jackknife UCL	2.503
95% Standard Bootstrap UCL	2.501	95% Bootstrap-t UCL	2.518
95% Hall's Bootstrap UCL	2.533	95% Percentile Bootstrap UCL	2.501
95% BCA Bootstrap UCL	2.517		
90% Chebyshev(Mean, Sd) UCL	2.648	95% Chebyshev(Mean, Sd) UCL	2.796
97.5% Chebyshev(Mean, Sd) UCL	3.001	99% Chebyshev(Mean, Sd) UCL	3.405

Suggested UCL to Use

95% Approximate Gamma UCL 2.509

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:55:00 PM

From File Former CLEAR Plant_Rad_All 0-2.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (radium-226)

General Statistics

Total Number of Observations	68	Number of Distinct Observations	31
Number of Detects	67	Number of Non-Detects	1
Number of Distinct Detects	30	Number of Distinct Non-Detects	1
Minimum Detect	0.43	Minimum Non-Detect	0.84
Maximum Detect	4.8	Maximum Non-Detect	0.84
Variance Detects	0.829	Percent Non-Detects	1.471%
Mean Detects	2.115	SD Detects	0.911
Median Detects	2.1	CV Detects	0.43
Skewness Detects	0.595	Kurtosis Detects	1.006
Mean of Logged Detects	0.641	SD of Logged Detects	0.505

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.96	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0.075	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.0615	Lilliefors GOF Test
5% Lilliefors Critical Value	0.108	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	2.093	KM Standard Error of Mean	0.112
KM SD	0.916	95% KM (BCA) UCL	2.286
95% KM (t) UCL	2.28	95% KM (Percentile Bootstrap) UCL	2.28
95% KM (z) UCL	2.277	95% KM Bootstrap t UCL	2.285
90% KM Chebyshev UCL	2.429	95% KM Chebyshev UCL	2.581
97.5% KM Chebyshev UCL	2.792	99% KM Chebyshev UCL	3.207

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.74	Anderson-Darling GOF Test
5% A-D Critical Value	0.754	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.0964	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.109	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:55:00 PM

From File Former CLEAR Plant_Rad_All 0-2.xls

Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

Gamma Statistics on Detected Data Only

k hat (MLE)	4.789	k star (bias corrected MLE)	4.584
Theta hat (MLE)	0.442	Theta star (bias corrected MLE)	0.461
nu hat (MLE)	641.7	nu star (bias corrected)	614.3
Mean (detects)	2.115		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.43	Mean	2.096
Maximum	4.8	Median	2.1
SD	0.917	CV	0.437
k hat (MLE)	4.656	k star (bias corrected MLE)	4.46
Theta hat (MLE)	0.45	Theta star (bias corrected MLE)	0.47
nu hat (MLE)	633.2	nu star (bias corrected)	606.6
Adjusted Level of Significance (β)	0.0465		
Approximate Chi Square Value (606.57, α)	550.4	Adjusted Chi Square Value (606.57, β)	549.3
95% Gamma Approximate UCL (use when n>=50)	2.31	95% Gamma Adjusted UCL (use when n<50)	2.315

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	2.093	SD (KM)	0.916
Variance (KM)	0.839	SE of Mean (KM)	0.112
k hat (KM)	5.222	k star (KM)	5.001
nu hat (KM)	710.2	nu star (KM)	680.2
theta hat (KM)	0.401	theta star (KM)	0.418
80% gamma percentile (KM)	2.813	90% gamma percentile (KM)	3.346
95% gamma percentile (KM)	3.831	99% gamma percentile (KM)	4.857

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (680.16, α)	620.6	Adjusted Chi Square Value (680.16, β)	619.4
95% Gamma Approximate KM-UCL (use when n>=50)	2.294	95% Gamma Adjusted KM-UCL (use when n<50)	2.298

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:55:00 PM

From File Former CLEAR Plant_Rad_All 0-2.xls

Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

Lognormal GOF Test on Detected Observations Only

5% Shapiro Wilk P Value 3.1283E-4 Detected Data Not Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.127 Lilliefors GOF Test

5% Lilliefors Critical Value 0.108 Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	2.096	Mean in Log Scale	0.629
SD in Original Scale	0.918	SD in Log Scale	0.512
95% t UCL (assumes normality of ROS data)	2.282	95% Percentile Bootstrap UCL	2.282
95% BCA Bootstrap UCL	2.277	95% Bootstrap t UCL	2.288
95% H-UCL (Log ROS)	2.404		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

1.866	KM Geo Mean	0.624	KM Mean (logged)
1.881	95% Critical H Value (KM-Log)	0.519	KM SD (logged)
2.405	95% H-UCL (KM -Log)	0.0635	KM Standard Error of Mean (logged)
1.881	95% Critical H Value (KM-Log)	0.519	KM SD (logged)
		0.000	IZM Other dead English (Manage (Incomed))

KM Standard Error of Mean (logged) 0.0635

DL/2 Normal

DL/2 Statistics

DL/2 NOTHIAI		DL/2 Log-Hallslottled	
Mean in Original Scale	2.09	Mean in Log Scale	0.619
SD in Original Scale	0.927	SD in Log Scale	0.534
95% t UCL (Assumes normality)	2.278	95% H-Stat UCL	2.423

DL/2 Log Transformed

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 2.28

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:55:00 PM

From File Former CLEAR Plant_Rad_All 0-2.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (radium-228)

Statistics

Total Number of Observations	68	Number of Distinct Observations	23
		Number of Missing Observations	0
Minimum	1.2	Mean	2.241
Maximum	7.6	Median	2.1
SD	0.897	Std. Error of Mean	0.109
Coefficient of Variation	0.4	Skewness	3.455

Normal GOF Test

Shapiro Wilk Test Statistic 0.742	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value 4.441E-16	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic 0.151	Lilliefors GOF Test
5% Lilliefors Critical Value 0.107	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	2.423	95% Adjusted-CLT UCL (Chen-1995)	2.469
		95% Modified-t UCL (Johnson-1978)	2.43

Gamma GOF Test

A-D Test Statistic	1.138	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.751	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.123	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.108	Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

8.959	k star (bias corrected MLE)	9.362	k hat (MLE)
0.25	Theta star (bias corrected MLE)	0.239	Theta hat (MLE)
1218	nu star (bias corrected)	1273	nu hat (MLE)
0.749	MLE Sd (bias corrected)	2.241	MLE Mean (bias corrected)
1138	Approximate Chi Square Value (0.05)		
1137	Adjusted Chi Square Value	0.0465	Adjusted Level of Significance

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:55:00 PM

From File Former CLEAR Plant_Rad_All 0-2.xls

Full Precision OFF
Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 2.399 95% Adjusted Gamma UCL (use when n<50) 2.402

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.948	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk P Value	0.0147	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.102	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.107	Data appear Lognormal at 5% Significance Level

Data appear Approximate Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.182	Mean of logged Data	0.753
Maximum of Logged Data	2.028	SD of logged Data	0.312

Assuming Lognormal Distribution

95% H-UCL	2.383	90% Chebyshev (MVUE) UCL	2.485
95% Chebyshev (MVUE) UCL	2.602	97.5% Chebyshev (MVUE) UCL	2.764
99% Chebyshev (MVUE) UCL	3.083		

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	2.42	95% Jackknife UCL	2.423
95% Standard Bootstrap UCL	2.418	95% Bootstrap-t UCL	2.493
95% Hall's Bootstrap UCL	2.64	95% Percentile Bootstrap UCL	2.437
95% BCA Bootstrap UCL	2.478		
90% Chebyshev(Mean, Sd) UCL	2.568	95% Chebyshev(Mean, Sd) UCL	2.715
97.5% Chebyshev(Mean, Sd) UCL	2.921	99% Chebyshev(Mean, Sd) UCL	3.324

Suggested UCL to Use

95% Student's-t UCL	2.423	or 95% Modified-t UCL	2.43
or 95% H-UCL	2.383		

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ProUCL computes and outputs H-statistic based UCLs for historical reasons only.

H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples in the Technical Guide.

It is therefore recommended to avoid the use of H-statistic based 95% UCLs.

Use of nonparametric methods are preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:55:00 PM

From File Former CLEAR Plant_Rad_All 0-2.xls

Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

Result (uranium-235)

General Statistics

Total Number of Observations	68	Number of Distinct Observations	38
Number of Detects	50	Number of Non-Detects	18
Number of Distinct Detects	29	Number of Distinct Non-Detects	14
Minimum Detect	0.02	Minimum Non-Detect	0.039
Maximum Detect	0.74	Maximum Non-Detect	0.23
Variance Detects	0.012	Percent Non-Detects	26.47%
Mean Detects	0.153	SD Detects	0.11
Median Detects	0.135	CV Detects	0.718
Skewness Detects	3.305	Kurtosis Detects	16.33
Mean of Logged Detects	-2.062	SD of Logged Detects	0.61

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.738	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.947	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.14	Lilliefors GOF Test
5% Lilliefors Critical Value	0.125	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.13	KM Standard Error of Mean	0.0128
KMSD	0.103	95% KM (BCA) UCL	0.153
95% KM (t) UCL	0.151	95% KM (Percentile Bootstrap) UCL	0.152
95% KM (z) UCL	0.151	95% KM Bootstrap t UCL	0.158
90% KM Chebyshev UCL	0.168	95% KM Chebyshev UCL	0.186
97.5% KM Chebyshev UCL	0.21	99% KM Chebyshey UCL	0.257

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	456	A-D Test Statistic	
Detected data appear Gamma Distributed at 5% Significance Leve	758 De	% A-D Critical Value	5
Kolmogorov-Smirnov GOF	882	K-S Test Statistic	
Detected data appear Gamma Distributed at 5% Significance Leve	126 De	5% K-S Critical Value	5

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

2.741	k star (bias corrected MLE)	2.902	k hat (MLE)
0.0557	Theta star (bias corrected MLE)	0.0526	Theta hat (MLE)
274.1	nu star (bias corrected)	290.2	nu hat (MLE)
		0.153	Mean (detects)

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:55:00 PM

From File Former CLEAR Plant_Rad_All 0-2.xls

Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.126	Mean	0.01	Minimum
0.098	Median	0.74	Maximum
0.836	CV	0.105	SD
1.745	k star (bias corrected MLE)	1.816	k hat (MLE)
0.0722	Theta star (bias corrected MLE)	0.0694	Theta hat (MLE)
237.4	nu star (bias corrected)	246.9	nu hat (MLE)
		0.0465	Adjusted Level of Significance (β)
202	Adjusted Chi Square Value (237.36, β)	202.7	Approximate Chi Square Value (237.36, α)
0.148	95% Gamma Adjusted UCL (use when n<50)	0.148	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.13	SD (KM)	0.103
Variance (KM)	0.0106	SE of Mean (KM)	0.0128
k hat (KM)	1.593	k star (KM)	1.532
nu hat (KM)	216.6	nu star (KM)	208.4
theta hat (KM)	0.0814	theta star (KM)	0.0846
80% gamma percentile (KM)	0.2	90% gamma percentile (KM)	0.269
95% gamma percentile (KM)	0.335	99% gamma percentile (KM)	0.486

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (208.41, α)	176	Adjusted Chi Square Value (208.41, β)	175.4
95% Gamma Approximate KM-UCL (use when n>=50)	0.154	95% Gamma Adjusted KM-UCL (use when n<50)	0.154

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk GOF Test	0.984	Shapiro Wilk Test Statistic
Detected Data appear Lognormal at 5% Significance Leve	0.947	5% Shapiro Wilk Critical Value
Lilliefors GOF Test	0.0657	Lilliefors Test Statistic
Detected Data appear Lognormal at 5% Significance Leve	0.125	5% Lilliefors Critical Value

Detected Data appear Lognormal at 5% Significance Level

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:55:00 PM

From File Former CLEAR Plant_Rad_All 0-2.xls

Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.13	Mean in Log Scale	-2.252
SD in Original Scale	0.102	SD in Log Scale	0.639
95% t UCL (assumes normality of ROS data)	0.15	95% Percentile Bootstrap UCL	0.152
95% BCA Bootstrap UCL	0.156	95% Bootstrap t UCL	0.158
95% H-UCL (Log ROS)	0.15		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.291	KM Geo Mean	0.101
KM SD (logged)	0.731	95% Critical H Value (KM-Log)	2.042
KM Standard Error of Mean (logged)	0.0992	95% H-UCL (KM -Log)	0.159
KM SD (logged)	0.731	95% Critical H Value (KM-Log)	2.042

KM Standard Error of Mean (logged) 0.0992

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.128	Mean in Log Scale	-2.289
SD in Original Scale	0.103	SD in Log Scale	0.699
95% t UCL (Assumes normality)	0.149	95% H-Stat UCL	0.154

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 0.154 95% GROS Approximate Gamma UCL 0.148

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:55:00 PM

From File Former CLEAR Plant_Rad_All 0-2.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (uranium-238)

Statistics

Total Number of Observations	68	Number of Distinct Observations	29
		Number of Missing Observations	0
Minimum	0.84	Mean	2.445
Maximum	12	Median	2.2
SD	1.472	Std. Error of Mean	0.179
Coefficient of Variation	0.602	Skewness	4.31

Normal GOF Test

Shapiro Wilk Test Statistic	0.663	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.21	Lilliefors GOF Test
5% Lilliefors Critical Value	0.107	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL	2.742	95% Adjusted-CLT UCL (Chen-1995)	2.838	
		95% Modified-t UCL (Johnson-1978)	2.758	

Gamma GOF Test

A-D Test Statistic	1.273	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.754	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.126	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.108	Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

4.659	k star (bias corrected MLE)	4.864	k hat (MLE)
0.525	Theta star (bias corrected MLE)	0.503	Theta hat (MLE)
633.6	nu star (bias corrected)	661.5	nu hat (MLE)
1.133	MLE Sd (bias corrected)	2.445	MLE Mean (bias corrected)
576.3	Approximate Chi Square Value (0.05)		
575.1	Adjusted Chi Square Value	0.0465	Adjusted Level of Significance

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:55:00 PM

From File Former CLEAR Plant_Rad_All 0-2.xls

Full Precision OFF
Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 2.688 95% Adjusted Gamma UCL (use when n<50) 2.694

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.964	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk P Value	0.129	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0969	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.107	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-0.174	Mean of logged Data	0.788
Maximum of Logged Data	2.485	SD of logged Data	0.435

Assuming Lognormal Distribution

95% H-UCL	2.662	90% Chebyshev (MVUE) UCL	2.809
95% Chebyshev (MVUE) UCL	2.989	97.5% Chebyshev (MVUE) UCL	3.239
99% Chebyshev (MVUE) UCL	3.729		

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	2.738	95% Jackknife UCL	2.742
95% Standard Bootstrap UCL	2.728	95% Bootstrap-t UCL	2.892
95% Hall's Bootstrap UCL	4.122	95% Percentile Bootstrap UCL	2.747
95% BCA Bootstrap UCL	2.812		
90% Chebyshev(Mean, Sd) UCL	2.98	95% Chebyshev(Mean, Sd) UCL	3.223
97.5% Chebyshev(Mean, Sd) UCL	3.56	99% Chebyshev(Mean, Sd) UCL	4.221

Suggested UCL to Use

95% Student's-t UCL	2.742	or 95% Modified-t UCL	2.758
or 95% H-UCL	2.662		

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ProUCL computes and outputs H-statistic based UCLs for historical reasons only.

H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples in the Technical Guide.

It is therefore recommended to avoid the use of H-statistic based 95% UCLs.

Use of nonparametric methods are preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution.

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:02:22 AM

From File Former CLEAR Plant_Rad_Exposed 0-0.5.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (radium-226)

General Statistics

Total Number of Observations	32	Number of Distinct Observations	22
Number of Detects	31	Number of Non-Detects	1
Number of Distinct Detects	21	Number of Distinct Non-Detects	1
Minimum Detect	0.43	Minimum Non-Detect	0.84
Maximum Detect	3.5	Maximum Non-Detect	0.84
Variance Detects	0.713	Percent Non-Detects	3.125%
Mean Detects	1.936	SD Detects	0.844
Median Detects	2	CV Detects	0.436
Skewness Detects	-0.208	Kurtosis Detects	-0.865
Mean of Logged Detects	0.532	SD of Logged Detects	0.572

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.958	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.929	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.107	Lilliefors GOF Test
5% Lilliefors Critical Value	0.156	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	1.894	KM Standard Error of Mean	0.153
KM SD	0.851	95% KM (BCA) UCL	2.133
95% KM (t) UCL	2.153	95% KM (Percentile Bootstrap) UCL	2.133
95% KM (z) UCL	2.146	95% KM Bootstrap t UCL	2.149
90% KM Chebyshev UCL	2.353	95% KM Chebyshev UCL	2.561
97.5% KM Chebyshev UCL	2.849	99% KM Chebyshev UCL	3.416

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.878	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Lev	0.75	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.132	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance L	0.158	5% K-S Critical Value

Detected data follow Appr. Gamma Distribution at 5% Significance Level

Gamma Statistics on Detected Data Only

3.668	k star (bias corrected MLE)	4.038	k hat (MLE)
0.528	Theta star (bias corrected MLE)	0.48	Theta hat (MLE)
227.4	nu star (bias corrected)	250.3	nu hat (MLE)
		1.936	Mean (detects)

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:02:22 AM

From File Former CLEAR Plant_Rad_Exposed 0-0.5.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

1.903	Mean	0.43	Minimum
1.95	Median	3.5	Maximum
0.447	CV	0.851	SD
3.594	k star (bias corrected MLE)	3.943	k hat (MLE)
0.53	Theta star (bias corrected MLE)	0.483	Theta hat (MLE)
230	nu star (bias corrected)	252.4	nu hat (MLE)
		0.0416	Adjusted Level of Significance (β)
194.3	Adjusted Chi Square Value (230.04, β)	195.9	Approximate Chi Square Value (230.04, α)
2.254	95% Gamma Adjusted UCL (use when n<50)	2.235	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

		<u> </u>	
Mean (KM)	1.894	SD (KM)	0.851
Variance (KM)	0.724	SE of Mean (KM)	0.153
k hat (KM)	4.951	k star (KM)	4.508
nu hat (KM)	316.9	nu star (KM)	288.5
theta hat (KM)	0.383	theta star (KM)	0.42
80% gamma percentile (KM)	2.576	90% gamma percentile (KM)	3.089
95% gamma percentile (KM)	3.559	99% gamma percentile (KM)	4.556

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (288.49, α)	250.2	Adjusted Chi Square Value (288.49, β)	248.2
95% Gamma Approximate KM-UCL (use when n>=50)	2.184	95% Gamma Adjusted KM-UCL (use when n<50)	2.201

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.874	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.929	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.157	Lilliefors GOF Test
5% Lilliefors Critical Value	0.156	Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:02:22 AM

From File Former CLEAR Plant_Rad_Exposed 0-0.5.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Lognormal ROS Statistics Using Imputed Non-Detects

0.507
0.58
2.137
2.149
0. 2.

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.498	KM Geo Mean	1.645
KM SD (logged)	0.587	95% Critical H Value (KM-Log)	2.003
KM Standard Error of Mean (logged)	0.106	95% H-UCL (KM -Log)	2.413
KM SD (logged)	0.587	95% Critical H Value (KM-Log)	2.003
KM Standard Error of Mean (logged)	0.106		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed		
Mean in Original Scale	1.889	Mean in Log Scale	0.488	
SD in Original Scale	0.873	SD in Log Scale	0.614	
95% t UCL (Assumes normality)	2.15	95% H-Stat UCL	2.461	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 2.153

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:02:22 AM

From File Former CLEAR Plant_Rad_Exposed 0-0.5.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (radium-228)

Gener	

Total Number of Observations	32	Number of Distinct Observations	19
		Number of Missing Observations	0
Minimum	1.2	Mean	2.328
Maximum	7.6	Median	2.05
SD	1.169	Std. Error of Mean	0.207
Coefficient of Variation	0.502	Skewness	3.162

Normal GOF Test

Shapiro Wilk Test Statistic	0.701	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.93	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.189	Lilliefors GOF Test
5% Lilliefors Critical Value	0.154	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	2.679	95% Adjusted-CLT UCL (Chen-1995)	2.792
		95% Modified-t UCL (Johnson-1978)	2.698

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.849	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Leve	0.747	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.119	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significanc	0.156	5% K-S Critical Value

Detected data follow Appr. Gamma Distribution at 5% Significance Level

Gamma Statistics

k hat (MLE)	6.368	k star (bias corrected MLE)	5.792
Theta hat (MLE)	0.366	Theta star (bias corrected MLE)	0.402
nu hat (MLE)	407.5	nu star (bias corrected)	370.7
MLE Mean (bias corrected)	2.328	MLE Sd (bias corrected)	0.967
		Approximate Chi Square Value (0.05)	327
Adjusted Level of Significance	0.0416	Adjusted Chi Square Value	324.9

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:02:22 AM

From File Former CLEAR Plant_Rad_Exposed 0-0.5.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n<=50) 2.639 95% Adjusted Gamma UCL (use when n<50) 2.656

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.929	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.93	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0953	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.154	Data appear Lognormal at 5% Significance Leve

Data appear Approximate Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.182	Mean of logged Data	0.764
Maximum of Logged Data	2.028	SD of logged Data	0.379

Assuming Lognormal Distribution

95% H-UCL	2.617	90% Chebyshev (MVUE) UCL	2.777
95% Chebyshev (MVUE) UCL	2.993	97.5% Chebyshev (MVUE) UCL	3.291
99% Chebyshev (MVUE) UCL	3.878		

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	2.668	95% Jackknife UCL	2.679
95% Standard Bootstrap UCL	2.663	95% Bootstrap-t UCL	2.923
95% Hall's Bootstrap UCL	4.356	95% Percentile Bootstrap UCL	2.684
95% BCA Bootstrap UCL	2.825		
90% Chebyshev(Mean, Sd) UCL	2.948	95% Chebyshev(Mean, Sd) UCL	3.229
97.5% Chebyshev(Mean, Sd) UCL	3.619	99% Chebyshev(Mean, Sd) UCL	4.385

Suggested UCL to Use

95% Adjusted Gamma UCL 2.656

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:02:22 AM

From File Former CLEAR Plant_Rad_Exposed 0-0.5.xls

Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

Result (uranium-234)

Canara	Statistics	

Total Number of Observations	32	Number of Distinct Observations	20
		Number of Missing Observations	0
Minimum	0.98	Mean	2.237
Maximum	3.9	Median	2.1
SD	0.74	Std. Error of Mean	0.131
Coefficient of Variation	0.331	Skewness	0.604

Normal GOF Test

Shapiro Wilk Test Statistic	0.952	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.93	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.114	Lilliefors GOF Test
5% Lilliefors Critical Value	0.154	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	2.459	95% Adjusted-CLT UCL (Chen-1995)	2.467
		95% Modified t LICL (Johnson-1978)	2 461

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.223	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.747	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.0857	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.155	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

8.646	k star (bias corrected MLE)	9.518	k hat (MLE)
0.259	Theta star (bias corrected MLE)	0.235	Theta hat (MLE)
553.4	nu star (bias corrected)	609.1	nu hat (MLE)
0.761	MLE Sd (bias corrected)	2.237	MLE Mean (bias corrected)
499.8	Approximate Chi Square Value (0.05)		
497.1	Adjusted Chi Square Value	0.0416	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50))	2.477	95% Adjusted Gamma UCL (use when n<50)	2.49
---	-------	--	------

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:02:22 AM

From File Former CLEAR Plant_Rad_Exposed 0-0.5.xls

Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.977	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.93	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0941	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.154	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-0.0202	Mean of logged Data	0.752
Maximum of Logged Data	1.361	SD of logged Data	0.336

Assuming Lognormal Distribution

95% H-UCL	2.504	90% Chebyshev (MVUE) UCL	2.647
95% Chebyshev (MVUE) UCL	2.832	97.5% Chebyshev (MVUE) UCL	3.088
99% Chebyshev (MVUE) UCL	3.592		

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	2.452	95% Jackknife UCL	2.459
95% Standard Bootstrap UCL	2.446	95% Bootstrap-t UCL	2.486
95% Hall's Bootstrap UCL	2.46	95% Percentile Bootstrap UCL	2.44
95% BCA Bootstrap UCL	2.466		
90% Chebyshev(Mean, Sd) UCL	2.629	95% Chebyshev(Mean, Sd) UCL	2.807
97.5% Chebyshev(Mean, Sd) UCL	3.054	99% Chebyshev(Mean, Sd) UCL	3.538

Suggested UCL to Use

95% Student's-t UCL 2.459

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:02:22 AM

From File Former CLEAR Plant_Rad_Exposed 0-0.5.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (uranium-235)

General Statistics

32	Number of Distinct Observations	23
23	Number of Non-Detects	9
17	Number of Distinct Non-Detects	7
0.063	Minimum Non-Detect	0.039
0.31	Maximum Non-Detect	0.19
0.00463	Percent Non-Detects	28.13%
0.144	SD Detects	0.0681
0.12	CV Detects	0.473
1.154	Kurtosis Detects	0.523
-2.034	SD of Logged Detects	0.436
	23 17 0.063 0.31 0.00463 0.144 0.12 1.154	Number of Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects Maximum Non-Detect Maximum Non-Detect Non-Detects Number of Non-Detects Maximum Non-Detect Countries Number of Non-Detects Maximum Non-Detect Countries Number of Non-Detects Maximum Non-Detects Countries Number of Non-Detects Number of Number of Number of Num

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.871	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.914	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.168	Lilliefors GOF Test
5% Lilliefors Critical Value	0.18	Detected Data appear Normal at 5% Significance Level

Detected Data appear Approximate Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.124	KM Standard Error of Mean	0.0126
KM SD	0.0676	95% KM (BCA) UCL	0.146
95% KM (t) UCL	0.146	95% KM (Percentile Bootstrap) UCL	0.146
95% KM (z) UCL	0.145	95% KM Bootstrap t UCL	0.148
90% KM Chebyshev UCL	0.162	95% KM Chebyshev UCL	0.179
97.5% KM Chebyshev UCL	0.203	99% KM Chebyshev UCL	0.249

Gamma GOF Tests on Detected Observations Only

0.613	Anderson-Darling GOF Test
0.746	Detected data appear Gamma Distributed at 5% Significance Level
0.152	Kolmogorov-Smirnov GOF
0.182	Detected data appear Gamma Distributed at 5% Significance Level
	0.746 0.152

Detected data appear Gamma Distributed at 5% Significance Level

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:02:22 AM

From File Former CLEAR Plant_Rad_Exposed 0-0.5.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Gamma Statistics on Detected Data Only

4.745	k star (bias corrected MLE)	5.423	k hat (MLE)
0.0303	Theta star (bias corrected MLE)	0.0265	Theta hat (MLE)
218.3	nu star (bias corrected)	249.5	nu hat (MLE)
		0 144	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0261	Mean	0.123
Maximum	0.31	Median	0.099
SD	0.0697	CV	0.569
k hat (MLE)	3.188	k star (bias corrected MLE)	2.91
Theta hat (MLE)	0.0385	Theta star (bias corrected MLE)	0.0421
nu hat (MLE)	204	nu star (bias corrected)	186.3
Adjusted Level of Significance (β)	0.0416		
Approximate Chi Square Value (186.25, α)	155.7	Adjusted Chi Square Value (186.25, β)	154.2
95% Gamma Approximate UCL (use when n>=50)	0.147	95% Gamma Adjusted UCL (use when n<50)	0.148

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.124	SD (KM)	0.0676
Variance (KM)	0.00458	SE of Mean (KM)	0.0126
k hat (KM)	3.372	k star (KM)	3.077
nu hat (KM)	215.8	nu star (KM)	196.9
theta hat (KM)	0.0368	theta star (KM)	0.0404
80% gamma percentile (KM)	0.177	90% gamma percentile (KM)	0.219
95% gamma percentile (KM)	0.259	99% gamma percentile (KM)	0.345

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (196.94, α)	165.5	Adjusted Chi Square Value (196.94, β)	163.9
95% Gamma Approximate KM-UCL (use when n>=50)	0.148	95% Gamma Adjusted KM-UCL (use when n<50)	0.149

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:02:22 AM

From File Former CLEAR Plant_Rad_Exposed 0-0.5.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.955	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.914	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.137	Lilliefors GOF Test
5% Lilliefors Critical Value	0.18	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.125	Mean in Log Scale	-2.194
SD in Original Scale	0.0662	SD in Log Scale	0.485
95% t UCL (assumes normality of ROS data)	0.145	95% Percentile Bootstrap UCL	0.146
95% BCA Bootstrap UCL	0.147	95% Bootstrap t UCL	0.149
95% H-UCL (Log ROS)	0.148		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.23	KM Geo Mean	0.108
KM SD (logged)	0.549	95% Critical H Value (KM-Log)	1.971
KM Standard Error of Mean (logged)	0.106	95% H-UCL (KM -Log)	0.152
KM SD (logged)	0.549	95% Critical H Value (KM-Log)	1.971
KM Standard Error of Mean (logged)	0.106		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.12	Mean in Log Scale	-2.293
SD in Original Scale	0.0706	SD in Log Scale	0.639
95% t UCL (Assumes normality)	0.142	95% H-Stat UCL	0.157

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Detected Data appear Approximate Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.146

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:02:22 AM

From File Former CLEAR Plant_Rad_Exposed 0-0.5.xls

Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

Result (uranium-238)

Statistics

21	Number of Distinct Observations	32	Total Number of Observations
0	Number of Missing Observations		
2.338	Mean	1.1	Minimum
2.25	Median	4	Maximum
0.134	Std. Error of Mean	0.761	SD
0.47	Skewness	0.325	Coefficient of Variation

Normal GOF Test

Shapiro Wilk Test Statistic	0.959	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.93	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.0913	Lilliefors GOF Test
5% Lilliefors Critical Value	0.154	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness)			
95% Student's-t UCL	2.565	95% Adjusted-CLT UCL (Chen-1995)	2.571
		95% Modified-t UCL (Johnson-1978)	2.567

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.186	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.747	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.0772	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.155	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

8.712	k star (bias corrected MLE)	9.59	k hat (MLE)
0.268	Theta star (bias corrected MLE)	0.244	Theta hat (MLE)
557.5	nu star (bias corrected)	613.8	nu hat (MLE)
0.792	MLE Sd (bias corrected)	2.338	MLE Mean (bias corrected)
503.8	Approximate Chi Square Value (0.05)		
501.1	Adjusted Chi Square Value	0.0416	Adjusted Level of Significance

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:02:22 AM

From File Former CLEAR Plant_Rad_Exposed 0-0.5.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 2.587 95% Adjusted Gamma UCL (use when n<50) 2.601

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.97	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.93	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0884	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.154	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.0953	Mean of logged Data	0.796
Maximum of Logged Data	1.386	SD of logged Data	0.337

Assuming Lognormal Distribution

95% H-UCL	2.619	90% Chebyshev (MVUE) UCL	2.769
95% Chebyshev (MVUE) UCL	2.962	97.5% Chebyshev (MVUE) UCL	3.23
99% Chebyshev (MVUE) UCL	3.758		

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	2.559	95% Jackknife UCL	2.565
95% Standard Bootstrap UCL	2.555	95% Bootstrap-t UCL	2.579
95% Hall's Bootstrap UCL	2.576	95% Percentile Bootstrap UCL	2.566
95% BCA Bootstrap UCL	2.588		
90% Chebyshev(Mean, Sd) UCL	2.741	95% Chebyshev(Mean, Sd) UCL	2.924
97.5% Chebyshev(Mean, Sd) UCL	3.177	99% Chebyshev(Mean, Sd) UCL	3.675

Suggested UCL to Use

95% Student's-t UCL 2.565

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:04:52 AM

From File Former CLEAR Plant_Rad_All 0-0.5.xls

Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

Result (radium-226)

General Statistics

Total Number of Observations	33	Number of Distinct Observations	22
Number of Detects	32	Number of Non-Detects	1
Number of Distinct Detects	21	Number of Distinct Non-Detects	1
Minimum Detect	0.43	Minimum Non-Detect	0.84
Maximum Detect	3.5	Maximum Non-Detect	0.84
Variance Detects	0.719	Percent Non-Detects	3.03%
Mean Detects	1.966	SD Detects	0.848
Median Detects	2.05	CV Detects	0.431
Skewness Detects	-0.262	Kurtosis Detects	-0.889
Mean of Logged Detects	0.548	SD of Logged Detects	0.57

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.953	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.93	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.116	Lilliefors GOF Test
5% Lilliefors Critical Value	0.154	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	1.924	KM Standard Error of Mean	0.151
KM SD	0.856	95% KM (BCA) UCL	2.173
95% KM (t) UCL	2.181	95% KM (Percentile Bootstrap) UCL	2.156
95% KM (z) UCL	2.173	95% KM Bootstrap t UCL	2.172
90% KM Chebyshev UCL	2.379	95% KM Chebyshev UCL	2.584
97.5% KM Chebyshev UCL	2.87	99% KM Chebyshev UCL	3.431

Gamma GOF Tests on Detected Observations Only

0.978	A-D Test Statistic
0.751	5% A-D Critical Value
0.133	K-S Test Statistic
0.156	5% K-S Critical Value
	0.751 0.133

Detected data follow Appr. Gamma Distribution at 5% Significance Level

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:04:52 AM

From File Former CLEAR Plant_Rad_All 0-0.5.xls

Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

Gamma Statistics on Detected Data Only

3.713	k star (bias corrected MLE)	4.075	k hat (MLE)
0.529	Theta star (bias corrected MLE)	0.483	Theta hat (MLE)
237.7	nu star (bias corrected)	260.8	nu hat (MLE)
		1.966	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.43	Mean	1.934
Maximum	3.5	Median	2
SD	0.854	CV	0.442
k hat (MLE)	3.986	k star (bias corrected MLE)	3.644
Theta hat (MLE)	0.485	Theta star (bias corrected MLE)	0.531
nu hat (MLE)	263.1	nu star (bias corrected)	240.5
Adjusted Level of Significance (β)	0.0419		
Approximate Chi Square Value (240.48, α)	205.6	Adjusted Chi Square Value (240.48, β)	203.9
95% Gamma Approximate UCL (use when n>=50)	2.263	95% Gamma Adjusted UCL (use when n<50)	2.281

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	1.924	SD (KM)	0.856
Variance (KM)	0.732	SE of Mean (KM)	0.151
k hat (KM)	5.057	k star (KM)	4.618
nu hat (KM)	333.8	nu star (KM)	304.8
theta hat (KM)	0.381	theta star (KM)	0.417
80% gamma percentile (KM)	2.61	90% gamma percentile (KM)	3.124
95% gamma percentile (KM)	3.594	99% gamma percentile (KM)	4.591

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (304.77, α)	265.3	Adjusted Chi Square Value (304.77, β)	263.4
95% Gamma Approximate KM-UCL (use when n>=50)	2.21	95% Gamma Adjusted KM-UCL (use when n<50)	2.226

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.867	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.93	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.159	Lilliefors GOF Test
5% Lilliefors Critical Value	0.154	Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:04:52 AM

From File Former CLEAR Plant_Rad_All 0-0.5.xls

Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

Lognormal ROS Statistics Using Imputed Non-Detects

	• ,		_
0.524	Mean in Log Scale	1.93	Mean in Original Scale
0.579	SD in Log Scale	0.86	SD in Original Scale
2.165	95% Percentile Bootstrap UCL	2.184	95% t UCL (assumes normality of ROS data)
2.182	95% Bootstrap t UCL	2.155	95% BCA Bootstrap UCL
		2.45	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.515	KM Geo Mean	1.673
KM SD (logged)	0.586	95% Critical H Value (KM-Log)	2.007
KM Standard Error of Mean (logged)	0.104	95% H-UCL (KM -Log)	2.446
KM SD (logged)	0.586	95% Critical H Value (KM-Log)	2.007

KM Standard Error of Mean (logged) 0.104

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed		
	Mean in Original Scale	1.919	Mean in Log Scale	0.506
	SD in Original Scale	0.877	SD in Log Scale	0.613
	95% t UCL (Assumes normality)	2.178	95% H-Stat UCL	2.493

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 2.181

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:04:52 AM

From File Former CLEAR Plant_Rad_All 0-0.5.xls

Full Precision OFF

Confidence Coefficient 95%
Number of Bootstrap Operations 2000

Result (radium-228)

Statistics

Total Number of Observations	33	Number of Distinct Observations	19
		Number of Missing Observations	0
Minimum	1.2	Mean	2.315
Maximum	7.6	Median	2
SD	1.153	Std. Error of Mean	0.201
Coefficient of Variation	0.498	Skewness	3.221

Normal GOF Test

Shapiro Wilk Test Statistic	0.697	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.931	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.187	Lilliefors GOF Test
5% Lilliefors Critical Value	0.152	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	2.655	95% Adjusted-CLT UCL (Chen-1995)	2.766
		95% Modified-t UCL (Johnson-1978)	2.674

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.891	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.748	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.121	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Lev	0.153	5% K-S Critical Value

Detected data follow Appr. Gamma Distribution at 5% Significance Level

Gamma Statistics

k hat (MLE)	6.515	k star (bias corrected MLE)	5.943
Theta hat (MLE)	0.355	Theta star (bias corrected MLE)	0.39
nu hat (MLE)	430	nu star (bias corrected)	392.3
MLE Mean (bias corrected)	2.315	MLE Sd (bias corrected)	0.95
		Approximate Chi Square Value (0.05)	347.3
Adjusted Level of Significance	0.0419	Adjusted Chi Square Value	345.2

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:04:52 AM

From File Former CLEAR Plant_Rad_All 0-0.5.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 2.614 95% Adjusted Gamma UCL (use when n<50) 2.631

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.927	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.931	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0959	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.152	Data appear Lognormal at 5% Significance Level

Data appear Approximate Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.182	Mean of logged Data	0.761
Maximum of Logged Data	2.028	SD of logged Data	0.374

Assuming Lognormal Distribution

95% H-UCL	2.592	90% Chebyshev (MVUE) UCL	2.748
95% Chebyshev (MVUE) UCL	2.956	97.5% Chebyshev (MVUE) UCL	3.244
99% Chehyshey (MVLIF) LICI	3.81		

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	2.645	95% Jackknife UCL	2.655
95% Standard Bootstrap UCL	2.637	95% Bootstrap-t UCL	2.906
95% Hall's Bootstrap UCL	4.253	95% Percentile Bootstrap UCL	2.658
95% BCA Bootstrap UCL	2.794		
90% Chebyshev(Mean, Sd) UCL	2.917	95% Chebyshev(Mean, Sd) UCL	3.19
97.5% Chebyshev(Mean, Sd) UCL	3.569	99% Chebyshev(Mean, Sd) UCL	4.313

Suggested UCL to Use

95% Adjusted Gamma UCL 2.631

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:04:52 AM

95% Normal LICI

From File Former CLEAR Plant_Rad_All 0-0.5.xls

Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

Result (uranium-234)

Statistics

Total Number of Observations	33	Number of Distinct Observations	21
		Number of Missing Observations	0
Minimum	0.98	Mean	2.533
Maximum	12	Median	2.1
SD	1.849	Std. Error of Mean	0.322
Coefficient of Variation	0.73	Skewness	4.42

Normal GOF Test

Shapiro Wilk Test Statistic	0.537	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.931	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.279	Lilliefors GOF Test
5% Lilliefors Critical Value	0.152	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

00 /0 1401111di OOL		CON COLO (Majacida foi Okomicoo)	
95% Student's-t UCL	3.078	95% Adjusted-CLT UCL (Chen-1995)	3.327

95% Modified-t UCL (Johnson-1978) 3.119

95% LICLs (Adjusted for Skewness)

Gamma GOF Test

.501 Anderson-Darling Gamma GOF Test	1.501	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Lev	0.751	5% A-D Critical Value
.181 Kolmogorov-Smirnov Gamma GOF Test	0.181	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance Lev	0.154	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	4.155	k star (bias corrected MLE)	3.797
Theta hat (MLE)	0.61	Theta star (bias corrected MLE)	0.667
nu hat (MLE)	274.2	nu star (bias corrected)	250.6
MLE Mean (bias corrected)	2.533	MLE Sd (bias corrected)	1.3
		Approximate Chi Square Value (0.05)	215
Adjusted Level of Significance	0.0419	Adjusted Chi Square Value	213.3

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 2.953 95% Adjusted Gamma UCL (use when n<50) 2.976

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.901	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.931	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.134	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.152	Data appear Lognormal at 5% Significance Level

Data appear Approximate Lognormal at 5% Significance Level

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:04:52 AM

From File Former CLEAR Plant_Rad_All 0-0.5.xls

Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

Lognormal Statistics

Minimum of Logged Data	-0.0202	Mean of logged Data	0.804
Maximum of Logged Data	2.485	SD of logged Data	0.448

Assuming Lognormal Distribution

95% H-UCL	2.871	90% Chebyshev (MVUE) UCL	3.059
95% Chebyshev (MVUE) UCL	3.33	97.5% Chebyshev (MVUE) UCL	3.705
99% Chebyshev (MVUE) UCL	4.443		

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	3.062	95% Jackknife UCL	3.078
95% Standard Bootstrap UCL	3.049	95% Bootstrap-t UCL	3.725
95% Hall's Bootstrap UCL	5.252	95% Percentile Bootstrap UCL	3.138
95% BCA Bootstrap UCL	3.469		
90% Chebyshev(Mean, Sd) UCL	3.498	95% Chebyshev(Mean, Sd) UCL	3.936
97.5% Chebyshev(Mean, Sd) UCL	4.543	99% Chebyshev(Mean, Sd) UCL	5.735

Suggested UCL to Use

95% Student's-t UCL	3.078	or 95% Modified-t UCL	3.119
or 95% H-UCL	2.871		

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ProUCL computes and outputs H-statistic based UCLs for historical reasons only.

H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples in the Technical Guide.

It is therefore recommended to avoid the use of H-statistic based 95% UCLs.

Use of nonparametric methods are preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution.

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:04:52 AM

From File Former CLEAR Plant_Rad_All 0-0.5.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (uranium-235)

General Statistics

Total Number of Observations	33	Number of Distinct Observations	24
Number of Detects	24	Number of Non-Detects	9
Number of Distinct Detects	18	Number of Distinct Non-Detects	7
Minimum Detect	0.063	Minimum Non-Detect	0.039
Maximum Detect	0.74	Maximum Non-Detect	0.19
Variance Detects	0.0192	Percent Non-Detects	27.27%
Mean Detects	0.169	SD Detects	0.139
Median Detects	0.13	CV Detects	0.823
Skewness Detects	3.303	Kurtosis Detects	12.99
Mean of Logged Detects	-1.962	SD of Logged Detects	0.554

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.624	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.916	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.246	Lilliefors GOF Test
5% Lilliefors Critical Value	0.177	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.143	KM Standard Error of Mean	0.0224
KM SD	0.125	95% KM (BCA) UCL	0.192
95% KM (t) UCL	0.181	95% KM (Percentile Bootstrap) UCL	0.183
95% KM (z) UCL	0.18	95% KM Bootstrap t UCL	0.211
90% KM Chebyshev UCL	0.21	95% KM Chebyshev UCL	0.24
97.5% KM Chebyshev UCL	0.283	99% KM Chebyshev UCL	0.366

Gamma GOF Tests on Detected Observations Only

5 Anderson-Darling GOF Test	Anderson-Darling GC	1.135	A-D Test Statistic
2 Detected Data Not Gamma Distributed at 5% Significance Le	Detected Data Not Gamma Distributed	0.752	5% A-D Critical Value
7 Kolmogorov-Smirnov GOF	Kolmogorov-Smirnov	0.167	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance	Detected data appear Gamma Distribute	0.179	5% K-S Critical Value

Detected data follow Appr. Gamma Distribution at 5% Significance Level

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:04:52 AM

From File Former CLEAR Plant_Rad_All 0-0.5.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Gamma Statistics on Detected Data Only

2.566	k star (bias corrected MLE)	2.901	k hat (MLE)
0.0657	Theta star (bias corrected MLE)	0.0581	Theta hat (MLE)
123.2	nu star (bias corrected)	139.2	nu hat (MLE)
		0.169	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20) For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	0.136
Maximum	0.74	Median	0.098
SD	0.131	CV	0.961
k hat (MLE)	1.517	k star (bias corrected MLE)	1.4
Theta hat (MLE)	0.0899	Theta star (bias corrected MLE)	0.0975
nu hat (MLE)	100.2	nu star (bias corrected)	92.38
Adjusted Level of Significance (β)	0.0419		
Approximate Chi Square Value (92.38, α)	71.21	Adjusted Chi Square Value (92.38, β)	70.26
95% Gamma Approximate UCL (use when n>=50)	0.177	95% Gamma Adjusted UCL (use when n<50)	0.179

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.143	SD (KM)	0.125
Variance (KM)	0.0156	SE of Mean (KM)	0.0224
k hat (KM)	1.311	k star (KM)	1.212
nu hat (KM)	86.5	nu star (KM)	79.97
theta hat (KM)	0.109	theta star (KM)	0.118
80% gamma percentile (KM)	0.226	90% gamma percentile (KM)	0.314
95% gamma percentile (KM)	0.4	99% gamma percentile (KM)	0.598

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:04:52 AM

From File Former CLEAR Plant_Rad_All 0-0.5.xls

Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (79.97, α)	60.36	Adjusted Chi Square Value (79.97, β)	59.49
95% Gamma Approximate KM-UCL (use when n>=50)	0.189	95% Gamma Adjusted KM-UCL (use when n<50)	0.192

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.914	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.916	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.129	Lilliefors GOF Test
5% Lilliefors Critical Value	0.177	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Approximate Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.143	Mean in Log Scale	-2.157
SD in Original Scale	0.126	SD in Log Scale	0.61
95% t UCL (assumes normality of ROS data)	0.18	95% Percentile Bootstrap UCL	0.186
95% BCA Bootstrap UCL	0.204	95% Bootstrap t UCL	0.215
95% H-UCL (Log ROS)	0.173		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.172	KM Geo Mean	0.114
KM SD (logged)	0.633	95% Critical H Value (KM-Log)	2.049
KM Standard Error of Mean (logged)	0.118	95% H-UCL (KM -Log)	0.175
KM SD (logged)	0.633	95% Critical H Value (KM-Log)	2.049
KM Standard Error of Mean (logged)	0.118		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.139	Mean in Log Scale	-2.232
SD in Original Scale	0.128	SD in Log Scale	0.718
95% t UCL (Assumes normality)	0.177	95% H-Stat UCL	0.182

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Detected Data appear Approximate Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Adjusted Gamma UCL 0.192 95% GROS Adjusted Gamma UCL 0.179

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:04:52 AM

From File Former CLEAR Plant_Rad_All 0-0.5.xls

Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

Result (uranium-238)

General	Statistics
General	Statistics

Total Number of Observations	33	Number of Distinct Observations	22
		Number of Missing Observations	0
Minimum	1.1	Mean	2.63
Maximum	12	Median	2.3
SD	1.841	Std. Error of Mean	0.32
Coefficient of Variation	0.7	Skewness	4.328

Normal GOF Test

Shapiro Wilk Test Statistic	0.553	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.931	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.278	Lilliefors GOF Test
5% Lilliefors Critical Value	0.152	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL	_	95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	3.173	95% Adjusted-CLT UCL (Chen-1995) 3.416	6
		95% Modified-t UCL (Johnson-1978) 3.213	3

Gamma GOF Test

A-D Test Statistic	1.319	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.75	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.184	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.154	Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

3.957	k star (bias corrected MLE)	4.33	k hat (MLE)
0.665	Theta star (bias corrected MLE)	0.607	Theta hat (MLE)
261.2	nu star (bias corrected)	285.8	nu hat (MLE)
1.322	MLE Sd (bias corrected)	2.63	MLE Mean (bias corrected)
224.7	Approximate Chi Square Value (0.05)		
223	Adjusted Chi Square Value	0.0419	Adjusted Level of Significance

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:04:52 AM

From File Former CLEAR Plant_Rad_All 0-0.5.xls

Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 3.057 95% Adjusted Gamma UCL (use when n<50) 3.08

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.906	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.931	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.139	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.152	Data appear Lognormal at 5% Significance Level

Data appear Approximate Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.0953	Mean of logged Data	0.847
Maximum of Logged Data	2.485	SD of logged Data	0.443

Assuming Lognormal Distribution

95% H-UCL	2.985	90% Chebyshev (MVUE) UCL	3.18
95% Chebyshev (MVUE) UCL	3.459	97.5% Chebyshev (MVUE) UCL	3.845
99% Chebyshev (MVUE) UCL	4.605		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	3.157	95% Jackknife UCL	3.173
95% Standard Bootstrap UCL	3.158	95% Bootstrap-t UCL	3.758
95% Hall's Bootstrap UCL	5.391	95% Percentile Bootstrap UCL	3.236
95% BCA Bootstrap UCL	3.542		
90% Chebyshev(Mean, Sd) UCL	3.592	95% Chebyshev(Mean, Sd) UCL	4.027
97.5% Chebyshev(Mean, Sd) UCL	4.632	99% Chebyshev(Mean, Sd) UCL	5.819

Suggested UCL to Use

95% Student's-t UCL	3.173	or 95% Modified-t UCL	3.213
or 95% H-UCL	2.985		

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ProUCL computes and outputs H-statistic based UCLs for historical reasons only.

H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples in the Technical Guide.

It is therefore recommended to avoid the use of H-statistic based 95% UCLs.

Use of nonparametric methods are preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution.

ProUCL 5.1 Esperanza Mill Metals

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:38:33 AM

From File Esperanza Mill_Metals_All (Soil and Sediment) 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (antimony)

General Statistics

Total Number of Observations	114	Number of Distinct Observations	30
Number of Detects	86	Number of Non-Detects	28
Number of Distinct Detects	30	Number of Distinct Non-Detects	2
Minimum Detect	0.2	Minimum Non-Detect	0.2
Maximum Detect	69	Maximum Non-Detect	1
Variance Detects	60.64	Percent Non-Detects	24.56%
Mean Detects	2.327	SD Detects	7.787
Median Detects	0.55	CV Detects	3.347
Skewness Detects	7.692	Kurtosis Detects	64.99
Mean of Logged Detects	-0.259	SD of Logged Detects	1.171

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.281	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.392	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0957	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	1.86	KM Standard Error of Mean	0.638
KM SD	6.774	95% KM (BCA) UCL	3.223
95% KM (t) UCL	2.918	95% KM (Percentile Bootstrap) UCL	3.065
95% KM (z) UCL	2.91	95% KM Bootstrap t UCL	5.141
90% KM Chebyshev UCL	3.775	95% KM Chebyshev UCL	4.642
97.5% KM Chebyshev UCL	5.846	99% KM Chebyshev UCL	8.211

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	8.997	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.812	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.245	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.102	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

ProUCL 5.1 Esperanza Mill Metals

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:38:33 AM

From File Esperanza Mill_Metals_All (Soil and Sediment) 0-15.xls

Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

Gamma Statistics on Detected Data Only

0.553	k star (bias corrected MLE)	0.565	k hat (MLE)
4.209	Theta star (bias corrected MLE)	4.119	Theta hat (MLE)
95.09	nu star (bias corrected)	97.15	nu hat (MLE)
		2.327	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	1.841
Maximum	69	Median	0.5
SD	6.817	CV	3.702
k hat (MLE)	0.403	k star (bias corrected MLE)	0.398
Theta hat (MLE)	4.574	Theta star (bias corrected MLE)	4.629
nu hat (MLE)	91.79	nu star (bias corrected)	90.71
Adjusted Level of Significance (β)	0.0479		
Approximate Chi Square Value (90.71, α)	69.75	Adjusted Chi Square Value (90.71, β)	69.51
95% Gamma Approximate UCL (use when n>=50)	2.395	95% Gamma Adjusted UCL (use when n<50)	2.403

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	1.86	SD (KM)	6.774
Variance (KM)	45.89	SE of Mean (KM)	0.638
k hat (KM)	0.0754	k star (KM)	0.0792
nu hat (KM)	17.18	nu star (KM)	18.06
theta hat (KM)	24.68	theta star (KM)	23.47
80% gamma percentile (KM)	0.869	90% gamma percentile (KM)	4.383
95% gamma percentile (KM)	10.81	99% gamma percentile (KM)	33.09

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (18.06, α)	9.437	Adjusted Chi Square Value (18.06, β)	9.357
95% Gamma Approximate KM-UCL (use when n>=50)	3.56	95% Gamma Adjusted KM-UCL (use when n<50)	3.59

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:38:33 AM

From File Esperanza Mill_Metals_All (Soil and Sediment) 0-15.xls

Full Precision OFF
Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.877	Shapiro Wilk GOF Test
---	-------	-----------------------

5% Shapiro Wilk P Value 1.2831E-9 Detected Data Not Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.166 Lilliefors GOF Test

5% Lilliefors Critical Value 0.0957 Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	1.881	Mean in Log Scale	-0.433
SD in Original Scale	6.802	SD in Log Scale	1.142
95% t UCL (assumes normality of ROS data)	2.937	95% Percentile Bootstrap UCL	2.989
95% BCA Bootstrap UCL	3.705	95% Bootstrap t UCL	4.971
95% H-UCL (Log ROS)	1.604		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-0.43	KM Geo Mean	0.65
KM SD (logged)	1.078	95% Critical H Value (KM-Log)	2.291
KM Standard Error of Mean (logged)	0.104	95% H-UCL (KM -Log)	1.467
KM SD (logged)	1.078	95% Critical H Value (KM-Log)	2.291
KM Standard Error of Mean (logged)	0.104		

DL/2 Statistics

DL/2 Normai	DL/2 Log-1 ransformed				
Mean in Original Scale	1.875	Mean in Log Scale	-0.38		
SD in Original Scale	6.801	SD in Log Scale	1.048		
95% t UCL (Assumes normality)	2.931	95% H-Stat UCL	1.48		

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 4.642

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:38:33 AM

From File Esperanza Mill_Metals_All (Soil and Sediment) 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (arsenic)

General Statistics

Total Number of Observations	119	Number of Distinct Observations	88
Number of Detects	112	Number of Non-Detects	7
Number of Distinct Detects	81	Number of Distinct Non-Detects	7
Minimum Detect	1	Minimum Non-Detect	10.1
Maximum Detect	101	Maximum Non-Detect	89.7
Variance Detects	150.7	Percent Non-Detects	5.882%
Mean Detects	7.913	SD Detects	12.27
Median Detects	4.3	CV Detects	1.551
Skewness Detects	5.204	Kurtosis Detects	33.51
Mean of Logged Detects	1.588	SD of Logged Detects	0.882

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.498	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.287	Lilliefors GOF Test
5% Lilliefors Critical Value	0.084	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	7.8	KM Standard Error of Mean	1.108
KM SD	11.95	95% KM (BCA) UCL	9.884
95% KM (t) UCL	9.637	95% KM (Percentile Bootstrap) UCL	9.853
95% KM (z) UCL	9.623	95% KM Bootstrap t UCL	10.7
90% KM Chebyshev UCL	11.12	95% KM Chebyshev UCL	12.63
97.5% KM Chebyshev UCL	14.72	99% KM Chebyshev UCL	18.83

Gamma GOF Tests on Detected Observations Only

stic 4.217 Anderson-Darling		4.217	A-D Test Statistic	,
ue 0.778 Detected Data Not Gamma Distribut	Detected I	0.778	5% A-D Critical Value	5% A
etic 0.178 Kolmogorov-Smir		0.178	K-S Test Statistic	
ue 0.0886 Detected Data Not Gamma Distribut	Detected I	0.0886	5% K-S Critical Value	5% I

Detected Data Not Gamma Distributed at 5% Significance Level

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:38:33 AM

From File Esperanza Mill_Metals_All (Soil and Sediment) 0-15.xls

Full Precision OFF
Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Gamma Statistics on Detected Data Only

1.154	k star (bias corrected MLE)	1.18	k hat (MLE)
6.854	Theta star (bias corrected MLE)	6.705	Theta hat (MLE)
258.6	nu star (bias corrected)	264.3	nu hat (MLE)
		7.913	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	1	Mean	7.698
Maximum	101	Median	4.426
SD	11.94	CV	1.551
k hat (MLE)	1.223	k star (bias corrected MLE)	1.197
Theta hat (MLE)	6.297	Theta star (bias corrected MLE)	6.429
nu hat (MLE)	291	nu star (bias corrected)	285
Adjusted Level of Significance (β)	0.048		
Approximate Chi Square Value (284.98, α)	246.9	Adjusted Chi Square Value (284.98, β)	246.4
95% Gamma Approximate UCL (use when n>=50)	8.886	95% Gamma Adjusted UCL (use when n<50)	8.902

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	7.8	SD (KM)	11.95
Variance (KM)	142.8	SE of Mean (KM)	1.108
k hat (KM)	0.426	k star (KM)	0.421
nu hat (KM)	101.4	nu star (KM)	100.2
theta hat (KM)	18.3	theta star (KM)	18.52
80% gamma percentile (KM)	12.66	90% gamma percentile (KM)	21.83
95% gamma percentile (KM)	31.84	99% gamma percentile (KM)	56.87

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (100.21, α)	78.12	Adjusted Chi Square Value (100.21, β)	77.88
95% Gamma Approximate KM-UCL (use when n>=50)	10.01	95% Gamma Adjusted KM-UCL (use when n<50)	10.04

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:38:33 AM

From File Esperanza Mill_Metals_All (Soil and Sediment) 0-15.xls

Full Precision OFF
Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk GOF Test	0.959	Shapiro Wilk Approximate Test Statistic
Detected Data Not Lognormal at 5% Significance Level	0.0108	5% Shapiro Wilk P Value
Lilliefors GOF Test	0.107	Lilliefors Test Statistic

5% Lilliefors Critical Value 0.084 Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	7.718	Mean in Log Scale	1.584
SD in Original Scale	11.93	SD in Log Scale	0.856
95% t UCL (assumes normality of ROS data)	9.531	95% Percentile Bootstrap UCL	9.659
95% BCA Bootstrap UCL	10.3	95% Bootstrap t UCL	10.8
95% H-UCL (Log ROS)	8.293		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	1.582	KM Geo Mean	4.864
KM SD (logged)	0.872	95% Critical H Value (KM-Log)	2.108
KM Standard Error of Mean (logged)	0.0821	95% H-UCL (KM -Log)	8.424
KM SD (logged)	0.872	95% Critical H Value (KM-Log)	2.108
KM Standard Error of Mean (logged)	0.0821		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	8.672	Mean in Log Scale	1.663
SD in Original Scale	12.63	SD in Log Scale	0.919
95% t UCL (Assumes normality)	10.59	95% H-Stat UCL	9.651

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 12.63

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:38:33 AM

From File Esperanza Mill_Metals_All (Soil and Sediment) 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (copper)

General Statistics

Total Number of Observations	119	Number of Distinct Observations	117
		Number of Missing Observations	0
Minimum	62	Mean	2662
Maximum	30200	Median	763
SD	4996	Std. Error of Mean	458
Coefficient of Variation	1.877	Skewness	3.944

Normal GOF Test

Shapiro Wilk Test Statistic	0.506	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.301	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0816	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal OCL		95% OCLS (Adjusted for Skewness)	
95% Student's-t UCL	3421	95% Adjusted-CLT UCL (Chen-1995)	3592

95% Modified-t UCL (Johnson-1978) 3448

Gamma GOF Test

A-D Test Statistic	5.502	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.802	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.196	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.0883	Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	0.674	k star (bias corrected MLE)	0.662
Theta hat (MLE)	3951	Theta star (bias corrected MLE)	4019
nu hat (MLE)	160.3	nu star (bias corrected)	157.6
MLE Mean (bias corrected)	2662	MLE Sd (bias corrected)	3271
		Approximate Chi Square Value (0.05)	129.6
Adjusted Level of Significance	0.048	Adjusted Chi Square Value	129.3

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:38:33 AM

From File Esperanza Mill_Metals_All (Soil and Sediment) 0-15.xls

Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 3237 95% Adjusted Gamma UCL (use when n<50) 3245

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.957	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk P Value	0.00477	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.134	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.0816	Data Not Lognormal at 5% Significance Level

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	4.127	Mean of logged Data	6.985
Maximum of Logged Data	10.32	SD of logged Data	1.277

Assuming Lognormal Distribution

95% H-UCL	3273	90% Chebyshev (MVUE) UCL	3517
95% Chebyshev (MVUE) UCL	4018	97.5% Chebyshev (MVUE) UCL	4714
99% Chebyshev (MVUE) UCL	6080		

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

95% CLT UCL	3415	95% Jackknife UCL	3421
95% Standard Bootstrap UCL	3427	95% Bootstrap-t UCL	3716
95% Hall's Bootstrap UCL	3631	95% Percentile Bootstrap UCL	3471
95% BCA Bootstrap UCL	3528		
90% Chebyshev(Mean, Sd) UCL	4036	95% Chebyshev(Mean, Sd) UCL	4658
97.5% Chebyshev(Mean, Sd) UCL	5522	99% Chebyshev(Mean, Sd) UCL	7219

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 4658

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:38:33 AM

From File Esperanza Mill_Metals_All (Soil and Sediment) 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (lead)

General Statistics

111	Number of Distinct Observations	119	Total Number of Observations
0	Number of Missing Observations		
116.4	Mean	2.81	Minimum
47.9	Median	3740	Maximum
32.93	Std. Error of Mean	359.2	SD
9.005	Skewness	3.086	Coefficient of Variation

Normal GOF Test

Shapiro Wilk Test Statistic	0.28	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.376	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0816	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normai UCL		95% UCLS (Adjusted for Skewness)	
95% Student's-t UCL	171	95% Adjusted-CLT UCL (Chen-1995)	199.6
		95% Modified-t UCL (Johnson-1978)	175.5

Gamma GOF Test

Anderson-Darling Gamma GOF Test	4.764	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.806	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.155	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.0886	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

0.626	k star (bias corrected MLE)	0.6	k hat (MLE)
186	Theta star (bias corrected MLE)	182.	Theta hat (MLE)
149	nu star (bias corrected)	151.	nu hat (MLE)
147.2	MLE Sd (bias corrected)	116.	MLE Mean (bias corrected)
121.8	Approximate Chi Square Value (0.05)		
121.5	Adjusted Chi Square Value	0.0	Adjusted Level of Significance

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:38:33 AM

From File Esperanza Mill_Metals_All (Soil and Sediment) 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 142.4 95% Adjusted Gamma UCL (use when n<50) 142.8

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.982	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk P Value	0.58	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0588	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.0816	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	1.033	Mean of logged Data	3.795
Maximum of Logged Data	8.227	SD of logged Data	1.267

Assuming Lognormal Distribution

95% H-UCL	132.6	90% Chebyshev (MVUE) UCL	142.5
95% Chebyshev (MVUE) UCL	162.7	97.5% Chebyshev (MVUE) UCL	190.7
99% Chebyshev (MVUE) UCL	245.6		

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	170.6	95% Jackknife UCL	1/1
95% Standard Bootstrap UCL	169.4	95% Bootstrap-t UCL	275.1
95% Hall's Bootstrap UCL	377.1	95% Percentile Bootstrap UCL	178.2
95% BCA Bootstrap UCL	222		
90% Chebyshev(Mean, Sd) UCL	215.2	95% Chebyshev(Mean, Sd) UCL	260
97.5% Chebyshev(Mean, Sd) UCL	322.1	99% Chebyshev(Mean, Sd) UCL	444.1

Suggested UCL to Use

95% H-UCL 132.6

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ProUCL computes and outputs H-statistic based UCLs for historical reasons only.

H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples in the Technical Guide.

It is therefore recommended to avoid the use of H-statistic based 95% UCLs.

Use of nonparametric methods are preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:38:33 AM

From File Esperanza Mill_Metals_All (Soil and Sediment) 0-15.xls

Full Precision OFF
Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (molybdenum)

General Statistics

Total Number of Observations	119	Number of Distinct Observations	99
Number of Detects	118	Number of Non-Detects	1
Number of Distinct Detects	99	Number of Distinct Non-Detects	1
Minimum Detect	3	Minimum Non-Detect	5
Maximum Detect	6830	Maximum Non-Detect	5
Variance Detects	1669550	Percent Non-Detects	0.84%
Mean Detects	616.9	SD Detects	1292
Median Detects	134.5	CV Detects	2.095
Skewness Detects	3.51	Kurtosis Detects	12.71
Mean of Logged Detects	4.88	SD of Logged Detects	1.909

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.503	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.317	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0819	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	611.7	KM Standard Error of Mean	118.1
KM SD	1282	95% KM (BCA) UCL	819.6
95% KM (t) UCL	807.5	95% KM (Percentile Bootstrap) UCL	803.4
95% KM (z) UCL	805.9	95% KM Bootstrap t UCL	867.9
90% KM Chebyshev UCL	965.9	95% KM Chebyshev UCL	1126
97.5% KM Chebyshev UCL	1349	99% KM Chebyshev UCL	1786

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	3.09	Anderson-Darling GOF Test
5% A-D Critical Value	0.838	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.125	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.0906	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:38:33 AM

From File Esperanza Mill_Metals_All (Soil and Sediment) 0-15.xls

Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

80% 95%

Gamma Statistics on Detected Data Only

0.417	k star (bias corrected MLE)	0.422	k hat (MLE)
1479	Theta star (bias corrected MLE)	1461	Theta hat (MLE)
98.45	nu star (bias corrected)	99.65	nu hat (MLE)
		616.9	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	611.7
Maximum	6830	Median	134
SD	1288	CV	2.105
k hat (MLE)	0.406	k star (bias corrected MLE)	0.402
Theta hat (MLE)	1506	Theta star (bias corrected MLE)	1523
nu hat (MLE)	96.67	nu star (bias corrected)	95.56
Adjusted Level of Significance (β)	0.048		
Approximate Chi Square Value (95.56, α)	74.02	Adjusted Chi Square Value (95.56, β)	73.78
95% Gamma Approximate UCL (use when n>=50)	789.8	95% Gamma Adjusted UCL (use when n<50)	792.3

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	611.7	SD (KM)	1282
Variance (KM)	1644631	SE of Mean (KM)	118.1
k hat (KM)	0.228	k star (KM)	0.227
nu hat (KM)	54.16	nu star (KM)	54.12
theta hat (KM)	2688	theta star (KM)	2690
gamma percentile (KM)	856.4	90% gamma percentile (KM)	1846
gamma percentile (KM)	3044	99% gamma percentile (KM)	6276

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (54.12, α)	38.22	Adjusted Chi Square Value (54.12, β)	38.06
95% Gamma Approximate KM-UCL (use when n>=50)	866.3	95% Gamma Adjusted KM-UCL (use when n<50)	870

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.964	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0.0294	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.065	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0819	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Approximate Lognormal at 5% Significance Level

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:38:33 AM

From File Esperanza Mill_Metals_All (Soil and Sediment) 0-15.xls

Full Precision OFF
Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	611.7	Mean in Log Scale	4.844
SD in Original Scale	1288	SD in Log Scale	1.94
95% t UCL (assumes normality of ROS data)	807.5	95% Percentile Bootstrap UCL	822.4
95% BCA Bootstrap UCL	867.2	95% Bootstrap t UCL	875.2
95% H-UCL (Log ROS)	1493		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	4.848	KM Geo Mean	127.5
KM SD (logged)	1.924	95% Critical H Value (KM-Log)	3.242
KM Standard Error of Mean (logged)	0.177	95% H-UCL (KM -Log)	1440
KM SD (logged)	1.924	95% Critical H Value (KM-Log)	3.242
KM Standard Error of Mean (logged)	0 177		

KM Standard Error of Mean (logged) 0.177

DL/2 Statistics

DL/2 Normal			DL/2 Log-Transformed			
	Mean in Original Scale	611.7	Mean in Log Scale	4.847		
	SD in Original Scale	1288	SD in Log Scale	1.935		
	95% t UCL (Assumes normality)	807.5	95% H-Stat UCL	1478		

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Detected Data appear Approximate Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 1440

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:38:33 AM

From File Esperanza Mill_Metals_All (Soil and Sediment) 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (uranium)

Canara	I Statistics
venera	COMMENCS

Total Number of Observations	95	Number of Distinct Observations	89
Total Number of Observations			0
		Number of Missing Observations	U
Minimum	1.17	Mean	5.424
Maximum	29.9	Median	4.07
SD	3.872	Std. Error of Mean	0.397
Coefficient of Variation	0.714	Skewness	3.438

Normal GOF Test

Shapiro Wilk Test Statistic	0.707	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.178	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0911	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL	JCL 95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL	6.083	95% Adjusted-CLT UCL (Chen-1995)	6.227
		95% Modified-t UCL (Johnson-1978)	6.107

Gamma GOF Test

Anderson-Darling Gamma GOF Test	2.629	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.758	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.142	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.0924	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

3.257	k star (bias corrected MLE)	3.356	k hat (MLE)
1.665	Theta star (bias corrected MLE)	1.616	Theta hat (MLE)
618.8	nu star (bias corrected)	637.6	nu hat (MLE)
3.005	MLE Sd (bias corrected)	5.424	MLE Mean (bias corrected)
562.1	Approximate Chi Square Value (0.05)		
561.2	Adjusted Chi Square Value	0.0475	Adjusted Level of Significance

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:38:33 AM

From File Esperanza Mill_Metals_All (Soil and Sediment) 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 5.971 95% Adjusted Gamma UCL (use when n<50) 5.98

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.964	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk P Value	0.0575	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.114	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.0911	Data Not Lognormal at 5% Significance Level

Data appear Approximate Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.157	Mean of logged Data	1.534
Maximum of Logged Data	3.398	SD of logged Data	0.524

Assuming Lognormal Distribution

95% H-UCL	5.886	90% Chebyshev (MVUE) UCL	6.221
95% Chebyshev (MVUE) UCL	6.632	97.5% Chebyshev (MVUE) UCL	7.204
99% Chebyshev (MVUE) UCL	8.326		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

CL 6.083	95% Jackknife UCL	6.077	95% CLT UCL
CL 6.265	95% Bootstrap-t UCL	6.069	95% Standard Bootstrap UCL
CL 6.073	95% Percentile Bootstrap UCL	6.519	95% Hall's Bootstrap UCL
		6.22	95% BCA Bootstrap UCL
CL 7.155	95% Chebyshev(Mean, Sd) UCL	6.615	90% Chebyshev(Mean, Sd) UCL
CL 9.376	99% Chebyshev(Mean, Sd) UCL	7.904	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% H-UCL 5.886

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ProUCL computes and outputs H-statistic based UCLs for historical reasons only.

H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples in the Technical Guide.

It is therefore recommended to avoid the use of H-statistic based 95% UCLs.

Use of nonparametric methods are preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:48:51 AM

From File Esperanza Mill_Metals_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (antimony)

General Statistics

Total Number of Observations	110	Number of Distinct Observations	26
Number of Detects	82	Number of Non-Detects	28
Number of Distinct Detects	26	Number of Distinct Non-Detects	2
Minimum Detect	0.2	Minimum Non-Detect	0.2
Maximum Detect	69	Maximum Non-Detect	1
Variance Detects	63.11	Percent Non-Detects	25.45%
Mean Detects	2.215	SD Detects	7.944
Median Detects	0.5	CV Detects	3.587
Skewness Detects	7.651	Kurtosis Detects	63.55
Mean of Logged Detects	-0.338	SD of Logged Detects	1.132

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.261	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.4	Lilliefors GOF Test
5% Lilliefors Critical Value	0.098	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	1.759	KM Standard Error of Mean	0.658
KM SD	6.862	95% KM (BCA) UCL	3.042
95% KM (t) UCL	2.851	95% KM (Percentile Bootstrap) UCL	2.91
95% KM (z) UCL	2.842	95% KM Bootstrap t UCL	5.371
90% KM Chebyshev UCL	3.734	95% KM Chebyshev UCL	4.629
97.5% KM Chebyshev UCL	5.871	99% KM Chebyshev UCL	8.31

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	9.976	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.813	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.265	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.104	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:48:51 AM

From File Esperanza Mill_Metals_Soil Only 0-15.xls

Full Precision OFF
Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Gamma Statistics on Detected Data Only

0.54	k star (bias corrected MLE)	0.552	k hat (MLE)
4.101	Theta star (bias corrected MLE)	4.011	Theta hat (MLE)
88.57	nu star (bias corrected)	90.55	nu hat (MLE)
		2.215	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

1.756	Mean	0.01	iviinimum
0.424	Median	69	Maximum
3.932	CV	6.906	SD
0.394	k star (bias corrected MLE)	0.399	k hat (MLE)
4.456	Theta star (bias corrected MLE)	4.402	Theta hat (MLE)
86.71	nu star (bias corrected)	87.77	nu hat (MLE)
		0.0478	Adjusted Level of Significance (β)
66.01	Adjusted Chi Square Value (86.71, β)	66.25	Approximate Chi Square Value (86.71, α)
2.307	95% Gamma Adjusted UCL (use when n<50)	2.299	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	1.759	SD (KM)	6.862
Variance (KM)	47.09	SE of Mean (KM)	0.658
k hat (KM)	0.0657	k star (KM)	0.07
nu hat (KM)	14.46	nu star (KM)	15.4
theta hat (KM)	26.77	theta star (KM)	25.13
80% gamma percentile (KM)	0.63	90% gamma percentile (KM)	3.796
95% gamma percentile (KM)	10.12	99% gamma percentile (KM)	33.15

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (15.40, α)	7.54	Adjusted Chi Square Value (15.40, β)	7.467
95% Gamma Approximate KM-UCL (use when n>=50)	3.593	95% Gamma Adjusted KM-UCL (use when n<50)	3.628

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:48:51 AM

From File Esperanza Mill_Metals_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic 0.859	Shapiro Wilk GOF Test
---	-----------------------

5% Shapiro Wilk P Value 1.100E-10 Detected Data Not Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.17 Lilliefors GOF Test

5% Lilliefors Critical Value 0.098 Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	1.78	Mean in Log Scale	-0.497
SD in Original Scale	6.891	SD in Log Scale	1.098
95% t UCL (assumes normality of ROS data)	2.87	95% Percentile Bootstrap UCL	3.032
95% BCA Bootstrap UCL	3.978	95% Bootstrap t UCL	5.778
95% H-UCL (Log ROS)	1.416		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-0.495	KM Geo Mean	0.61
KM SD (logged)	1.034	95% Critical H Value (KM-Log)	2.245
KM Standard Error of Mean (logged)	0.102	95% H-UCL (KM -Log)	1.299
KM SD (logged)	1.034	95% Critical H Value (KM-Log)	2.245
KM Standard Error of Mean (logged)	0.102		

DL/2 Statistics

DL/2 Normai		DL/2 Log-Transformed	
Mean in Original Scale	1.775	Mean in Log Scale	-0.443
SD in Original Scale	6.89	SD in Log Scale	1.004
95% t UCL (Assumes normality)	2.864	95% H-Stat UCL	1.316

DI /O I am Transformed

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 4.629

DI /O Nama

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:48:51 AM

From File Esperanza Mill_Metals_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (arsenic)

General Statistics

Total Number of Observations	115	Number of Distinct Observations	84
Number of Detects	112	Number of Non-Detects	3
Number of Distinct Detects	81	Number of Distinct Non-Detects	3
Minimum Detect	1	Minimum Non-Detect	35.4
Maximum Detect	101	Maximum Non-Detect	89.7
Variance Detects	150.7	Percent Non-Detects	2.609%
Mean Detects	7.913	SD Detects	12.27
Median Detects	4.3	CV Detects	1.551
Skewness Detects	5.204	Kurtosis Detects	33.51
Mean of Logged Detects	1.588	SD of Logged Detects	0.882

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.498	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.287	Lilliefors GOF Test
5% Lilliefors Critical Value	0.084	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

f Mean 1.14	KM Standard Error of Mean	7.879	KM Mean
A) UCL 9.908	95% KM (BCA) UCL	12.11	KM SD
p) UCL 9.88	95% KM (Percentile Bootstrap) UCL	9.769	95% KM (t) UCL
t UCL 11.2	95% KM Bootstrap t UCL	9.754	95% KM (z) UCL
ev UCL 12.85	95% KM Chebyshev UCL	11.3	90% KM Chebyshev UCL
ev UCL 19.22	99% KM Chebyshev UCL	15	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	4.217	Anderson-Darling GOF Test
5% A-D Critical Value	0.778	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.178	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.0886	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:48:51 AM

From File Esperanza Mill_Metals_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Gamma Statistics on Detected Data Only

1.154	k star (bias corrected MLE)	1.18	k hat (MLE)
6.854	Theta star (bias corrected MLE)	6.705	Theta hat (MLE)
258.6	nu star (bias corrected)	264.3	nu hat (MLE)
		7.913	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

7.828	Mean	1	Minimum
4.5	Median	101	Maximum
1.549	CV	12.12	SD
1.176	k star (bias corrected MLE)	1.202	k hat (MLE)
6.656	Theta star (bias corrected MLE)	6.515	Theta hat (MLE)
270.5	nu star (bias corrected)	276.4	nu hat (MLE)
		0.0479	Adjusted Level of Significance (β)
233	Adjusted Chi Square Value (270.49, β)	233.4	Approximate Chi Square Value (270.49, α)
9.089	95% Gamma Adjusted UCL (use when n<50)	9.072	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	7.879	SD (KM)	12.11
Variance (KM)	146.7	SE of Mean (KM)	1.14
k hat (KM)	0.423	k star (KM)	0.418
nu hat (KM)	97.31	nu star (KM)	96.11
theta hat (KM)	18.62	theta star (KM)	18.86
80% gamma percentile (KM)	12.78	90% gamma percentile (KM)	22.08
95% gamma percentile (KM)	32.24	99% gamma percentile (KM)	57.69

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (96.11, α)	74.5	Adjusted Chi Square Value (96.11, β)	74.26
95% Gamma Approximate KM-UCL (use when n>=50)	10.17	95% Gamma Adjusted KM-UCL (use when n<50)	10.2

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:48:51 AM

From File Esperanza Mill_Metals_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Lognormal GOF Test on Detected Observations Only

5% Shapiro Wilk P Value 0.0108 Detected Data Not Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.107 Lilliefors GOF Test

5% Lilliefors Critical Value 0.084 Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	7.831	Mean in Log Scale	1.588
SD in Original Scale	12.12	SD in Log Scale	0.87
95% t UCL (assumes normality of ROS data)	9.706	95% Percentile Bootstrap UCL	9.834
95% BCA Bootstrap UCL	10.62	95% Bootstrap t UCL	11.13
95% H-UCL (Log ROS)	8.48		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	1.587	KM Geo Mean	4.889
KM SD (logged)	0.876	95% Critical H Value (KM-Log)	2.108
KM Standard Error of Mean (logged)	0.083	95% H-UCL (KM -Log)	8.531
KM SD (logged)	0.876	95% Critical H Value (KM-Log)	2.108
KM Standard Error of Mean (logged)	0.083		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	8.511	Mean in Log Scale	1.635
SD in Original Scale	12.78	SD in Log Scale	0.917
95% t UCL (Assumes normality)	10.49	95% H-Stat UCL	9.387

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 12.85

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:48:51 AM

From File Esperanza Mill_Metals_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (copper)

General Statistics

Total Number of Observations	115	Number of Distinct Observations	113
		Number of Missing Observations	0
Minimum	62	Mean	2554
Maximum	30200	Median	733
SD	5041	Std. Error of Mean	470
Coefficient of Variation	1.973	Skewness	4.029

Normal GOF Test

Shapiro Wilk Test Statistic	0.482	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.31	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0829	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)

95% Student's-t UCL	3334	95% Adjusted-CLT UCL (Chen-1995)	3516
		95% Modified-t UCL (Johnson-1978)	3363

Gamma GOF Test

Anderson-Darling Gamma GOF Test	6.117	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Le	0.803	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.203	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance Le	0.0895	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	0.664	k star (bias corrected MLE)	0.652
Theta hat (MLE)	3849	Theta star (bias corrected MLE)	3917
nu hat (MLE)	152.6	nu star (bias corrected)	150
MLE Mean (bias corrected)	2554	MLE Sd (bias corrected)	3163
		Approximate Chi Square Value (0.05)	122.7
Adjusted Level of Significance	0.0479	Adjusted Chi Square Value	122.4

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:48:51 AM

> From File Esperanza Mill_Metals_Soil Only 0-15.xls

OFF Full Precision

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 3123

95% Adjusted Gamma UCL (use when n<50) 3131

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.954	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk P Value	0.00276	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.136	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.0829	Data Not Lognormal at 5% Significance Level

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	4.127	Mean of logged Data	6.928
Maximum of Logged Data	10.32	SD of logged Data	1.26

Assuming Lognormal Distribution

95% H-UCL	3023	90% Chebyshev (MVUE) UCL	3251
95% Chebyshev (MVUE) UCL	3714	97.5% Chebyshev (MVUE) UCL	4356
99% Chebyshev (MVUE) UCL	5617		

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

95% CLT UCL	3327	95% Jackknife UCL	3334
95% Standard Bootstrap UCL	3333	95% Bootstrap-t UCL	3694
95% Hall's Bootstrap UCL	3536	95% Percentile Bootstrap UCL	3352
95% BCA Bootstrap UCL	3553		
90% Chebyshev(Mean, Sd) UCL	3964	95% Chebyshev(Mean, Sd) UCL	4603
97.5% Chebyshev(Mean, Sd) UCL	5490	99% Chebyshev(Mean, Sd) UCL	7231

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 4603

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:48:51 AM

From File Esperanza Mill_Metals_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (lead)

General Statistics

Total Number of Observations	115	Number of Distinct Observations	108
		Number of Missing Observations	0
Minimum	2.81	Mean	117
Maximum	3740	Median	46.3
SD	365.5	Std. Error of Mean	34.08
Coefficient of Variation	3.124	Skewness	8.853

Normal GOF Test

Shapiro Wilk Test Statistic	0.281	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.377	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0829	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	173.5	95% Adjusted-CLT UCL (Chen-1995)	203.1
		95% Modified-t UCL (Johnson-1978)	178 2

Gamma GOF Test

Anderson-Darling Gamma GOF Test	4.924	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.808	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.162	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.0898	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

0.608	k star (bias corrected MLE)	0.618	k hat (MLE)
192.6	Theta star (bias corrected MLE)	189.3	Theta hat (MLE)
139.8	nu star (bias corrected)	142.1	nu hat (MLE)
150.1	MLE Sd (bias corrected)	117	MLE Mean (bias corrected)
113.4	Approximate Chi Square Value (0.05)		
113.1	Adjusted Chi Square Value	0.0479	Adjusted Level of Significance

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:48:51 AM

From File Esperanza Mill_Metals_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 144.1 95% Adjusted Gamma UCL (use when n<50) 144.5

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.982	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk P Value	0.605	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0524	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.0829	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	1.033	Mean of logged Data	3.767
Maximum of Logged Data	8.227	SD of logged Data	1.28

Assuming Lognormal Distribution

95% H-UCL	132.2	90% Chebyshev (MVUE) UCL	142.1
95% Chebyshev (MVUE) UCL	162.6	97.5% Chebyshev (MVUE) UCL	191.1
99% Chebyshev (MVUE) UCL	247.1		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	173.1	95% Jackknife UCL	173.5
95% Standard Bootstrap UCL	171.3	95% Bootstrap-t UCL	283.4
95% Hall's Bootstrap UCL	384.8	95% Percentile Bootstrap UCL	180.5
95% BCA Bootstrap UCL	218.4		
90% Chebyshev(Mean, Sd) UCL	219.2	95% Chebyshev(Mean, Sd) UCL	265.6
97.5% Chebyshev(Mean, Sd) UCL	329.8	99% Chebyshev(Mean, Sd) UCL	456.1

Suggested UCL to Use

95% H-UCL 132.2

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ProUCL computes and outputs H-statistic based UCLs for historical reasons only.

H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples in the Technical Guide.

It is therefore recommended to avoid the use of H-statistic based 95% UCLs.

Use of nonparametric methods are preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:48:51 AM

From File Esperanza Mill_Metals_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (molybdenum)

General Statistics

Total Number of Observations	115	Number of Distinct Observations	96
Number of Detects	114	Number of Non-Detects	1
Number of Distinct Detects	96	Number of Distinct Non-Detects	1
Minimum Detect	3	Minimum Non-Detect	5
Maximum Detect	6830	Maximum Non-Detect	5
Variance Detects	1717407	Percent Non-Detects	0.87%
Mean Detects	602.4	SD Detects	1310
Median Detects	123	CV Detects	2.175
Skewness Detects	3.516	Kurtosis Detects	12.55
Mean of Logged Detects	4.81	SD of Logged Detects	1.903

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.488	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.324	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0833	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

121.8	KM Standard Error of Mean	597.2	KM Mean
831.4	95% KM (BCA) UCL	1300	KM SD
804.7	95% KM (Percentile Bootstrap) UCL	799.2	95% KM (t) UCL
856.6	95% KM Bootstrap t UCL	797.5	95% KM (z) UCL
1128	95% KM Chebyshev UCL	962.6	90% KM Chebyshev UCL
1809	99% KM Chebyshev UCL	1358	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	3.601	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Le	0.84	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.138	K-S Test Statistic
8 Detected Data Not Gamma Distributed at 5% Significance Le	0.0918	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.412	k star (bias corrected MLE)	0.407
Theta hat (MLE)	1463	Theta star (bias corrected MLE)	1481
nu hat (MLE)	93.88	nu star (bias corrected)	92.74
Mean (detects)	602.4		

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:48:51 AM

From File Esperanza Mill_Metals_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

lean 597.2	Mean	0.01	Minimum
dian 122	Median	6830	Maximum
CV 2.187	CV	1306	SD
/ILE) 0.392	k star (bias corrected MLE)	0.396	k hat (MLE)
/ILE) 1525	Theta star (bias corrected MLE)	1508	Theta hat (MLE)
cted) 90.06	nu star (bias corrected)	91.1	nu hat (MLE)
		0.0479	Adjusted Level of Significance (β)
6, β) 68.95	Adjusted Chi Square Value (90.06, β)	69.18	Approximate Chi Square Value (90.06, α)
<50) 780	95% Gamma Adjusted UCL (use when n<50)	777.4	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	597.2	SD (KM)	1300
Variance (KM)	1690636	SE of Mean (KM)	121.8
k hat (KM)	0.211	k star (KM)	0.211
nu hat (KM)	48.52	nu star (KM)	48.59
theta hat (KM)	2831	theta star (KM)	2827
80% gamma percentile (KM)	8.808	90% gamma percentile (KM)	1806
95% gamma percentile (KM)	3033	99% gamma percentile (KM)	6381

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (48.59, α)	33.59	Adjusted Chi Square Value (48.59, β)	33.43
95% Gamma Approximate KM-UCL (use when n>=50)	863.9	95% Gamma Adjusted KM-UCL (use when n<50)	868

Lognormal GOF Test on Detected Observations Only

cance Level
ificance Level

Detected Data appear Approximate Lognormal at 5% Significance Level

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:48:51 AM

From File Esperanza Mill_Metals_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	597.2	Mean in Log Scale	4.774
SD in Original Scale	1306	SD in Log Scale	1.935
95% t UCL (assumes normality of ROS data)	799.1	95% Percentile Bootstrap UCL	803.9
95% BCA Bootstrap UCL	858.3	95% Bootstrap t UCL	871.8
95% H-UCL (Log ROS)	1386		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	4.778	KM Geo Mean	118.9
KM SD (logged)	1.918	95% Critical H Value (KM-Log)	3.226
KM Standard Error of Mean (logged)	0.18	95% H-UCL (KM -Log)	1335
KM SD (logged)	1.918	95% Critical H Value (KM-Log)	3.226
KM Standard Error of Mean (logged)	0.18		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	597.2	Mean in Log Scale	4.776
SD in Original Scale	1306	SD in Log Scale	1.929
95% t UCL (Assumes normality)	799.2	95% H-Stat UCL	1371

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Detected Data appear Approximate Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 1335

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:48:51 AM

From File Esperanza Mill_Metals_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (uranium)

Statistics	

Total Number of Observations	91	Number of Distinct Observations	85
		Number of Missing Observations	0
Minimum	1.17	Mean	5.39
Maximum	29.9	Median	4.07
SD	3.888	Std. Error of Mean	0.408
Coefficient of Variation	0.721	Skewness	3.548

Normal GOF Test

Shapiro Wilk Test Statistic	0.691	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.191	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0931	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	6.068	95% Adjusted-CLT UCL (Chen-1995)	6.223

95% Modified-t UCL (Johnson-1978) 6.093

Gamma GOF Test

Anderson-Darling Gamma GOF Test	2.78	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.758	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.141	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.0943	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

3.386	k star (bias corrected MLE)	3.281
1.592	Theta star (bias corrected MLE)	1.643
616.2	nu star (bias corrected)	597.2
5.39	MLE Sd (bias corrected)	2.976
	Approximate Chi Square Value (0.05)	541.5
0.0474	Adjusted Chi Square Value	540.7
	1.592 616.2 5.39	1.592 Theta star (bias corrected MLE) 616.2 nu star (bias corrected) 5.39 MLE Sd (bias corrected) Approximate Chi Square Value (0.05)

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 10:48:51 AM

From File Esperanza Mill_Metals_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 5.945 95% Adjusted Gamma UCL (use when n<50) 5.954

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.958	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk P Value	0.0234	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.113	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.0931	Data Not Lognormal at 5% Significance Level

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.157	Mean of logged Data	1.53
Maximum of Logged Data	3.398	SD of logged Data	0.518

Assuming Lognormal Distribution

95% H-UCL	5.845	90% Chebyshev (MVUE) UCL	6.182
95% Chebyshev (MVUE) UCL	6.594	97.5% Chebyshev (MVUE) UCL	7.166
99% Chebyshev (MVUE) UCL	8.29		

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

95% CLT UCL	6.061	95% Jackknife UCL	6.068
95% Standard Bootstrap UCL	6.065	95% Bootstrap-t UCL	6.341
95% Hall's Bootstrap UCL	6.486	95% Percentile Bootstrap UCL	6.12
95% BCA Bootstrap UCL	6.237		
90% Chebyshev(Mean, Sd) UCL	6.613	95% Chebyshev(Mean, Sd) UCL	7.167
97.5% Chebyshev(Mean, Sd) UCL	7.936	99% Chebyshev(Mean, Sd) UCL	9.446

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 7.167

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:56:59 PM

From File Esperanza Mill_Metals_0-2.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (arsenic)

General Statistics

Total Number of Observations	82	Number of Distinct Observations	66
Number of Detects	76	Number of Non-Detects	6
Number of Distinct Detects	60	Number of Distinct Non-Detects	6
Minimum Detect	1	Minimum Non-Detect	10.1
Maximum Detect	101	Maximum Non-Detect	89.7
Variance Detects	155.5	Percent Non-Detects	7.317%
Mean Detects	7.982	SD Detects	12.47
Median Detects	4.3	CV Detects	1.562
Skewness Detects	5.896	Kurtosis Detects	42.09
Mean of Logged Detects	1.627	SD of Logged Detects	0.861

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.468	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.288	Lilliefors GOF Test
5% Lilliefors Critical Value	0.102	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	7.844	KM Standard Error of Mean	1.347
KM SD	12.02	95% KM (BCA) UCL	10.25
95% KM (t) UCL	10.08	95% KM (Percentile Bootstrap) UCL	10.32
95% KM (z) UCL	10.06	95% KM Bootstrap t UCL	12.34
90% KM Chebyshev UCL	11.88	95% KM Chebyshev UCL	13.71
97.5% KM Chebyshev UCL	16.25	99% KM Chebyshev UCL	21.24

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	2.625	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.776	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.179	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.105	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:56:59 PM

From File Esperanza Mill_Metals_0-2.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Gamma Statistics on Detected Data Only

1.21	k star (bias corrected MLE)	1.251	k hat (MLE)
6.597	Theta star (bias corrected MLE)	6.383	Theta hat (MLE)
183.9	nu star (bias corrected)	190.1	nu hat (MLE)
		7 982	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	1	Mean	7.725
Maximum	101	Median	4.55
SD	12.04	CV	1.558
k hat (MLE)	1.308	k star (bias corrected MLE)	1.268
Theta hat (MLE)	5.907	Theta star (bias corrected MLE)	6.092
nu hat (MLE)	214.5	nu star (bias corrected)	208
Adjusted Level of Significance (β)	0.0471		
Approximate Chi Square Value (207.97, α)	175.6	Adjusted Chi Square Value (207.97, β)	175.1
95% Gamma Approximate UCL (use when n>=50)	9.149	95% Gamma Adjusted UCL (use when n<50)	9.176

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	7.844	SD (KM)	12.02
Variance (KM)	144.6	SE of Mean (KM)	1.347
k hat (KM)	0.426	k star (KM)	0.418
nu hat (KM)	69.79	nu star (KM)	68.57
theta hat (KM)	18.43	theta star (KM)	18.76
80% gamma percentile (KM)	12.72	90% gamma percentile (KM)	21.98
95% gamma percentile (KM)	32.09	99% gamma percentile (KM)	57.41

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (68.57, α)	50.51	Adjusted Chi Square Value (68.57, β)	50.23
95% Gamma Approximate KM-UCL (use when n>=50)	10.65	95% Gamma Adjusted KM-UCL (use when n<50)	10.71

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:56:59 PM

From File Esperanza Mill_Metals_0-2.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Lognormal GOF Test on Detected Observations Only

istic 0.967 Shapiro Wilk GOF Te	est	
alue 0.142 Detected Data appear Lognormal at 5%	6 Significance Level	
istic 0.113 Lilliefors GOF Test	ľ	
alue 0 102 Detected Data Not Lognormal at 5% S	Significance Level	

Detected Data appear Approximate Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	7.745	Mean in Log Scale	1.621
SD in Original Scale	12.03	SD in Log Scale	0.829
95% t UCL (assumes normality of ROS data)	9.956	95% Percentile Bootstrap UCL	10.05
95% BCA Bootstrap UCL	11.7	95% Bootstrap t UCL	12.46
95% H-UCL (Log ROS)	8.643		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	1.619	KM Geo Mean	5.047
KM SD (logged)	0.848	95% Critical H Value (KM-Log)	2.095
KM Standard Error of Mean (logged)	0.0971	95% H-UCL (KM -Log)	8.812
KM SD (logged)	0.848	95% Critical H Value (KM-Log)	2.095
KM Standard Error of Mean (logged)	0.0971		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed			
Mean in Original Scale	8.809	Mean in Log Scale	1.71		
SD in Original Scale	12.81	SD in Log Scale	0.898		
95% t UCL (Assumes normality)	11.16	95% H-Stat UCL	10.24		

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Detected Data appear Approximate Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 8.812

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:56:59 PM

From File Esperanza Mill_Metals_0-2.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (molybdenum)

General Statistics

Total Number of Observations	82	Number of Distinct Observations	73
Number of Detects	81	Number of Non-Detects	1
Number of Distinct Detects	72	Number of Distinct Non-Detects	1
Minimum Detect	3	Minimum Non-Detect	5
Maximum Detect	6830	Maximum Non-Detect	5
Variance Detects	1542342	Percent Non-Detects	1.22%
Mean Detects	624.8	SD Detects	1242
Median Detects	154	CV Detects	1.988
Skewness Detects	3.621	Kurtosis Detects	14.25
Mean of Logged Detects	5.077	SD of Logged Detects	1.793

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.523	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.308	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0985	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	617.2	KM Standard Error of Mean	136.5
KM SD	1229	95% KM (BCA) UCL	835.2
95% KM (t) UCL	844.3	95% KM (Percentile Bootstrap) UCL	851
95% KM (z) UCL	841.7	95% KM Bootstrap t UCL	948.6
90% KM Chebyshev UCL	1027	95% KM Chebyshev UCL	1212
97.5% KM Chebyshev UCL	1470	99% KM Chebyshev UCL	1976

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	1.862	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.826	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.134	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.105	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:56:59 PM

From File Esperanza Mill_Metals_0-2.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Gamma Statistics on Detected Data Only

0.462	k star (bias corrected MLE)	0.471	k hat (MLE)
1352	Theta star (bias corrected MLE)	1325	Theta hat (MLE)
74.87	nu star (bias corrected)	76.37	nu hat (MLE)
		624.8	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	617.1
Maximum	6830	Median	152.5
SD	1236	CV	2.003
k hat (MLE)	0.442	k star (bias corrected MLE)	0.434
Theta hat (MLE)	1397	Theta star (bias corrected MLE)	1423
nu hat (MLE)	72.46	nu star (bias corrected)	71.15
Adjusted Level of Significance (β)	0.0471		
Approximate Chi Square Value (71.15, α)	52.73	Adjusted Chi Square Value (71.15, β)	52.44
95% Gamma Approximate UCL (use when n>=50)	832.7	95% Gamma Adjusted UCL (use when n<50)	837.2

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	617.2	SD (KM)	1229
Variance (KM)	1509380	SE of Mean (KM)	136.5
k hat (KM)	0.252	k star (KM)	0.251
nu hat (KM)	41.39	nu star (KM)	41.21
theta hat (KM)	2446	theta star (KM)	2456
80% gamma percentile (KM)	897.9	90% gamma percentile (KM)	1852
95% gamma percentile (KM)	2983	99% gamma percentile (KM)	5992

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (41.21, α)	27.49	Adjusted Chi Square Value (41.21, β)	27.29
95% Gamma Approximate KM-UCL (use when n>=50)	925	95% Gamma Adjusted KM-UCL (use when n<50)	931.8

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:56:59 PM

DL/2 Normal

From File Esperanza Mill_Metals_0-2.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.974	Shapiro Wilk GOF Test
---	-------	-----------------------

5% Shapiro Wilk P Value 0.33 Detected Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.057 Lilliefors GOF Test

5% Lilliefors Critical Value 0.0985 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	617.2	Mean in Log Scale	5.029
SD in Original Scale	1236	SD in Log Scale	1.836
95% t UCL (assumes normality of ROS data)	844.3	95% Percentile Bootstrap UCL	866.9
95% BCA Bootstrap UCL	884.3	95% Bootstrap t UCL	951.2
95% H-UCL (Log ROS)	1570		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	5.029	KM Geo Mean	152.8
KM SD (logged)	1.824	95% Critical H Value (KM-Log)	3.145
KM Standard Error of Mean (logged)	0.203	95% H-UCL (KM -Log)	1526
KM SD (logged)	1.824	95% Critical H Value (KM-Log)	3.145
KM Standard Error of Mean (logged)	0.203		

DL/2 Statistics

		<u> </u>	
Mean in Original Scale	617.2	Mean in Log Scale	5.027
SD in Original Scale	1236	SD in Log Scale	1.84
95% t UCL (Assumes normality)	844.3	95% H-Stat UCL	1584

DL/2 Log-Transformed

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 1526

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:05:44 AM

From File Esperanza Mill_Metals_0-0.5.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (arsenic)

General Statistics

Total Number of Observations	45	Number of Distinct Observations	41
Number of Detects	42	Number of Non-Detects	3
Number of Distinct Detects	38	Number of Distinct Non-Detects	3
Minimum Detect	1.4	Minimum Non-Detect	10.1
Maximum Detect	101	Maximum Non-Detect	35.4
Variance Detects	247.4	Percent Non-Detects	6.667%
Mean Detects	9.535	SD Detects	15.73
Median Detects	5.055	CV Detects	1.65
Skewness Detects	5.123	Kurtosis Detects	29.28
Mean of Logged Detects	1.794	SD of Logged Detects	0.835

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.424	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.942	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.321	Lilliefors GOF Test
5% Lilliefors Critical Value	0.135	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM	Mean	9.306	KM Standard Error of Mean	2.283
K	M SD	15.09	95% KM (BCA) UCL	13.88
95% KM (t) UCL	13.14	95% KM (Percentile Bootstrap) UCL	13.36
95% KM (z) UCL	13.06	95% KM Bootstrap t UCL	20.64
90% KM Chebyshev	/ UCL	16.16	95% KM Chebyshev UCL	19.26
97.5% KM Chebyshev	/ UCL	23.57	99% KM Chebyshev UCL	32.03

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	2.307	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Leve	0.773	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.204	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Leve	0.14	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:05:44 AM

From File Esperanza Mill_Metals_0-0.5.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Gamma Statistics on Detected Data Only

1.153	k star (bias corrected MLE)	1.224	k hat (MLE)
8.271	Theta star (bias corrected MLE)	7.787	Theta hat (MLE)
96.84	nu star (bias corrected)	102.9	nu hat (MLE)
		9 535	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	1.4	Mean	9.19
Maximum	101	Median	5.1
SD	15.24	CV	1.659
k hat (MLE)	1.251	k star (bias corrected MLE)	1.183
Theta hat (MLE)	7.343	Theta star (bias corrected MLE)	7.769
nu hat (MLE)	112.6	nu star (bias corrected)	106.5
Adjusted Level of Significance (β)	0.0447		
Approximate Chi Square Value (106.45, α)	83.64	Adjusted Chi Square Value (106.45, β)	82.97
95% Gamma Approximate UCL (use when n>=50)	11.7	95% Gamma Adjusted UCL (use when n<50)	11.79

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	9.306	SD (KM)	15.09
Variance (KM)	227.6	SE of Mean (KM)	2.283
k hat (KM)	0.381	k star (KM)	0.37
nu hat (KM)	34.25	nu star (KM)	33.3
theta hat (KM)	24.46	theta star (KM)	25.15
80% gamma percentile (KM)	14.87	90% gamma percentile (KM)	26.64
95% gamma percentile (KM)	39.72	99% gamma percentile (KM)	72.88

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (33.30, α)	21.1	Adjusted Chi Square Value (33.30, β)	20.78
95% Gamma Approximate KM-UCL (use when n>=50)	14.68	95% Gamma Adjusted KM-UCL (use when n<50)	14.91

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:05:44 AM

From File Esperanza Mill_Metals_0-0.5.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.897	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.942	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.155	Lilliefors GOF Test
5% Lilliefors Critical Value	0.135	Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	9.25	Mean in Log Scale	1.784
SD in Original Scale	15.22	SD in Log Scale	0.807
95% t UCL (assumes normality of ROS data)	13.06	95% Percentile Bootstrap UCL	13.39
95% BCA Bootstrap UCL	15.99	95% Bootstrap t UCL	19.63
95% H-UCL (Log ROS)	10.74		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	1.781	KM Geo Mean	5.934
KM SD (logged)	0.815	95% Critical H Value (KM-Log)	2.176
KM Standard Error of Mean (logged)	0.125	95% H-UCL (KM -Log)	10.81
KM SD (logged)	0.815	95% Critical H Value (KM-Log)	2.176
KM Standard Error of Mean (logged)	0.125		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	9.765	Mean in Log Scale	1.836
SD in Original Scale	15.28	SD in Log Scale	0.835
95% t UCL (Assumes normality)	13.59	95% H-Stat UCL	11.72

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 19.26

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

ProUCL 5.1 Esperanza Mill Metals

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:05:44 AM

From File Esperanza Mill_Metals_0-0.5.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (molybdenum)

Genera	l Stati	istics
--------	---------	--------

Total Number of Observations	Number of Observations 45 Number of Distinct Observations		44
		Number of Missing Observations	0
Minimum	7	Mean	856.9
Maximum	6830	Median	230
SD	1534	Std. Error of Mean	228.6
Coefficient of Variation	1.79	Skewness	2.968

Normal GOF Test

Shapiro Wilk Test Statistic	0.564	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.945	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.29	Lilliefors GOF Test
5% Lilliefors Critical Value	0.131	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)
----------------	----------------------------------

95% Student's-t UCL 1241 95% Adjusted-CLT UCL (Chen-1995) 1341 95% Modified-t UCL (Johnson-1978) 1258

Gamma GOF Test

A-D Test Statistic	1.494	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.809	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.173	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.139	Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

0.524	k star (bias corrected MLE)) (k hat (MLE)
1634	Theta star (bias corrected MLE)) 157	Theta hat (MLE)
47.18	nu star (bias corrected)) 4	nu hat (MLE)
1183	MLE Sd (bias corrected)) 85	MLE Mean (bias corrected)
32.42	Approximate Chi Square Value (0.05)		
32.01	Adjusted Chi Square Value	e 0	Adjusted Level of Significance

ProUCL 5.1 Esperanza Mill Metals

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:05:44 AM

From File Esperanza Mill_Metals_0-0.5.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 1247

95% Adjusted Gamma UCL (use when n<50) 1263

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.976	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.945	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.101	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.131	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	1.946	Mean of logged Data	5.605
Maximum of Logged Data	8.829	SD of logged Data	1.596

Assuming Lognormal Distribution

95% H-UCL	2059	90% Chebyshev (MVUE) UCL	1792
95% Chebyshev (MVUE) UCL	2190	97.5% Chebyshev (MVUE) UCL	2741
99% Chebyshev (MVUE) UCL	3824		

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	1233	95% Jackknife UCL	1241
95% Standard Bootstrap UCL	1221	95% Bootstrap-t UCL	1451
95% Hall's Bootstrap UCL	1399	95% Percentile Bootstrap UCL	1241
95% BCA Bootstrap UCL	1322		
90% Chebyshev(Mean, Sd) UCL	1543	95% Chebyshev(Mean, Sd) UCL	1853
97.5% Chebyshev(Mean, Sd) UCL	2285	99% Chebyshev(Mean, Sd) UCL	3132

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 1853

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:10:00 AM

From File Esperanza Mill_Rad_All (Soil and Sediment) 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (radium-226)

General Statistics

Total Number of Observations	88	Number of Distinct Observations	41
		Number of Missing Observations	0
Minimum	0.54	Mean	2.235
Maximum	5.8	Median	2.05
SD	1.037	Std. Error of Mean	0.111
Coefficient of Variation	0.464	Skewness	1.058

Normal GOF Test

Shapiro Wilk GOF Test	0.928	Shapiro Wilk Test Statistic
Data Not Normal at 5% Significance Level	5.1534E-5	5% Shapiro Wilk P Value 6
Lilliefors GOF Test	0.109	Lilliefors Test Statistic
Data Not Normal at 5% Significance Level	0.0946	5% Lilliefors Critical Value

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	2.419	95% Adjusted-CLT UCL (Chen-1995)	2.43
		95% Modified-t UCL (Johnson-1978)	2.421

Gamma GOF Test

A-D Test Statistic	0.463	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.755	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.0675	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.0956	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

k hat (MLE)	4.827	k star (bias corrected MLE)	4.67
Theta hat (MLE)	0.463	Theta star (bias corrected MLE)	0.479
nu hat (MLE)	849.5	nu star (bias corrected)	821.9
MLE Mean (bias corrected)	2.235	MLE Sd (bias corrected)	1.034
		Approximate Chi Square Value (0.05)	756.4
Adjusted Level of Significance	0.0473	Adjusted Chi Square Value	755.3

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:10:00 AM

From File Esperanza Mill_Rad_All (Soil and Sediment) 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 2.429 95% Adjusted Gamma UCL (use when n<50) 2.432

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.969	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk P Value	0.158	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0916	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.0946	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-0.616	Mean of logged Data	0.697
Maximum of Logged Data	1.758	SD of logged Data	0.48

Assuming Lognormal Distribution

95% H-UCL	2.476	90% Chebyshev (MVUE) UCL	2.612
95% Chebyshev (MVUE) UCL	2.776	97.5% Chebyshev (MVUE) UCL	3.004
99% Chebyshev (MVUE) UCL	3.452		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

2.419	95% Jackknife UCL	95% CLT UCL
2.424	95% Bootstrap-t UCL	95% Standard Bootstrap UCL
2.419	95% Percentile Bootstrap UCL	95% Hall's Bootstrap UCL
		95% BCA Bootstrap UCL
2.717	95% Chebyshev(Mean, Sd) UCL	90% Chebyshev(Mean, Sd) UCL
3.335	99% Chebyshev(Mean, Sd) UCL	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Approximate Gamma UCL 2.429

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:10:00 AM

From File Esperanza Mill_Rad_All (Soil and Sediment) 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (radium-228)

General Statistics

Total Number of Observations	88	Number of Distinct Observations	28
Number of Detects	85	Number of Non-Detects	3
Number of Distinct Detects	28	Number of Distinct Non-Detects	3
Minimum Detect	1	Minimum Non-Detect	2
Maximum Detect	8.9	Maximum Non-Detect	2.5
Variance Detects	1.074	Percent Non-Detects	3.409%
Mean Detects	2.305	SD Detects	1.036
Median Detects	2.1	CV Detects	0.45
Skewness Detects	3.651	Kurtosis Detects	19.59
Mean of Logged Detects	0.77	SD of Logged Detects	0.338

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.709	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.211	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0962	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	2.287	KM Standard Error of Mean	0.109
KM SD	1.019	95% KM (BCA) UCL	2.483
95% KM (t) UCL	2.469	95% KM (Percentile Bootstrap) UCL	2.481
95% KM (z) UCL	2.467	95% KM Bootstrap t UCL	2.557
90% KM Chebyshev UCL	2.615	95% KM Chebyshev UCL	2.764
97.5% KM Chebyshev UCL	2.97	99% KM Chebyshev UCL	3.376

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	2.631	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.753	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.149	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.097	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:10:00 AM

From File Esperanza Mill_Rad_All (Soil and Sediment) 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Gamma Statistics on Detected Data Only

7.583	k star (bias corrected MLE)	7.853	k hat (MLE)
0.304	Theta star (bias corrected MLE)	0.293	Theta hat (MLE)
1289	nu star (bias corrected)	1335	nu hat (MLE)
		2 305	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	1	Mean	2.286
Maximum	8.9	Median	2.1
SD	1.024	CV	0.448
k hat (MLE)	7.952	k star (bias corrected MLE)	7.689
Theta hat (MLE)	0.287	Theta star (bias corrected MLE)	0.297
nu hat (MLE)	1400	nu star (bias corrected)	1353
Adjusted Level of Significance (β)	0.0473		
Approximate Chi Square Value (N/A, α)	1269	Adjusted Chi Square Value (N/A, β)	1267
95% Gamma Approximate UCL (use when n>=50)	2.438	95% Gamma Adjusted UCL (use when n<50)	2.44

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	2.287	SD (KM)	1.019
Variance (KM)	1.037	SE of Mean (KM)	0.109
k hat (KM)	5.043	k star (KM)	4.879
nu hat (KM)	887.6	nu star (KM)	858.7
theta hat (KM)	0.454	theta star (KM)	0.469
80% gamma percentile (KM)	3.083	90% gamma percentile (KM)	3.674
95% gamma percentile (KM)	4.213	99% gamma percentile (KM)	5.353

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (858.68, α)	791.7	Adjusted Chi Square Value (858.68, β)	790.6
95% Gamma Approximate KM-UCL (use when n>=50)	2.481	95% Gamma Adjusted KM-UCL (use when n<50)	2.484

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:10:00 AM

From File Esperanza Mill_Rad_All (Soil and Sediment) 0-15.xls

Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.94	Shapiro Wilk GOF Test
---	------	-----------------------

5% Shapiro Wilk P Value 9.4053E-4 Detected Data Not Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.119 Lilliefors GOF Test

5% Lilliefors Critical Value 0.0962 Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

0.764	Mean in Log Scale	2.288	Mean in Original Scale
0.334	SD in Log Scale	1.023	SD in Original Scale
2.473	95% Percentile Bootstrap UCL	2.469	95% t UCL (assumes normality of ROS data)
2.546	95% Bootstrap t UCL	2.506	95% BCA Bootstrap UCL
		2.417	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.763	KM Geo Mean	2.145
KM SD (logged)	0.334	95% Critical H Value (KM-Log)	1.758
KM Standard Error of Mean (logged)	0.036	95% H-UCL (KM -Log)	2.415
KM SD (logged)	0.334	95% Critical H Value (KM-Log)	1.758
KM Standard Error of Mean (logged)	0.036		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed			
Mean in Original Scale	2.265	Mean in Log Scale	0.748		
SD in Original Scale	1.04	SD in Log Scale	0.352		
95% t UCL (Assumes normality)	2.45	95% H-Stat UCL	2.404		

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL	2.469	KM H-UCL	2.415
95% KM (BCA) UCL	2.483		

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:10:00 AM

From File Esperanza Mill_Rad_All (Soil and Sediment) 0-15.xls

Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

Result (uranium-234)

Genera		

34	Number of Distinct Observations	88	Total Number of Observations
0	Number of Missing Observations		
2.427	Mean	0.85	Minimum
2	Median	12	Maximum
0.156	Std. Error of Mean	1.463	SD
3.785	Skewness	0.603	Coefficient of Variation

Normal GOF Test

Shapiro Wilk Test Statistic	0.695	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.189	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0946	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normai UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	2.686	95% Adjusted-CLT UCL (Chen-1995)	2.751
		95% Modified-t UCL (Johnson-1978)	2.697

Gamma GOF Test

A-D Test Statistic	2.376	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.755	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.147	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.0956	Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

k hat (MLE)	4.729	k star (bias corrected MLE)	4.576
Theta hat (MLE)	0.513	Theta star (bias corrected MLE)	0.53
nu hat (MLE)	832.4	nu star (bias corrected)	805.3
MLE Mean (bias corrected)	2.427	MLE Sd (bias corrected)	1.135
		Approximate Chi Square Value (0.05)	740.5
Adjusted Level of Significance	0.0473	Adjusted Chi Square Value	739.5

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:10:00 AM

From File Esperanza Mill_Rad_All (Soil and Sediment) 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 2.64 95% Adjusted Gamma UCL (use when n<50) 2.643

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.955	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk P Value	0.0144	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.115	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.0946	Data Not Lognormal at 5% Significance Level

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-0.163	Mean of logged Data	0.777
Maximum of Logged Data	2.485	SD of logged Data	0.436

Assuming Lognormal Distribution

95% H-UCL	2.603	90% Chebyshev (MVUE) UCL	2.736
95% Chebyshev (MVUE) UCL	2.893	97.5% Chebyshev (MVUE) UCL	3.111
99% Chebyshev (MVUE) UCL	3.539		

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

95% CLT UCL	2.684	95% Jackknife UCL	2.686
95% Standard Bootstrap UCL	2.682	95% Bootstrap-t UCL	2.801
95% Hall's Bootstrap UCL	2.99	95% Percentile Bootstrap UCL	2.696
95% BCA Bootstrap UCL	2.784		
90% Chebyshev(Mean, Sd) UCL	2.895	95% Chebyshev(Mean, Sd) UCL	3.107
97.5% Chebyshev(Mean, Sd) UCL	3.401	99% Chebyshev(Mean, Sd) UCL	3.978

Suggested UCL to Use

95% Student's-t UCL 2.686 or 95% Modified-t UCL 2.697

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:10:00 AM

From File Esperanza Mill_Rad_All (Soil and Sediment) 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (uranium-235)

General Statistics

Total Number of Observations	88	Number of Distinct Observations	44
Number of Detects	68	Number of Non-Detects	20
Number of Distinct Detects	38	Number of Distinct Non-Detects	18
Minimum Detect	0.042	Minimum Non-Detect	0.042
Maximum Detect	0.57	Maximum Non-Detect	0.2
Variance Detects	0.00613	Percent Non-Detects	22.73%
Mean Detects	0.135	SD Detects	0.0783
Median Detects	0.115	CV Detects	0.579
Skewness Detects	2.963	Kurtosis Detects	13.59
Mean of Logged Detects	-2.116	SD of Logged Detects	0.462

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.765	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value 1.	099E-14	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.197	Lilliefors GOF Test
5% Lilliefors Critical Value	0.107	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.119	KM Standard Error of Mean	0.00821
KM SD	0.0759	95% KM (BCA) UCL	0.133
95% KM (t) UCL	0.132	95% KM (Percentile Bootstrap) UCL	0.133
95% KM (z) UCL	0.132	95% KM Bootstrap t UCL	0.135
90% KM Chebyshev UCL	0.143	95% KM Chebyshev UCL	0.154
97.5% KM Chebyshev UCL	0.17	99% KM Chebyshev UCL	0.2

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	1.19	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.755	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.13	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.108	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:10:00 AM

From File Esperanza Mill_Rad_All (Soil and Sediment) 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Gamma Statistics on Detected Data Only

4.29	k star (bias corrected MLE)	4.478	k hat (MLE)
0.0315	Theta star (bias corrected MLE)	0.0302	Theta hat (MLE)
583.5	nu star (bias corrected)	609	nu hat (MLE)
		0.135	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.114	Mean	0.01	Minimum
0.096	Median	0.57	Maximum
0.703	CV	0.0802	SD
2.203	k star (bias corrected MLE)	2.273	k hat (MLE)
0.0518	Theta star (bias corrected MLE)	0.0502	Theta hat (MLE)
387.7	nu star (bias corrected)	400	nu hat (MLE)
		0.0473	Adjusted Level of Significance (β)
342.3	Adjusted Chi Square Value (387.66, β)	343	Approximate Chi Square Value (387.66, α)
0.129	95% Gamma Adjusted UCL (use when n<50)	0.129	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.119	SD (KM)	0.0759
Variance (KM)	0.00575	SE of Mean (KM)	0.00821
k hat (KM)	2.444	k star (KM)	2.368
nu hat (KM)	430.1	nu star (KM)	416.8
theta hat (KM)	0.0485	theta star (KM)	0.0501
80% gamma percentile (KM)	0.174	90% gamma percentile (KM)	0.222
95% gamma percentile (KM)	0.267	99% gamma percentile (KM)	0.366

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (416.76, α)	370.4	Adjusted Chi Square Value (416.76, β)	369.7
95% Gamma Approximate KM-UCL (use when n>=50)	0.133	95% Gamma Adjusted KM-UCL (use when n<50)	0.134

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:10:00 AM

From File Esperanza Mill_Rad_All (Soil and Sediment) 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.976	Shapiro Wilk GOF Test
---	-------	-----------------------

5% Shapiro Wilk P Value 0.461 Detected Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.0936 Lilliefors GOF Test

5% Lilliefors Critical Value 0.107 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-2.281	Mean in Log Scale	0.118	Mean in Original Scale
0.524	SD in Log Scale	0.076	SD in Original Scale
0.131	95% Percentile Bootstrap UCL	0.132	95% t UCL (assumes normality of ROS data)
0.134	95% Bootstrap t UCL	0.134	95% BCA Bootstrap UCL
		0.13	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.283	KM Geo Mean	0.102
KM SD (logged)	0.534	95% Critical H Value (KM-Log)	1.867
KM Standard Error of Mean (logged)	0.0594	95% H-UCL (KM -Log)	0.131
KM SD (logged)	0.534	95% Critical H Value (KM-Log)	1.867
KM Standard Error of Mean (logged)	0.0594		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.115	Mean in Log Scale	-2.355
SD in Original Scale	0.079	SD in Log Scale	0.63
95% t UCL (Assumes normality)	0.129	95% H-Stat UCL	0.132

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM Student's t 0.116 KM H-UCL 0.131

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:10:00 AM

From File Esperanza Mill_Rad_All (Soil and Sediment) 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (uranium-238)

General	l Stati	istics
---------	---------	--------

Total Number of Observations	88	Number of Distinct Observations	36
		Number of Missing Observations	0
Minimum	0.9	Mean	2.473
Maximum	12	Median	2.05
SD	1.483	Std. Error of Mean	0.158
Coefficient of Variation	0.6	Skewness	3.662

Normal GOF Test

Shapiro Wilk Test Statistic	0.699	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.189	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0946	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normai UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	2.735	95% Adjusted-CLT UCL (Chen-1995)	2.799
		95% Modified-t UCL (Johnson-1978)	2.746

Gamma GOF Test

A-D Test Statistic	2.494	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.755	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.151	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.0956	Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

4.568	k star (bias corrected MLE)	4.721	k hat (MLE)
0.541	Theta star (bias corrected MLE)	0.524	Theta hat (MLE)
803.9	nu star (bias corrected)	830.9	nu hat (MLE)
1.157	MLE Sd (bias corrected)	2.473	MLE Mean (bias corrected)
739.1	Approximate Chi Square Value (0.05)		
738.1	Adjusted Chi Square Value	0.0473	Adjusted Level of Significance

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:10:00 AM

From File Esperanza Mill_Rad_All (Soil and Sediment) 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 2.689 95% Adjusted Gamma UCL (use when n<50) 2.693

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.952	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk P Value	0.00855	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.12	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.0946	Data Not Lognormal at 5% Significance Level

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-0.105	Mean of logged Data	0.796
Maximum of Logged Data	2.485	SD of logged Data	0.437

Assuming Lognormal Distribution

95% H-UCL	2.653	90% Chebyshev (MVUE) UCL	2.789
95% Chebyshev (MVUE) UCL	2.949	97.5% Chebyshev (MVUE) UCL	3.172
99% Chebyshev (MVUE) UCL	3.61		

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

95% CLT UCL	2.733	95% Jackknife UCL	2.735
95% Standard Bootstrap UCL	2.731	95% Bootstrap-t UCL	2.869
95% Hall's Bootstrap UCL	2.972	95% Percentile Bootstrap UCL	2.742
95% BCA Bootstrap UCL	2.814		
90% Chebyshev(Mean, Sd) UCL	2.947	95% Chebyshev(Mean, Sd) UCL	3.162
97.5% Chebyshev(Mean, Sd) UCL	3.46	99% Chebyshev(Mean, Sd) UCL	4.045

Suggested UCL to Use

95% Student's-t UCL 2.735 or 95% Modified-t UCL 2.746

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:14:15 AM

From File Esperanza Mill_Rad_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (radium-226)

	Statistics	

To	otal Number of Observations	84	Number of Distinct Observations	41
			Number of Missing Observations	0
	Minimum	0.54	Mean	2.215
	Maximum	5.8	Median	2
	SD	1.053	Std. Error of Mean	0.115
	Coefficient of Variation	0.475	Skewness	1.106

Normal GOF Test

Shapiro Wilk GOF Test	0.921	Shapiro Wilk Test Statistic
Data Not Normal at 5% Significance Level	2.3756E-5	5% Shapiro Wilk P Value
Lilliefors GOF Test	0.115	Lilliefors Test Statistic
Data Not Normal at 5% Significance Level	0.0968	5% Lilliefors Critical Value

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL	2.407	95% Adjusted-CLT UCL (Chen-1995)	2.419

95% Modified-t UCL (Johnson-1978) 2.409

Gamma GOF Test

A-D Test Statistic	0.482	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.755	Detected data appear Gamma Distributed at 5% Significance Lev	
K-S Test Statistic	0.0683	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.0978	Detected data appear Gamma Distributed at 5% Significance Level	

Detected data appear Gamma Distributed at 5% Significance Level

4.515	k star (bias corrected MLE)	4.6/4	k hat (MLE)
0.491	Theta star (bias corrected MLE)	0.474	Theta hat (MLE)
758.5	nu star (bias corrected)	785.2	nu hat (MLE)
1.043	MLE Sd (bias corrected)	2.215	MLE Mean (bias corrected)
695.6	Approximate Chi Square Value (0.05)		
694.5	Adjusted Chi Square Value	0.0471	Adjusted Level of Significance

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:14:15 AM

From File Esperanza Mill_Rad_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 2.416 95% Adjusted Gamma UCL (use when n<50) 2.419

Lognormal GOF Test

Shapiro Wilk Lognormal GOF Test	0.971	Shapiro Wilk Test Statistic
Data appear Lognormal at 5% Significance Leve	0.213	5% Shapiro Wilk P Value
Lilliefors Lognormal GOF Test	0.0913	Lilliefors Test Statistic
Data appear Lognormal at 5% Significance Leve	0.0968	5% Lilliefors Critical Value

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-0.616	Mean of logged Data	0.685
Maximum of Logged Data	1.758	SD of logged Data	0.486

Assuming Lognormal Distribution

95% H-UCL	2.461	90% Chebyshev (MVUE) UCL	2.601
95% Chebyshev (MVUE) UCL	2.77	97.5% Chebyshev (MVUE) UCL	3.004
99% Chebyshev (MVUE) UCL	3.465		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	2.405	95% Jackknife UCL	2.407
95% Standard Bootstrap UCL	2.41	95% Bootstrap-t UCL	2.421
95% Hall's Bootstrap UCL	2.44	95% Percentile Bootstrap UCL	2.4
95% BCA Bootstrap UCL	2.414		
90% Chebyshev(Mean, Sd) UCL	2.56	95% Chebyshev(Mean, Sd) UCL	2.716
97.5% Chebyshev(Mean, Sd) UCL	2.933	99% Chebyshev(Mean, Sd) UCL	3.359

Suggested UCL to Use

95% Approximate Gamma UCL 2.416

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:14:15 AM

From File Esperanza Mill_Rad_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (radium-228)

General Statistics

Total Number of Observations	84	Number of Distinct Observations	28
Number of Detects	81	Number of Non-Detects	3
Number of Distinct Detects	28	Number of Distinct Non-Detects	3
Minimum Detect	1	Minimum Non-Detect	2
Maximum Detect	8.9	Maximum Non-Detect	2.5
Variance Detects	1.096	Percent Non-Detects	3.571%
Mean Detects	2.336	SD Detects	1.047
Median Detects	2.1	CV Detects	0.448
Skewness Detects	3.659	Kurtosis Detects	19.36
Mean of Logged Detects	0.784	SD of Logged Detects	0.334

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.703	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.215	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0985	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	2.317	KM Standard Error of Mean	0.113
KM SD	1.028	95% KM (BCA) UCL	2.511
95% KM (t) UCL	2.505	95% KM (Percentile Bootstrap) UCL	2.516
95% KM (z) UCL	2.503	95% KM Bootstrap t UCL	2.59
90% KM Chebyshev UCL	2.656	95% KM Chebyshev UCL	2.81
97.5% KM Chebyshev UCL	3.023	99% KM Chebyshev UCL	3.442

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	2.799	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.752	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.151	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.0992	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:14:15 AM

From File Esperanza Mill_Rad_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Gamma Statistics on Detected Data Only

7.689	k star (bias corrected MLE)	7.976	k hat (MLE)
0.304	Theta star (bias corrected MLE)	0.293	Theta hat (MLE)
1246	nu star (bias corrected)	1292	nu hat (MLE)
		2 336	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	1	Mean	2.315
Maximum	8.9	Median	2.1
SD	1.034	CV	0.447
k hat (MLE)	8.071	k star (bias corrected MLE)	7.791
Theta hat (MLE)	0.287	Theta star (bias corrected MLE)	0.297
nu hat (MLE)	1356	nu star (bias corrected)	1309
Adjusted Level of Significance (β)	0.0471		
Approximate Chi Square Value (N/A, α)	1226	Adjusted Chi Square Value (N/A, β)	1225
95% Gamma Approximate UCL (use when n>=50)	2.472	95% Gamma Adjusted UCL (use when n<50)	2.475

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	2.317	SD (KM)	1.028
Variance (KM)	1.057	SE of Mean (KM)	0.113
k hat (KM)	5.081	k star (KM)	4.907
nu hat (KM)	853.6	nu star (KM)	824.4
theta hat (KM)	0.456	theta star (KM)	0.472
80% gamma percentile (KM)	3.121	90% gamma percentile (KM)	3.718
95% gamma percentile (KM)	4.262	99% gamma percentile (KM)	5.412

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (824.44, α)	758.8	Adjusted Chi Square Value (824.44, β)	757.7
95% Gamma Approximate KM-UCL (use when n>=50)	2.518	95% Gamma Adjusted KM-UCL (use when n<50)	2.521

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:14:15 AM

From File Esperanza Mill_Rad_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.934	Shapiro Wilk GOF Test
---	-------	-----------------------

5% Shapiro Wilk P Value 4.7424E-4 Detected Data Not Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.125 Lilliefors GOF Test

5% Lilliefors Critical Value 0.0985 Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	2.317	Mean in Log Scale	0.778
SD in Original Scale	1.033	SD in Log Scale	0.33
95% t UCL (assumes normality of ROS data)	2.505	95% Percentile Bootstrap UCL	2.51
95% BCA Bootstrap UCL	2.559	95% Bootstrap t UCL	2.588
95% H-UCL (Log ROS)	2.449		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.777	KM Geo Mean	2.175
KM SD (logged)	0.33	95% Critical H Value (KM-Log)	1.754
KM Standard Error of Mean (logged)	0.0364	95% H-UCL (KM -Log)	2.448
KM SD (logged)	0.33	95% Critical H Value (KM-Log)	1.754
KM Standard Error of Mean (logged)	0.0364		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	2.293	Mean in Log Scale	0.761
SD in Original Scale	1.052	SD in Log Scale	0.35
95% t UCL (Assumes normality)	2.484	95% H-Stat UCL	2.436

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL	2.505	KM H-UCL	2.448
95% KM (BCA) UCL	2.511		

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:14:15 AM

From File Esperanza Mill_Rad_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (uranium-234)

Genera	l Stati	istics
--------	---------	--------

Total Number of Observations	84 Number of Distinct Observatio		32
		Number of Missing Observations	0
Minimum	0.85	Mean	2.438
Maximum	12	Median	2
SD	1.471	Std. Error of Mean	0.161
Coefficient of Variation	0.603	Skewness	3.876

Normal GOF Test

Shapiro Wilk Test Statistic	0.679	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.195	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0968	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness)			
95% Student's-t UCL	2.705	95% Adjusted-CLT UCL (Chen-1995)	2.774
		95% Modified-t UCL (Johnson-1978)	2.716

Gamma GOF Test

A-D Test Statistic	2.628	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.755	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.158	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.0978	Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

k hat (MLE)	4.834	k star (bias corrected MLE)	4.669
Theta hat (MLE)	0.504	Theta star (bias corrected MLE)	0.522
nu hat (MLE)	812.1	nu star (bias corrected)	784.4
MLE Mean (bias corrected)	2.438	MLE Sd (bias corrected)	1.128
		Approximate Chi Square Value (0.05)	720.4
Adjusted Level of Significance	0.0471	Adjusted Chi Square Value	719.4

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:14:15 AM

From File Esperanza Mill_Rad_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 2.654 95% Adjusted Gamma UCL (use when n<50) 2.658

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.946	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk P Value	0.00317	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.127	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.0968	Data Not Lognormal at 5% Significance Level

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-0.163	Mean of logged Data	0.784
Maximum of Logged Data	2.485	SD of logged Data	0.428

Assuming Lognormal Distribution

95% H-UCL	2.613	90% Chebyshev (MVUE) UCL	2.747
95% Chebyshev (MVUE) UCL	2.905	97.5% Chebyshev (MVUE) UCL	3.125
99% Chebyshey (MVUF) UCI	3.556		

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

95% CLT UCL	2.702	95% Jackknife UCL	2.705
95% Standard Bootstrap UCL	2.698	95% Bootstrap-t UCL	2.843
95% Hall's Bootstrap UCL	3.015	95% Percentile Bootstrap UCL	2.705
95% BCA Bootstrap UCL	2.802		
90% Chebyshev(Mean, Sd) UCL	2.919	95% Chebyshev(Mean, Sd) UCL	3.138
97.5% Chebyshev(Mean, Sd) UCL	3.44	99% Chebyshev(Mean, Sd) UCL	4.035

Suggested UCL to Use

95% Student's-t UCL 2.705 or 95% Modified-t UCL 2.716

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:14:15 AM

From File Esperanza Mill_Rad_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (uranium-235)

General Statistics

Total Number of Observations	84	Number of Distinct Observations	41
Number of Detects	68	Number of Non-Detects	16
Number of Distinct Detects	38	Number of Distinct Non-Detects	14
Minimum Detect	0.042	Minimum Non-Detect	0.042
Maximum Detect	0.57	Maximum Non-Detect	0.16
Variance Detects	0.00613	Percent Non-Detects	19.05%
Mean Detects	0.135	SD Detects	0.0783
Median Detects	0.115	CV Detects	0.579
Skewness Detects	2.963	Kurtosis Detects	13.59
Mean of Logged Detects	-2.116	SD of Logged Detects	0.462

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.765	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value 1.	099E-14	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.197	Lilliefors GOF Test
5% Lilliefors Critical Value	0.107	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.121	KM Standard Error of Mean	0.00841
KM SD	0.0761	95% KM (BCA) UCL	0.138
95% KM (t) UCL	0.135	95% KM (Percentile Bootstrap) UCL	0.135
95% KM (z) UCL	0.135	95% KM Bootstrap t UCL	0.14
90% KM Chebyshev UCL	0.147	95% KM Chebyshev UCL	0.158
97.5% KM Chebyshev UCL	0.174	99% KM Chebyshev UCL	0.205

Gamma GOF Tests on Detected Observations Only

-		
Anderson-Darling GOF Test	1.19	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.755	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.13	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.108	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:14:15 AM

From File Esperanza Mill_Rad_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Gamma Statistics on Detected Data Only

4.29	k star (bias corrected MLE)	4.478	k hat (MLE)
0.0315	Theta star (bias corrected MLE)	0.0302	Theta hat (MLE)
583.5	nu star (bias corrected)	609	nu hat (MLE)
		0.135	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.118	Mean	0.01	Minimum
0.097	Median	0.57	Maximum
0.679	CV	0.0799	SD
2.434	k star (bias corrected MLE)	2.516	k hat (MLE)
0.0484	Theta star (bias corrected MLE)	0.0468	Theta hat (MLE)
409	nu star (bias corrected)	422.7	nu hat (MLE)
		0.0471	Adjusted Level of Significance (β)
362.3	Adjusted Chi Square Value (408.97, β)	363.1	Approximate Chi Square Value (408.97, α)
0.133	95% Gamma Adjusted UCL (use when n<50)	0.133	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.121	SD (KM)	0.0761
Variance (KM)	0.00579	SE of Mean (KM)	0.00841
k hat (KM)	2.547	k star (KM)	2.464
nu hat (KM)	428	nu star (KM)	414
theta hat (KM)	0.0477	theta star (KM)	0.0493
80% gamma percentile (KM)	0.177	90% gamma percentile (KM)	0.225
95% gamma percentile (KM)	0.27	99% gamma percentile (KM)	0.369

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (414.00, α)	367.8	Adjusted Chi Square Value (414.00, β)	367.1
95% Gamma Approximate KM-UCL (use when n>=50)	0.137	95% Gamma Adjusted KM-UCL (use when n<50)	0.137

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:14:15 AM

From File Esperanza Mill_Rad_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.976	Shapiro Wilk GOF Test
---	-------	-----------------------

5% Shapiro Wilk P Value 0.461 Detected Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.0936 Lilliefors GOF Test

5% Lilliefors Critical Value 0.107 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.121	Mean in Log Scale	-2.251
SD in Original Scale	0.0765	SD in Log Scale	0.515
95% t UCL (assumes normality of ROS data)	0.135	95% Percentile Bootstrap UCL	0.135
95% BCA Bootstrap UCL	0.138	95% Bootstrap t UCL	0.139
95% H-UCL (Log ROS)	0.133		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.251	KM Geo Mean	0.105
KM SD (logged)	0.519	95% Critical H Value (KM-Log)	1.855
KM Standard Error of Mean (logged)	0.0587	95% H-UCL (KM -Log)	0.134
KM SD (logged)	0.519	95% Critical H Value (KM-Log)	1.855
KM Standard Error of Mean (logged)	0.0587		

DL/2 Statistics

DL/2 Normal			DL/2 Log-Transformed	
Mean in O	riginal Scale	0.118	Mean in Log Scale	-2.318
SD in O	riginal Scale	0.0793	SD in Log Scale	0.61
95% t UCL (Assume	es normality)	0.132	95% H-Stat UCL	0.135

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM Student's t 0.12 KM H-UCL 0.134

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:14:15 AM

From File Esperanza Mill_Rad_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (uranium-238)

General	l Stati	istics
---------	---------	--------

Total Number of Observations	84	Number of Distinct Observations	33
		Number of Missing Observations	0
Minimum	0.9	Mean	2.491
Maximum	12	Median	2.05
SD	1.494	Std. Error of Mean	0.163
Coefficient of Variation	0.6	Skewness	3.732

Normal GOF Test

Shapiro Wilk Test Statistic	0.683	Shapiro Wilk GOF Test	
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.196	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.0968	Data Not Normal at 5% Significance Level	

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL	2.762	95% Adjusted-CLT UCL (Chen-1995)	2.83	
		95% Modified-t UCL (Johnson-1978)	2.773	

Gamma GOF Test

t Statistic 2.858 Anderson-Darling	Gamma GOF Test
cal Value 0.755 Data Not Gamma Distribute	ed at 5% Significance Level
t Statistic 0.165 Kolmogorov-Smirno	v Gamma GOF Test
cal Value 0.0978 Data Not Gamma Distribute	ed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

4.687	k star (bias corrected MLE)		k hat (MLE)
0.532	Theta star (bias corrected MLE)		Theta hat (MLE)
787.4	nu star (bias corrected)	815.1	nu hat (MLE)
1.151	MLE Sd (bias corrected)		MLE Mean (bias corrected)
723.2	Approximate Chi Square Value (0.05)		
722.2	Adjusted Chi Square Value	0.0471	Adjusted Level of Significance

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/18/2018 11:14:15 AM

From File Esperanza Mill_Rad_Soil Only 0-15.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 2.712 95% Adjusted Gamma UCL (use when n<50) 2.716

Lognormal GOF Test

Shapiro Wilk Lognormal GOF Test	0.941	Shapiro Wilk Test Statistic
Data Not Lognormal at 5% Significance Level	0.00139	5% Shapiro Wilk P Value
Lilliefors Lognormal GOF Test	0.136	Lilliefors Test Statistic
Data Not Lognormal at 5% Significance Level	0.0968	5% Lilliefors Critical Value

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-0.105	Mean of logged Data	0.806
Maximum of Logged Data	2.485	SD of logged Data	0.427

Assuming Lognormal Distribution

95% H-UCL	2.669	90% Chebyshev (MVUE) UCL	2.806
95% Chebyshev (MVUE) UCL	2.967	97.5% Chebyshev (MVUE) UCL	3.191
99% Chebyshev (MVUE) UCL	3.63		

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

95% CLT UCL	2.759	95% Jackknife UCL	2.762
95% Standard Bootstrap UCL	2.758	95% Bootstrap-t UCL	2.876
95% Hall's Bootstrap UCL	3.041	95% Percentile Bootstrap UCL	2.785
95% BCA Bootstrap UCL	2.882		
90% Chebyshev(Mean, Sd) UCL	2.98	95% Chebyshev(Mean, Sd) UCL	3.202
97.5% Chebyshev(Mean, Sd) UCL	3.509	99% Chebyshev(Mean, Sd) UCL	4.113

Suggested UCL to Use

95% Student's-t UCL 2.762 or 95% Modified-t UCL 2.773

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:58:39 PM

From File Esperanza Mill_Rad_0-2.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (radium-226)

	Statistics	

Total Number of Observations	62	Number of Distinct Observations	33
		Number of Missing Observations	0
Minimum	0.54	Mean	2.182
Maximum	5.8	Median	2
SD	1.048	Std. Error of Mean	0.133
Coefficient of Variation	0.48	Skewness	1.204

Normal GOF Test

Shapiro Wilk Test Statistic 0.911	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value 1.3494E-4	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic 0.144	Lilliefors GOF Test
5% Lilliefors Critical Value 0.112	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	2.405	95% Adjusted-CLT UCL (Chen-1995)	2.423
		95% Modified-t UCL (Johnson-1978)	2.408

Gamma GOF Test

8 Anderson-Darling Gamma GOF Test	0.718	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Le	0.754	5% A-D Critical Value
9 Kolmogorov-Smirnov Gamma GOF Test	0.109	K-S Test Statistic
3 Detected data appear Gamma Distributed at 5% Significance Le	0.113	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

4.372	k star (bias corrected MLE)	4.583	k hat (MLE)
0.499	Theta star (bias corrected MLE)	0.476	Theta hat (MLE)
542.2	nu star (bias corrected)	568.3	nu hat (MLE)
1.044	MLE Sd (bias corrected)	2.182	MLE Mean (bias corrected)
489.2	Approximate Chi Square Value (0.05)		
488	Adjusted Chi Square Value	0.0461	Adjusted Level of Significance

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:58:39 PM

From File Esperanza Mill_Rad_0-2.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 2.419 95% Adjusted Gamma UCL (use when n<50) 2.425

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.957	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk P Value	0.0691	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.135	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.112	Data Not Lognormal at 5% Significance Level

Data appear Approximate Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-0.616	Mean of logged Data	0.667
Maximum of Logged Data	1.758	SD of logged Data	0.495

Assuming Lognormal Distribution

95% H-UCL	2.478	90% Chebyshev (MVUE) UCL	2.634
95% Chebyshev (MVUE) UCL	2.831	97.5% Chebyshev (MVUE) UCL	3.105
99% Chebyshev (MVUE) UCL	3.643		

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% Jackknife UCL 2.405	2.401	95% CLT UCL
95% Bootstrap-t UCL 2.427	2.401	95% Standard Bootstrap UCL
95% Percentile Bootstrap UCL 2.393	2.442	95% Hall's Bootstrap UCL
	2.399	95% BCA Bootstrap UCL
95% Chebyshev(Mean, Sd) UCL 2.762	2.582	90% Chebyshev(Mean, Sd) UCL
99% Chebyshev(Mean, Sd) UCL 3.506	3.013	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Approximate Gamma UCL 2.419

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:58:39 PM

From File Esperanza Mill_Rad_0-2.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (radium-228)

General Statistics

Total Number of Observations	62	Number of Distinct Observations	23
Number of Detects	59	Number of Non-Detects	3
Number of Distinct Detects	22	Number of Distinct Non-Detects	3
Minimum Detect	1	Minimum Non-Detect	2
Maximum Detect	8.9	Maximum Non-Detect	2.5
Variance Detects	1.201	Percent Non-Detects	4.839%
Mean Detects	2.215	SD Detects	1.096
Median Detects	2	CV Detects	0.495
Skewness Detects	4.255	Kurtosis Detects	24.08
Mean of Logged Detects	0.725	SD of Logged Detects	0.345

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.634	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
1 '''' (T + O+ +' +'	0.011	
Lilliefors Test Statistic	0.244	Lilliefors GOF Test

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	2.193	KM Standard Error of Mean	0.137
KM SD	1.067	95% KM (BCA) UCL	2.471
95% KM (t) UCL	2.422	95% KM (Percentile Bootstrap) UCL	2.436
95% KM (z) UCL	2.418	95% KM Bootstrap t UCL	2.571
90% KM Chebyshev UCL	2.604	95% KM Chebyshev UCL	2.79
97.5% KM Chebyshev UCL	3.048	99% KM Chebyshev UCL	3.556

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	2.236	Anderson-Darling GOF Test
5% A-D Critical Value	0.752	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.167	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.116	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:58:39 PM

Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

Gamma Statistics on Detected Data Only

6.932	k star (bias corrected MLE)	7.292	k hat (MLE)
0.32	Theta star (bias corrected MLE)	0.304	Theta hat (MLE)
818	nu star (bias corrected)	860.4	nu hat (MLE)
		2.215	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

	Minimum	1	Mean	2.191
N	/laximum	8.9	Median	2
	SD	1.075	CV	0.49
k h	at (MLE)	7.472	k star (bias corrected MLE)	7.121
Theta h	at (MLE)	0.293	Theta star (bias corrected MLE)	0.308
nu h	at (MLE)	926.6	nu star (bias corrected)	883.1
Adjusted Level of Signific	cance (β)	0.0461		
Approximate Chi Square Value (8	83.06, α)	815.1	Adjusted Chi Square Value (883.06, β)	813.5
95% Gamma Approximate UCL (use whe	n n>=50)	2.374	95% Gamma Adjusted UCL (use when n<50)	2.378

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	2.193	SD (KM)	1.067
Variance (KM)	1.138	SE of Mean (KM)	0.137
k hat (KM)	4.227	k star (KM)	4.033
nu hat (KM)	524.1	nu star (KM)	500.1
theta hat (KM)	0.519	theta star (KM)	0.544
80% gamma percentile (KM)	3.021	90% gamma percentile (KM)	3.657
95% gamma percentile (KM)	4.242	99% gamma percentile (KM)	5.491

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (500.07, α)	449.2	Adjusted Chi Square Value (500.07, β)	448.1
95% Gamma Approximate KM-UCL (use when n>=50)	2.441	95% Gamma Adjusted KM-UCL (use when n<50)	2.448

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:58:39 PM

DL /2 Normal

From File Esperanza Mill_Rad_0-2.xls

Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk GOF Test	0.916	Shapiro Wilk Approximate Test Statistic
Detected Data Not Lognormal at 5% Significance Level	1.2547E-4	5% Shapiro Wilk P Value 4
Lilliefors GOF Test	0.133	Lilliefors Test Statistic
Detected Data Not Lognormal at 5% Significance Level	0.115	5% Lilliefors Critical Value

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	2.193	Mean in Log Scale	0.718
SD in Original Scale	1.073	SD in Log Scale	0.338
95% t UCL (assumes normality of ROS data)	2.421	95% Percentile Bootstrap UCL	2.44
95% BCA Bootstrap UCL	2.539	95% Bootstrap t UCL	2.589
95% H-UCL (Log ROS)	2.343		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.717	KM Geo Mean	2.047
KM SD (logged)	0.339	95% Critical H Value (KM-Log)	1.771
KM Standard Error of Mean (logged)	0.0437	95% H-UCL (KM -Log)	2.341
KM SD (logged)	0.339	95% Critical H Value (KM-Log)	1.771
KM Standard Error of Mean (logged)	0.0437		

DL/2 Statistics

DL/Z Nomiai	DL/2 Log-Transformed			
Mean in Original Scale	2.164	Mean in Log Scale	0.697	
SD in Original Scale	1.093	SD in Log Scale	0.36	
95% t UCL (Assumes normality)	2.396	95% H-Stat UCL	2.325	

DL/2 Log Transformed

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL	2.422	KM H-UCL	2.341
95% KM (BCA) UCL	2.471		

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:58:39 PM

From File Esperanza Mill_Rad_0-2.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (uranium-238)

CI	Ctationics
General	Statistics

Total Number of Observations	62	Number of Distinct Observations	30
		Number of Missing Observations	0
Minimum	0.9	Mean	2.229
Maximum	6.6	Median	1.9
SD	1.047	Std. Error of Mean	0.133
Coefficient of Variation	0.47	Skewness	1.968

Normal GOF Test

Shapiro Wilk Test Statistic 0.82	4 Shapiro Wilk GOF Test
5% Shapiro Wilk P Value 8.442E-	10 Data Not Normal at 5% Significance Level
Lilliefors Test Statistic 0.21	Lilliefors GOF Test
5% Lilliefors Critical Value 0.11	2 Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	2.451	95% Adjusted-CLT UCL (Chen-1995)	2.483
		95% Modified-t UCL (Johnson-1978)	2.457

Gamma GOF Test

Anderson-Darling Gamma GOF Test	1.573	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance	0.753	5% A-D Critical Value
164 Kolmogorov-Smirnov Gamma GOF Tes	0.164	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance	0.113	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	5.994	k star (bias corrected MLE)	5.715
Theta hat (MLE)	0.372	Theta star (bias corrected MLE)	0.39
nu hat (MLE)	743.3	nu star (bias corrected)	708.6
MLE Mean (bias corrected)	2.229	MLE Sd (bias corrected)	0.932
		Approximate Chi Square Value (0.05)	647.9
Adjusted Level of Significance	0.0461	Adjusted Chi Square Value	646.5

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50))	2.438	95% Adjusted Gamma UCL (use when n<50)	2.443
---	-------	--	-------

User Selected Options

Date/Time of Computation ProUCL 5.110/24/2018 4:58:39 PM

From File Esperanza Mill_Rad_0-2.xls

Full Precision OFF
Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.959	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk P Value	0.0866	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.135	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.112	Data Not Lognormal at 5% Significance Level

Data appear Approximate Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-0.105	Mean of logged Data	0.716
Maximum of Logged Data	1.887	SD of logged Data	0.402

Assuming Lognormal Distribution

95% H-UCL	2.433	90% Chebyshev (MVUE) UCL	2.565
95% Chebyshev (MVUE) UCL	2.724	97.5% Chebyshev (MVUE) UCL	2.945
99% Chebyshev (MVUE) UCL	3.378		

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	2.448	95% Jackknife UCL	2.451
95% Standard Bootstrap UCL	2.445	95% Bootstrap-t UCL	2.499
95% Hall's Bootstrap UCL	2.51	95% Percentile Bootstrap UCL	2.446
95% BCA Bootstrap UCL	2.473		
90% Chebyshev(Mean, Sd) UCL	2.628	95% Chebyshev(Mean, Sd) UCL	2.809
97.5% Chebyshev(Mean, Sd) UCL	3.06	99% Chebyshev(Mean, Sd) UCL	3.552

Suggested UCL to Use

95% Student's-t UCL	2.451	or 95% Modified-t UCL	2.457
or 95% H-UCL	2.433		

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ProUCL computes and outputs H-statistic based UCLs for historical reasons only.

H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples in the Technical Guide.

It is therefore recommended to avoid the use of H-statistic based 95% UCLs.

Use of nonparametric methods are preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:07:04 AM

From File Esperanza Mill_Rad_0-0.5.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (radium-226)

\sim		~-	_	C+		-	ics
(-	en	er	aп	21	aт	IST	ICS.

22	Number of Distinct Observations	30	Total Number of Observations
0	Number of Missing Observations		
2.254	Mean	0.54	Minimum
2.15	Median	5.8	Maximum
0.206	Std. Error of Mean	1.131	SD
1.101	Skewness	0.502	Coefficient of Variation

Normal GOF Test

Shapiro Wilk Test Statistic	0.924	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.927	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.121	Lilliefors GOF Test
5% Lilliefors Critical Value	0.159	Data appear Normal at 5% Significance Level

Data appear Approximate Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness)			
95% Student's-t UCL	2.604	95% Adjusted-CLT UCL (Chen-1995)	2.638
		95% Modified-t UCL (Johnson-1978)	2.611

Gamma GOF Test

A-D Test Statistic	0.494	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.75	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.13	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.161	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

3.603	k star (bias corrected MLE)	3.979	k hat (MLE)
0.625	Theta star (bias corrected MLE)	0.566	Theta hat (MLE)
216.2	nu star (bias corrected)	238.7	nu hat (MLE)
1.187	MLE Sd (bias corrected)	2.254	MLE Mean (bias corrected)
183.2	Approximate Chi Square Value (0.05)		
181.4	Adjusted Chi Square Value	0.041	Adjusted Level of Significance

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:07:04 AM

From File Esperanza Mill_Rad_0-0.5.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 2.66 95% Adjusted Gamma UCL (use when n<50) 2.686

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.941	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.927	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.166	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.159	Data Not Lognormal at 5% Significance Level

Data appear Approximate Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-0.616	Mean of logged Data	0.682
Maximum of Logged Data	1.758	SD of logged Data	0.55

Assuming Lognormal Distribution

95% H-UCL	2.819	90% Chebyshev (MVUE) UCL	3.011
95% Chebyshev (MVUE) UCL	3.339	97.5% Chebyshev (MVUE) UCL	3.795
99% Chehyshey (MVUF) UCI	4 69		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	2.593	95% Jackknife UCL	2.604
95% Standard Bootstrap UCL	2.583	95% Bootstrap-t UCL	2.673
95% Hall's Bootstrap UCL	2.77	95% Percentile Bootstrap UCL	2.594
95% BCA Bootstrap UCL	2.633		
90% Chebyshev(Mean, Sd) UCL	2.873	95% Chebyshev(Mean, Sd) UCL	3.153
97.5% Chebyshev(Mean, Sd) UCL	3.543	99% Chebyshev(Mean, Sd) UCL	4.307

Suggested UCL to Use

95% Student's-t UCL 2.604

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:07:04 AM

From File Esperanza Mill_Rad_0-0.5.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (radium-228)

General Statistics

30	Number of Distinct Observations	15
28	Number of Non-Detects	2
14	Number of Distinct Non-Detects	2
1.4	Minimum Non-Detect	2.4
3.7	Maximum Non-Detect	2.5
0.242	Percent Non-Detects	6.667%
2.046	SD Detects	0.492
2	CV Detects	0.24
1.542	Kurtosis Detects	3.553
0.692	SD of Logged Detects	0.219
	28 14 1.4 3.7 0.242 2.046 2 1.542	Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects CV Detects Kurtosis Detects

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.889	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.924	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.145	Lilliefors GOF Test
5% Lilliefors Critical Value	0.164	Detected Data appear Normal at 5% Significance Level

Detected Data appear Approximate Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	2.035	KM Standard Error of Mean	0.089
KM SD	0.474	95% KM (BCA) UCL	2.191
95% KM (t) UCL	2.186	95% KM (Percentile Bootstrap) UCL	2.186
95% KM (z) UCL	2.181	95% KM Bootstrap t UCL	2.224
90% KM Chebyshev UCL	2.302	95% KM Chebyshev UCL	2.423
97.5% KM Chebyshev UCL	2.591	99% KM Chebyshev UCL	2.921

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.407	Anderson-Darling GOF Test
5% A-D Critical Value	0.745	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.119	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.165	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:07:04 AM

From File Esperanza Mill_Rad_0-0.5.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Gamma Statistics on Detected Data Only

18.46	k star (bias corrected MLE)	20.64	k hat (MLE)
0.111	Theta star (bias corrected MLE)	0.0991	Theta hat (MLE)
1033	nu star (bias corrected)	1156	nu hat (MLE)
		0.040	NA (-l - t t -)

Mean (detects) 2.046

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	1.4	Mean	2.037
Maximum	3.7	Median	1.96
SD	0.476	CV	0.234
k hat (MLE)	21.94	k star (bias corrected MLE)	19.77
Theta hat (MLE)	0.0928	Theta star (bias corrected MLE)	0.103
nu hat (MLE)	1316	nu star (bias corrected)	1186
Adjusted Level of Significance (β)	0.041		
Approximate Chi Square Value (N/A, α)	1107	Adjusted Chi Square Value (N/A, β)	1103
95% Gamma Approximate UCL (use when n>=50)	2.182	95% Gamma Adjusted UCL (use when n<50)	2.19

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	2.035	SD (KM)	0.474
Variance (KM)	0.224	SE of Mean (KM)	0.089
k hat (KM)	18.46	k star (KM)	16.64
nu hat (KM)	1108	nu star (KM)	998.3
theta hat (KM)	0.11	theta star (KM)	0.122
80% gamma percentile (KM)	2.438	90% gamma percentile (KM)	2.695
95% gamma percentile (KM)	2.919	99% gamma percentile (KM)	3.371

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (998.29, α)	925.9	Adjusted Chi Square Value (998.29, β)	921.9
95% Gamma Approximate KM-UCL (use when n>=50)	2.194	95% Gamma Adjusted KM-UCL (use when n<50)	2.203

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:07:04 AM

From File Esperanza Mill_Rad_0-0.5.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk GOF Test	0.961	Shapiro Wilk Test Statistic
Detected Data appear Lognormal at 5% Significance Leve	0.924	5% Shapiro Wilk Critical Value
Lilliefors GOF Test	0.104	Lilliefors Test Statistic
Detected Data appear Lognormal at 5% Significance Leve	0.164	5% Lilliefors Critical Value

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	2.036	Mean in Log Scale	0.688
SD in Original Scale	0.476	SD in Log Scale	0.212
95% t UCL (assumes normality of ROS data)	2.184	95% Percentile Bootstrap UCL	2.181
95% BCA Bootstrap UCL	2.197	95% Bootstrap t UCL	2.236
95% H-UCL (Log ROS)	2.181		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.687	KM Geo Mean	1.987
KM SD (logged)	0.212	95% Critical H Value (KM-Log)	1.76
KM Standard Error of Mean (logged)	0.0401	95% H-UCL (KM -Log)	2.178
KM SD (logged)	0.212	95% Critical H Value (KM-Log)	1.76
KM Standard Error of Mean (logged)	0.0401		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	1.992	Mean in Log Scale	0.659
SD in Original Scale	0.518	SD in Log Scale	0.245
95% t UCL (Assumes normality)	2.152	95% H-Stat UCL	2.16

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Detected Data appear Approximate Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 2.186

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:07:04 AM

From File Esperanza Mill_Rad_0-0.5.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (uranium-234)

General	Statistics
---------	------------

Total Number of Observations	30	Number of Distinct Observations	15
		Number of Missing Observations	0
Minimum	1	Mean	1.927
Maximum	3.7	Median	1.8
SD	0.583	Std. Error of Mean	0.106
Coefficient of Variation	0.303	Skewness	1.459

Normal GOF Test

Shapiro Wilk Test Statistic	0.872	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.927	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.185	Lilliefors GOF Test
5% Lilliefors Critical Value	0.159	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	2.108	95% Adjusted-CLT UCL (Chen-1995)	2.132

95% Modified-t UCL (Johnson-1978) 2.112

Gamma GOF Test

A-D Test Statistic	0.845	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.745	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.15	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.16	Detected data appear Gamma Distributed at 5% Significance Level

Detected data follow Appr. Gamma Distribution at 5% Significance Level

Gamma Statistics

k hat (MLE)	13.1	k star (bias corrected MLE)	11.81
Theta hat (MLE)	0.147	Theta star (bias corrected MLE)	0.163
nu hat (MLE)	786.1	nu star (bias corrected)	708.9
MLE Mean (bias corrected)	1.927	MLE Sd (bias corrected)	0.561
		Approximate Chi Square Value (0.05)	648.1
Adjusted Level of Significance	0.041	Adjusted Chi Square Value	644.7

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:07:04 AM

From File Esperanza Mill_Rad_0-0.5.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 2.107 95% Adjusted Gamma UCL (use when n<50) 2.118

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.954	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.927	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.131	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.159	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0	Mean of logged Data	0.617
Maximum of Logged Data	1.308	SD of logged Data	0.276

Assuming Lognormal Distribution

95% H-UCL	2.111	90% Chebyshev (MVUE) UCL	2.218
95% Chebyshev (MVUE) UCL	2.352	97.5% Chebyshev (MVUE) UCL	2.537
99% Chebyshev (MVUE) UCL	2.901		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	2.102	95% Jackknife UCL	2.108
95% Standard Bootstrap UCL	2.102	95% Bootstrap-t UCL	2.159
95% Hall's Bootstrap UCL	2.175	95% Percentile Bootstrap UCL	2.11
95% BCA Bootstrap UCL	2.14		
90% Chebyshev(Mean, Sd) UCL	2.246	95% Chebyshev(Mean, Sd) UCL	2.391
97.5% Chebyshev(Mean, Sd) UCL	2.591	99% Chebyshev(Mean, Sd) UCL	2.986

Suggested UCL to Use

95% Adjusted Gamma UCL 2.118

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:07:04 AM

From File Esperanza Mill_Rad_0-0.5.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Result (uranium-235)

General Statistics

Total Number of Observations	30	Number of Distinct Observations	22
Number of Detects	21	Number of Non-Detects	9
Number of Distinct Detects	16	Number of Distinct Non-Detects	9
Minimum Detect	0.055	Minimum Non-Detect	0.052
Maximum Detect	0.2	Maximum Non-Detect	0.11
Variance Detects	0.00202	Percent Non-Detects	30%
Mean Detects	0.113	SD Detects	0.045
Median Detects	0.096	CV Detects	0.397
Skewness Detects	0.701	Kurtosis Detects	-0.514
Mean of Logged Detects	-2.25	SD of Logged Detects	0.393

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.911	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.908	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.174	Lilliefors GOF Test
5% Lilliefors Critical Value	0.188	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.0977	KM Standard Error of Mean	0.00838
KM SD	0.0443	95% KM (BCA) UCL	0.112
95% KM (t) UCL	0.112	95% KM (Percentile Bootstrap) UCL	0.112
95% KM (z) UCL	0.111	95% KM Bootstrap t UCL	0.113
90% KM Chebyshev UCL	0.123	95% KM Chebyshev UCL	0.134
97.5% KM Chebyshev UCL	0.15	99% KM Chebyshev UCL	0.181

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.371	Anderson-Darling GOF Test
5% A-D Critical Value	0.744	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.141	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.19	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:07:04 AM

From File Esperanza Mill_Rad_0-0.5.xls

Full Precision OFF
Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Gamma Statistics on Detected Data Only

6.011	k star (bias corrected MLE)	6.976	k hat (MLE)
0.0189	Theta star (bias corrected MLE)	0.0163	Theta hat (MLE)
252.5	nu star (bias corrected)	293	nu hat (MLE)
		0.113	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.0943	Mean	0.0198	Minimum
0.0855	Median	0.2	Maximum
0.513	CV	0.0483	SD
3.611	k star (bias corrected MLE)	3.987	k hat (MLE)
0.0261	Theta star (bias corrected MLE)	0.0236	Theta hat (MLE)
216.7	nu star (bias corrected)	239.2	nu hat (MLE)
		0.041	Adjusted Level of Significance (β)
181.8	Adjusted Chi Square Value (216.66, β)	183.6	Approximate Chi Square Value (216.66, α)
0.112	95% Gamma Adjusted UCL (use when n<50)	0.111	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.0977	SD (KM)	0.0443
Variance (KM)	0.00196	SE of Mean (KM)	0.00838
k hat (KM)	4.874	k star (KM)	4.409
nu hat (KM)	292.4	nu star (KM)	264.5
theta hat (KM)	0.02	theta star (KM)	0.0222
80% gamma percentile (KM)	0.133	90% gamma percentile (KM)	0.16
95% gamma percentile (KM)	0.185	99% gamma percentile (KM)	0.237

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (264.52, α)	227.9	Adjusted Chi Square Value (264.52, β)	225.9
95% Gamma Approximate KM-UCL (use when n>=50)	0.113	95% Gamma Adjusted KM-UCL (use when n<50)	0.114

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.957	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.908	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.117	Lilliefors GOF Test
5% Lilliefors Critical Value	0.188	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:07:04 AM

From File Esperanza Mill_Rad_0-0.5.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.0964	Mean in Log Scale	-2.441
SD in Original Scale	0.046	SD in Log Scale	0.452
95% t UCL (assumes normality of ROS data)	0.111	95% Percentile Bootstrap UCL	0.11
95% BCA Bootstrap UCL	0.112	95% Bootstrap t UCL	0.114
95% H-UCL (Log ROS)	0.113		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Geo Mean 0.089		-2.418	KM Mean (logged)
ritical H Value (KM-Log) 1.889	95% Critical F	0.421	KM SD (logged)
95% H-UCL (KM -Log) 0.113	95%	0.081	KM Standard Error of Mean (logged)
ritical H Value (KM-Log) 1.889	95% Critical F	0.421	KM SD (logged)
		0.081	KM Standard Error of Mean (logged)

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed			
Mean in Original Scale	0.0914	Mean in Log Scale	-2.548	
SD in Original Scale	0.0508	SD in Log Scale	0.579	
95% t UCL (Assumes normality)	0.107	95% H-Stat UCL	0.115	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.112

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:07:04 AM

From File Esperanza Mill_Rad_0-0.5.xls

Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

Result (uranium-238)

Total Number of Observations		30	Number of Distinct Observations	15
			Number of Missing Observations	0
	Minimum	0.92	Mean	1.931
	Maximum	3.5	Median	1.8
	SD	0.547	Std. Error of Mean	0.0999
	Coefficient of Variation	0.283	Skewness	1.226

Normal GOF Test

Shapiro Wilk Test Statistic	0.895	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.927	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.222	Lilliefors GOF Test
5% Lilliefors Critical Value	0.159	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	2.1	95% Adjusted-CLT UCL (Chen-1995)	2.119

95% Modified-t UCL (Johnson-1978) 2.104

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.796	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.745	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.188	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.16	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	14.14	k star (bias corrected MLE)	12.75
Theta hat (MLE)	0.136	Theta star (bias corrected MLE)	0.151
nu hat (MLE)	848.7	nu star (bias corrected)	765.1
MLE Mean (bias corrected)	1.931	MLE Sd (bias corrected)	0.541
		Approximate Chi Square Value (0.05)	701.9
Adjusted Level of Significance	0.041	Adjusted Chi Square Value	698.5

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 2.104 95% Adjusted Gamma UCL (use when n<50) 2.115

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/25/2018 10:07:04 AM

From File Esperanza Mill_Rad_0-0.5.xls

Minimum of Logged Data

99% Chebyshev (MVUE) UCL

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.953	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.927	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.171	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.159	Data Not Lognormal at 5% Significance Level

Data appear Approximate Lognormal at 5% Significance Level

Lognormal Statistics

-0.0834

Maximum of Logged Data	1.253	SD of logged Data	0.27
Assum	ning Lognormal Distribution		
95% H-UCL	2.113	90% Chebyshev (MVUE) UCL	2.219
95% Chebyshev (MVUE) UCL	2.35	97.5% Chebyshev (MVUE) UCL	2.531

Mean of logged Data

0.622

Nonparametric Distribution Free UCL Statistics

2.888

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	2.095	95% Jackknife UCL	2.1
95% Standard Bootstrap UCL	2.094	95% Bootstrap-t UCL	2.131
95% Hall's Bootstrap UCL	2.143	95% Percentile Bootstrap UCL	2.09
95% BCA Bootstrap UCL	2.12		
90% Chebyshev(Mean, Sd) UCL	2.23	95% Chebyshev(Mean, Sd) UCL	2.366
97.5% Chebyshev(Mean, Sd) UCL	2.555	99% Chebyshev(Mean, Sd) UCL	2.925

Suggested UCL to Use

95% Student's-t UCL	2.1	or 95% Modified-t UCL	2.104
or 95% H-UCL	2.113		

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ProUCL computes and outputs H-statistic based UCLs for historical reasons only.

H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples in the Technical Guide.

It is therefore recommended to avoid the use of H-statistic based 95% UCLs.

Use of nonparametric methods are preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution.

APPENDIX C

Excess Lifetime Cancer Risk and Hazard Index Calculations (Chemicals) using 95% UCL EPCs

Appendix C, Table C-1 (RME)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Current/Future Outdoor Commercial/Industrial Worker

Former CLEAR Plant - Shallow Soil/Sediment (0 to 0.5 ft bgs), Exposed Samples Only

Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

					CANCER RISK					NON-CANO			
	_			Ro	ute-Specific	Risk		Percent	Rout	e-Specific H	lazard		Percent
Constituent	Cancer Group [a]	EPCs (mg/kg)	PEF [b] (m³/kg)	Oral	Dermal	Inhalation	Total ELCR	Total ELCR	Oral	Dermal	Inhalation	Total Hazard	Total HI
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics Arsenic	А	3.01E+01	1.40E+09 P	4.5E-06	3.1E-06	6.1E-09	7.5E-06	100%	3.1E-02	2.1E-02	2.9E-04	5.2E-02	18%
Copper Lead	D B2	1.23E+04 2.67E+02	1.40E+09 P 1.40E+09 P	NA NA	NA NA	NA NA	- -	.0070	2.4E-01 NA	– NA	NA NA	2.4E-01 –	82%
				4E-06	3E-06	6E-09			0.3	0.02	0.0003		
Total						Total ELCR	8E-06]			Total HI	0.3]
					Group Group	A Total ELCR B Total ELCR C Total ELCR D Total ELCR	8E-06 - - -						

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

-: not applicable.

%: percent.

ABSd: dermal absorption factor.

CSFa: dermal cancer slope factor.

CSFo: oral cancer slope factor.

ELCR: excess lifetime cancer risk, dermal pathway.

ELCR: excess lifetime cancer risk, inhalation pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

EPCs: exposure point concentration in soil/sediment.

ft bgs: feet below ground surface.

HI: hazard index.

HQd: hazard quotient, dermal pathway.
HQi: hazard quotient, inhalation pathway.
HQo: hazard quotient, oral pathway.
HQo: hazard quotient, oral pathway.
IUR: inhalation unit risk.

m³/kg: cubic meter(s) per kilogram.

NA: not available or not applicable.
RBA: relative bioavailability.
RfC: reference concentration.
RfDa: dermal reference dose.

mg/kg: milligram(s) per kilogram. RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

ELCRo = (EPCs x 1 x 100 x 225 x 25 x RBA x CSFo)/(1,000,000 x 80 x 28470)

ELCRd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25 x CSFa)/(1,000,000 x 80 x 28470)

ELCRi = (EPCs / PEF] x 8 x 0.042 x 225 x 25 x IUR)/(28470)

HQo = (EPCs x 1 x 100 x 225 x 25 x RBA)/(1,000,000 x 80 x 9125 x RfDo)

HQd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25)/(1,000,000 x 80 x 9125 x RfDa)

HQi = (EPCs / PEF] x 8 x 0.042 x 225 x 25)/(9125 x RfC)

Appendix C, Table C-2 (Site-Specific Evaluation)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Current/Future Outdoor Commercial/Industrial Worker

Former CLEAR Plant - Shallow Soil/Sediment (0 to 0.5 ft bgs), Exposed Samples Only Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita

Sierrita Mine, Green Valley, Arizona

				CANCER RISK Route-Specific Risk						NON-CANCER HAZARD Route-Specific Hazard			
	Cancer	EPCs	PEF [b]	Rou	te-Specific	RISK	Total	Percent Total	Route	e-Specific	Hazard	Total	Percent Total
Constituent	Group [a]	(mg/kg)	(m³/kg)	Oral	Dermal	Inhalation	ELCR	ELCR	Oral	Dermal	Inhalation	Hazard	н
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics													
Arsenic	Α	3.01E+01	1.40E+09 P	4.5E-06	3.1E-06	3.0E-09	7.5E-06	100%	3.1E-02	2.1E-02	1.5E-04	5.2E-02	18%
Copper	D	1.23E+04	1.40E+09 P	NA	NA	NA	_		2.4E-01	_	NA	2.4E-01	82%
Lead	B2	2.67E+02	1.40E+09 P	NA	NA	NA	-		NA	NA	NA	-	
				4E-06	3E-06	3E-09			0.3	0.02	0.0001		
Total						Total ELCR	8E-06]			Total HI	0.3]
					•	Total ELCR	8E-06]					
					•	Total ELCR	_						
					•	Total ELCR		ļ					
					Group D	Total ELCR	_	J					

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

-: not applicable.

ELCRd: excess lifetime cancer risk, dermal pathway.

ELCRi: excess lifetime cancer risk, inhalation pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

EPCs: exposure point concentration in soil/sediment.

CSFo: oral cancer slope factor. ft bas: feet below ground surface.

ELCR: excess lifetime cancer risk. HI: hazard index.

HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway. HQo: hazard quotient, oral pathway.

IUR: inhalation unit risk.

m³/kg: cubic meter(s) per kilogram. mg/kg: milligram(s) per kilogram. NA: not available or not applicable.

RBA: relative bioavailability. RfC: reference concentration. RfDa: dermal reference dose. RfDo: oral reference dose.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

ELCRo = (EPCs x 1 x 100 x 225 x 25 x RBA x CSFo) / (1,000,000 x 80 x 28470) HQo = (EPCs x 1 x 100 x 225 x 25 x RBA) / (1,000,000 x 80 x 9125 x RfDo) ELCRd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25 x CSFa) / (1,000,000 x 80 x 28470) HQd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25) / (1,000,000 x 80 x 9125 x RfDa) ELCRi = (EPCs / PEF] x 4 x 0.042 x 225 x 25 x IUR) / (28470) HQi = (EPCs / PEF] x 4 x 0.042 x 225 x 25) / (9125 x RfC)

Appendix C, Table C-3 (RME)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Adolescent Trespasser

Former CLEAR Plant - Shallow Soil (0 to 0.5 ft bgs), Exposed Samples Only

Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita Sierrita Mine. Green Valley. Arizona

				Ro	CANC ute-Specific	ER RISK Risk		Percent	Rout	NONCANC te-Specific H		Percent	
Constituent	Cancer Group [a]	EPCs (mg/kg)	PEF [b] (m³/kg)	Oral	Dermal	Inhalation	Total ELCR	Total ELCR	Oral	Dermal	Inhalation	Total Hazard	Total HI
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics													
Arsenic	Α	3.01E+01	1.40E+09 P	3.7E-07	1.7E-07	7.0E-11	5.5E-07	100%	6.5E-03	3.0E-03	8.5E-06	9.5E-03	16%
Copper	D	1.23E+04	1.40E+09 P	NA	NA	NA	_		5.0E-02	_	NA	5.0E-02	84%
Lead	B2	2.67E+02	1.40E+09 P	NA	NA	NA	-		NA	NA	NA	_	
				4E-07	2E-07	7E-11			0.06	0.003	0.000009		
Total						Total ELCR	5E-07				Total HI	0.06	ĺ
					Group Group	A Total ELCR B Total ELCR C Total ELCR D Total ELCR	5E-07 - - -						

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

-: not applicable.

%: percent.

ABSd: dermal absorption factor.

CSFa: dermal cancer slope factor.

ELCRd: excess lifetime cancer risk, dermal pathway.

ELCRi: excess lifetime cancer risk, inhalation pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

EPCs: exposure point concentration in soil/sediment.

CSFo: oral cancer slope factor.

ft bgs: feet below ground surface.

ELCR: excess lifetime cancer risk. HI: hazard index.

HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway. HQo: hazard quotient, oral pathway. IUR: inhalation unit risk. m³/kg: cubic meter(s) per kilogram.

mg/kg: milligram(s) per kilogram.

NA: not available or not applicable. RBA: relative bioavailability. RfC: reference concentration. RfDa: dermal reference dose.

RME: reasonable maximum exposure.

RfDo: oral reference dose.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

ELCRo = (EPCs x 1 x 50 x 52 x 10 x RBA x CSFo) / (1,000,000 x 44 x 28470) ELCRd = (EPCs x 4400 x 0.07 x ABSd x 52 x 10 x CSFa) / (1,000,000 x 44 x 28470) ELCRi = ([EPCs / PEF] x 1 x 0.042 x 52 x 10 x IUR) / (28470) HQo = (EPCs x 1 x 50 x 52 x 10 x RBA) / (1,000,000 x 44 x 3650 x RfDo) HQd = (EPCs x 4400 x 0.07 x ABSd x 52 x 10) / (1,000,000 x 44 x 3650 x RfDa) HQi = ([EPCs / PEF] x 1 x 0.042 x 52 x 10) / (3650 x RfC)

Appendix C, Table C-4 (RME)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Outdoor Commercial/Industrial Worker

Former CLEAR Plant - Shallow Soil/Sediment (0 to 0.5 ft bgs), All Samples

Baseline Human Health Risk Assessment

Sierrita Mine

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

				CANCER RISK Route-Specific Risk				Percent	Rout	NON-CAN te-Specific H	CER HAZARD		Percent
Constituent	Cancer Group [a]	EPCs (mg/kg)	PEF [b] (m³/kg)	Oral	Dermal	Inhalation	Total ELCR	Total ELCR	Oral	Dermal	Inhalation	Total Hazard	Total HI
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics Arsenic Copper Lead	A D B2	9.58E+00 7.96E+03 2.58E+02	1.40E+09 P 1.40E+09 P 1.40E+09 P	1.4E-06 NA NA	9.8E-07 NA NA	1.9E-09 NA NA	2.4E-06 - -	100%	9.8E-03 1.5E-01 NA	6.8E-03 - NA	9.4E-05 NA NA	1.7E-02 1.5E-01 –	10% 90%
Total				1E-06	1E-06	2E-09 Total ELCR	2E-06		0.2	0.007	0.00009 Total HI	0.2	
					Group Group	A Total ELCR B Total ELCR C Total ELCR D Total ELCR	2E-06 - - -						•

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

-: not applicable. ELCRd: excess lifetime cancer risk, dermal pathway. %: percent. ELCRi: excess lifetime cancer risk, inhalation pathway. ABSd: dermal absorption factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFa: dermal cancer slope factor. EPCs: exposure point concentration in soil/sediment. CSFo: oral cancer slope factor. ft bgs: feet below ground surface.

FLCR: excess lifetime cancer risk HI: hazard index HQd: hazard quotient, dermal pathway. NA: not available or not applicable. HQi: hazard quotient, inhalation pathway. RBA: Relative Bioavailability. HQo: hazard quotient, oral pathway. RfC: reference concentration. IUR: inhalation unit risk. RfDa: dermal reference dose

m³/kg: cubic meter(s) per kilogram. RfDo: oral reference dose.

mg/kg: milligram(s) per kilogram. RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

ELCRo = (EPCs x 1 x 100 x 225 x 25 x RBA x CSFo) / (1,000,000 x 80 x 28470) ELCRd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25 x CSFa) / (1,000,000 x 80 x 28470) ELCRi = ([EPCs / PEF] x 8 x 0.042 x 225 x 25 x IUR) / (28470)

HQo = (EPCs x 1 x 100 x 225 x 25 x RBA) / (1,000,000 x 80 x 9125 x RfDo) HQd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25) / (1,000,000 x 80 x 9125 x RfDa) $HQi = ([EPCs / PEF] \times 8 \times 0.042 \times 225 \times 25) / (9125 \times RfC)$

Appendix C, Table C-5 (Site-Specific Evaluation)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Outdoor Commercial/Industrial Worker Former CLEAR Plant - Shallow Soil/Sediment (0 to 0.5 ft bgs), All Samples

Baseline Human Health Risk Assessment

Sierrita Mine

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

					CANO	CER RISK				NON-CAN	CER HAZARI)	
				Rou	te-Specific	Risk		Percent	Route	-Specific	Hazard		Percent
Canatituant	Cancer	EPCs	PEF [b]	Oral	Dawaal	Inhalation	Total	Total ELCR	Ovel	Darmal	Inhalation	Total	Total HI
Constituent	Group [a]	(mg/kg)	(m³/kg)	Oral	Dermal	Inhalation	ELCR	ELCK	Oral	Dermal	Inhalation	Hazard	HI
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics													
Arsenic	Α	9.58E+00	1.40E+09 P	1.4E-06	9.8E-07	9.7E-10	2.4E-06	100%	9.8E-03	6.8E-03	4.7E-05	1.7E-02	10%
Copper	D	7.96E+03	1.40E+09 P	NA	NA	NA	_		1.5E-01	_	NA	1.5E-01	90%
Lead	B2	2.58E+02	1.40E+09 P	NA	NA	NA	-		NA	NA	NA	_	
				1E-06	1E-06	1E-09			0.2	0.007	0.00005		
Total						Total ELCR	2E-06				Total HI	0.2]
					Group A	Total ELCR	2E-06						
						Total ELCR	_						
					•	Total ELCR							
					Group D	Total ELCR	_						

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

-: not applicable. ELCRd: excess lifetime cancer risk, dermal pathway. %: percent. ELCRi: excess lifetime cancer risk, inhalation pathway. ABSd: dermal absorption factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFa: dermal cancer slope factor. EPCs: exposure point concentration in soil/sediment.

CSFo: oral cancer slope factor. ft bgs: feet below ground surface. ELCR: excess lifetime cancer risk. HI: hazard index.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

HQd: hazard quotient, dermal pathway. NA: not available or not applicable. HQi: hazard quotient, inhalation pathway. RBA: Relative Bioavailability. HQo: hazard quotient, oral pathway. RfC: reference concentration. IUR: inhalation unit risk. RfDa: dermal reference dose. m³/kg: cubic meter(s) per kilogram.

mg/kg: milligram(s) per kilogram.

RfDo: oral reference dose.

Equations:

ELCRo = (EPCs x 1 x 100 x 225 x 25 x RBA x CSFo) / (1,000,000 x 80 x 28470) $HQo = (EPCs \times 1 \times 100 \times 225 \times 25 \times RBA) / (1,000,000 \times 80 \times 9125 \times RfDo)$ ELCRd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25 x CSFa) / (1,000,000 x 80 x 28470) HQd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25) / (1,000,000 x 80 x 9125 x RfDa) ELCRi = ([EPCs / PEF] x 4 x 0.042 x 225 x 25 x IUR) / (28470) HQi = ([EPCs / PEF] x 4 x 0.042 x 225 x 25) / (9125 x RfC)

Appendix C, Table C-6 (RME)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Adolescent Trespasser

Former CLEAR Plant - Shallow Soil/Sediment (0 to 0.5 ft bgs), All Samples

Baseline Human Health Risk Assessment

Sierrita Mine

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

					CANO	CER RISK				NONCAN	ICER HAZARD]
				Rou	te-Specific	Risk		Percent	Rout	e-Specific	Hazard		Percent
Constituent	Cancer Group [a]	EPCs (mg/kg)	PEF [b] (m³/kg)	Oral	Dermal	Inhalation	Total ELCR	Total ELCR	Oral	Dermal	Inhalation	Total Hazard	Total HI
			. 0,	ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics		0.505.00	4 405 00 5	4.05.07		0.05.44	4 75 07	1000/	0.45.00	0.55.04	0.75.00	0.05.00	00/
Arsenic	Α	9.58E+00	1.40E+09 P	1.2E-07	5.5E-08	2.2E-11	1.7E-07	100%	2.1E-03	9.5E-04	2.7E-06	3.0E-03	9%
Copper	D	7.96E+03	1.40E+09 P	NA	NA	NA	_		3.2E-02	_	NA	3.2E-02	91%
Lead	B2	2.58E+02	1.40E+09 P	NA	NA	NA	_		NA	NA	NA	_	
				1E-07	6E-08	2E-11			0.03	0.001	0.000003		
Total						Total ELCR	2E-07]			Total HI	0.04]
					Group B Group C	Total ELCR Total ELCR Total ELCR	2E-07 - -						
					•	Total ELCR Total ELCR		}					

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

-: not applicable. ELCRd: excess lifetime cancer risk, dermal pathway. %: percent. ELCRi: excess lifetime cancer risk, inhalation pathway. ABSd: dermal absorption factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFa: dermal cancer slope factor. EPCs: exposure point concentration in soil/sediment.

CSFo: oral cancer slope factor. ft bas: feet below ground surface.

ELCR: excess lifetime cancer risk. HI: hazard index. HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway.

HQo: hazard quotient, oral pathway.

IUR: inhalation unit risk.

m³/kg: cubic meter(s) per kilogram.

mg/kg: milligram(s) per kilogram.

NA: not available or not applicable.

RBA: Relative Bioavailability. RfC: reference concentration. RfDa: dermal reference dose

RfDo: oral reference dose.

RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

ELCRo = (EPCs x 1 x 50 x 52 x 10 x RBA x CSFo)/(1,000,000 x 44 x 28470) $HQo = (EPCs \times 1 \times 50 \times 52 \times 10 \times RBA) / (1,000,000 \times 44 \times 3650 \times RfDo)$ ELCRd = (EPCs x 4400 x 0.07 x ABSd x 52 x 10 x CSFa) / (1,000,000 x 44 x 28470) $HQd = (EPCs \times 4400 \times 0.07 \times ABSd \times 52 \times 10) / (1,000,000 \times 44 \times 3650 \times RfDa)$ ELCRi = $([EPCs / PEF] \times 1 \times 0.042 \times 52 \times 10 \times IUR) / (28470)$ $HQi = ([EPCs / PEF] \times 1 \times 0.042 \times 52 \times 10) / (3650 \times RfC)$

Appendix C, Table C-7 (RME)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Outdoor Commercial/Industrial Worker Former CLEAR Plant - Shallow and Deep Soil/Sediment (0 to 15 ft bgs)

Baseline Human Health Risk Assessment

Sierrita Mine

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

				Rou	CANC ute-Specific	CER RISK Risk		Percent	Rout	NONCAN te-Specific F	CER HAZARD lazard		Percent
Constituent	Cancer Group [a]	EPCs (mg/kg)	PEF [b] (m³/kg)	Oral	Dermal	Inhalation	Total ELCR	Total ELCR	Oral	Dermal	Inhalation	Total Hazard	Total HI
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics									_				
Arsenic	Α	9.99E+00	1.40E+09 P	1.5E-06	1.0E-06	2.0E-09	2.5E-06	100%	1.0E-02	7.1E-03	9.8E-05	1.7E-02	11%
Copper	D	7.39E+03	1.40E+09 P	NA	NA	NA	_		1.4E-01	_	NA	1.4E-01	89%
Lead	B2	2.09E+02	1.40E+09 P	NA	NA	NA	_		NA	NA	NA	_	
				1E-06	1E-06	2E-09			0.2	0.007	0.0001		
Total						Total ELCR	3E-06				Total HI	0.2	
					Group	A Total ELCR	3E-06						
					•	B Total ELCR	_						
						C Total ELCR	_						
					Group	D Total ELCR	_						

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

-: not applicable.

%: percent.

ABSd: dermal absorption factor.

ELCRd: excess lifetime cancer risk, dermal pathway.

ELCRi: excess lifetime cancer risk, inhalation pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

EPCs: exposure point concentration in soil/sediment.

CSFo: oral cancer slope factor. ft bgs: feet below ground surface.

ELCR: excess lifetime cancer risk. HI: hazard index.

HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway. HQo: hazard quotient, oral pathway. IUR: inhalation unit risk. m³/kg: cubic meter(s) per kilogram.

m⁻/kg: cubic meter(s) per kilogram mg/kg: milligram(s) per kilogram. RBA: Relative Bioavailability.
RfC: reference concentration.
RfDa: dermal reference dose.
RfDo: oral reference dose.

NA: not available or not applicable.

RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

ELCRo = (EPCs x 1 x 100 x 225 x 25 x RBA x CSFo) / (1,000,000 x 80 x 28470) ELCRd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25 x CSFa) / (1,000,000 x 80 x 28470) ELCRi = ([EPCs / PEF] x 8 x 0.042 x 225 x 25 x IUR) / (28470) HQo = (EPCs x 1 x 100 x 225 x 25 x RBA) / (1,000,000 x 80 x 9125 x RfDo) HQd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25) / (1,000,000 x 80 x 9125 x RfDa) HQi = ([EPCs / PEF] x 8 x 0.042 x 225 x 25) / (9125 x RfC)

Appendix C, Table C-8 (Site-Specific Evaluation)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Outdoor Commercial/Industrial Worker Former CLEAR Plant - Shallow and Deep Soil/Sediment (0 to 15 ft bgs)

Baseline Human Health Risk Assessment

Sierrita Mine

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

				Rou	CANO te-Specific	CER RISK		Percent	Route	NONCAN Specific	CER HAZARD)	Percent
Constituent	Cancer Group [a]	EPCs (mg/kg)	PEF [b] (m³/kg)	Oral	Dermal	Inhalation	Total ELCR	Total ELCR	Oral	Dermal	Inhalation	Total Hazard	Total HI
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics						_							
Arsenic	Α	9.99E+00	1.40E+09 P	1.5E-06	1.0E-06	1.0E-09	2.5E-06	100%	1.0E-02	7.1E-03	4.9E-05	1.7E-02	11%
Copper	D	7.39E+03	1.40E+09 P	NA	NA	NA	_		1.4E-01	_	NA	1.4E-01	89%
Lead	B2	2.09E+02	1.40E+09 P	NA	NA	NA	_		NA	NA	NA	_	
				1E-06	1E-06	1E-09			0.2	0.007	0.0001		
Total						Total ELCR	3E-06]			Total HI	0.2]
					Group A	Total ELCR	3E-06]					
					•	Total ELCR	_	1					
					Group C	Total ELCR	_						
					Group D	Total ELCR	_	J					

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

-: not applicable.

State of the properties of t

CSFo: oral cancer slope factor. ft bgs: feet below ground surface.

ELCR: excess lifetime cancer risk. HI: hazard index.

HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway. HQo: hazard quotient, oral pathway.

IUR: inhalation unit risk.

m³/kg: cubic meter(s) per kilogram. mg/kg: milligram(s) per kilogram. NA: not available or not applicable. RBA: Relative Bioavailability. RfC: reference concentration. RfDa: dermal reference dose.

RfDo: oral reference dose.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

ELCRo = (EPCs x 1 x 100 x 225 x 25 x RBA x CSFo) / (1,000,000 x 80 x 28470) HQo = (EPCs x 1 x 100 x 225 x 25 x RBA) / (1,000,000 x 80 x 9125 x RfDo) ELCRd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25 x CSFa) / (1,000,000 x 80 x 28470) HQd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25) / (1,000,000 x 80 x 9125 x RfDa) ELCRi = (EPCs / PEF] x 4 x 0.042 x 225 x 25 x 1UR) / (28470) HQi = (EPCs / PEF] x 4 x 0.042 x 225 x 25) / (9125 x RfC)

Appendix C, Table C-9 (RME)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Adolescent Trespasser

Former CLEAR Plant - Shallow and Deep Soil/Sediment (0 to 15 ft bgs) Baseline Human Health Risk Assessment

Sierrita Mine

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

					CANO	CER RISK				NON-CAN	ICER HAZARD]
				Rou	te-Specific	Risk		Percent	Rout	te-Specific	Hazard		Percent
Constituent	Cancer Group [a]	EPCs (mg/kg)	PEF [b] (m³/kg)	Oral	Dermal	Inhalation	Total ELCR	Total ELCR	Oral	Dermal	Inhalation	Total Hazard	Total HI
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics													
Arsenic	Α	9.99E+00	1.40E+09 P	1.2E-07	5.7E-08	2.3E-11	1.8E-07	100%	2.2E-03	1.0E-03	2.8E-06	3.2E-03	10%
Copper	D	7.39E+03	1.40E+09 P	NA	NA	NA	_		3.0E-02	_	NA	3.0E-02	90%
Lead	B2	2.09E+02	1.40E+09 P	NA	NA	NA	_		NA	NA	NA	-	
				1E-07	6E-08	2E-11			0.03	0.001	0.000003		
Total						Total ELCR	2E-07]			Total HI	0.03]
					Group A	Total ELCR	2E-07]					
					Group B	Total ELCR	_						
					•	Total ELCR							
					Group D	Total ELCR	_	j					

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

FLCR: excess lifetime cancer risk

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

–: not applicable.	ELCRd: excess lifetime cancer risk, dermal pathway.
%: percent.	ELCRi: excess lifetime cancer risk, inhalation pathway.
ABSd: dermal absorption factor.	ELCRo: excess lifetime cancer risk, oral pathway.
CSFa: dermal cancer slope factor.	EPCs: exposure point concentration in soil/sediment.
CSFo: oral cancer slope factor.	ft bgs: feet below ground surface.

HI: hazard index.

HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway. HQo: hazard quotient, oral pathway. IUR: inhalation unit risk. m³/kg: cubic meter(s) per kilogram. mg/kg: milligram(s) per kilogram. NA: not available or not applicable.
RBA: Relative Bioavailability.
RfC: reference concentration.
RfDa: dermal reference dose.
RfDo: oral reference dose.

RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

Appendix C, Table C-10 (RME)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Construction Worker

Former CLEAR Plant - Shallow and Deep Soil/Sediment (0 to 15 ft bgs) Baseline Human Health Risk Assessment

Sierrita Mine

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

				Roi	CANO ute-Specific	CER RISK Risk		Percent	Rout	NONCAN e-Specific F	CER HAZARD		Percent
Constituent	Cancer Group [a]	EPCs (mg/kg)	PEF [b] (m³/kg)	Oral	Dermal	Inhalation	Total ELCR	Total ELCR	Oral	Dermal	Inhalation	Total Hazard	Total HI
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics													
Arsenic	Α	9.99E+00	1.40E+09 P	2.2E-07	9.1E-08	9.0E-11	3.1E-07	100%	3.8E-02	1.6E-02	1.1E-04	5.3E-02	9%
Copper	D	7.39E+03	1.40E+09 P	NA	NA	NA	_		5.2E-01	_	NA	5.2E-01	91%
Lead	B2	2.09E+02	1.40E+09 P	NA	NA	NA	_		NA	NA	NA	_	
				2E-07	9E-08	9E-11			0.6	0.02	0.0001		
Total						Total ELCR	3E-07]			Total HI	0.6]
					Group A Total ELCR Group B Total ELCR Group C Total ELCR Group D Total ELCR								

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

-: not applicable.

%: percent.

ABSd: dermal absorption factor.

CSFa: dermal cancer slope factor.

CSFo: oral cancer slope factor.

ELCRd: excess lifetime cancer risk, dermal pathway.

ELCRi: excess lifetime cancer risk, oral pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

EPCs: exposure point concentration in soil/sediment.

ft bgs: feet below ground surface.

ELCR: excess lifetime cancer risk. HI: hazard index.

nazard index. mg/kg: milligram(s) per kilogram.

nted in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2.

NA: not available or not applicable. RBA: Relative Bioavailability. RfC: reference concentration. RfDa: dermal reference dose. RfDo: oral reference dose.

RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

ELCRo = (EPCs x 1 x 330 x 250 x 1 x RBA x CSFo) / (1,000,000 x 80 x 28470) ELCRd = (EPCs x 6125 x 0.30 x ABSd x 250 x 1 x CSFa) / (1,000,000 x 80 x 28470) ELCRi = ([EPCs / PEF] x 8 x 0.042 x 250 x 1 x IUR) / (28470) HQo = (EPCs x 1 x 330 x 250 x 1 x RBA) / (1,000,000 x 80 x 365 x RfDo) HQd = (EPCs x 6125 x 0.30 x ABSd x 250 x 1) / (1,000,000 x 80 x 365 x RfDa) HQi = ([EPCs / PEF] x 8 x 0.042 x 250 x 1) / (365 x RfC)

HQd: hazard quotient, dermal pathway.

HQo: hazard quotient, oral pathway.

m³/kg: cubic meter(s) per kilogram.

HQi: hazard quotient, inhalation pathway.

TIQI - ([EFGS / FEF] X 0 X 0.042 X 230 X 1) / (303 X NIC

IUR: inhalation unit risk.

Appendix C, Table C-11 (RME)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Current/Future Outdoor Commercial/Industrial Worker

Former Esperanza Mill - Shallow Soil/Sediment (0 to 0.5 ft bgs)

Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita

Sierrita Mine, Green Valley, Arizona

					CANC	ER RISK				NON-CAN	CER HAZARD		
				Rou	ıte-Specific	Risk		Percent	Rout	e-Specific H	lazard		Percent
	Cancer	EPCs	PEF [b]				Total	Total	1			Total	Total
Constituent	Group [a]	(mg/kg)	(m³/kg)	Oral	Dermal	Inhalation	ELCR	ELCR	Oral	Dermal	Inhalation	Hazard	HI
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics													
Arsenic	Α	1.93E+01	1.40E+09 P	2.9E-06	2.0E-06	3.9E-09	4.8E-06	100%	2.0E-02	1.4E-02	1.9E-04	3.4E-02	11%
Molybdenum	NA	1.85E+03	1.40E+09 P	NA	NA	NA	_		2.9E-01	_	NA	2.9E-01	89%
				3E-06	2E-06	4E-09			0.3	0.01	0.0002		
Total						Total ELCR	5E-06]			Total HI	0.3	
					Group /	A Total ELCR	5E-06]					
					Group I	B Total ELCR	_						
					Group (C Total ELCR	_						
					Group [D Total ELCR	_						

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

-: not applicable. ELCRd: excess lifetime cancer risk, dermal pathway. %: percent. ELCRi: excess lifetime cancer risk, inhalation pathway. ABSd: dermal absorption factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFa: dermal cancer slope factor. EPC: exposure point concentration in soil/sediment.

CSFo: oral cancer slope factor. ft bgs: feet below ground surface. ELCR: excess lifetime cancer risk. HI: hazard index.

HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway. HQo: hazard quotient, oral pathway. IUR: inhalation unit risk.

m³/kg: cubic meter(s) per kilogram. mg/kg: milligram(s) per kilogram.

NA: not available or not applicable. RBA: relative bioavailability. RfC: reference concentration. RfDa: dermal reference dose.

RfDo: oral reference dose.

RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

ELCRo = (EPCs x 1 x 100 x 225 x 25 x RBA x CSFo) / (1,000,000 x 80 x 28470) $HQo = (EPCs \times 1 \times 100 \times 225 \times 25 \times RBA) / (1,000,000 \times 80 \times 9125 \times RfDo)$ ELCRd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25 x CSFa) / (1,000,000 x 80 x 28470) $HQd = (EPCs \times 6125 \times 0.15 \times ABSd \times 225 \times 25) / (1,000,000 \times 80 \times 9125 \times RfDa)$ ELCRi = ([EPCs / PEF] x 8 x 0.042 x 225 x 25 x IUR) / (28470) HQi = ([EPCs / PEF] x 8 x 0.042 x 225 x 25) / (9125 x RfC)

Appendix C, Table C-12 (Site-Specific Evaluation)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Current/Future Outdoor Commercial/Industrial Worker

Former Esperanza Mill - Shallow Soil/Sediment (0 to 0.5 ft bgs)

Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita

Sierrita Mine, Green Valley, Arizona

					CANO	CER RISK]		NON-CAN	CER HAZARI)]
				Rou	te-Specific	Risk		Percent	Route	-Specific	Hazard		Percent
Constituent	Cancer Group [a]	EPCs (mg/kg)	PEF [b] (m³/kg)	Oral	Dermal	Inhalation	Total ELCR	Total ELCR	Oral	Dermal	Inhalation	Total Hazard	Total HI
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics Arsenic Molybdenum	A NA	1.93E+01 1.85E+03	1.40E+09 P 1.40E+09 P	2.9E-06 NA	2.0E-06 NA	2.0E-09 NA	4.8E-06 –	100%	2.0E-02 2.9E-01	1.4E-02 -	9.4E-05 NA	3.4E-02 2.9E-01	11% 89%
				3E-06	2E-06	2E-09			0.3	0.01	0.00009		
Total						Total ELCR	5E-06]			Total HI	0.3]
					Group B Group C	Total ELCR Total ELCR Total ELCR Total ELCR	5E-06 - - -						

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

-: not applicable.

%: percent.

ABSd: dermal absorption factor.

CSFa: dermal cancer slope factor.

ELCRd: excess lifetime cancer risk, dermal pathway.

ELCRi: excess lifetime cancer risk, inhalation pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

EPC: exposure point concentration in soil/sediment.

CSFo: oral cancer slope factor. ft bgs: feet below ground surface.

ELCR: excess lifetime cancer risk. HI: hazard index.

HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway. HQo: hazard quotient, oral pathway. IUR: inhalation unit risk.

m³/kg: cubic meter(s) per kilogram. mg/kg: milligram(s) per kilogram.

ing/kg. miligram(s) per kilogram.

NA: not available or not applicable. RBA: relative bioavailability. RfC: reference concentration. RfDa: dermal reference dose. RfDo: oral reference dose.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

Appendix C, Table C-13 (RME)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Adolescent Trespasser

Former Esperanza Mill - Shallow Soil/Sediment (0 to 0.5 ft bgs)

Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita

Sierrita Mine, Green Valley, Arizona

				Rou	CANC te-Specific	CER RISK Risk		Percent	Rou	NONCAN te-Specific	CER HAZARD Hazard		Percent
Constituent	Cancer Group [a]	EPCs (mg/kg)	PEF [b] (m³/kg)	Oral	Dermal	Inhalation	Total ELCR	Total ELCR	Oral	Dermal	Inhalation	Total Hazard	Total HI
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics Arsenic Molybdenum	A NA	1.93E+01 1.85E+03	1.40E+09 P 1.40E+09 P	2.4E-07 NA	1.1E-07 NA	4.5E-11 NA	3.5E-07 -	100%	4.2E-03 6.0E-02	1.9E-03 –	5.5E-06 NA	6.1E-03 6.0E-02	9% 91%
				2E-07	1E-07	5E-11			0.06	0.002	0.000005		
Total						Total ELCR	4E-07				Total HI	0.07]
					Group B Group C	Total ELCR Total ELCR Total ELCR Total ELCR	4E-07 - - -						

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

-: not applicable. ELCRd: excess lifetime cancer risk, dermal pathway. %: percent. ELCRi: excess lifetime cancer risk, inhalation pathway. ABSd: dermal absorption factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFa: dermal cancer slope factor. EPC: exposure point concentration in soil/sediment.

CSFo: oral cancer slope factor. ft bgs: feet below ground surface.

ELCR: excess lifetime cancer risk. HI: hazard index

HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway.

HQo: hazard quotient, oral pathway.

IUR: inhalation unit risk.

m³/kg: cubic meter(s) per kilogram.

mg/kg: milligram(s) per kilogram.

NA: not available or not applicable.

RBA: relative bioavailability. RfC: reference concentration. RfDa: dermal reference dose.

RfDo: oral reference dose.

RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

ELCRo = (EPCs x 1 x 50 x 52 x 10 x RBA x CSFo) / (1,000,000 x 44 x 28470) ELCRd = (EPCs x 4400 x 0.07 x ABSd x 52 x 10 x CSFa)/(1.000.000 x 44 x 28470) ELCRi = ([EPCs / PEF] x 1 x 0.042 x 52 x 10 x IUR) / (28470)

 $HQo = (EPCs \times 1 \times 50 \times 52 \times 10 \times RBA) / (1,000,000 \times 44 \times 3650 \times RfDo)$ $HQd = (EPCs \times 4400 \times 0.07 \times ABSd \times 52 \times 10) / (1,000,000 \times 44 \times 3650 \times RfDa)$ $HQi = ([EPCs / PEF] \times 1 \times 0.042 \times 52 \times 10) / (3650 \times RfC)$

Appendix C, Table C-14 (RME)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Outdoor Commercial/Industrial Worker Former Esperanza Mill - Shallow and Deep Soil/Sediment (0 to 15 ft bgs)

Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita

Sierrita Mine, Green Valley, Arizona

			Rou				Percent	Rout				Percent
Cancer Group [a]	EPCs (mg/kg)	PEF [b] (m³/kg)	Oral	Dermal	Inhalation	Total ELCR	Total ELCR	Oral	Dermal	Inhalation	Total Hazard	Total HI
			ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Α	1.29E+01	1.40E+09 P	1.9E-06	1.3E-06	2.6E-09	3.2E-06	100%	1.3E-02	9.1E-03	1.3E-04	2.2E-02	9%
B2	1.33E+02	1.40E+09 P	NA	NA	NA	_		NA	NA	NA	_	
NA	1.44E+03	1.40E+09 P	NA	NA	NA	_		2.2E-01	_	NA	2.2E-01	91%
			2E-06	1E-06	3E-09			0.2	0.009	0.0001		
					Total ELCR	3E-06]			Total HI	0.2	
				•		3E-06						
				•		-						
	A B2	Group [a] (mg/kg) A 1.29E+01 B2 1.33E+02	Group [a] (mg/kg) (m³/kg) A 1.29E+01 1.40E+09 P B2 1.33E+02 1.40E+09 P	Cancer Group [a] EPCs (mg/kg) PEF [b] (m³/kg) Oral A 1.29E+01 1.40E+09 P 1.9E-06 B2 1.33E+02 1.40E+09 P NA NA 1.44E+03 1.40E+09 P NA	Cancer EPCs PEF [b] Group [a] (mg/kg) (m³/kg)	Group [a] (mg/kg) (m³/kg) Oral Dermal Inhalation	Route-Specific Risk Total ELCR	Route-Specific Risk Total Total Total ELCR	Route-Specific Risk Percent Route-Specific Risk Total Total Total	Route-Specific Risk Percent Total Total ELCR	Route-Specific Risk FPCs Group [a] Route-Specific Risk Total Total ELCR Total ELCR Route-Specific Hazard Tot	Cancer EPCs PEF Di (m³/kg) (m³/kg) Dermal Inhalation ELCR ELCR ELCR Total ELCR ELCR Drain Inhalation ELCR ELCR Drain Inhalation ELCR ELCR ELCR HQo HQd HQd HQd Hazard Haza

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

-: not applicable. ELCRd: excess lifetime cancer risk, dermal pathway. %: percent. ELCRi: excess lifetime cancer risk, inhalation pathway. ABSd: dermal absorption factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFa: dermal cancer slope factor. EPC: exposure point concentration in soil/sediment.

CSFo: oral cancer slope factor. ft bgs: feet below ground surface.

ELCR: excess lifetime cancer risk. HI: hazard index. HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway. HQo: hazard quotient, oral pathway.

IUR: inhalation unit risk.

m³/kg: cubic meter(s) per kilogram. mg/kg: milligram(s) per kilogram.

NA: not available or not applicable. RBA: relative bioavailability. RfC: reference concentration.

RfDa: dermal reference dose. RfDo: oral reference dose.

RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

ELCRo = (EPCs x 1 x 100 x 225 x 25 x RBA x CSFo) / (1,000,000 x 80 x 28470) ELCRd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25 x CSFa) / (1,000,000 x 80 x 28470) ELCRi = ([EPCs / PEF] x 8 x 0.042 x 225 x 25 x IUR) / (28470)

 $HQo = (EPCs \times 1 \times 100 \times 225 \times 25 \times RBA) / (1,000,000 \times 80 \times 9125 \times RfDo)$ HQd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25) / (1,000,000 x 80 x 9125 x RfDa) HQi = ([EPCs / PEF] x 8 x 0.042 x 225 x 25) / (9125 x RfC)

Appendix C, Table C-15 (Site-Specific Evaluation)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Outdoor Commercial/Industrial Worker Former Esperanza Mill - Shallow and Deep Soil/Sediment (0 to 15 ft bgs)

Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

	Camaan	EDC-	DEC IN	Rou	CANO te-Specific	CER RISK Risk	Total	Percent	Route	NONCAN Specific	CER HAZARD Hazard		Percent
Constituent	Cancer Group [a]	EPCs (mg/kg)	PEF [b] (m³/kg)	Oral	Dermal	Inhalation	Total ELCR	Total ELCR	Oral	Dermal	Inhalation	Total Hazard	Total HI
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics													
Arsenic	Α	1.29E+01	1.40E+09 P	1.9E-06	1.3E-06	1.3E-09	3.2E-06	100%	1.3E-02	9.1E-03	6.3E-05	2.2E-02	9%
Lead	B2	1.33E+02	1.40E+09 P	NA	NA	NA	_		NA	NA	NA	_	
Molybdenum	NA	1.44E+03	1.40E+09 P	NA	NA	NA	_		2.2E-01	_	NA	2.2E-01	91%
				2E-06	1E-06	1E-09			0.20	0.009	0.00006		
Total						Total ELCR	3E-06]			Total HI	0.2]
					Group A	Total ELCR	3E-06	1					
					Group B	Total ELCR	_	1					
					Group C	Total ELCR	_						
					Group D	Total ELCR	_]					

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

-: not applicable. ELCRd: excess lifetime cancer risk, dermal pathway. %: percent. ELCRi: excess lifetime cancer risk, inhalation pathway. ABSd: dermal absorption factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFa: dermal cancer slope factor. EPC: exposure point concentration in soil/sediment.

CSFo: oral cancer slope factor. ft bgs: feet below ground surface.

ELCR: excess lifetime cancer risk. HI: hazard index. HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway. HQo: hazard quotient, oral pathway.

IUR: inhalation unit risk.

m³/kg: cubic meter(s) per kilogram.

mg/kg: milligram(s) per kilogram.

NA: not available or not applicable. RBA: relative bioavailability. RfC: reference concentration.

RfDa: dermal reference dose. RfDo: oral reference dose.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

ELCRo = (EPCs x 1 x 100 x 225 x 25 x RBA x CSFo) / (1,000,000 x 80 x 28470) HQo = (EPCs x 1 x 100 x 225 x 25 x RBA) / (1,000,000 x 80 x 9125 x RfDo) ELCRd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25 x CSFa) / (1,000,000 x 80 x 28470) HQd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25) / (1,000,000 x 80 x 9125 x RfDa) ELCRi = ([EPCs / PEF] x 4 x 0.042 x 225 x 25 x IUR) / (28470) HQi = ([EPCs / PEF] x 4 x 0.042 x 225 x 25) / (9125 x RfC)

Appendix C, Table C-16 (RME)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Adolescent Trespasser

Former Esperanza Mill - Shallow and Deep Soil/Sediment (0 to 15 ft bgs)

Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita

Sierrita Mine, Green Valley, Arizona

						ER RISK				NON-CAN	CER HAZARD]
	_		,	Roi	ute-Specific	Risk		Percent	Rout	e-Specific F	lazard		Percent
Constituent	Cancer Group [a]	EPCs (mg/kg)	PEF [b] (m³/kg)	Oral	Total al Dermal Inhalation ELCR		Total ELCR	Oral	Dermal	Inhalation	Total Hazard	Total HI	
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics Arsenic Lead Molybdenum	A B2 NA	1.29E+01 1.33E+02 1.44E+03	1.40E+09 P 1.40E+09 P 1.40E+09 P	1.6E-07 NA NA	7.4E-08 NA NA	3.0E-11 NA NA	2.3E-07 - -	100%	2.8E-03 NA 4.7E-02	1.3E-03 NA –	3.6E-06 NA NA	4.1E-03 - 4.7E-02	8% 93%
				2E-07	7E-08	3E-11			0.05	0.001	0.000004		
Total						Total ELCR	2E-07				Total HI	0.05]
					Group Group	A Total ELCR B Total ELCR C Total ELCR D Total ELCR	2E-07 - - -						

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

-: not applicable. ELCRd: excess lifetime cancer risk, dermal pathway. %: percent. ELCRi: excess lifetime cancer risk, inhalation pathway. ABSd: dermal absorption factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFa: dermal cancer slope factor. EPC: exposure point concentration in soil/sediment. CSFo: oral cancer slope factor. ft bgs: feet below ground surface. FLCR: excess lifetime cancer risk HI: hazard index mg/kg: milligram(s) per kilogram.

HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway. HQo: hazard quotient, oral pathway. IUR: inhalation unit risk. m³/kg: cubic meter(s) per kilogram.

NA: not available or not applicable. RBA: relative bioavailability. RfC: reference concentration. RfDa: dermal reference dose. RfDo: oral reference dose.

RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

ELCRo = (EPCs x 1 x 50 x 52 x 10 x RBA x CSFo)/(1.000.000 x 44 x 28470) ELCRd = (EPCs x 4400 x 0.07 x ABSd x 52 x 10 x CSFa) / (1,000,000 x 44 x 28470) ELCRi = ([EPCs / PEF] x 1 x 0.042 x 52 x 10 x IUR) / (28470)

 $HQo = (EPCs \times 1 \times 50 \times 52 \times 10 \times RBA) / (1,000,000 \times 44 \times 3650 \times RfDo)$ $HQd = (EPCs \times 4400 \times 0.07 \times ABSd \times 52 \times 10) / (1,000,000 \times 44 \times 3650 \times RfDa)$ $HQi = ([EPCs / PEF] \times 1 \times 0.042 \times 52 \times 10) / (3650 \times RfC)$

Appendix C, Table C-17 (RME)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Construction Worker

Former Esperanza Mill - Shallow and Deep Soil/Sediment (0 to 15 ft bgs)

Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita

Sierrita Mine, Green Valley, Arizona

				Roi	CANC ute-Specific	ER RISK Risk] Percent	Rout	NONCANO e-Specific H	ER HAZARD		Percent
• ** *	Cancer	EPCs	PEF [b]				Total	Total		•		Total	Total
Constituent	Group [a]	(mg/kg)	(m³/kg)	Oral	Dermal	Inhalation	ELCR	ELCR	Oral	Dermal	Inhalation	Hazard	HI
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics						_			-		_		
Arsenic	Α	1.29E+01	1.40E+09 P	2.8E-07	1.2E-07	1.2E-10	4.0E-07	100%	4.8E-02	2.0E-02	1.4E-04	6.9E-02	8%
Lead	B2	1.33E+02	1.40E+09 P	NA	NA	NA	_		NA	NA	NA	_	
Molybdenum	NA	1.44E+03	1.40E+09 P	NA	NA	NA	_		8.1E-01	-	NA	8.1E-01	92%
				3E-07	1E-07	1E-10			0.9	0.02	0.0001		
Total						Total ELCR	4E-07]			Total HI	0.9]
					Group	A Total ELCR	4E-07	1					
					Group	B Total ELCR	_						
						C Total ELCR	_						
					Group I	D Total ELCR	_	J					
1													

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

ELCRd: excess lifetime cancer risk, dermal pathway. -: not applicable. ELCRi: excess lifetime cancer risk, inhalation pathway. %: percent. ABSd: dermal absorption factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFa: dermal cancer slope factor. EPC: exposure point concentration in soil/sediment.

CSFo: oral cancer slope factor. ft bas: feet below ground surface.

ELCR: excess lifetime cancer risk. HI: hazard index. HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway. HQo: hazard quotient, oral pathway. IUR: inhalation unit risk.

m³/kg: cubic meter(s) per kilogram. mg/kg: milligram(s) per kilogram.

NA: not available or not applicable.

RBA: relative bioavailability. RfC: reference concentration. RfDa: dermal reference dose.

RfDo: oral reference dose.

RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

ELCRo = (EPCs x 1 x 330 x 250 x 1 x RBA x CSFo) / (1,000,000 x 80 x 28470) ELCRd = (EPCs x 6125 x 0.30 x ABSd x 250 x 1 x CSFa)/(1,000,000 x 80 x 28470) ELCRi = ([EPCs / PEF] x 8 x 0.042 x 250 x 1 x IUR) / (28470)

 $HQo = (EPCs \times 1 \times 330 \times 250 \times 1 \times RBA) / (1,000,000 \times 80 \times 365 \times RfDo)$ $HQd = (EPCs \times 6125 \times 0.30 \times ABSd \times 250 \times 1) / (1,000,000 \times 80 \times 365 \times RfDa)$ HQi = ([EPCs / PEF] x 8 x 0.042 x 250 x 1) / (365 x RfC)

APPENDIX D Excess Lifetime Cancer Risk Calculations (Radionuclides) using 95% UCL EPCs

Appendix D, Table D-1 (RME)

Excess Lifetime Cancer Risk Calculations for a Current/Future Outdoor Commercial / Industrial Worker Exposed to Radionuclides Former CLEAR Plant - Shallow Soil/Sediment (0 to 0.5 ft bgs), Exposed Samples Only Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

		_		CANCE	R RISK		Percent
		_	R	oute-Specific ELC	R	Total	Total
	EPCs	PEF [a]	Ingestion	Inhalation	External	ELCR	ELCR
Constituent	(pCi/g)	(m³/kg)	ELCRo	ELCRi	ELCRe		
Radionuclides							
Uranium-238	2.57E+00	1.40E+09 P	8.1E-08	4.9E-09	1.6E-06	1.7E-06	1%
Uranium-234	2.46E+00	1.40E+09 P	7.1E-08	5.5E-09	3.2E-09	7.9E-08	<1%
Thorium-230	2.46E+00	1.40E+09 P	1.1E-07	6.7E-09	1.1E-08	1.2E-07	<1%
Radium-226	2.15E+00	1.40E+09 P	3.6E-07	4.9E-09	9.2E-05	9.2E-05	61%
Lead-210	2.15E+00	1.40E+09 P	5.0E-07	1.9E-09	1.1E-08	5.2E-07	<1%
Bismuth-210	2.15E+00	1.40E+09 P	3.6E-12	6.3E-14	2.4E-11	2.8E-11	<1%
Polonium-210	2.15E+00	1.40E+09 P	3.8E-08	5.7E-11	1.1E-11	3.8E-08	<1%
Thorium-232	2.66E+00	1.40E+09 P	1.1E-06	1.9E-08	5.5E-05	5.6E-05	37%
Thorium-228	2.66E+00	1.40E+09 P	1.1E-08	3.1E-09	8.5E-09	2.2E-08	<1%
Radium-224	2.66E+00	1.40E+09 P	7.3E-11	1.4E-12	3.3E-10	4.1E-10	<1%
Lead-212	2.66E+00	1.40E+09 P	1.4E-12	9.6E-15	4.7E-10	4.8E-10	<1%
Bismuth-212	2.66E+00	1.40E+09 P	4.4E-15	1.2E-16	4.5E-11	4.5E-11	<1%
Thallium-208	2.66E+00	1.40E+09 P	NA	NA	8.0E-11	8.0E-11	<1%
Uranium-235	1.46E-01	1.40E+09 P	4.1E-09	2.9E-10	4.3E-07	4.4E-07	<1%
Protactinium-231	1.46E-01	1.40E+09 P	1.3E-08	8.9E-10	9.5E-08	1.1E-07	<1%
Actinium-227	1.46E-01	1.40E+09 P	1.1E-08	1.2E-09	1.0E-10	1.3E-08	<1%
Francium-223	1.46E-01	1.40E+09 P	9.7E-16	1.2E-18	2.4E-13	2.4E-13	<1%
Astatine-219	1.46E-01	1.40E+09 P	NA	NA	NA	_	
Bismuth-215	1.46E-01	1.40E+09 P	NA	NA	6.8E-13	6.8E-13	<1%
Thorium-227	1.46E-01	1.40E+09 P	5.0E-12	1.2E-12	9.9E-10	9.9E-10	<1%
Radium-223	1.46E-01	1.40E+09 P	1.8E-11	6.2E-13	9.4E-10	9.6E-10	<1%
Lead-211	1.46E-01	1.40E+09 P	8.6E-17	1.9E-18	8.7E-13	8.7E-13	<1%
Astatine-215	1.46E-01	1.40E+09 P	NA	NA	9.7E-23	9.7E-23	<1%
Bismuth-211	1.46E-01	1.40E+09 P	NA	NA	3.3E-14	3.3E-14	<1%
Thallium-207	1.46E-01	1.40E+09 P	NA	NA	6.2E-15	6.2E-15	<1%
Polonium-211	1.46E-01	1.40E+09 P	NA	NA	2.7E-17	2.7E-17	<1%
			2E-06	5E-08	1E-04		
Total					Total ELCR	2E-04	I

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

 %: percent.
 ELCRi: excess lifetime cancer risk, inhalation pathway.

 ACF: area correction factor.
 ELCRo: excess lifetime cancer risk, oral pathway.

 CSFe: external cancer slope factor.
 EPC: exposure point concentration in soil/sediment.

CSFi: inhalation cancer slope factor. It bgs: feet below ground surface.
CSFo: oral cancer slope factor. m³/kg: cubic meter(s) per kilogram.
ELCR: excess lifetime cancer risk. pCi/g: picoCurie(s) per gram.
ELCRe: excess lifetime cancer risk, external pathway. RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1. Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

ELCRo = (EPCs × 100 × 225 × 25 × [1 - exp($-\Lambda$ × 25)] × CSFo) / (1,000 × 25 × Λ) ELCRi = (EPCs × 1,000 × 60 × 8 × 0.042 × 225 × 25 × [1 - exp($-\Lambda$ × 25)] × CSFi) / (1.40E+09 × 25 × Λ) ELCRe = (EPCs × ACF × [(8 × 0.042 × 1) + (0 × 0.042 × 0.4)] × 225 × 25 × [1 - exp($-\Lambda$ × 25)] × CSFe) / (365 × 25 × Λ)

Appendix D, Table D-2 (Site-Specific Evaluation)

Excess Lifetime Cancer Risk Calculations for a Current/Future Outdoor Commercial / Industrial Worker Exposed to Radionuclides Former CLEAR Plant - Shallow Soil/Sediment (0 to 0.5 ft bgs), Exposed Samples Only

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

		_		CANCE	R RISK		Percent	
		=	R	oute-Specific ELC	R	Total	Total	
	EPCs	PEF [a]	Ingestion	Inhalation	External	ELCR	ELCR	
Constituent	(pCi/g)	(m³/kg)	ELCRo	ELCRi	ELCRe			
Radionuclides								
Jranium-238	2.57E+00	1.40E+09 P	8.1E-08	2.4E-09	7.8E-07	8.7E-07	1%	
Jranium-234	2.46E+00	1.40E+09 P	7.1E-08	2.8E-09	1.6E-09	7.5E-08	<1%	
Γhorium-230	2.46E+00	1.40E+09 P	1.1E-07	3.4E-09	5.3E-09	1.2E-07	<1%	
Radium-226	2.15E+00	1.40E+09 P	3.6E-07	2.4E-09	4.6E-05	4.6E-05	60%	
_ead-210	2.15E+00	1.40E+09 P	5.0E-07	9.6E-10	5.7E-09	5.1E-07	<1%	
Bismuth-210	2.15E+00	1.40E+09 P	3.6E-12	3.2E-14	1.2E-11	1.6E-11	<1%	
Polonium-210	2.15E+00	1.40E+09 P	3.8E-08	2.8E-11	5.5E-12	3.8E-08	<1%	
Thorium-232	2.66E+00	1.40E+09 P	1.1E-06	9.3E-09	2.8E-05	2.9E-05	37%	
Thorium-228	2.66E+00	1.40E+09 P	1.1E-08	1.5E-09	4.2E-09	1.6E-08	<1%	
Radium-224	2.66E+00	1.40E+09 P	7.3E-11	6.8E-13	1.7E-10	2.4E-10	<1%	
_ead-212	2.66E+00	1.40E+09 P	1.4E-12	4.8E-15	2.4E-10	2.4E-10	<1%	
Bismuth-212	2.66E+00	1.40E+09 P	4.4E-15	6.0E-17	2.2E-11	2.2E-11	<1%	
Γhallium-208	2.66E+00	1.40E+09 P	NA	NA	4.0E-11	4.0E-11	<1%	
Jranium-235	1.46E-01	1.40E+09 P	4.1E-09	1.5E-10	2.2E-07	2.2E-07	<1%	
Protactinium-231	1.46E-01	1.40E+09 P	1.3E-08	4.5E-10	4.8E-08	6.1E-08	<1%	
Actinium-227	1.46E-01	1.40E+09 P	1.1E-08	6.1E-10	5.1E-11	1.2E-08	<1%	
Francium-223	1.46E-01	1.40E+09 P	9.7E-16	5.8E-19	1.2E-13	1.2E-13	<1%	
Astatine-219	1.46E-01	1.40E+09 P	NA	NA	NA	-		
Bismuth-215	1.46E-01	1.40E+09 P	NA	NA	3.4E-13	3.4E-13	<1%	
Γhorium-227	1.46E-01	1.40E+09 P	5.0E-12	6.1E-13	4.9E-10	5.0E-10	<1%	
Radium-223	1.46E-01	1.40E+09 P	1.8E-11	3.1E-13	4.7E-10	4.9E-10	<1%	
_ead-211	1.46E-01	1.40E+09 P	8.6E-17	9.3E-19	4.3E-13	4.3E-13	<1%	
Astatine-215	1.46E-01	1.40E+09 P	NA	NA	4.9E-23	4.9E-23	<1%	
Bismuth-211	1.46E-01	1.40E+09 P	NA	NA	1.7E-14	1.7E-14	<1%	
Γhallium-207	1.46E-01	1.40E+09 P	NA	NA	3.1E-15	3.1E-15	<1%	
Polonium-211	1.46E-01	1.40E+09 P	NA	NA	1.3E-17	1.3E-17	<1%	
			2E-06	2E-08	7E-05			
「otal					Total ELCR	8E-05	I	

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

%: percent.

ACF: area correction factor.

ELCRo: excess lifetime cancer risk, inhalation pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

ELCRo: excess lifetime cancer risk, inhalation pathway.

ELCRo: excess lifetime cancer risk, inhalation pathway.

CSFi: inhalation cancer slope factor. It bgs: feet below ground surface. CSFo: oral cancer slope factor. It bgs: feet below ground surface. It bgs: feet bel

ELCRe: excess lifetime cancer risk, external pathway.

Receptor-specific exposure parameters are presented in Table 6-1. Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

ELCRo = (EPCs × 100 × 225 × 25 × [1 - exp($-\Lambda$ × 25)] × CSFo) / (1,000 × 25 × Λ) ELCRi = (EPCs × 1,000 × 60 × 8 × 0.042 × 225 × 25 × [1 - exp($-\Lambda$ × 25)] × CSFi) / (1.40E+09 × 25 × Λ) ELCRe = (EPCs × ACF × [(8 × 0.042 × 1) + (0 × 0.042 × 0.4)] × 225 × 25 × [1 - exp($-\Lambda$ × 25)] × CSFe) / (365 × 25 × Λ)

Appendix D, Table D-3 (RME)

Excess Lifetime Cancer Risk Calculations for a Hypothetical Future Adolescent Trespasser Exposed to Radionuclides Former CLEAR Plant - Shallow Soil/Sediment (0 to 0.5 ft bgs), Exposed Samples Only

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

		<u>-</u>		R RISK		Percent		
		_	R	oute-Specific ELC	R	Total	Total	
	EPCs	PEF [a]	Ingestion	Inhalation	External	ELCR	ELCR	
Constituent	(pCi/g)	(m³/kg)	ELCRo	ELCRi	ELCRe			
Radionuclides								
Jranium-238	2.57E+00	1.40E+09 P	3.7E-09	1.3E-11	1.8E-08	2.2E-08	1%	
Jranium-234	2.46E+00	1.40E+09 P	3.3E-09	1.5E-11	3.7E-11	3.3E-09	<1%	
Γhorium-230	2.46E+00	1.40E+09 P	4.9E-09	1.8E-11	1.2E-10	5.1E-09	<1%	
Radium-226	2.15E+00	1.40E+09 P	1.6E-08	1.3E-11	1.1E-06	1.1E-06	59%	
ead-210	2.15E+00	1.40E+09 P	2.9E-08	6.3E-12	1.6E-10	2.9E-08	2%	
3ismuth-210	2.15E+00	1.40E+09 P	4.1E-13	4.2E-16	7.1E-13	1.1E-12	<1%	
Polonium-210	2.15E+00	1.40E+09 P	4.4E-09	3.8E-13	3.2E-13	4.4E-09	<1%	
Thorium-232	2.66E+00	1.40E+09 P	5.2E-08	4.9E-11	6.4E-07	6.9E-07	37%	
Thorium-228	2.66E+00	1.40E+09 P	1.2E-09	2.0E-11	2.4E-10	1.4E-09	<1%	
Radium-224	2.66E+00	1.40E+09 P	8.5E-12	9.0E-15	9.6E-12	1.8E-11	<1%	
ead-212	2.66E+00	1.40E+09 P	1.6E-13	6.3E-17	1.4E-11	1.4E-11	<1%	
3ismuth-212	2.66E+00	1.40E+09 P	5.1E-16	7.9E-19	1.3E-12	1.3E-12	<1%	
hallium-208	2.66E+00	1.40E+09 P	NA	NA	2.3E-12	2.3E-12	<1%	
Jranium-235	1.46E-01	1.40E+09 P	1.9E-10	7.8E-13	5.0E-09	5.2E-09	<1%	
Protactinium-231	1.46E-01	1.40E+09 P	5.8E-10	2.4E-12	1.1E-09	1.7E-09	<1%	
Actinium-227	1.46E-01	1.40E+09 P	6.5E-10	4.0E-12	1.5E-12	6.6E-10	<1%	
rancium-223	1.46E-01	1.40E+09 P	1.1E-16	7.7E-21	7.1E-15	7.2E-15	<1%	
Astatine-219	1.46E-01	1.40E+09 P	NA	NA	NA	_		
Bismuth-215	1.46E-01	1.40E+09 P	NA	NA	2.0E-14	2.0E-14	<1%	
horium-227	1.46E-01	1.40E+09 P	5.8E-13	8.0E-15	2.9E-11	2.9E-11	<1%	
Radium-223	1.46E-01	1.40E+09 P	2.1E-12	4.1E-15	2.7E-11	2.9E-11	<1%	
ead-211	1.46E-01	1.40E+09 P	9.9E-18	1.2E-20	2.5E-14	2.5E-14	<1%	
Astatine-215	1.46E-01	1.40E+09 P	NA	NA	2.8E-24	2.8E-24	<1%	
Bismuth-211	1.46E-01	1.40E+09 P	NA	NA	9.7E-16	9.7E-16	<1%	
hallium-207	1.46E-01	1.40E+09 P	NA	NA	1.8E-16	1.8E-16	<1%	
Polonium-211	1.46E-01	1.40E+09 P	NA	NA	7.7E-19	7.7E-19	<1%	
			1E-07	1E-10	2E-06			
- Total				•	Total ELCR	2E-06		

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

%: percent.

ACF: area correction factor.

ELCRo: excess lifetime cancer risk, inhalation pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

ELCRo: excess lifetime cancer risk, inhalation pathway.

ELCRo: excess lifetime cancer risk, inhalation pathway.

CSFi: inhalation cancer slope factor. It bgs: feet below ground surface.
CSFo: oral cancer slope factor. m³/kg: cubic meter(s) per kilogram.
ELCR: excess lifetime cancer risk. pCi/g: picoCurie(s) per gram.
ELCRe: excess lifetime cancer risk, external pathway. RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1.

Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

ELCRo = (EPCs × 50 × 52 × 10 × [1 - exp($-\lambda$ × 10)] × CSFo) / (1,000 × 10 × λ) ELCRi = (EPCs × 1,000 × 60 × 1 × 0.042 × 52 × 10 × [1 - exp($-\lambda$ × 10)] × CSFi) / (1.40E+09 × 10 × λ)

ELCRe = (EPCs × ACF × [(1 × 0.042 × 1) + (0 × 0.042 × 0.4)] × 52 × 10 × [1 - exp($-\lambda$ × 10)] × CSFe) / (365 × 10 × λ)

Appendix D, Table D-4 (RME)

Excess Lifetime Cancer Risk Calculations for a Hypothetical Future Outdoor Commercial / Industrial Worker Exposed to Radionuclides Former CLEAR Plant - Shallow Soil/Sediment (0 to 0.5 ft bgs), All Samples Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

		_		CANCE	R RISK		Percent	
		_	R	oute-Specific ELC	R	Total	Total	
	EPCs	PEF [a]	Ingestion	Inhalation	External	ELCR	ELCR	
Constituent	(pCi/g)	(m³/kg)	ELCRo	ELCRi	ELCRe			
Radionuclides								
Jranium-238	3.17E+00	1.40E+09 P	1.0E-07	6.1E-09	1.9E-06	2.0E-06	1%	
Jranium-234	3.08E+00	1.40E+09 P	8.8E-08	6.9E-09	4.0E-09	9.9E-08	<1%	
horium-230	3.08E+00	1.40E+09 P	1.3E-07	8.4E-09	1.3E-08	1.6E-07	<1%	
Radium-226	2.18E+00	1.40E+09 P	3.6E-07	4.9E-09	9.3E-05	9.4E-05	61%	
ead-210	2.18E+00	1.40E+09 P	5.1E-07	2.0E-09	1.2E-08	5.2E-07	<1%	
Bismuth-210	2.18E+00	1.40E+09 P	3.6E-12	6.4E-14	2.5E-11	2.8E-11	<1%	
Polonium-210	2.18E+00	1.40E+09 P	3.9E-08	5.8E-11	1.1E-11	3.9E-08	<1%	
Thorium-232	2.63E+00	1.40E+09 P	1.1E-06	1.8E-08	5.5E-05	5.6E-05	36%	
horium-228	2.63E+00	1.40E+09 P	1.0E-08	3.0E-09	8.4E-09	2.2E-08	<1%	
Radium-224	2.63E+00	1.40E+09 P	7.3E-11	1.4E-12	3.3E-10	4.0E-10	<1%	
.ead-212	2.63E+00	1.40E+09 P	1.4E-12	9.5E-15	4.7E-10	4.7E-10	<1%	
Bismuth-212	2.63E+00	1.40E+09 P	4.4E-15	1.2E-16	4.5E-11	4.5E-11	<1%	
hallium-208	2.63E+00	1.40E+09 P	NA	NA	7.9E-11	7.9E-11	<1%	
Jranium-235	1.92E-01	1.40E+09 P	5.4E-09	3.9E-10	5.7E-07	5.7E-07	<1%	
Protactinium-231	1.92E-01	1.40E+09 P	1.7E-08	1.2E-09	1.3E-07	1.4E-07	<1%	
Actinium-227	1.92E-01	1.40E+09 P	1.5E-08	1.6E-09	1.3E-10	1.7E-08	<1%	
rancium-223	1.92E-01	1.40E+09 P	1.3E-15	1.5E-18	3.2E-13	3.2E-13	<1%	
statine-219	1.92E-01	1.40E+09 P	NA	NA	NA	_		
3ismuth-215	1.92E-01	1.40E+09 P	NA	NA	8.9E-13	8.9E-13	<1%	
horium-227	1.92E-01	1.40E+09 P	6.6E-12	1.6E-12	1.3E-09	1.3E-09	<1%	
Radium-223	1.92E-01	1.40E+09 P	2.4E-11	8.1E-13	1.2E-09	1.3E-09	<1%	
.ead-211	1.92E-01	1.40E+09 P	1.1E-16	2.5E-18	1.1E-12	1.1E-12	<1%	
Astatine-215	1.92E-01	1.40E+09 P	NA	NA	1.3E-22	1.3E-22	<1%	
3ismuth-211	1.92E-01	1.40E+09 P	NA	NA	4.4E-14	4.4E-14	<1%	
hallium-207	1.92E-01	1.40E+09 P	NA	NA	8.2E-15	8.2E-15	<1%	
Polonium-211	1.92E-01	1.40E+09 P	NA	NA	3.5E-17	3.5E-17	<1%	
			2E-06	5E-08	2E-04			
otal					Total ELCR	2E-04		

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

%: percent. ELCRi: excess lifetime cancer risk, inhalation pathway.
ACF: area correction factor. ELCRo: excess lifetime cancer risk, oral pathway.
CSFe: external cancer slope factor. EPC: exposure point concentration in soil/sediment.

Receptor-specific exposure parameters are presented in Table 6-1. Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

ELCRo = (EPCs × 100 × 225 × 25 × [1 - exp(-λ × 25)] × CSFo) / (1,000 × 25 × λ) ELCRi = (EPCs × 1,000 × 60 × 8 × 0.042 × 225 × 25 × [1 - exp(-λ × 25)] × CSFi) / (1.40E+09 × 25 × λ) ELCRe = (EPCs × ACF × [(8 × 0.042 × 1) + (0 × 0.042 × 0.4)] × 225 × 25 × [1 - exp(-λ × 25)] × CSFe) / (365 × 25 × λ)

Appendix D, Table D-5 (Site-Specific Evaluation)

Excess Lifetime Cancer Risk Calculations for a Hypothetical Future Outdoor Commercial / Industrial Worker Exposed to Radionuclides Former CLEAR Plant - Shallow Soil/Sediment (0 to 0.5 ft bgs), All Samples Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

		_		CANCE	R RISK		Percent	
		_	R	oute-Specific ELC	R	Total	Total	
	EPCs	PEF [a]	Ingestion	Inhalation	External	ELCR	ELCR	
Constituent	(pCi/g)	(m³/kg)	ELCRo	ELCRi	ELCRe			
Radionuclides								
Jranium-238	3.17E+00	1.40E+09 P	1.0E-07	3.0E-09	9.7E-07	1.1E-06	1%	
Jranium-234	3.08E+00	1.40E+09 P	8.8E-08	3.5E-09	2.0E-09	9.4E-08	<1%	
horium-230	3.08E+00	1.40E+09 P	1.3E-07	4.2E-09	6.7E-09	1.4E-07	<1%	
Radium-226	2.18E+00	1.40E+09 P	3.6E-07	2.5E-09	4.7E-05	4.7E-05	60%	
_ead-210	2.18E+00	1.40E+09 P	5.1E-07	9.8E-10	5.8E-09	5.2E-07	<1%	
Bismuth-210	2.18E+00	1.40E+09 P	3.6E-12	3.2E-14	1.2E-11	1.6E-11	<1%	
Polonium-210	2.18E+00	1.40E+09 P	3.9E-08	2.9E-11	5.5E-12	3.9E-08	<1%	
Γhorium-232	2.63E+00	1.40E+09 P	1.1E-06	9.2E-09	2.7E-05	2.8E-05	37%	
horium-228	2.63E+00	1.40E+09 P	1.0E-08	1.5E-09	4.2E-09	1.6E-08	<1%	
Radium-224	2.63E+00	1.40E+09 P	7.3E-11	6.8E-13	1.6E-10	2.4E-10	<1%	
ead-212	2.63E+00	1.40E+09 P	1.4E-12	4.8E-15	2.3E-10	2.4E-10	<1%	
3ismuth-212	2.63E+00	1.40E+09 P	4.4E-15	5.9E-17	2.2E-11	2.2E-11	<1%	
hallium-208	2.63E+00	1.40E+09 P	NA	NA	4.0E-11	4.0E-11	<1%	
Jranium-235	1.92E-01	1.40E+09 P	5.4E-09	1.9E-10	2.8E-07	2.9E-07	<1%	
Protactinium-231	1.92E-01	1.40E+09 P	1.7E-08	5.9E-10	6.3E-08	8.0E-08	<1%	
Actinium-227	1.92E-01	1.40E+09 P	1.5E-08	8.0E-10	6.7E-11	1.6E-08	<1%	
rancium-223	1.92E-01	1.40E+09 P	1.3E-15	7.6E-19	1.6E-13	1.6E-13	<1%	
Astatine-219	1.92E-01	1.40E+09 P	NA	NA	NA	_		
Bismuth-215	1.92E-01	1.40E+09 P	NA	NA	4.4E-13	4.4E-13	<1%	
Γhorium-227	1.92E-01	1.40E+09 P	6.6E-12	8.0E-13	6.5E-10	6.6E-10	<1%	
Radium-223	1.92E-01	1.40E+09 P	2.4E-11	4.1E-13	6.2E-10	6.4E-10	<1%	
_ead-211	1.92E-01	1.40E+09 P	1.1E-16	1.2E-18	5.7E-13	5.7E-13	<1%	
Astatine-215	1.92E-01	1.40E+09 P	NA	NA	6.4E-23	6.4E-23	<1%	
Bismuth-211	1.92E-01	1.40E+09 P	NA	NA	2.2E-14	2.2E-14	<1%	
Γhallium-207	1.92E-01	1.40E+09 P	NA	NA	4.1E-15	4.1E-15	<1%	
Polonium-211	1.92E-01	1.40E+09 P	NA	NA	1.7E-17	1.7E-17	<1%	
			2E-06	3E-08	8E-05			
Γotal					Total ELCR	8E-05		

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

%: percent. ELCRi: excess lifetime cancer risk, inhalation pathway. ACF: area correction factor. ELCRo: excess lifetime cancer risk, oral pathway.

EPC: exposure point concentration in soil/sediment. CSFi: inhalation cancer slope factor. ft bgs: feet below ground surface. CSFo; oral cancer slope factor. m³/kg: cubic meter(s) per kilogram. ELCR: excess lifetime cancer risk. pCi/g: picoCurie(s) per gram.

ELCRe: excess lifetime cancer risk, external pathway.

CSFe: external cancer slope factor.

Receptor-specific exposure parameters are presented in Table 6-1. Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

ELCRo = (EPCs × 100 × 225 × 25 × [1 - exp($-\lambda$ × 25)] × CSFo) / (1,000 × 25 × λ) ELCRi = (EPCs × 1,000 × 60 × 8 × 0.042 × 225 × 25 × [1 - exp($-\lambda$ × 25)] × CSFi) / (1.40E+09 × 25 × λ) ELCRe = (EPCs × ACF × [(8 × 0.042 × 1) + (0 × 0.042 × 0.4)] × 225 × 25 × [1 - exp($-\lambda$ × 25)] × CSFe) / (365 × 25 × λ)

Appendix D, Table D-6 (RME)

Excess Lifetime Cancer Risk Calculations for a Hypothetical Future Adolescent Trespasser Exposed to Radionuclides Former CLEAR Plant - Shallow Soil/Sediment (0 to 0.5 ft bgs), All Samples

Sierrita Mine, Green Valley, Arizona

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita

				CANCE	R RISK		Percen
			R	oute-Specific ELC	R	Total	Total
	EPCs	PEF [a]	Ingestion	Inhalation	External	ELCR	ELCR
Constituent	(pCi/g)	(m³/kg)	ELCRo	ELCRi	ELCRe		
Radionuclides							
Jranium-238	3.17E+00	1.40E+09 P	4.6E-09	1.6E-11	2.3E-08	2.7E-08	1%
Jranium-234	3.08E+00	1.40E+09 P	4.1E-09	1.8E-11	4.7E-11	4.2E-09	<1%
horium-230	3.08E+00	1.40E+09 P	6.2E-09	2.2E-11	1.6E-10	6.4E-09	<1%
Radium-226	2.18E+00	1.40E+09 P	1.7E-08	1.3E-11	1.1E-06	1.1E-06	59%
ead-210	2.18E+00	1.40E+09 P	2.9E-08	6.4E-12	1.7E-10	2.9E-08	2%
Sismuth-210	2.18E+00	1.40E+09 P	4.2E-13	4.2E-16	7.2E-13	1.1E-12	<1%
Polonium-210	2.18E+00	1.40E+09 P	4.5E-09	3.8E-13	3.2E-13	4.5E-09	<1%
horium-232	2.63E+00	1.40E+09 P	5.2E-08	4.9E-11	6.4E-07	6.9E-07	37%
horium-228	2.63E+00	1.40E+09 P	1.2E-09	2.0E-11	2.4E-10	1.4E-09	<1%
Radium-224	2.63E+00	1.40E+09 P	8.4E-12	8.9E-15	9.5E-12	1.8E-11	<1%
.ead-212	2.63E+00	1.40E+09 P	1.6E-13	6.3E-17	1.4E-11	1.4E-11	<1%
Bismuth-212	2.63E+00	1.40E+09 P	5.0E-16	7.8E-19	1.3E-12	1.3E-12	<1%
hallium-208	2.63E+00	1.40E+09 P	NA	NA	2.3E-12	2.3E-12	<1%
Jranium-235	1.92E-01	1.40E+09 P	2.5E-10	1.0E-12	6.6E-09	6.9E-09	<1%
Protactinium-231	1.92E-01	1.40E+09 P	7.7E-10	3.1E-12	1.5E-09	2.2E-09	<1%
ctinium-227	1.92E-01	1.40E+09 P	8.6E-10	5.2E-12	1.9E-12	8.7E-10	<1%
rancium-223	1.92E-01	1.40E+09 P	1.5E-16	1.0E-20	9.3E-15	9.5E-15	<1%
statine-219	1.92E-01	1.40E+09 P	NA	NA	NA	_	
Bismuth-215	1.92E-01	1.40E+09 P	NA	NA	2.6E-14	2.6E-14	<1%
horium-227	1.92E-01	1.40E+09 P	7.6E-13	1.1E-14	3.8E-11	3.9E-11	<1%
Radium-223	1.92E-01	1.40E+09 P	2.8E-12	5.4E-15	3.6E-11	3.9E-11	<1%
.ead-211	1.92E-01	1.40E+09 P	1.3E-17	1.6E-20	3.3E-14	3.3E-14	<1%
statine-215	1.92E-01	1.40E+09 P	NA	NA	3.7E-24	3.7E-24	<1%
Bismuth-211	1.92E-01	1.40E+09 P	NA	NA	1.3E-15	1.3E-15	<1%
hallium-207	1.92E-01	1.40E+09 P	NA	NA	2.4E-16	2.4E-16	<1%
Polonium-211	1.92E-01	1.40E+09 P	NA	NA	1.0E-18	1.0E-18	<1%
			1E-07	2E-10	2E-06		

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

 %: percent.
 ELCRi: excess lifetime cancer risk, inhalation pathway.

 ACF: area correction factor.
 ELCRo: excess lifetime cancer risk, oral pathway.

 CSFe: external cancer slope factor.
 EPC: exposure point concentration in soil/sediment.

Receptor-specific exposure parameters are presented in Table 6-1. Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

ELCRo = (EPCs × 50 × 52 × 10 × [1 - exp($-\lambda$ × 10)] × CSFo) / (1,000 × 10 × λ)

ELCRi = (EPCs × 1,000 × 60 × 1 × 0.042 × 52 × 10 × [1 - exp($-\lambda$ × 10)] × CSFi) / (1.40E+09 × 10 × λ)

ELCRe = (EPCs × ACF × [(1 × 0.042 × 1) + (0 × 0.042 × 0.4)] × 52 × 10 × [1 - exp($-\lambda$ × 10)] × CSFe) / (365 × 10 × λ)

Appendix D, Table D-7 (RME)

Excess Lifetime Cancer Risk Calculations for a Hypothetical Future Outdoor Commercial / Industrial Worker Exposed to Radionuclides Former CLEAR Plant - Shallow and Deep Soil/Sediment (0 to 15 ft bgs) Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

						CANCE	R RISK		Percent	
				_	F	Route-Specific Ris	k	Total	Total ELCR	
	EPCs		PEF [a]		Ingestion	Inhalation	External	ELCR		
Constituent	(pCi/g)		(m³/kg)		ELCRo	ELCRi	ELCRe			
Radionuclides										
Jranium-238	3.15E+00	soil	1.40E+09 F	>	9.9E-08	6.0E-09	1.9E-06	2.0E-06	1%	
Jranium-234	3.07E+00	soil	1.40E+09 F	>	8.8E-08	6.9E-09	4.0E-09	9.9E-08	<1%	
Thorium-230	3.07E+00	soil	1.40E+09 F	>	1.3E-07	8.4E-09	1.3E-08	1.5E-07	<1%	
Radium-226	2.58E+00	soil	1.40E+09 F	>	4.3E-07	5.8E-09	1.1E-04	1.1E-04	66%	
_ead-210	2.58E+00	soil	1.40E+09 F	>	6.0E-07	2.3E-09	1.4E-08	6.2E-07	<1%	
Bismuth-210	2.58E+00	soil	1.40E+09 F	>	4.3E-12	7.6E-14	2.9E-11	3.3E-11	<1%	
Polonium-210	2.58E+00	soil	1.40E+09 F	>	4.6E-08	6.8E-11	1.3E-11	4.6E-08	<1%	
Thorium-232	2.52E+00	soil	1.40E+09 F	>	1.1E-06	1.8E-08	5.2E-05	5.3E-05	32%	
Γhorium-228	2.52E+00	soil	1.40E+09 F	>	1.0E-08	2.9E-09	8.0E-09	2.1E-08	<1%	
Radium-224	2.52E+00	soil	1.40E+09 F	>	6.9E-11	1.3E-12	3.1E-10	3.8E-10	<1%	
_ead-212	2.52E+00	soil	1.40E+09 F	>	1.3E-12	9.1E-15	4.5E-10	4.5E-10	<1%	
Bismuth-212	2.52E+00	soil	1.40E+09 F	>	4.2E-15	1.1E-16	4.3E-11	4.3E-11	<1%	
Γhallium-208	2.52E+00	soil	1.40E+09 F	>	NA	NA	7.6E-11	7.6E-11	<1%	
Jranium-235	1.85E-01	soil	1.40E+09 F	>	5.2E-09	3.7E-10	5.5E-07	5.5E-07	<1%	
Protactinium-231	1.85E-01	soil	1.40E+09 F	>	1.6E-08	1.1E-09	1.2E-07	1.4E-07	<1%	
Actinium-227	1.85E-01	soil	1.40E+09 F	>	1.4E-08	1.5E-09	1.3E-10	1.6E-08	<1%	
rancium-223	1.85E-01	soil	1.40E+09 F	>	1.2E-15	1.5E-18	3.1E-13	3.1E-13	<1%	
Astatine-219	1.85E-01	soil	1.40E+09 F	>	NA	NA	NA	_		
Bismuth-215	1.85E-01	soil	1.40E+09 F	>	NA	NA	8.6E-13	8.6E-13	<1%	
Thorium-227	1.85E-01	soil	1.40E+09 F	>	6.3E-12	1.5E-12	1.2E-09	1.3E-09	<1%	
Radium-223	1.85E-01	soil	1.40E+09 F	>	2.3E-11	7.8E-13	1.2E-09	1.2E-09	<1%	
_ead-211	1.85E-01	soil	1.40E+09 F	>	1.1E-16	2.4E-18	1.1E-12	1.1E-12	<1%	
Astatine-215	1.85E-01	soil	1.40E+09 F	>	NA	NA	1.2E-22	1.2E-22	<1%	
3ismuth-211	1.85E-01	soil	1.40E+09 F	>	NA	NA	4.2E-14	4.2E-14	<1%	
Γhallium-207	1.85E-01	soil	1.40E+09 F	>	NA	NA	7.9E-15	7.9E-15	<1%	
Polonium-211	1.85E-01	soil	1.40E+09 F	>	NA	NA	3.4E-17	3.4E-17	<1%	
					3E-06	5E-08	2E-04			
Γotal							Total ELCR	2E-04		

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

%: percent. ELCR: excess lifetime cancer risk, inhalation pathway.

ACF: area correction factor. ELCRo: excess lifetime cancer risk, oral pathway.

CSFe: external cancer slope factor. EPC: exposure point concentration in soil/sediment.

CSFi: inhalation cancer slope factor.

CSFo: oral cancer slope factor.

ELCR: excess lifetime cancer risk.

ELCRe: excess lifetime cancer risk, external pathway.

Receptor-specific exposure parameters are presented in Table 6-1.

Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

ELCRo = (EPCs × 100 × 225 × 25 × [1 - exp($-\Lambda$ × 25)] × CSFo) / (1,000 × 25 × Λ) ELCRi = (EPCs × 1,000 × 60 × 8 × 0.042 × 225 × 25 × [1 - exp($-\Lambda$ × 25)] × CSFi) / (1.40E+09 × 25 × Λ) ELCRe = (EPCs × ACF × [(8 × 0.042 × 1) + (0 × 0.042 × 0.4)] × 225 × 25 × [1 - exp($-\Lambda$ × 25)] × CSFe) / (365 × 25 × Λ)

Appendix D, Table D-8 (Site-Specific Evaluation)

Excess Lifetime Cancer Risk Calculations for a Hypothetical Future Outdoor Commercial / Industrial Worker Exposed to Radionuclides Former CLEAR Plant - Shallow and Deep Soil/Sediment (0 to 15 ft bgs)

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

						CANCE	R RISK		Percent
					F	Route-Specific Ris	k	Total	Total
	EPCs		PEF [a]		Ingestion	Inhalation	External	ELCR	ELCR
Constituent	(pCi/g)		(m³/kg)		ELCRo	ELCRi	ELCRe		
Radionuclides									
Jranium-238	3.15E+00	soil	1.40E+09	Р	9.9E-08	3.0E-09	9.6E-07	1.1E-06	1%
Uranium-234	3.07E+00	soil	1.40E+09	Р	8.8E-08	3.5E-09	2.0E-09	9.4E-08	<1%
Thorium-230	3.07E+00	soil	1.40E+09	Р	1.3E-07	4.2E-09	6.7E-09	1.4E-07	<1%
Radium-226	2.58E+00	soil	1.40E+09	Р	4.3E-07	2.9E-09	5.5E-05	5.6E-05	65%
Lead-210	2.58E+00	soil	1.40E+09	Р	6.0E-07	1.2E-09	6.8E-09	6.1E-07	<1%
Bismuth-210	2.58E+00	soil	1.40E+09	Р	4.3E-12	3.8E-14	1.5E-11	1.9E-11	<1%
Polonium-210	2.58E+00	soil	1.40E+09	Р	4.6E-08	3.4E-11	6.5E-12	4.6E-08	<1%
Thorium-232	2.52E+00	soil	1.40E+09	Р	1.1E-06	8.8E-09	2.6E-05	2.7E-05	32%
Thorium-228	2.52E+00	soil	1.40E+09	Р	1.0E-08	1.5E-09	4.0E-09	1.5E-08	<1%
Radium-224	2.52E+00	soil	1.40E+09	Р	6.9E-11	6.5E-13	1.6E-10	2.3E-10	<1%
Lead-212	2.52E+00	soil	1.40E+09	Р	1.3E-12	4.5E-15	2.2E-10	2.3E-10	<1%
Bismuth-212	2.52E+00	soil	1.40E+09	Р	4.2E-15	5.7E-17	2.1E-11	2.1E-11	<1%
Thallium-208	2.52E+00	soil	1.40E+09	Р	NA	NA	3.8E-11	3.8E-11	<1%
Jranium-235	1.85E-01	soil	1.40E+09	Р	5.2E-09	1.9E-10	2.7E-07	2.8E-07	<1%
Protactinium-231	1.85E-01	soil	1.40E+09	Р	1.6E-08	5.7E-10	6.0E-08	7.7E-08	<1%
Actinium-227	1.85E-01	soil	1.40E+09	Р	1.4E-08	7.7E-10	6.5E-11	1.5E-08	<1%
Francium-223	1.85E-01	soil	1.40E+09	Р	1.2E-15	7.4E-19	1.5E-13	1.6E-13	<1%
Astatine-219	1.85E-01	soil	1.40E+09	Р	NA	NA	NA	_	
Bismuth-215	1.85E-01	soil	1.40E+09	Р	NA	NA	4.3E-13	4.3E-13	<1%
Thorium-227	1.85E-01	soil	1.40E+09	Р	6.3E-12	7.7E-13	6.2E-10	6.3E-10	<1%
Radium-223	1.85E-01	soil	1.40E+09	Р	2.3E-11	3.9E-13	5.9E-10	6.2E-10	<1%
Lead-211	1.85E-01	soil	1.40E+09	Р	1.1E-16	1.2E-18	5.5E-13	5.5E-13	<1%
Astatine-215	1.85E-01	soil	1.40E+09	Р	NA	NA	6.2E-23	6.2E-23	<1%
Bismuth-211	1.85E-01	soil	1.40E+09	Р	NA	NA	2.1E-14	2.1E-14	<1%
Thallium-207	1.85E-01	soil	1.40E+09	Р	NA	NA	4.0E-15	4.0E-15	<1%
Polonium-211	1.85E-01	soil	1.40E+09	Р	NA	NA	1.7E-17	1.7E-17	<1%
					3E-06	3E-08	8E-05		
Γotal							Total ELCR	9E-05	1

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

%: percent. ELCRi: excess lifetime cancer risk, inhalation pathway. ACF: area correction factor. ELCRo: excess lifetime cancer risk, oral pathway.

CSFe: external cancer slope factor. EPC: exposure point concentration in soil/sediment.

CSFi: inhalation cancer slope factor. ft bgs: feet below ground surface.

CSFo: oral cancer slope factor. m³/kg: cubic meter(s) per kilogram.

ELCR: excess lifetime cancer risk. pCi/g: picoCurie(s) per gram.

ELCRe: excess lifetime cancer risk, external pathway.

Receptor-specific exposure parameters are presented in Table 6-1.

Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

ELCRo = (EPCs × 100 × 225 × 25 × [1 - exp($-\lambda$ × 25)] × CSFo) / (1,000 × 25 × λ) ELCRi = (EPCs × 1,000 × 60 × 8 × 0.042 × 225 × 25 × [1 - exp($-\lambda$ × 25)] × CSFi) / (1.40E+09 × 25 × λ) ELCRe = (EPCs × ACF × [(8 × 0.042 × 1) + (0 × 0.042 × 0.4)] × 225 × 25 × [1 - exp($-\lambda$ × 25)] × CSFe) / (365 × 25 × λ)

Appendix D, Table D-9 (RME)

Excess Lifetime Cancer Risk Calculations for a Hypothetical Future Adolescent Trespasser Exposed to Radionuclides

Former CLEAR Plant - Shallow and Deep Soil/Sediment (0 to 15 ft bgs) Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

				_		CANCE	R RISK		Percent
				-	F	Route-Specific Ris	k	Total	Total
	EPCs		PEF [a]		Ingestion	Inhalation	External	ELCR	ELCR
Constituent	(pCi/g)		(m³/kg)		ELCRo	ELCRi	ELCRe		
Radionuclides									
Jranium-238	3.15E+00	soil	1.40E+09	Р	4.6E-09	1.6E-11	2.2E-08	2.7E-08	1%
Uranium-234	3.07E+00	soil	1.40E+09	Р	4.1E-09	1.8E-11	4.6E-11	4.1E-09	<1%
Γhorium-230	3.07E+00	soil	1.40E+09	Р	6.2E-09	2.2E-11	1.5E-10	6.3E-09	<1%
Radium-226	2.58E+00	soil	1.40E+09	Р	2.0E-08	1.5E-11	1.3E-06	1.3E-06	64%
_ead-210	2.58E+00	soil	1.40E+09	Р	3.5E-08	7.6E-12	2.0E-10	3.5E-08	2%
Bismuth-210	2.58E+00	soil	1.40E+09	Р	5.0E-13	5.0E-16	8.5E-13	1.3E-12	<1%
Polonium-210	2.58E+00	soil	1.40E+09	Р	5.3E-09	4.5E-13	3.8E-13	5.3E-09	<1%
Thorium-232	2.52E+00	soil	1.40E+09	Р	4.9E-08	4.7E-11	6.1E-07	6.6E-07	32%
Thorium-228	2.52E+00	soil	1.40E+09	Р	1.1E-09	1.9E-11	2.3E-10	1.4E-09	<1%
Radium-224	2.52E+00	soil	1.40E+09	Р	8.0E-12	8.5E-15	9.1E-12	1.7E-11	<1%
_ead-212	2.52E+00	soil	1.40E+09	Р	1.5E-13	6.0E-17	1.3E-11	1.3E-11	<1%
Bismuth-212	2.52E+00	soil	1.40E+09	Р	4.8E-16	7.5E-19	1.2E-12	1.2E-12	<1%
Γhallium-208	2.52E+00	soil	1.40E+09	Р	NA	NA	2.2E-12	2.2E-12	<1%
Jranium-235	1.85E-01	soil	1.40E+09	Р	2.4E-10	9.8E-13	6.4E-09	6.6E-09	<1%
Protactinium-231	1.85E-01	soil	1.40E+09	Р	7.4E-10	3.0E-12	1.4E-09	2.1E-09	<1%
Actinium-227	1.85E-01	soil	1.40E+09	Р	8.3E-10	5.1E-12	1.9E-12	8.4E-10	<1%
Francium-223	1.85E-01	soil	1.40E+09	Р	1.4E-16	9.7E-21	9.0E-15	9.1E-15	<1%
Astatine-219	1.85E-01	soil	1.40E+09	Р	NA	NA	NA	-	
Bismuth-215	1.85E-01	soil	1.40E+09	Р	NA	NA	2.5E-14	2.5E-14	<1%
Γhorium-227	1.85E-01	soil	1.40E+09	Р	7.3E-13	1.0E-14	3.6E-11	3.7E-11	<1%
Radium-223	1.85E-01	soil	1.40E+09	Р	2.7E-12	5.2E-15	3.5E-11	3.7E-11	<1%
_ead-211	1.85E-01	soil	1.40E+09	Р	1.3E-17	1.6E-20	3.2E-14	3.2E-14	<1%
Astatine-215	1.85E-01	soil	1.40E+09	Р	NA	NA	3.6E-24	3.6E-24	<1%
Bismuth-211	1.85E-01	soil	1.40E+09	Р	NA	NA	1.2E-15	1.2E-15	<1%
Thallium-207	1.85E-01	soil	1.40E+09	Р	NA	NA	2.3E-16	2.3E-16	<1%
Polonium-211	1.85E-01	soil	1.40E+09	Р	NA	NA	9.8E-19	9.8E-19	<1%
					1E-07	2E-10	2E-06		
Γotal							Total ELCR	2E-06	

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

%: percent. ELCRi: excess lifetime cancer risk, inhalation pathway.

ACF: area correction factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFe: external cancer slope factor. EPC: exposure point concentration in soil/sediment.

CSFi: inhalation cancer slope factor. ft bgs: feet below ground surface. CSFo: oral cancer slope factor. m³/kg: cubic meter(s) per kilogram. ELCR: excess lifetime cancer risk. pCi/g: picoCurie(s) per gram. ELCRe: excess lifetime cancer risk, external pathway. RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1.

Radionuclide-specific parameters and slope factors are presented in Table 7-2.

ELCRi = (EPCs × 1,000 × 60 × 1 × 0.042 × 52 × 10 × [1 - exp($-\lambda$ × 10)] × CSFi) / (1.40E+09 × 10 × λ) ELCRe = (EPCs × ACF × [(1 × 0.042 × 1) + (0 × 0.042 × 0.4)] × 52 × 10 × [1 - exp($-\lambda$ × 10)] × CSFe) / (365 × 10 × λ)

Appendix D, Table D-10 (RME)

Excess Lifetime Cancer Risk Calculations for a Hypothetical Future Construction Worker Exposed to Radionuclides Former CLEAR Plant - Shallow and Deep Soil/Sediment (0 to 15 ft bgs)

Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

				_		CANCE	R RISK		Percent
				-	F	Route-Specific Ris	k	Total	Total
	EPCs		PEF [a]		Ingestion	Inhalation	External	ELCR	ELCR
Constituent	(pCi/g)		(m³/kg)		ELCRo	ELCRi	ELCRe		
Radionuclides									
Uranium-238	3.15E+00	soil	1.40E+09	Р	1.5E-08	2.7E-10	8.5E-08	1.0E-07	1%
Uranium-234	3.07E+00	soil	1.40E+09	Р	1.3E-08	3.1E-10	1.8E-10	1.3E-08	<1%
Thorium-230	3.07E+00	soil	1.40E+09	Р	2.0E-08	3.7E-10	5.9E-10	2.1E-08	<1%
Radium-226	2.58E+00	soil	1.40E+09	Р	6.3E-08	2.6E-10	4.9E-06	5.0E-06	63%
Lead-210	2.58E+00	soil	1.40E+09	Р	1.3E-07	1.5E-10	8.6E-10	1.3E-07	2%
Bismuth-210	2.58E+00	soil	1.40E+09	Р	1.6E-11	8.4E-14	3.2E-11	4.8E-11	<1%
Polonium-210	2.58E+00	soil	1.40E+09	Р	1.4E-07	6.4E-11	1.2E-11	1.4E-07	2%
Thorium-232	2.52E+00	soil	1.40E+09	Р	1.6E-07	7.8E-10	2.3E-06	2.5E-06	31%
Thorium-228	2.52E+00	soil	1.40E+09	Р	1.1E-08	9.8E-10	2.7E-09	1.5E-08	<1%
Radium-224	2.52E+00	soil	1.40E+09	Р	2.5E-10	1.4E-12	3.5E-10	6.0E-10	<1%
Lead-212	2.52E+00	soil	1.40E+09	Р	4.8E-12	1.0E-14	5.0E-10	5.0E-10	<1%
Bismuth-212	2.52E+00	soil	1.40E+09	Р	1.5E-14	1.3E-16	4.7E-11	4.7E-11	<1%
Thallium-208	2.52E+00	soil	1.40E+09	Р	NA	NA	8.4E-11	8.4E-11	<1%
Uranium-235	1.85E-01	soil	1.40E+09	Р	7.6E-10	1.7E-11	2.4E-08	2.5E-08	<1%
Protactinium-231	1.85E-01	soil	1.40E+09	Р	2.4E-09	5.0E-11	5.4E-09	7.8E-09	<1%
Actinium-227	1.85E-01	soil	1.40E+09	Р	3.0E-09	9.8E-11	8.2E-12	3.1E-09	<1%
Francium-223	1.85E-01	soil	1.40E+09	Р	4.5E-15	1.6E-18	3.4E-13	3.5E-13	<1%
Astatine-219	1.85E-01	soil	1.40E+09	Р	NA	NA	NA	_	
Bismuth-215	1.85E-01	soil	1.40E+09	Р	NA	NA	9.5E-13	9.5E-13	<1%
Thorium-227	1.85E-01	soil	1.40E+09	Р	2.3E-11	1.7E-12	1.4E-09	1.4E-09	<1%
Radium-223	1.85E-01	soil	1.40E+09	Р	8.5E-11	8.7E-13	1.3E-09	1.4E-09	<1%
Lead-211	1.85E-01	soil	1.40E+09	Р	4.0E-16	2.6E-18	1.2E-12	1.2E-12	<1%
Astatine-215	1.85E-01	soil	1.40E+09	Р	NA	NA	1.4E-22	1.4E-22	<1%
Bismuth-211	1.85E-01	soil	1.40E+09	Р	NA	NA	4.7E-14	4.7E-14	<1%
Thallium-207	1.85E-01	soil	1.40E+09	Р	NA	NA	8.8E-15	8.8E-15	<1%
Polonium-211	1.85E-01	soil	1.40E+09	Р	NA	NA	3.7E-17	3.7E-17	<1%
					6E-07	3E-09	7E-06		
Total							Total ELCR	8E-06	

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

%: percent. ELCRi: excess lifetime cancer risk, inhalation pathway.

ACF: area correction factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFe: external cancer slope factor. EPC: exposure point concentration in soil/sediment.

CSFi: inhalation cancer slope factor. ft bgs: feet below ground surface. CSFo: oral cancer slope factor. m³/kg: cubic meter(s) per kilogram. ELCR: excess lifetime cancer risk. pCi/g: picoCurie(s) per gram. ELCRe: excess lifetime cancer risk, external pathway. RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1.

Radionuclide-specific parameters and slope factors are presented in Table 7-2.

```
ELCRi = (EPCs × 1,000 × 60 × 8 × 0.042 × 250 × 1 \times [1 - \exp(-\lambda \times 1)] \times CSFi) / (1.40E+09 \times 1 \times \lambda)
ELCRe = (EPCs × ACF × [(8 × 0.042 × 1) + (0 × 0.042 × 0.4)] × 250 × 1 × [1 - exp(-\lambda × 1)] × CSFe) / (365 × 1 × \lambda)
```

Appendix D, Table D-11 (RME)

Excess Lifetime Cancer Risk Calculations for a Current/Future Outdoor Commercial / Industrial Worker Exposed to Radionuclides Former Esperanza Mill - Shallow Soil/Sediment (0 to 0.5 ft bgs)

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

				CANCE	R RISK		Percent
			R	oute-Specific ELC	R	Total	Total
	EPCs	PEF [a]	Ingestion	Inhalation	External	ELCR	ELCR
Constituent	(pCi/g)	(m³/kg)	ELCRo	ELCRi	ELCRe		
Radionuclides							
Jranium-238	2.10E+00	1.40E+09 P	6.6E-08	4.0E-09	1.3E-06	1.4E-06	<1%
Jranium-234	2.12E+00	1.40E+09 P	6.1E-08	4.8E-09	2.8E-09	6.8E-08	<1%
horium-230	2.12E+00	1.40E+09 P	9.2E-08	5.8E-09	9.2E-09	1.1E-07	<1%
Radium-226	2.60E+00	1.40E+09 P	4.3E-07	5.9E-09	1.1E-04	1.1E-04	70%
.ead-210	2.60E+00	1.40E+09 P	6.1E-07	2.3E-09	1.4E-08	6.3E-07	<1%
Bismuth-210	2.60E+00	1.40E+09 P	4.3E-12	7.6E-14	2.9E-11	3.4E-11	<1%
Polonium-210	2.60E+00	1.40E+09 P	4.6E-08	6.9E-11	1.3E-11	4.6E-08	<1%
Thorium-232	2.19E+00	1.40E+09 P	9.3E-07	1.5E-08	4.5E-05	4.6E-05	29%
Thorium-228	2.19E+00	1.40E+09 P	8.7E-09	2.5E-09	7.0E-09	1.8E-08	<1%
Radium-224	2.19E+00	1.40E+09 P	6.0E-11	1.1E-12	2.7E-10	3.3E-10	<1%
ead-212	2.19E+00	1.40E+09 P	1.1E-12	7.9E-15	3.9E-10	3.9E-10	<1%
Bismuth-212	2.19E+00	1.40E+09 P	3.6E-15	9.8E-17	3.7E-11	3.7E-11	<1%
hallium-208	2.19E+00	1.40E+09 P	NA	NA	6.6E-11	6.6E-11	<1%
Jranium-235	1.12E-01	1.40E+09 P	3.1E-09	2.3E-10	3.3E-07	3.3E-07	<1%
Protactinium-231	1.12E-01	1.40E+09 P	9.7E-09	6.9E-10	7.3E-08	8.3E-08	<1%
Actinium-227	1.12E-01	1.40E+09 P	8.7E-09	9.3E-10	7.9E-11	9.7E-09	<1%
rancium-223	1.12E-01	1.40E+09 P	7.4E-16	8.9E-19	1.9E-13	1.9E-13	<1%
statine-219	1.12E-01	1.40E+09 P	NA	NA	NA	_	
Bismuth-215	1.12E-01	1.40E+09 P	NA	NA	5.2E-13	5.2E-13	<1%
Thorium-227	1.12E-01	1.40E+09 P	3.8E-12	9.3E-13	7.6E-10	7.6E-10	<1%
Radium-223	1.12E-01	1.40E+09 P	1.4E-11	4.7E-13	7.2E-10	7.3E-10	<1%
ead-211	1.12E-01	1.40E+09 P	6.6E-17	1.4E-18	6.6E-13	6.6E-13	<1%
Astatine-215	1.12E-01	1.40E+09 P	NA	NA	7.5E-23	7.5E-23	<1%
Bismuth-211	1.12E-01	1.40E+09 P	NA	NA	2.6E-14	2.6E-14	<1%
hallium-207	1.12E-01	1.40E+09 P	NA	NA	4.8E-15	4.8E-15	<1%
Polonium-211	1.12E-01	1.40E+09 P	NA	NA	2.0E-17	2.0E-17	<1%
			2E-06	4E-08	2E-04		
Γotal					Total ELCR	2E-04	

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

%: percent. ELCRi: excess lifetime cancer risk, inhalation pathway.

ACF: area correction factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFe: external cancer slope factor. EPC: exposure point concentration in soil/sediment.

Receptor-specific exposure parameters are presented in Table 6-1.

Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

$$\begin{split} & \overline{\text{ELCRo}} = (\overline{\text{EPCs}} \times 100 \times 225 \times 25 \times [1 - \exp(-\lambda \times 25)] \times \overline{\text{CSFo}} / (1,000 \times 25 \times \lambda) \\ & \overline{\text{ELCRi}} = (\overline{\text{EPCs}} \times 1,000 \times 60 \times 8 \times 0.042 \times 225 \times 25 \times [1 - \exp(-\lambda \times 25)] \times \overline{\text{CSFi}} / (1.40E + 09 \times 25 \times \lambda) \\ & \overline{\text{ELCRe}} = (\overline{\text{EPCs}} \times \overline{\text{ACF}} \times [(8 \times 0.042 \times 1) + (0 \times 0.042 \times 0.4)] \times 225 \times 25 \times [1 - \exp(-\lambda \times 25)] \times \overline{\text{CSFe}} / (365 \times 25 \times \lambda) \\ \end{aligned}$$

Appendix D, Table D-12 (Site-Specific Evaluation)

Excess Lifetime Cancer Risk Calculations for a Current/Future Outdoor Commercial / Industrial Worker Exposed to Radionuclides Former Esperanza Mill - Shallow Soil/Sediment (0 to 0.5 ft bgs)

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

				CANCE	R RISK		Percent
			R	oute-Specific ELC	R	Total	Total
	EPCs	PEF [a]	Ingestion	Inhalation	External	ELCR	ELCR
Constituent	(pCi/g)	(m³/kg)	ELCRo	ELCRi	ELCRe		
Radionuclides							
Jranium-238	2.10E+00	1.40E+09 P	6.6E-08	2.0E-09	6.4E-07	7.1E-07	<1%
Jranium-234	2.12E+00	1.40E+09 P	6.1E-08	2.4E-09	1.4E-09	6.5E-08	<1%
Γhorium-230	2.12E+00	1.40E+09 P	9.2E-08	2.9E-09	4.6E-09	1.0E-07	<1%
Radium-226	2.60E+00	1.40E+09 P	4.3E-07	2.9E-09	5.6E-05	5.6E-05	69%
ead-210	2.60E+00	1.40E+09 P	6.1E-07	1.2E-09	6.9E-09	6.2E-07	<1%
3ismuth-210	2.60E+00	1.40E+09 P	4.3E-12	3.8E-14	1.5E-11	1.9E-11	<1%
Polonium-210	2.60E+00	1.40E+09 P	4.6E-08	3.4E-11	6.6E-12	4.6E-08	<1%
Γhorium-232	2.19E+00	1.40E+09 P	9.3E-07	7.7E-09	2.3E-05	2.4E-05	29%
horium-228	2.19E+00	1.40E+09 P	8.7E-09	1.3E-09	3.5E-09	1.3E-08	<1%
Radium-224	2.19E+00	1.40E+09 P	6.0E-11	5.6E-13	1.4E-10	2.0E-10	<1%
ead-212	2.19E+00	1.40E+09 P	1.1E-12	3.9E-15	2.0E-10	2.0E-10	<1%
Bismuth-212	2.19E+00	1.40E+09 P	3.6E-15	4.9E-17	1.9E-11	1.9E-11	<1%
hallium-208	2.19E+00	1.40E+09 P	NA	NA	3.3E-11	3.3E-11	<1%
Jranium-235	1.12E-01	1.40E+09 P	3.1E-09	1.1E-10	1.7E-07	1.7E-07	<1%
Protactinium-231	1.12E-01	1.40E+09 P	9.7E-09	3.4E-10	3.7E-08	4.7E-08	<1%
Actinium-227	1.12E-01	1.40E+09 P	8.7E-09	4.7E-10	3.9E-11	9.2E-09	<1%
rancium-223	1.12E-01	1.40E+09 P	7.4E-16	4.5E-19	9.4E-14	9.4E-14	<1%
statine-219	1.12E-01	1.40E+09 P	NA	NA	NA	_	
Bismuth-215	1.12E-01	1.40E+09 P	NA	NA	2.6E-13	2.6E-13	<1%
Γhorium-227	1.12E-01	1.40E+09 P	3.8E-12	4.7E-13	3.8E-10	3.8E-10	<1%
Radium-223	1.12E-01	1.40E+09 P	1.4E-11	2.4E-13	3.6E-10	3.7E-10	<1%
ead-211	1.12E-01	1.40E+09 P	6.6E-17	7.2E-19	3.3E-13	3.3E-13	<1%
Astatine-215	1.12E-01	1.40E+09 P	NA	NA	3.7E-23	3.7E-23	<1%
Bismuth-211	1.12E-01	1.40E+09 P	NA	NA	1.3E-14	1.3E-14	<1%
hallium-207	1.12E-01	1.40E+09 P	NA	NA	2.4E-15	2.4E-15	<1%
Polonium-211	1.12E-01	1.40E+09 P	NA	NA	1.0E-17	1.0E-17	<1%
			2E-06	2E-08	8E-05		
Гotal					Total ELCR	8E-05	Ī

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

%: percent. ELCRi: excess lifetime cancer risk, inhalation pathway.

ACF: area correction factor. ELCRo: excess lifetime cancer risk, oral pathway.

CSFe: external cancer slope factor. EPC: exposure point concentration in soil/sediment.

ELCRe: excess lifetime cancer risk, external pathway.

Receptor-specific exposure parameters are presented in Table 6-1.

Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

Appendix D, Table D-13 (RME)

Excess Lifetime Cancer Risk Calculations for a Hypothetical Future Adolescent Trespasser Exposed to Radionuclides

Former Esperanza Mill - Shallow Soil/Sediment (0 to 0.5 ft bgs) Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

				CANCE	R RISK		Percent
			R	oute-Specific ELC	R	Total	Total
	EPCs	PEF [a]	Ingestion	Inhalation	External	ELCR	ELCR
Constituent	(pCi/g)	(m³/kg)	ELCRo	ELCRi	ELCRe		
Radionuclides							
Jranium-238	2.10E+00	1.40E+09 P	3.1E-09	1.1E-11	1.5E-08	1.8E-08	<1%
Jranium-234	2.12E+00	1.40E+09 P	2.8E-09	1.3E-11	3.2E-11	2.9E-09	<1%
horium-230	2.12E+00	1.40E+09 P	4.3E-09	1.5E-11	1.1E-10	4.4E-09	<1%
Radium-226	2.60E+00	1.40E+09 P	2.0E-08	1.6E-11	1.3E-06	1.3E-06	67%
_ead-210	2.60E+00	1.40E+09 P	3.5E-08	7.6E-12	2.0E-10	3.5E-08	2%
3ismuth-210	2.60E+00	1.40E+09 P	5.0E-13	5.0E-16	8.5E-13	1.4E-12	<1%
Polonium-210	2.60E+00	1.40E+09 P	5.3E-09	4.5E-13	3.8E-13	5.3E-09	<1%
horium-232	2.19E+00	1.40E+09 P	4.3E-08	4.0E-11	5.3E-07	5.7E-07	29%
horium-228	2.19E+00	1.40E+09 P	9.8E-10	1.6E-11	2.0E-10	1.2E-09	<1%
Radium-224	2.19E+00	1.40E+09 P	7.0E-12	7.4E-15	7.9E-12	1.5E-11	<1%
.ead-212	2.19E+00	1.40E+09 P	1.3E-13	5.2E-17	1.1E-11	1.1E-11	<1%
Bismuth-212	2.19E+00	1.40E+09 P	4.2E-16	6.5E-19	1.1E-12	1.1E-12	<1%
hallium-208	2.19E+00	1.40E+09 P	NA	NA	1.9E-12	1.9E-12	<1%
Jranium-235	1.12E-01	1.40E+09 P	1.5E-10	6.0E-13	3.9E-09	4.0E-09	<1%
Protactinium-231	1.12E-01	1.40E+09 P	4.5E-10	1.8E-12	8.5E-10	1.3E-09	<1%
ctinium-227	1.12E-01	1.40E+09 P	5.0E-10	3.1E-12	1.1E-12	5.1E-10	<1%
rancium-223	1.12E-01	1.40E+09 P	8.6E-17	5.9E-21	5.5E-15	5.5E-15	<1%
statine-219	1.12E-01	1.40E+09 P	NA	NA	NA	-	
Bismuth-215	1.12E-01	1.40E+09 P	NA	NA	1.5E-14	1.5E-14	<1%
horium-227	1.12E-01	1.40E+09 P	4.4E-13	6.2E-15	2.2E-11	2.2E-11	<1%
Radium-223	1.12E-01	1.40E+09 P	1.6E-12	3.1E-15	2.1E-11	2.3E-11	<1%
ead-211	1.12E-01	1.40E+09 P	7.6E-18	9.4E-21	1.9E-14	1.9E-14	<1%
Astatine-215	1.12E-01	1.40E+09 P	NA	NA	2.2E-24	2.2E-24	<1%
Bismuth-211	1.12E-01	1.40E+09 P	NA	NA	7.5E-16	7.5E-16	<1%
hallium-207	1.12E-01	1.40E+09 P	NA	NA	1.4E-16	1.4E-16	<1%
Polonium-211	1.12E-01	1.40E+09 P	NA	NA	5.9E-19	5.9E-19	<1%
			1E-07	1E-10	2E-06		
otal					Total ELCR	2E-06	1

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

%: percent. ELCRi: excess lifetime cancer risk, inhalation pathway.

ACF: area correction factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFe: external cancer slope factor. EPC: exposure point concentration in soil/sediment.

CSFi: inhalation cancer slope factor. ft bgs: feet below ground surface.

CSFo: oral cancer slope factor. m³/kg: cubic meter(s) per kilogram.

ELCR: excess lifetime cancer risk. pCi/g: picoCurie(s) per gram.

ELCR: excess lifetime cancer risk, external pathway. RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1.

Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

ELCRo = (EPCs × 50 × 52 × 10 × [1 - exp(- λ × 10)] × CSFo) / (1,000 × 10 × λ) ELCRi = (EPCs × 1,000 × 60 × 1 × 0.042 × 52 × 10 × [1 - exp(- λ × 10)] × CSFi) / (1.40E+09 × 10 × λ)

ELCRe = (EPCs × ACF × [(1 × 0.042 × 1) + (0 × 0.042 × 0.4)] × $52 \times 10 \times [1 - \exp(-\lambda \times 10)] \times CSFe) / (365 \times 10 \times \lambda)$

Appendix D, Table D-14 (RME)

Excess Lifetime Cancer Risk Calculations for a Hypothetical Future Outdoor Commercial / Industrial Worker Exposed to Radionuclides Former Esperanza Mill - Shallow and Deep Soil/Sediment (0 to 15 ft bgs)

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

				_		CANCE	R RISK		Percent
				_	F	Route-Specific Ris	k	Total	Total
	EPC	S	PEF [a]		Ingestion	Inhalation	External	ELCR	ELCR
Constituent	(pCi/	'g)	(m³/kg)		ELCRo	ELCRi	ELCRe		
Radionuclides									
Uranium-238	2.76E+00	soil	1.40E+09	Р	8.7E-08	5.3E-09	1.7E-06	1.8E-06	1%
Uranium-234	2.71E+00	soil	1.40E+09	Р	7.8E-08	6.1E-09	3.5E-09	8.7E-08	<1%
Thorium-230	2.71E+00	soil	1.40E+09		1.2E-07	7.4E-09	1.2E-08	1.4E-07	<1%
Radium-226	2.43E+00	soil+sed	1.40E+09	Р	4.0E-07	5.5E-09	1.0E-04	1.0E-04	65%
Lead-210	2.43E+00	soil+sed	1.40E+09	Р	5.7E-07	2.2E-09	1.3E-08	5.8E-07	<1%
Bismuth-210	2.43E+00	soil+sed	1.40E+09	Р	4.0E-12	7.1E-14	2.7E-11	3.1E-11	<1%
Polonium-210	2.43E+00	soil+sed	1.40E+09	Р	4.3E-08	6.4E-11	1.2E-11	4.3E-08	<1%
Thorium-232	2.51E+00	soil	1.40E+09	Р	1.1E-06	1.8E-08	5.2E-05	5.3E-05	33%
Thorium-228	2.51E+00	soil	1.40E+09	Р	9.9E-09	2.9E-09	8.0E-09	2.1E-08	<1%
Radium-224	2.51E+00	soil	1.40E+09	Р	6.9E-11	1.3E-12	3.1E-10	3.8E-10	<1%
Lead-212	2.51E+00	soil	1.40E+09	Р	1.3E-12	9.1E-15	4.5E-10	4.5E-10	<1%
Bismuth-212	2.51E+00	soil	1.40E+09	Р	4.2E-15	1.1E-16	4.2E-11	4.2E-11	<1%
Thallium-208	2.51E+00	soil	1.40E+09	Р	NA	NA	7.6E-11	7.6E-11	<1%
Uranium-235	1.20E-01	soil	1.40E+09	Р	3.4E-09	2.4E-10	3.6E-07	3.6E-07	<1%
Protactinium-231	1.20E-01	soil	1.40E+09	Р	1.0E-08	7.3E-10	7.8E-08	8.9E-08	<1%
Actinium-227	1.20E-01	soil	1.40E+09	Р	9.4E-09	1.0E-09	8.4E-11	1.0E-08	<1%
Francium-223	1.20E-01	soil	1.40E+09	Р	7.9E-16	9.6E-19	2.0E-13	2.0E-13	<1%
Astatine-219	1.20E-01	soil	1.40E+09	Р	NA	NA	NA	_	
Bismuth-215	1.20E-01	soil	1.40E+09	Р	NA	NA	5.6E-13	5.6E-13	<1%
Thorium-227	1.20E-01	soil	1.40E+09	Р	4.1E-12	1.0E-12	8.1E-10	8.2E-10	<1%
Radium-223	1.20E-01	soil	1.40E+09	Р	1.5E-11	5.1E-13	7.7E-10	7.9E-10	<1%
Lead-211	1.20E-01	soil	1.40E+09	Р	7.0E-17	1.5E-18	7.1E-13	7.1E-13	<1%
Astatine-215	1.20E-01	soil	1.40E+09	Р	NA	NA	8.0E-23	8.0E-23	<1%
Bismuth-211	1.20E-01	soil	1.40E+09	Р	NA	NA	2.8E-14	2.8E-14	<1%
Thallium-207	1.20E-01	soil	1.40E+09	Р	NA	NA	5.1E-15	5.1E-15	<1%
Polonium-211	1.20E-01	soil	1.40E+09	Р	NA	NA	2.2E-17	2.2E-17	<1%
					2E-06	5E-08	2E-04		
Total							Total ELCR	2E-04	

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

%: percent.

ACF: area correction factor.

CSFe: external cancer slope factor.

CSFi: inhalation cancer slope factor.

CSFo: oral cancer slope factor.

ELCR: excess lifetime cancer risk.

ELCRe: excess lifetime cancer risk, external pathway.

ELCRi: excess lifetime cancer risk, inhalation pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

EPC: exposure point concentration in soil/sediment.

ft bgs: feet below ground surface.

m³/kg: cubic meter(s) per kilogram. pCi/g: picoCurie(s) per gram. RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1.

Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

```
ELCRo = (EPCs × 100 × 225 × 25 × [1 - exp(-\lambda × 25)] × CSFo) / (1,000 × 25 × \lambda)

ELCRi = (EPCs × 1,000 × 60 × 8 × 0.042 × 225 × 25 × [1 - exp(-\lambda × 25)] × CSFi) / (1.40E+09 × 25 × \lambda)

ELCRe = (EPCs × ACF × [(8 × 0.042 × 1) + (0 × 0.042 × 0.4)] × 225 × 25 × [1 - exp(-\lambda × 25)] × CSFe) / (365 × 25 × \lambda)
```

Appendix D, Table D-15 (Site-Specific Evaluation)

Excess Lifetime Cancer Risk Calculations for a Hypothetical Future Outdoor Commercial / Industrial Worker Exposed to Radionuclides

Former Esperanza Mill - Shallow and Deep Soil/Sediment (0 to 15 ft bgs) Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

				_		CANCE	R RISK		Percent
				_	F	Route-Specific Ris	k	Total	Total
	EPO	Cs	PEF [a]		Ingestion	Inhalation	External	ELCR	ELCR
Constituent	(pCi	/g)	(m³/kg)		ELCRo	ELCRi	ELCRe		
Radionuclides									
Jranium-238	2.76E+00	soil	1.40E+09	Р	8.7E-08	2.6E-09	8.4E-07	9.3E-07	1%
Jranium-234	2.71E+00	soil	1.40E+09	Р	7.8E-08	3.1E-09	1.8E-09	8.3E-08	<1%
Thorium-230	2.71E+00	soil	1.40E+09	Р	1.2E-07	3.7E-09	5.9E-09	1.3E-07	<1%
Radium-226	2.43E+00	soil+sed	1.40E+09	Р	4.0E-07	2.7E-09	5.2E-05	5.2E-05	64%
Lead-210	2.43E+00	soil+sed	1.40E+09	Р	5.7E-07	1.1E-09	6.4E-09	5.8E-07	<1%
Bismuth-210	2.43E+00	soil+sed	1.40E+09	Р	4.0E-12	3.6E-14	1.4E-11	1.8E-11	<1%
Polonium-210	2.43E+00	soil+sed	1.40E+09	Р	4.3E-08	3.2E-11	6.2E-12	4.3E-08	<1%
Thorium-232	2.51E+00	soil	1.40E+09	Р	1.1E-06	8.8E-09	2.6E-05	2.7E-05	33%
Γhorium-228	2.51E+00	soil	1.40E+09	Р	9.9E-09	1.4E-09	4.0E-09	1.5E-08	<1%
Radium-224	2.51E+00	soil	1.40E+09	Р	6.9E-11	6.4E-13	1.6E-10	2.3E-10	<1%
_ead-212	2.51E+00	soil	1.40E+09	Р	1.3E-12	4.5E-15	2.2E-10	2.2E-10	<1%
Bismuth-212	2.51E+00	soil	1.40E+09	Р	4.2E-15	5.6E-17	2.1E-11	2.1E-11	<1%
Γhallium-208	2.51E+00	soil	1.40E+09	Р	NA	NA	3.8E-11	3.8E-11	<1%
Jranium-235	1.20E-01	soil	1.40E+09	Р	3.4E-09	1.2E-10	1.8E-07	1.8E-07	<1%
Protactinium-231	1.20E-01	soil	1.40E+09	Р	1.0E-08	3.7E-10	3.9E-08	5.0E-08	<1%
Actinium-227	1.20E-01	soil	1.40E+09	Р	9.4E-09	5.0E-10	4.2E-11	9.9E-09	<1%
rancium-223	1.20E-01	soil	1.40E+09	Р	7.9E-16	4.8E-19	1.0E-13	1.0E-13	<1%
Astatine-219	1.20E-01	soil	1.40E+09	Р	NA	NA	NA	_	
Bismuth-215	1.20E-01	soil	1.40E+09	Р	NA	NA	2.8E-13	2.8E-13	<1%
Thorium-227	1.20E-01	soil	1.40E+09	Р	4.1E-12	5.0E-13	4.1E-10	4.1E-10	<1%
Radium-223	1.20E-01	soil	1.40E+09	Р	1.5E-11	2.5E-13	3.8E-10	4.0E-10	<1%
_ead-211	1.20E-01	soil	1.40E+09	Р	7.0E-17	7.7E-19	3.6E-13	3.6E-13	<1%
Astatine-215	1.20E-01	soil	1.40E+09	Р	NA	NA	4.0E-23	4.0E-23	<1%
Bismuth-211	1.20E-01	soil	1.40E+09	Р	NA	NA	1.4E-14	1.4E-14	<1%
Thallium-207	1.20E-01	soil	1.40E+09	Р	NA	NA	2.6E-15	2.6E-15	<1%
Polonium-211	1.20E-01	soil	1.40E+09	Р	NA	NA	1.1E-17	1.1E-17	<1%
					2E-06	2E-08	8E-05		
Γotal							Total ELCR	8E-05	Ī

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

%: percent.

ACF: area correction factor.

CSFe: external cancer slope factor.

CSFi: inhalation cancer slope factor.

CSFo: oral cancer slope factor.

ELCR: excess lifetime cancer risk.

ELCR. excess illetime cancer risk.

ELCRi: excess lifetime cancer risk, inhalation pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

EPC: exposure point concentration in soil/sediment.

ft bgs: feet below ground surface.

m³/kg: cubic meter(s) per kilogram. pCi/g: picoCurie(s) per gram.

ELCRe: excess lifetime cancer risk, external pathway.

Receptor-specific exposure parameters are presented in Table 6-1.

Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

```
ELCRo = (EPCs × 100 × 225 × 25 × [1 - exp(-\Lambda × 25)] × CSFo) / (1,000 × 25 × \Lambda)

ELCRi = (EPCs × 1,000 × 60 × 8 × 0.042 × 225 × 25 × [1 - exp(-\Lambda × 25)] × CSFi) / (1.40E+09 × 25 × \Lambda)

ELCRe = (EPCs × ACF × [(8 × 0.042 × 1) + (0 × 0.042 × 0.4)] × 225 × 25 × [1 - exp(-\Lambda × 25)] × CSFe) / (365 × 25 × \Lambda)
```

Appendix D, Table D-16 (RME)

Excess Lifetime Cancer Risk Calculations for a Hypothetical Future Adolescent Trespasser Exposed to Radionuclides

Former Esperanza Mill - Shallow and Deep Soil/Sediment (0 to 15 ft bgs)

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita

Sierrita Mine, Green Valley, Arizona

						CANCE	R RISK		Percent
					F	Route-Specific Ris	k	Total	Total
	EPO	Cs	PEF [a]		Ingestion	Inhalation	External	ELCR	ELCR
Constituent	(pCi	/g)	(m³/kg)		ELCRo	ELCRi	ELCRe		
Radionuclides									
Jranium-238	2.76E+00	soil	1.40E+09	Р	4.0E-09	1.4E-11	2.0E-08	2.4E-08	1%
Jranium-234	2.71E+00	soil	1.40E+09	Р	3.6E-09	1.6E-11	4.1E-11	3.7E-09	<1%
Thorium-230	2.71E+00	soil	1.40E+09	Р	5.4E-09	2.0E-11	1.4E-10	5.6E-09	<1%
Radium-226	2.43E+00	soil+sed	1.40E+09	Р	1.9E-08	1.5E-11	1.2E-06	1.2E-06	63%
Lead-210	2.43E+00	soil+sed	1.40E+09	Р	3.2E-08	7.1E-12	1.8E-10	3.3E-08	2%
Bismuth-210	2.43E+00	soil+sed	1.40E+09	Р	4.7E-13	4.7E-16	8.0E-13	1.3E-12	<1%
Polonium-210	2.43E+00	soil+sed	1.40E+09	Р	5.0E-09	4.2E-13	3.6E-13	5.0E-09	<1%
Thorium-232	2.51E+00	soil	1.40E+09	Р	4.9E-08	4.6E-11	6.1E-07	6.5E-07	33%
Thorium-228	2.51E+00	soil	1.40E+09	Р	1.1E-09	1.9E-11	2.3E-10	1.4E-09	<1%
Radium-224	2.51E+00	soil	1.40E+09	Р	8.0E-12	8.5E-15	9.1E-12	1.7E-11	<1%
Lead-212	2.51E+00	soil	1.40E+09	Р	1.5E-13	6.0E-17	1.3E-11	1.3E-11	<1%
Bismuth-212	2.51E+00	soil	1.40E+09	Р	4.8E-16	7.4E-19	1.2E-12	1.2E-12	<1%
Γhallium-208	2.51E+00	soil	1.40E+09	Р	NA	NA	2.2E-12	2.2E-12	<1%
Jranium-235	1.20E-01	soil	1.40E+09	Р	1.6E-10	6.4E-13	4.1E-09	4.3E-09	<1%
Protactinium-231	1.20E-01	soil	1.40E+09	Р	4.8E-10	1.9E-12	9.1E-10	1.4E-09	<1%
Actinium-227	1.20E-01	soil	1.40E+09	Р	5.4E-10	3.3E-12	1.2E-12	5.4E-10	<1%
Francium-223	1.20E-01	soil	1.40E+09	Р	9.2E-17	6.3E-21	5.8E-15	5.9E-15	<1%
Astatine-219	1.20E-01	soil	1.40E+09	Р	NA	NA	NA	_	
Bismuth-215	1.20E-01	soil	1.40E+09	Р	NA	NA	1.6E-14	1.6E-14	<1%
Thorium-227	1.20E-01	soil	1.40E+09	Р	4.7E-13	6.6E-15	2.4E-11	2.4E-11	<1%
Radium-223	1.20E-01	soil	1.40E+09	Р	1.7E-12	3.3E-15	2.2E-11	2.4E-11	<1%
Lead-211	1.20E-01	soil	1.40E+09	Р	8.1E-18	1.0E-20	2.1E-14	2.1E-14	<1%
Astatine-215	1.20E-01	soil	1.40E+09	Р	NA	NA	2.3E-24	2.3E-24	<1%
Bismuth-211	1.20E-01	soil	1.40E+09	Р	NA	NA	8.0E-16	8.0E-16	<1%
Thallium-207	1.20E-01	soil	1.40E+09	Р	NA	NA	1.5E-16	1.5E-16	<1%
Polonium-211	1.20E-01	soil	1.40E+09	Р	NA	NA	6.4E-19	6.4E-19	<1%
					1E-07	1E-10	2E-06		
Total							Total ELCR	2E-06	İ

ELCRi: excess lifetime cancer risk, inhalation pathway.

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

%: percent.

ACF: area correction factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFe: external cancer slope factor. EPC: exposure point concentration in soil/sediment.

CSFe: external cancer slope factor. EPC: exposure point concentration in soil/
CSFi: inhalation cancer slope factor. ft bgs: feet below ground surface.

CSFo: oral cancer slope factor. m³/kg: cubic meter(s) per kilogram.

ELCR: excess lifetime cancer risk. pCi/g: picoCurie(s) per gram.

ELCRe: excess lifetime cancer risk, external pathway. RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1.

Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

ELCRo = (EPCs × 50 × 52 × 10 × [1 - exp(-h × 10)] × CSFo) / (1,000 × 10 × h) ELCRi = (EPCs × 1,000 × 60 × 1 × 0.042 × 52 × 10 × [1 - exp(-h × 10)] × CSFi) / (1.40E+09 × 10 × h) ELCRe = (EPCs × ACF × [(1 × 0.042 × 1) + (0 × 0.042 × 0.4)] × 52 × 10 × [1 - exp(-h × 10)] × CSFe) / (365 × 10 × h)

Appendix D, Table D-17 (RME)

Excess Lifetime Cancer Risk Calculations for a Hypothetical Future Construction Worker Exposed to Radionuclides

Former Esperanza Mill - Shallow and Deep Soil/Sediment (0 to 15 ft bgs)

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita

Sierrita Mine, Green Valley, Arizona

						CANCE	R RISK		Percent
					F	Route-Specific Ris	k	Total	Total
	EPO	Cs	PEF [a]		Ingestion	Inhalation	External	ELCR	ELCR
Constituent	(pCi	/g)	(m³/kg)		ELCRo	ELCRi	ELCRe		
Radionuclides									
Uranium-238	2.76E+00	soil	1.40E+09	Р	1.3E-08	2.3E-10	7.5E-08	8.8E-08	1%
Uranium-234	2.71E+00	soil	1.40E+09	P	1.1E-08	2.7E-10	1.6E-10	1.2E-08	<1%
Thorium-230	2.71E+00	soil	1.40E+09	P	1.7E-08	3.3E-10	5.2E-10	1.8E-08	<1%
Radium-226	2.43E+00	soil+sed	1.40E+09	P	5.9E-08	2.5E-10	4.6E-06	4.7E-06	62%
Lead-210	2.43E+00	soil+sed	1.40E+09	Р	1.2E-07	1.4E-10	8.1E-10	1.2E-07	2%
Bismuth-210	2.43E+00	soil+sed	1.40E+09	P	1.5E-11	7.9E-14	3.0E-11	4.5E-11	<1%
Polonium-210	2.43E+00	soil+sed		P	1.3E-07	6.0E-11	1.1E-11	1.3E-07	2%
Thorium-232	2.51E+00	soil	1.40E+09		1.6E-07	7.8E-10	2.3E-06	2.5E-06	33%
Thorium-228	2.51E+00	soil	1.40E+09	Р	1.1E-08	9.8E-10	2.7E-09	1.5E-08	<1%
Radium-224	2.51E+00	soil	1.40E+09	Р	2.5E-10	1.4E-12	3.5E-10	6.0E-10	<1%
Lead-212	2.51E+00	soil	1.40E+09	Р	4.7E-12	1.0E-14	5.0E-10	5.0E-10	<1%
Bismuth-212	2.51E+00	soil	1.40E+09	Р	1.5E-14	1.3E-16	4.7E-11	4.7E-11	<1%
Thallium-208	2.51E+00	soil	1.40E+09	Р	NA	NA	8.4E-11	8.4E-11	<1%
Uranium-235	1.20E-01	soil	1.40E+09	Р	5.0E-10	1.1E-11	1.6E-08	1.6E-08	<1%
Protactinium-231	1.20E-01	soil	1.40E+09	Р	1.5E-09	3.3E-11	3.5E-09	5.0E-09	<1%
Actinium-227	1.20E-01	soil	1.40E+09	Р	2.0E-09	6.3E-11	5.3E-12	2.0E-09	<1%
Francium-223	1.20E-01	soil	1.40E+09	Р	2.9E-15	1.1E-18	2.2E-13	2.3E-13	<1%
Astatine-219	1.20E-01	soil	1.40E+09	Р	NA	NA	NA	_	
Bismuth-215	1.20E-01	soil	1.40E+09	Р	NA	NA	6.2E-13	6.2E-13	<1%
Thorium-227	1.20E-01	soil	1.40E+09	Р	1.5E-11	1.1E-12	9.0E-10	9.2E-10	<1%
Radium-223	1.20E-01	soil	1.40E+09	Р	5.5E-11	5.6E-13	8.6E-10	9.1E-10	<1%
Lead-211	1.20E-01	soil	1.40E+09	Р	2.6E-16	1.7E-18	7.9E-13	7.9E-13	<1%
Astatine-215	1.20E-01	soil	1.40E+09	Р	NA	NA	8.9E-23	8.9E-23	<1%
Bismuth-211	1.20E-01	soil	1.40E+09	Р	NA	NA	3.1E-14	3.1E-14	<1%
Thallium-207	1.20E-01	soil	1.40E+09	Р	NA	NA	5.7E-15	5.7E-15	<1%
Polonium-211	1.20E-01	soil	1.40E+09	Р	NA	NA	2.4E-17	2.4E-17	<1%
					5E-07	3E-09	7E-06		
Total							Total ELCR	8E-06	

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

%: percent.

ACF: area correction factor.

CSFe: external cancer slope factor.

CSFi: inhalation cancer slope factor.

CSFo: oral cancer slope factor. ELCR: excess lifetime cancer risk.

ELCRe: excess lifetime cancer risk, external pathway.

ELCRi: excess lifetime cancer risk, inhalation pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

EPC: exposure point concentration in soil/sediment.

ft bgs: feet below ground surface.

m³/kg: cubic meter(s) per kilogram. pCi/g: picoCurie(s) per gram.

RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1.

Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

```
ELCRo = (EPCs × 330 × 250 × 1 × [1 - exp(-\lambda × 1)] × CSFo) / (1,000 × 1 × \lambda)
ELCRi = (EPCs × 1,000 × 60 × 8 × 0.042 × 250 × 1 × [1 - exp(-\lambda × 1)] × CSFi) / (1.40E+09 × 1 × \lambda)
```

ELCRe = (EPCs × ACF × [(8 × 0.042 × 1) + (0 × 0.042 × 0.4)] × 250 × 1 × [1 - exp(- λ × 1)] × CSFe) / (365 × 1 × λ)

APPENDIX E

Lead Model Output

Calculations of Blood Lead Concentrations (PbBs)

U.S. EPA Technical Review Workgroup for Lead, Adult Lead Committee

Version date 6/21/09 EDIT RED CELLS

Exposure Scenario: Current/Future

Exposure Area: Former CLEAR Plant

Soil/Sediment Data Set: 0-0.5 feet below ground surface

Variable	Description of Variable	Units	GSDi and PbBo from Analysis of NHANES 2009-2014
PbS	Soil lead concentration	ug/g or ppm	87
$R_{\text{fetal/maternal}}$	Fetal/maternal PbB ratio		0.9
BKSF	Biokinetic Slope Factor	ug/dL per ug/day	0.4
GSD_i	Geometric standard deviation PbB		1.8
PbB_0	Baseline PbB	ug/dL	0.6
IR_S	Soil ingestion rate (including soil-derived indoor dust)	g/day	0.100
IR_{S+D}	Total ingestion rate of outdoor soil and indoor dust	g/day	
W_{S}	Weighting factor; fraction of IR _{S+D} ingested as outdoor soil		
K_{SD}	Mass fraction of soil in dust		
$AF_{S, D}$	Absorption fraction (same for soil and dust)		0.12
EF _{S, D}	Exposure frequency (same for soil and dust)	days/yr	225
$AT_{S, D}$	Averaging time (same for soil and dust)	days/yr	365
PbB _{adult}	PbB of adult worker, geometric mean	ug/dL	0.9
PbB _{fetal, 0.95}	95th percentile PbB among fetuses of adult workers	ug/dL	2.0
PbB_t	Target PbB level of concern (e.g., 10 ug/dL)	ug/dL	10.0
$P(PbB_{fetal} > PbB_{t})$	Probability that fetal PbB > PbB _t , assuming lognormal distribution	%	0.0007%

Calculations of Blood Lead Concentrations (PbBs)

U.S. EPA Technical Review Workgroup for Lead, Adult Lead Committee

Version date 6/21/09 EDIT RED CELLS

Exposure Scenario: Current/Future

Exposure Area: Former Esperanza Mill

Soil/Sediment Data Set: 0-2 feet below ground surface

Variable	Description of Variable	Units	GSDi and PbBo from Analysis of NHANES 2009-2014
PbS	Soil lead concentration	ug/g or ppm	116
$R_{\text{fetal/maternal}}$	Fetal/maternal PbB ratio		0.9
BKSF	Biokinetic Slope Factor	ug/dL per ug/day	0.4
$\mathrm{GSD}_{\mathrm{i}}$	Geometric standard deviation PbB		1.8
PbB_0	Baseline PbB	ug/dL	0.6
IR_S	Soil ingestion rate (including soil-derived indoor dust)	g/day	0.100
IR _{S+D}	Total ingestion rate of outdoor soil and indoor dust	g/day	
W_{S}	Weighting factor; fraction of IR _{S+D} ingested as outdoor soil		
K _{SD}	Mass fraction of soil in dust		
$AF_{S, D}$	Absorption fraction (same for soil and dust)		0.12
$\mathrm{EF}_{\mathrm{S},\mathrm{D}}$	Exposure frequency (same for soil and dust)	days/yr	225
$AT_{S, D}$	Averaging time (same for soil and dust)	days/yr	365
PbB _{adult}	PbB of adult worker, geometric mean	ug/dL	0.9
PbB _{fetal, 0.95}	95th percentile PbB among fetuses of adult workers	ug/dL	2.2
PbB_t	Target PbB level of concern (e.g., 10 ug/dL)	ug/dL	10.0
$P(PbB_{fetal} > PbB_t)$	Probability that fetal PbB > PbB _v , assuming lognormal distribution	%	0.001%

Calculations of Blood Lead Concentrations (PbBs)

U.S. EPA Technical Review Workgroup for Lead, Adult Lead Committee

Version date 6/21/09 EDIT RED CELLS

Exposure Scenario: Future

Exposure Area: Former CLEAR Plant

Soil/Sediment Data Set: 0-0.5 feet below ground surface

Variable	Description of Variable	Units	GSDi and PbBo from Analysis of NHANES 2009-2014
PbS	Soil lead concentration	ug/g or ppm	136
$R_{\text{fetal/maternal}}$	Fetal/maternal PbB ratio		0.9
BKSF	Biokinetic Slope Factor	ug/dL per ug/day	0.4
$\mathrm{GSD}_{\mathrm{i}}$	Geometric standard deviation PbB		1.8
PbB_0	Baseline PbB	ug/dL	0.6
IR_S	Soil ingestion rate (including soil-derived indoor dust)	g/day	0.100
IR _{S+D}	Total ingestion rate of outdoor soil and indoor dust	g/day	
W_S	Weighting factor; fraction of IR _{S+D} ingested as outdoor soil		
K _{SD}	Mass fraction of soil in dust		
$AF_{S, D}$	Absorption fraction (same for soil and dust)		0.12
$\mathrm{EF}_{\mathrm{S},\mathrm{D}}$	Exposure frequency (same for soil and dust)	days/yr	225
$AT_{S, D}$	Averaging time (same for soil and dust)	days/yr	365
PbB _{adult}	PbB of adult worker, geometric mean	ug/dL	1.0
PbB _{fetal, 0.95}	95th percentile PbB among fetuses of adult workers	ug/dL	2.4
PbB_t	Target PbB level of concern (e.g., 10 ug/dL)	ug/dL	10.0
$P(PbB_{fetal} > PbB_t)$	Probability that fetal PbB > PbB _v assuming lognormal distribution	%	0.002%

Calculations of Blood Lead Concentrations (PbBs)

U.S. EPA Technical Review Workgroup for Lead, Adult Lead Committee

Version date 6/21/09 EDIT RED CELLS

Exposure Scenario: Future

Exposure Area: Former CLEAR Plant

Soil/Sediment Data Set: 0-0.5 feet below ground surface
Receptor Population: Hypothetical Adolescent Trespasser

Variable	Description of Variable	Units	GSDi and PbBo from Analysis of NHANES 2009-2014				
PbS	Soil lead concentration	ug/g or ppm	136				
R _{fetal/maternal}	Fetal/maternal PbB ratio		0.9				
BKSF	Biokinetic Slope Factor	ug/dL per ug/day	0.4				
$\mathrm{GSD}_{\mathrm{i}}$	Geometric standard deviation PbB		1.8				
PbB_0	Baseline PbB	ug/dL	0.6				
IR_S	Soil ingestion rate (including soil-derived indoor dust)	g/day	0.050				
IR _{S+D}	Total ingestion rate of outdoor soil and indoor dust	Fotal ingestion rate of outdoor soil and indoor dust g/day					
W_{S}	Weighting factor; fraction of IR _{S+D} ingested as outdoor soil						
K _{SD}	Mass fraction of soil in dust						
$AF_{S, D}$	Absorption fraction (same for soil and dust)		0.12				
EF _{S, D}	Exposure frequency (same for soil and dust)	days/yr	52				
$AT_{S, D}$	Averaging time (same for soil and dust)	days/yr	365				
PbB _{adult}	PbB of adult worker, geometric mean	ug/dL	0.6				
PbB _{fetal, 0.95}	95th percentile PbB among fetuses of adult workers	ug/dL	1.5				
PbB_t	Target PbB level of concern (e.g., 10 ug/dL)	ug/dL	10.0				
$P(PbB_{fetal} > PbB_{t})$	Probability that fetal PbB > PbB _v assuming lognormal distribution	%	0.00007%				

Calculations of Blood Lead Concentrations (PbBs)

U.S. EPA Technical Review Workgroup for Lead, Adult Lead Committee

Version date 6/21/09 EDIT RED CELLS

Exposure Scenario: Future

Exposure Area: Former CLEAR Plant

Soil/Sediment Data Set: 0-0.5 feet below ground surface
Receptor Population: Hypothetical Adolescent Trespasser

Variable	Description of Variable	Units	GSDi and PbBo from Analysis of NHANES 2009-2014
PbS	Soil lead concentration	ug/g or ppm	87
$R_{\text{fetal/maternal}}$	Fetal/maternal PbB ratio		0.9
BKSF	Biokinetic Slope Factor	ug/dL per ug/day	0.4
$\mathrm{GSD}_{\mathrm{i}}$	Geometric standard deviation PbB		1.8
PbB_0	Baseline PbB	ug/dL	0.6
IR_S	Soil ingestion rate (including soil-derived indoor dust)	g/day	0.050
IR_{S+D}	Total ingestion rate of outdoor soil and indoor dust	g/day	
W_{S}	Weighting factor; fraction of IR _{S+D} ingested as outdoor soil		
K _{SD}	Mass fraction of soil in dust		
$AF_{S, D}$	Absorption fraction (same for soil and dust)		0.12
$\mathrm{EF}_{\mathrm{S},\mathrm{D}}$	Exposure frequency (same for soil and dust)	days/yr	52
$AT_{S, D}$	Averaging time (same for soil and dust)	days/yr	365
PbB _{adult}	PbB of adult worker, geometric mean	ug/dL	0.6
PbB _{fetal, 0.95}	95th percentile PbB among fetuses of adult workers	ug/dL	1.5
PbB_t	Target PbB level of concern (e.g., 10 ug/dL)	ug/dL	10.0
$P(PbB_{fetal} > PbB_t)$	Probability that fetal PbB > PbB _v , assuming lognormal distribution	%	0.00005%

Calculations of Blood Lead Concentrations (PbBs)

U.S. EPA Technical Review Workgroup for Lead, Adult Lead Committee

Version date 6/21/09 EDIT RED CELLS

Exposure Scenario: Current/Future

Exposure Area: Former Esperanza Mill

Soil/Sediment Data Set: 0-2 feet below ground surface

Receptor Population: Hypothetical Adolescent Trespasser

Variable	Description of Variable	Units	GSDi and PbBo from Analysis of NHANES 2009-2014
PbS	Soil lead concentration	ug/g or ppm	116
$R_{\text{fetal/maternal}}$	Fetal/maternal PbB ratio		0.9
BKSF	Biokinetic Slope Factor	ug/dL per ug/day	0.4
GSD_i	Geometric standard deviation PbB		1.8
PbB_0	Baseline PbB	ug/dL	0.6
IR_S	Soil ingestion rate (including soil-derived indoor dust)	g/day	0.050
IR _{S+D}	Total ingestion rate of outdoor soil and indoor dust	g/day	
W _S	Weighting factor; fraction of IR _{S+D} ingested as outdoor soil		
K_{SD}	Mass fraction of soil in dust		
$AF_{S, D}$	Absorption fraction (same for soil and dust)		0.12
$\mathrm{EF}_{\mathrm{S},\mathrm{D}}$	Exposure frequency (same for soil and dust)	days/yr	52
$AT_{S, D}$	Averaging time (same for soil and dust)	days/yr	365
PbB _{adult}	PbB of adult worker, geometric mean	ug/dL	0.6
PbB _{fetal, 0.95}	95th percentile PbB among fetuses of adult workers	ug/dL	1.5
PbB_t	Target PbB level of concern (e.g., 10 ug/dL)	ug/dL	10.0
$P(PbB_{fetal} > PbB_t)$	Probability that fetal PbB > PbB _v , assuming lognormal distribution	%	0.00006%

Calculations of Blood Lead Concentrations (PbBs)

U.S. EPA Technical Review Workgroup for Lead, Adult Lead Committee

Version date 6/21/09 EDIT RED CELLS

Exposure Scenario: Future

Exposure Area: Former CLEAR Plant

Soil/Sediment Data Set: 0-15 feet below ground surface

Variable	Description of Variable	Units	GSDi and PbBo from Analysis of NHANES 2009-2014
PbS	Soil lead concentration	ug/g or ppm	113.5
R _{fetal/maternal}	Fetal/maternal PbB ratio		0.9
BKSF	Biokinetic Slope Factor	ug/dL per ug/day	0.4
GSD_i	Geometric standard deviation PbB		1.8
PbB_0	Baseline PbB	ug/dL	0.6
IR_S	Soil ingestion rate (including soil-derived indoor dust)	g/day	0.100
IR _{S+D}	Total ingestion rate of outdoor soil and indoor dust	g/day	
W_{S}	Weighting factor; fraction of IR _{S+D} ingested as outdoor soil		
K _{SD}	Mass fraction of soil in dust		
$AF_{S, D}$	Absorption fraction (same for soil and dust)		0.12
$\mathrm{EF}_{\mathrm{S},\mathrm{D}}$	Exposure frequency (same for soil and dust)	days/yr	225
$AT_{S, D}$	Averaging time (same for soil and dust)	days/yr	365
PbB _{adult}	PbB of adult worker, geometric mean	ug/dL	0.9
PbB _{fetal, 0.95}	95th percentile PbB among fetuses of adult workers	ug/dL	2.2
PbB _t	Target PbB level of concern (e.g., 10 ug/dL)	ug/dL	10.0
$P(PbB_{fetal} > PbB_t)$	Probability that fetal PbB > PbB _v assuming lognormal distribution	%	0.001%

Calculations of Blood Lead Concentrations (PbBs)

U.S. EPA Technical Review Workgroup for Lead, Adult Lead Committee

Version date 6/21/09 EDIT RED CELLS

Exposure Scenario: Future

Exposure Area: Former CLEAR Plant

Soil/Sediment Data Set: 0-15 feet below ground surface

Receptor Population: Hypothetical Adolescent Trespasser

Variable	Description of Variable	Units	GSDi and PbBo from Analysis of NHANES 2009-2014
PbS	Soil lead concentration	ug/g or ppm	113.5
$R_{\text{fetal/maternal}}$	Fetal/maternal PbB ratio		0.9
BKSF	Biokinetic Slope Factor	ug/dL per ug/day	0.4
GSD_i	Geometric standard deviation PbB		1.8
PbB_0	Baseline PbB	ug/dL	0.6
IR_S	Soil ingestion rate (including soil-derived indoor dust)	g/day	0.050
IR _{S+D}	Total ingestion rate of outdoor soil and indoor dust	g/day	
W_{S}	Weighting factor; fraction of IR _{S+D} ingested as outdoor soil		
K_{SD}	Mass fraction of soil in dust		
$AF_{S, D}$	Absorption fraction (same for soil and dust)		0.12
$\mathrm{EF}_{\mathrm{S},\mathrm{D}}$	Exposure frequency (same for soil and dust)	days/yr	52
$AT_{S, D}$	Averaging time (same for soil and dust)	days/yr	365
PbB _{adult}	PbB of adult worker, geometric mean	ug/dL	0.6
PbB _{fetal, 0.95}	95th percentile PbB among fetuses of adult workers	ug/dL	1.5
PbB_t	Target PbB level of concern (e.g., 10 ug/dL)	ug/dL	10.0
$P(PbB_{fetal} > PbB_t)$	Probability that fetal PbB > PbB, assuming lognormal distribution	%	0.00006%

Calculations of Blood Lead Concentrations (PbBs)

U.S. EPA Technical Review Workgroup for Lead, Adult Lead Committee

Version date 6/21/09 EDIT RED CELLS

Exposure Scenario: Future

Exposure Area: Former CLEAR Plant

Soil/Sediment Data Set: 0-15 feet below ground surface
Receptor Population: Hypothetical Construction Worker

Variable	Description of Variable	Units	GSDi and PbBo from Analysis of NHANES 2009-2014
PbS	Soil lead concentration	ug/g or ppm	113.5
$R_{\text{fetal/maternal}}$	Fetal/maternal PbB ratio		0.9
BKSF	Biokinetic Slope Factor	ug/dL per ug/day	0.4
$\mathrm{GSD}_{\mathrm{i}}$	Geometric standard deviation PbB		1.8
PbB_0	Baseline PbB	ug/dL	0.6
IR_S	Soil ingestion rate (including soil-derived indoor dust)	g/day	0.330
IR _{S+D}	Total ingestion rate of outdoor soil and indoor dust	g/day	
W_{S}	Weighting factor; fraction of IR _{S+D} ingested as outdoor soil		
K _{SD}	Mass fraction of soil in dust		
$AF_{S, D}$	Absorption fraction (same for soil and dust)		0.12
$\mathrm{EF}_{\mathrm{S},\mathrm{D}}$	Exposure frequency (same for soil and dust)	days/yr	250
$AT_{S, D}$	Averaging time (same for soil and dust)	days/yr	365
PbB _{adult}	PbB of adult worker, geometric mean	ug/dL	1.8
PbB _{fetal, 0.95}	95th percentile PbB among fetuses of adult workers	ug/dL	4.3
PbB _t	Target PbB level of concern (e.g., 10 ug/dL)	ug/dL	10.0
$P(PbB_{fetal} > PbB_t)$	Probability that fetal PbB > PbB _v , assuming lognormal distribution	%	0.1%

Calculations of Blood Lead Concentrations (PbBs)

U.S. EPA Technical Review Workgroup for Lead, Adult Lead Committee

Version date 6/21/09 EDIT RED CELLS

Exposure Scenario: Future

Exposure Area: Former Esperanza Mill

Soil/Sediment Data Set: 0-15 feet below ground surface

Variable	Description of Variable	Units	GSDi and PbBo from Analysis of NHANES 2009-2014
PbS	Soil lead concentration	ug/g or ppm	117
R _{fetal/maternal}	Fetal/maternal PbB ratio		0.9
BKSF	Biokinetic Slope Factor	ug/dL per ug/day	0.4
$\mathrm{GSD}_{\mathrm{i}}$	Geometric standard deviation PbB		1.8
PbB_0	Baseline PbB	ug/dL	0.6
IR_S	Soil ingestion rate (including soil-derived indoor dust)	g/day	0.100
IR_{S+D}	Total ingestion rate of outdoor soil and indoor dust	g/day	
W_{S}	Weighting factor; fraction of IR _{S+D} ingested as outdoor soil		
K_{SD}	Mass fraction of soil in dust		
$AF_{S, D}$	Absorption fraction (same for soil and dust)		0.12
$\mathrm{EF}_{\mathrm{S},\mathrm{D}}$	Exposure frequency (same for soil and dust)	days/yr	225
$AT_{S, D}$	Averaging time (same for soil and dust)	days/yr	365
PbB _{adult}	PbB of adult worker, geometric mean	ug/dL	0.9
PbB _{fetal, 0.95}	95th percentile PbB among fetuses of adult workers	ug/dL	2.2
PbB_t	Target PbB level of concern (e.g., 10 ug/dL)	ug/dL	10.0
$P(PbB_{fetal} > PbB_{t})$	Probability that fetal PbB > PbB _v assuming lognormal distribution	%	0.001%

Calculations of Blood Lead Concentrations (PbBs)

U.S. EPA Technical Review Workgroup for Lead, Adult Lead Committee

Version date 6/21/09 EDIT RED CELLS

Exposure Scenario: Future

Exposure Area: Former Esperanza Mill

Soil/Sediment Data Set: 0-15 feet below ground surface

Receptor Population: Hypothetical Adolescent Trespasser

Variable	Description of Variable	Units	GSDi and PbBo from Analysis of NHANES 2009-2014
PbS	Soil lead concentration	ug/g or ppm	117
$R_{\text{fetal/maternal}}$	Fetal/maternal PbB ratio		0.9
BKSF	Biokinetic Slope Factor	ug/dL per ug/day	0.4
$\mathrm{GSD}_{\mathrm{i}}$	Geometric standard deviation PbB		1.8
PbB_0	Baseline PbB	ug/dL	0.6
IR_S	Soil ingestion rate (including soil-derived indoor dust)	g/day	0.050
IR _{S+D}	Total ingestion rate of outdoor soil and indoor dust	g/day	
W_{S}	Weighting factor; fraction of IR _{S+D} ingested as outdoor soil		
K_{SD}	Mass fraction of soil in dust		
$AF_{S, D}$	Absorption fraction (same for soil and dust)		0.12
$\mathrm{EF}_{\mathrm{S},\mathrm{D}}$	Exposure frequency (same for soil and dust)	days/yr	52
$AT_{S, D}$	Averaging time (same for soil and dust)	days/yr	365
PbB _{adult}	PbB of adult worker, geometric mean	ug/dL	0.6
PbB _{fetal, 0.95}	95th percentile PbB among fetuses of adult workers	ug/dL	1.5
PbB_t	Target PbB level of concern (e.g., 10 ug/dL)	ug/dL	10.0
$P(PbB_{fetal} > PbB_t)$	Probability that fetal PbB > PbB _v , assuming lognormal distribution	%	0.00006%

Calculations of Blood Lead Concentrations (PbBs)

U.S. EPA Technical Review Workgroup for Lead, Adult Lead Committee

Version date 6/21/09 EDIT RED CELLS

Exposure Scenario: Future

Exposure Area: Former Esperanza Mill

Soil/Sediment Data Set: 0-15 feet below ground surface
Receptor Population: Hypothetical Construction Worker

Variable	Description of Variable	Units	GSDi and PbBo from Analysis of NHANES 2009-2014
PbS	Soil lead concentration	ug/g or ppm	117
$R_{\text{fetal/maternal}}$	Fetal/maternal PbB ratio		0.9
BKSF	Biokinetic Slope Factor	ug/dL per ug/day	0.4
GSD_i	Geometric standard deviation PbB		1.8
PbB_0	Baseline PbB	ug/dL	0.6
IR_S	Soil ingestion rate (including soil-derived indoor dust)	g/day	0.330
IR _{S+D}	Total ingestion rate of outdoor soil and indoor dust	g/day	
W_{S}	Weighting factor; fraction of IR _{S+D} ingested as outdoor soil		
K_{SD}	Mass fraction of soil in dust		
$AF_{S, D}$	Absorption fraction (same for soil and dust)		0.12
EF _{S, D}	Exposure frequency (same for soil and dust)	days/yr	250
$AT_{S, D}$	Averaging time (same for soil and dust)	days/yr	365
PbB _{adult}	PbB of adult worker, geometric mean	ug/dL	1.9
PbB _{fetal, 0.95}	95th percentile PbB among fetuses of adult workers	ug/dL	4.4
PbB_t	Target PbB level of concern (e.g., 10 ug/dL)	ug/dL	10.0
$P(PbB_{fetal} > PbB_t)$	Probability that fetal PbB > PbB _v assuming lognormal distribution	%	0.1%

APPENDIX F Hypothetical Future Resident Evaluation

Appendix F Hypothetical Future Resident Evaluation Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

Introduction

In accordance with the Arizona Department of Environmental Quality (ADEQ) approved baseline human health risk assessment (BHHRA) Work Plan, this appendix presents an evaluation of the potential for human health risks to hypothetical future child/adult residents from exposure to soil and sediment (soil/sediment) at the Freeport-McMoRan Sierrita Copper Mine, Green Valley, Arizona (Site). A hypothetical future resident evaluation was performed to address potential unrestricted future land use for the property. The Site is an active open pit mine and mineral concentration facility and although it is highly unlikely it will ever be redeveloped for residential land use, per the Arizona Revised Statutes (A.R.S.) §R49-152(B,C), the hypothetical future resident evaluation is the basis for determining whether a "declaration of environmental use restriction" is required for commercial/industrial land use, or whether unrestricted land use may be suitable for the Site.

Methods

The hypothetical future resident evaluation used the same approach and methodology (e.g., soil/sediment data sets, exposure point concentrations, risk assessment equations, toxicity values, etc.) as was used for the receptors evaluated in the main portion of the BHHRA. The BHHRA was prepared consistent with United States Environmental Protection Agency (USEPA) and ADEQ risk assessment guidelines and followed the ADEQ approved BHHRA Work Plan (Arcadis 2015).

The shallow and deep soil/sediment interval (0 to 15 feet below ground surface) dataset was used to evaluate hypothetical future residential exposure at the two exposure areas (EAs): the former CLEAR Plant EA and the former Esperanza Mill EA. As discussed in Section 5.7.2 of the main report, a soil only dataset (0 to 15 feet below ground surface) was also evaluated in addition to the soil/sediment dataset to assess hypothetical future residential exposure and ensure the sediment data was not biasing the exposure point concentration. Potentially complete exposure routes included incidental soil/sediment ingestion, dermal contact with soil/sediment, and inhalation of fugitive dust particulates. External exposure to ionizing radiation was also evaluated.

Tables F-1 through F-4 present the selection of constituents of potential concern (COPCs) in shallow and deep soil/sediment at each EA based on a comparison of maximum detected concentrations to risk-based screening levels for residential soil. The Arizona Soil Remediation Levels for residential land use (r-SRLs) (Arizona Administrative Code Title 18) were used for inorganic constituents, and the USEPA Preliminary Remediation Goals (PRGs) for residents were used for radionuclides (USEPA 2014). The following COPCs were identified for each EA:

- Former CLEAR Plant EA antimony, arsenic, copper, lead, molybdenum, Ra-226, Ra-228, U-234, U-235, and U-238
- Former Esperanza Mill EA antimony, arsenic, copper, lead, molybdenum, uranium, Ra-226, Ra-228, U-234, U-235, and U-238.

Table F-5 presents the exposure parameters specific to hypothetical future child/adult residents. Constituent-specific absorption parameters and toxicity values were presented in, respectively, the BHHRA Tables 6-2 and 7-1. Chronic reference doses and reference concentrations were used to assess potential noncancer hazards. Slope factors for radionuclide COPCs were presented in Table 7-2. The "Soil Ingestion" slope factors are lifetime values that were used for evaluating hypothetical future residential exposures.

Results and Discussion

Cancer Risks

In general, excess lifetime cancer risks (ELCRs) that range between 1×10⁻⁶ to 1×10⁻⁴ are generally considered to be acceptable (AAC 2009; USEPA 1991) and therefore this target range is used for risk management decision purposes at the Sierrita Mine. The estimated ELCRs for hypothetical future residents exposed to the metal COPCs in soil/sediment are presented in Tables F-6 (former CLEAR Plant EA) and F-7 (former Esperanza Mill EA). ELCRs from exposure to the radionuclide COPCs in soil/sediment are presented in Tables F-8 (former CLEAR Plant EA) and F-9 (former Esperanza Mill EA).

Tables F-10 and F-11 summarize the estimated ELCRs for hypothetical future child/adult residents at each EA. The calculated cumulative ELCRs are 4×10⁻⁴ for the former CLEAR Plant and former Esperanza Mill EAs. The primary contributors to the calculated cancer risks are Ra-226 and thorium-232 (Th-232) in soil/sediment. These estimated ELCRs are greater than the USEPA and Arizona Administrative Code (R18-7-206) target risk range (i.e., 1×10⁻⁶ to 1×10⁻⁴). USEPA (1997), however, clarified the interpretation of the 1×10⁻⁴ for radionuclides specifically:

Cleanup should generally achieve a level of risk within the 10⁻⁴ to 10⁻⁶ carcinogenic risk ranges based on the reasonable maximum exposure for an individual....As noted in previous policy, "the upper boundary of the risk range is not a discrete line at 1×10⁻⁴, although EPA generally uses 1×10⁻⁴ in making risk management decisions. A specific risk estimate around 10⁻⁴ may be considered acceptable if justified based on site-specific conditions."

If a dose assessment is conducted at the site, then 15 millirem per year (mrem/yr) effective dose equivalent (EDE) should generally be the maximum dose limit for humans. This level equates to approximately 3×10^{-4} increased lifetime risk and is consistent with levels generally considered protective in other governmental actions, particularly regulations and guidance developed by EPA in other radiation control programs.

As discussed in Sections 9.1.4 and 11.1 of the main report, metals and radionuclides are naturally present in soils in and around Sierrita Mine. Therefore, cancer risks based on mean background concentrations and activity levels were also estimated. Site and background ELCRs calculated using mean EPCs, and incremental ELCRs associated with exposure to metals and radionuclides in soils, are summarized in Tables F-12 (former CLEAR Plant EA) and F-13 (former Esperanza Mill EA).

Total risks are those associated with the Site data. Background risks are those associated with exposures of the same receptors to metal concentrations and radionuclide activity at locations other than the Site. The only difference between the total risks and the background risks are the concentrations/activities of the COPCs. Incremental risks are total risks minus background risks. As shown in Tables F-12 and F-13, the

background risks are 2×10⁻⁴ for the former CLEAR Plant and former Esperanza Mill EAs. Incremental risks are 1×10⁻⁴, which is at the upper end of the USEPA and Arizona Administrative Code (R18-7-206) target risk range (i.e., 1×10⁻⁶ to 1×10⁻⁴).

Noncancer Hazards

In addition, the cumulative noncancer hazard indices (HIs) for a hypothetical future child/adult resident are 3 and 4 for the former CLEAR Plant and the former Esperanza Mill EAs, respectively. These HIs are greater than the target HI of 1. At the former CLEAR Plant EA, the primary contributors to the HI of 3 is copper with a hazard quotient (HQ) of 2 (rounded from 1.9), and molybdenum with an HQ of 1 (Table F-6). At the former Esperanza Mill EA, the primary contributors to the HI of 4 is copper with an HQ of 1 (rounded from 1.2), and molybdenum with an HQ of 3 (rounded from 2.9) (Table F-7).

Non-cancer HIs based on mean background concentrations were also estimated. Site and background HIs calculated using mean EPCs, and incremental HIs associated with exposure to metals in soils, are summarized in Tables F-12 (former CLEAR Plant EA) and F-13 (former Esperanza Mill EA).

Total HIs are those associated with the Site data. Background HIs are those associated with exposures of the same receptors to metal concentrations at locations other than the Site. The only difference between the total HIs and the background HIs are the concentrations of the COPCs. Incremental HIs are total HIs minus background HIs. As shown in Tables F-12 and F-13, the background HIs are 0.1 for the former CLEAR Plant and former Esperanza Mill EAs. Incremental HIs are 2 for both EAs, which is greater than the target HI of 1.

The risk estimates assumed 100 percent bioavailability, which based on our experience is overly conservative. Although no site-specific bioavailability data exist for the Sierrita site, it is reasonable to expect that bioavailability data observed/reported from similar soils and similar sites (i.e., mining areas) would be expected in soil at the Sierrita site. For example, at Chino Mine in Southeast New Mexico, a similar mine to Sierrita with a porphyry copper deposit, bioaccessibility analyses were conducted in 2005 based on USEPA *in-vitro* methods. The mean copper bioaccessibility was estimated to be 65 percent. At Questa Mine, in New Mexico, the *in-vitro* bioaccessibility of molybdenum was determined to be 18-26 percent. Therefore, if the average bioavailability for copper and molybdenum in soil at the Sierrita site is similar to these other mining areas, then the estimated HQs from this BHHRA would be lower.

Lead Exposure Evaluation

Lead was identified as a COPC for the former CLEAR Plant and former Esperanza Mill EAs. The USEPA's Adult Lead Methodology and Adult Lead Model (ALM) and Integrated Exposure Uptake Biokinetic (IEUBK) Model for Lead in Children (USEPA 1994, 2002) were used to evaluate the potential for adverse health effects to hypothetical future residents from exposure to lead in soil/sediment at the Site.

The BHHRA Section 6.3.5 describes the general approach for evaluating lead exposures and specifics of the ALM. The ALM was used to predict blood lead (PbB) concentrations in hypothetical future resident adults exposed to lead in soil/sediment and to estimate the probability that the target PbB concentration of 10 micrograms per deciliter (μ g/dL) would be exceeded.

For hypothetical future resident children exposed to lead in soil/sediment, the IEUBK model was used to predict PbB concentrations in children and estimate the probability that target PbB concentrations are exceeded. The focus of the IEUBK model is the prediction of PbB concentrations in young children exposed to lead from several sources and by ingestion and inhalation exposure routes. The model uses four interrelated modules (exposure, uptake, biokinetic, and probability distribution) to mathematically and statistically link environmental lead exposure to PbB concentrations for a population of young children (birth to 84 months of age). A plausible distribution of PbB concentrations, centered on a geometric mean PbB concentration, is predicted and used to estimate the probability that a child's or a population of children's PbB concentrations will exceed the target PbB concentration. The IEUBK model is intended for a residential exposure scenario, as it considers inhalation and ingestion exposures to indoor air and dust that result from tracking soil into the home, as well as dietary and drinking water exposures.

Based on the results of the ALM and IEUBK model, included in Appendix F, exposure to lead in soil/sediment at the former CLEAR Plant EA or the former Esperanza Mill EA is not likely to result in adverse health effects in hypothetical future resident adults or children.

References

- ADEQ. 1989. Radionuclides in groundwater and their occurrences in Arizona, paper presented by Robin Jenkins at Arizona Hydrological Society annual symposium, Water Quality and Water Quantity Issues into the 1990s Adaptation to Current Realities, Casa Grande, AZ, September 1989.
- Arcadis. 2013. Addendum to the Soil and Sediment Characterization Report. Prepared for Freeport-McMoRan Sierrita Operations, Green Valley, Arizona. Voluntary Remediation Program VRP Site Code: 100073-03. August 14.
- Arcadis. 2015. Voluntary Remediation Program (VRP) Baseline Human Health Risk Assessment Work Plan. Prepared for Freeport-McMoRan Sierrita Operations, Green Valley, Arizona. April 24, 2015.
- Arizona Administrative Code (AAC). Title 18, Environmental Quality, Chapter 7. Department of Environmental Quality Remedial Action, Appendix A, Soil Remediation Levels, March 31, 2009, Appendix A made by final rulemaking at 13 A.A.R. 971, effective May 5, 2007 (Supp. 07-1).
- AZGS. 2002. Arizona Uranium Levels. Data acquired by US Department of Energy (DOE) National Uranium Resource Evaluation (NURE). Distributed by USGS. Map compiled by AZGS, 2002.
- USEPA. 1990. Report to Congress on Special Wastes from Mineral Processing. EPA/530-SW-90-070C, July 17, 1990.
- USEPA. 1991. Role of the Baseline Risk Assessment in Superfund Remedy Selection Decisions. Washington, DC. OSWER Directive 9355.0-30.
- USEPA. 1994. Guidance Manual for the IEUBK Model for Lead in Children. OSWER #9285.7-15-1. Office of Solid Waste and Emergency Response, Washington, DC. (February 1994).
- USEPA. 1997. Establishment of Cleanup Levels for CERCLA Sites with Radioactive Contamination. Memo from Stephen D. Luftig and Larry Weinstock. OSWER No. 9200.4-18. Office of Solid Waste and Emergency Response, Washington, DC. (August 1997).
- USEPA. 1999. Technologically Enhanced Naturally Occurring Radioactive Materials in the Southwestern Copper Belt of Arizona. EPA 402-R-99-002.

- USEPA. 2002. User's Guide for the Integrated Exposure Uptake Biokinetic Model for Lead in Children (IEUBK) Window® Version 32 Bit Version. EPA540-K-01-005. Office of Solid Waste and Emergency Response, Washington, DC. (May 2002).
- USEPA. 2008. Technical Report on Technologically Enhanced Naturally Occurring Radioactive Materials from Uranium Mining, Volume 1: Mining and Reclamation Background. USEPA Office of Radiation and Indoor Air Radiation Protection Division (6608J), previously published on-line and printed as Vol. 1 of EPA 402-R-05-007, January 2006, Updated June 2007 and printed April 2008 as EPA 402-R-08-005.
- USEPA. 2014. Preliminary Remediation Goals for Radionuclides. Available at: epaprgs.ornl.gov/radionuclides/. U.S. Environmental Protection Agency, Office of Superfund and Oak Ridge National Laboratory. November.

Statistical Summary and Selection of Chemical Constituents of Potential Concern:

Former CLEAR Plant - Shallow and Deep Soil/Sediment (0 to 15 ft bgs) Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

Constituent [a]	Frequency of Dete		Frequency of Detection		Frequency of Detection		Reportii	ng Limits		ected ntrations	- Sample Identification of	Arithmetic Average		Soil Screening	Is Maximum Concentration >		stituent a
		requestey of Dottouton		,			Min	- Max	Min	- Max	Maximum Concentration	Concentration	Le	vel [b]	10x r-SRL?	СОР	C? [c]
	No. of Detects		No. of amples	(%)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(Sample Date)	(mg/kg)	(mg/kg)	Surrogate	(YES/no)	(YES/no)	Rationale		
Inorganics																	
Antimony	62	/	116	53	1.00E+00	- 2.00E+00	2.00E-01	- 6.60E+01	CP-2 081304(8/13/2004)	2.27E+00	3.10E+01	_	no	YES	ASL		
Arsenic	216	1	226	96	2.50E+00	- 2.50E+00	7.00E-01	- 1.66E+02	CP-2 081304(8/13/2004)	8.35E+00	1.00E+01	_	YES	YES	ASL		
Barium	96	/	96	100	_		3.68E+01	- 6.54E+02	CP-JS-01-0-1_07152008(7/15/2008)	1.52E+02	1.50E+04	-	no	no	BSL		
Beryllium	118	1	131	90	1.00E+00	- 5.00E+00	1.10E-01	- 1.40E+00	CP-T-3-6 100504(10/5/2004)	5.75E-01	1.50E+02	-	no	no	BSL		
Cadmium	36	1	116	31	2.00E-01	- 8.00E+00	4.20E-01	- 2.49E+01	CP-9 081304(8/13/2004)	2.58E+00	3.90E+01	_	no	no	BSL		
Chromium	116	1	116	100	_		2.00E+00	- 4.70E+02	CP-T-4-18IN 100404(10/4/2004)	1.42E+01	1.20E+05	Chromium III	no	no	BSL		
Cobalt	101	1	101	100	_		3.00E+00	- 7.60E+01	CP-1 081304(8/13/2004)	1.10E+01	9.00E+02	_	no	no	BSL		
Copper	226	/	226	100	_		2.70E+01	- 1.09E+05	CP-16 081304(8/13/2004)	3.59E+03	3.10E+03	_	YES	YES	ASL		
Lead	226	1	226	100	_		1.20E+00	- 3.22E+03	CPS-SWN-D2-01 20120511(5/11/2012)	1.00E+02	4.00E+02	_	no	YES	ASL		
Manganese	115	1	116	99	4.00E-01	- 4.00E-01	7.10E+01	- 1.24E+03	CP-JS-01-10-12 07152008(7/15/2008)	3.30E+02	3.30E+03	_	no	no	BSL		
Mercury	21	1	116	18	3.30E-02	- 2.00E-01	3.70E-02	- 6.20E-01	CP-2 081304(8/13/2004)	1.70E-01	2.30E+01	_	no	no	BSL		
Molybdenum	131	1	131	100	_		2.00E+00	- 3.02E+03	CP-2 081304(8/13/2004)	2.46E+02	3.90E+02	_	no	YES	ASL		
Nickel	116	1	116	100	_		2.00E+00	- 7.00E+01	CP-T-4-18IN 100404(10/4/2004)	1.43E+01	1.60E+03	_	no	no	BSL		
Selenium	104	1	116	90	3.00E-01	- 4.00E+00	7.00E-02	- 5.00E+01	CP-2 081304(8/13/2004)	2.48E+00	3.90E+02	_	no	no	BSL		
Thallium	104	1	116	90	4 005 04	- 1.50E+00	1.00E-01	- 5.20E+00	CP-2 081304(8/13/2004)	3.96E-01	5.20E+00	_	no	no	BSL		
Uranium	96	1	96	100	_		0.005.04	- 1.60E+01	CP-JS-04-5-7 08272008(8/27/2008)	4.61E+00	1.60E+01	_	no	no	BSL		
Zinc	116	1	116	100	_		0.005.04	- 6.21E+03	CP-9 081304(8/13/2004)	2.51E+02	2.30E+04	_	no	no	BSL		

Notes:

[a] All detected constituents are presented.

levels (BSL) are not designated as COPCs.

- [b] The selected screening levels for inorganic constituents are the Arizona Department of Environmental Quality's Residential Soil Remediation Levels. 2007. Available online at: http://apps.azsos.gov/public_services/Title_18/18-07.pdf. [c] Constituents detected at a maximum concentration above their screening level (ASL) are designated as COPCs unless the frequency of detection (FOD) is less than or equal to 5%. However, constituents detected in hotspots (HTSPT) (at a maximum concentration greater than 10x the respective screening level) were designated as COPCs regardless of the detection frequency. Constituents with maximum detected concentrations below the screening
- -: not available or not applicable.
- COPC: constituent of potential concern.
- ft bgs: feet below ground surface.
- max: maximum.

mg/kg: milligram(s) per kilogram.

min: minimum.

No.: number.

r-SRL: residential Soil Remediation Level.

Statistical Summary and Selection of Chemical Constituents of Potential Concern: Former Esperanza Mill - Shallow and Deep Soil/Sediment (0 to 15 ft bgs)

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

Constituent [a]	Freque	ncv	of Detecti	on	Reportin	g Limits		ected ntrations	Sample Identification of	Arithmetic Average		Soil Screening	Is Maximum Concentration		stituent a
		,			Min -	Max	Min	- Max	Maximum Concentration	Concentration	Level [b]		> 10x r-SRL?	COPC? [c]	
	No. of Detects	;	No. of Samples	(%)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(Sample Date)	(mg/kg)	(mg/kg)	Surrogate	(YES/no)	(YES/no)	Rationale
Inorganics															
Antimony	86	/	114	75	2.00E-01 -	1.00E+00	2.00E-01	- 6.90E+01	EM-17 081304(8/13/2004)	1.99E+00	3.10E+01	_	no	YES	ASL
Arsenic	112	/	119	94	1.01E+01 -	8.97E+01	1.00E+00	- 1.01E+02	EM-17 081304(8/13/2004)	9.90E+00	1.00E+01	_	YES	YES	ASL
Barium	95	/	95	100		_	3.92E+01	- 3.66E+02	CS-JS-02-5-7_08042008(8/4/2008)	1.13E+02	1.50E+04	_	no	no	BSL
Beryllium	107	/	119	90	1.00E+00 -	5.00E+00	1.70E-01	- 6.20E+00	RA-JS-02-5-7_08112008(8/11/2008)	8.12E-01	1.50E+02	_	no	no	BSL
Cadmium	51	/	114	45	2.00E+00 -	2.00E+00	2.60E-01	- 8.30E+00	CS-JS-02-10-11_08042008(8/4/2008)	1.86E+00	3.90E+01	_	no	no	BSL
Chromium	114	/	114	100		-	2.00E+00	- 1.93E+02	EM-JS-08-10- 12_08122008(8/12/2008)	1.21E+01	1.20E+05	Chromium III	no	no	BSL
Chromium VI	1	/	5	20	4.00E+00 -	9.00E+00	4.00E+00	- 4.00E+00	EM-JS-08-10- 12 08122008(8/12/2008)	5.80E+00	3.00E+01	-	no	no	BSL
Cobalt	98	/	99	99	5.00E+00 -	5.00E+00	1.00E+00	- 4.20E+01	EM-JS-08-5-7_08122008(8/12/2008)	1.03E+01	9.00E+02	_	no	no	BSL
Copper	119	/	119	100		_	6.20E+01	- 3.02E+04	RA-JS-02-0-1 08112008(8/11/2008)	2.66E+03	3.10E+03	_	no	YES	ASL
Lead	119	/	119	100		_	2.81E+00	- 3.74E+03	C-JS-05-1-3 08052008(8/5/2008)	1.16E+02	4.00E+02	_	no	YES	ASL
Manganese	114	/	114	100		_	3.00E+01	- 9.32E+02	EM-JS-08-5-7 08122008(8/12/2008)	3.56E+02	3.30E+03	_	no	no	BSL
Mercury	35	/	114	31	4.00E-02 -	2.00E-01	4.00E-02	- 6.00E-01	EM-JS-08-5-7 08122008(8/12/2008)	1.66E-01	2.30E+01	_	no	no	BSL
Molybdenum	118	/	119	99	5.00E+00 -	5.00E+00	3.00E+00	- 6.83E+03	EM-JS-07-0-1 08132008(8/13/2008)	6.12E+02	3.90E+02	_	YES	YES	ASL
Nickel	103	/	114	90	1.00E+00 -	5.00E+00	2.00E+00	- 3.30E+01	EM-JS-08-5-7_08122008(8/12/2008)	7.17E+00	1.60E+03	_	no	no	BSL
Selenium	93	/	114	82	1.90E-01 -	1.11E+01	5.00E-02	- 9.40E+00	EM-3 081304(8/13/2004)	1.55E+00	3.90E+02	_	no	no	BSL
Thallium	98	/	111	88	1.20E-01 -	3.00E-01	7.00E-02	- 1.10E+00	EM-T-2-2.5 100504(10/5/2004)	2.58E-01	5.20E+00	_	no	no	BSL
Uranium	95	/	95	100		_	1.17E+00	- 2.99E+01	RA-JS-02-5-7 08112008(8/11/2008)	5.42E+00	1.60E+01	_	no	YES	ASL
Zinc	111	/	111	100		_	2.50E+01	- 3.63E+03	CS-JS-02-10-11 08042008(8/4/2008)	2.63E+02	2.30E+04	_	no	no	BSL

Notes:

- [a] All detected constituents are presented.
- [b] The selected screening levels for inorganic constituents are the Arizona Department of Environmental Quality's Residential Soil Remediation Levels. 2007. Available online at: http://apps.azsos.gov/public_services/Title_18/18-07.pdf.
- [c] Constituents detected at a maximum concentration above their screening level (ASL) are designated as COPCs unless the frequency of detection (FOD) is less than or equal to 5%. However, constituents detected in hotspots (HTSPT) (at a maximum concentration greater than 10x the respective screening level) were designated as COPCs regardless of the detection frequency. Constituents with maximum detected concentrations below the screening levels (BSL) are not designated as COPCs.

-: not available or not applicable.

COPC: constituent of potential concern.

ft bgs: feet below ground surface. No.: n

max: maximum.

mg/kg: milligram(s) per kilogram.

min: minimum.

No.: number.

r-SRL: residential Soil Remediation Level.

Statistical Summary and Selection of Radionuclide Constituents of Potential Concern:

Former CLÉAR Plant - Shallow and Deep Soil/Sediment (0 to 15 ft bgs) Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

	Freque	ction	Repor	Limits	Detected Concentrations			Sample Identification of Maximum	Arithmetic Average	Resident PRG	Is Maximum Concentration	Is Constituent a			
Constituent [a]	rieque	ncy or Dete	Clion	Min - Ma		Max	Min	- Max		Concentration	Concentration	for Soil [b]	> 10x PRG?	COPC? [c]	
	No. of Detects	No. of Samples	(%)	(pCi/g)		(pCi/g)	(pCi/g)	(pCi/g) (p		(Sample Date)	(pCi/g)	(pCi/g)	(YES/no)	(YES/no)	Rationale
Radionuclides Radium-226 Radium-228 Uranium-234 Uranium-235	80 82 82 63	/ 82 / 82 / 82 / 82	98 100 100 77	4.00E-01 - - 3.90E-02		8.40E-01 - - 2.30E-01	4.30E-01 1.20E+00 8.40E-01 2.00E-02	-	5.30E+00 7.60E+00 1.20E+01 7.40E-01	CP-JS-03-5-7_07142008(7/14/2008) CP-O09-0-1_07112008(7/11/2008) CP-JS-02-0-1_07112008(7/11/2008) CP-JS-02-0-1_07112008(7/11/2008)	2.20E+00 2.26E+00 2.51E+00 1.49E-01	6.4E-03 1.2E-02 6.6E-02 4.9E-02	YES YES YES YES	YES YES YES YES	ASL ASL ASL ASL
Uranium-238	82	/ 82	100	-	-	-	8.40E-01	-	1.20E+01	CP-JS-02-0-1_07112008(7/11/2008)	2.59E+00	5.0E-02	YES	YES	ASL

Notes:

- [a] Only detected constituents are presented.
- [b] The selected screening levels for radiological constituents are the United States Environmental Protection Agency's Preliminary Remediation Goals (PRGs) for Radionuclides (USEPA 2014). PRGs for residents were used. Available online at: epa- prgs.ornl.gov/radionuclides/.
- [c] Constituents detected at a maximum concentration above their screening level (ASL) are designated as COPCs unless the frequency of detection (FOD) is less than or equal to 5%. However, constituents detected in hotspots (at a maximum concentration greater than 10x the respective screening level) were designated as COPCs regardless of the detection frequency (HTSPT). Constituents with maximum detected concentrations below the screening levels (BSL) are not designated as COPCs.

-: not available or not applicable.

COPC: constituent of potential concern.

ft bgs: feet below ground surface.

min: minimum. No.: number.

ft bgs: feet below ground surface. max: maximum.

pCi/g: picoCurie(s) per gram.

PRG: preliminary remediation goal.

Statistical Summary and Selection of Radionuclide Constituents of Potential Concern:

Former Esperanza Mill - Shallow and Deep Soil/Sediment (0 to 15 ft bgs) Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

	Frague	now of Dot		Reporting Limits			Detected Concentrations			Commis Identification of Maximum	Arithmetic	Resident PRG	Is Maximum	Is Constituent a		
Constituent [a]	Freque	ncy of Det	ection	Min	-	Max	Min		Max	Sample Identification of Maximum Concentration	Average Concentration	for Soil [b]	> 10x PRG?	COP	C? [c]	
	No. of Detects			(pCi/g)		(pCi/g)	(pCi/g)		(pCi/g)	(Sample Date)	(pCi/g)	(pCi/g)	(YES/no)	(YES/no)	Rationale	
Radionuclides																
Radium-226	88	/ 88	100	_	-	_	5.40E-01	-	5.80E+00	RA-JS-03-0-1 08072008(8/7/2008)	2.24E+00	6.4E-03	YES	YES	ASL	
Radium-228	85	/ 88	97	2.00E+00	-	2.50E+00	1.00E+00	-	8.90E+00	RA-JS-02-1-3_08112008(8/11/2008)	2.30E+00	1.2E-02	YES	YES	ASL	
Uranium-234	88	/ 88	100	-	-	_	8.50E-01	-	1.20E+01	EM-JS-08-10-12_08122008(8/12/2008)	2.43E+00	6.6E-02	YES	YES	ASL	
Uranium-235	68	/ 88	77	4.20E-02	-	2.00E-01	4.20E-02	-	5.70E-01	EM-JS-08-10-12_08122008(8/12/2008)	1.25E-01	4.9E-02	YES	YES	ASL	
Uranium-238	88	/ 88	100	-	-	-	9.00E-01	-	1.20E+01	EM-JS-08-10-12_08122008(8/12/2008)	2.47E+00	5.0E-02	YES	YES	ASL	

Notes:

[a] Only detected constituents are presented.

[b] The selected screening levels for radiological constituents are the United States Environmental Protection Agency's Preliminary Remediation Goals (PRGs) for Radionuclides (USEPA 2014). PRGs for residents were used. Available online at: epa- prgs.ornl.gov/radionuclides/.

[c] Constituents detected at a maximum concentration above their screening level (ASL) are designated as COPCs unless the frequency of detection (FOD) is less than or equal to 5%. However, constituents detected in hotspots (at a maximum concentration greater than 10x the respective screening level) were designated as COPCs regardless of the detection frequency (HTSPT). Constituents with maximum detected concentrations below the screening levels (BSL) are not designated as COPCs.

-: not available or not applicable.

COPC: constituent of potential concern.

min: minimum. No.: number.

ft bgs: feet below ground surface. max: maximum.

pCi/g: picoCurie(s) per gram.
PRG: preliminary remediation goal.

Appendix F, Table F-5 Human Health Exposure Parameters Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

			Resident										
Parameter	Symbol	Units	Child (1 through 6 ye	ars)	Adult (27 years)		Age-Averaged Radiological Exposure Only						
General Factors													
Averaging Time (cancer)	ATc	days	28,470	[1]	28,470	[1]	_						
Averaging Time (noncancer)	ATnc	days	2,190	[2]	12,045	[2]	_						
Body Weight	BW	kg	19	[3]	80	[4]	_						
Exposure Frequency	EF	days/year	350	[5]	350	[5]	350	[5]					
Exposure Duration	ED	years	6	[6]	27	[7]	33	[7]					
<u>Inhalation</u>													
Exposure Time	ET	hours/day	24	[8]	24	[8]	24	[8]					
Exposure Time, indoor	ET_i	hours/day	_		-		16.416	[9]					
Exposure Time, outdoor	ET_o	hours/day	_		_		1.753	[9]					
Conversion Factor	CF	day/hour	0.042		0.042		0.042						
Particulate Emission Factor	PEF	m³/kg	1.396E +09	[10]	1.396E +09	[10]	1.396E +09	[10]					
Inhalation Rate	InhR	m³/day	_		_		_						
Age-Adjusted Inhalation Rate	$InhR_{adj}$	m ³ /day	_		_		18	[11]					
Soil - Ingestion (Oral)													
Incidental Soil Ingestion Rate	IRs	mg/day	200	[12]	100	[13]	_						
Age-Adjusted Soil Ingestion Rate	IR_{adj}	mg/day	_		_		118	[14]					
Soil - Dermal Contact													
Exposed Skin Surface Area	SA	cm²	2,350	[15]	6,125	[16]	_						
Soil-to-Skin Adherence Rate	SAR	mg/cm²/day	0.19	[17]	0.15	[18]	_						

Notes:

- [1] The averaging time for assessing cancer risk is the average expected lifespan of 78 years (Table 18-1, USEPA 2011) expressed in days.
- [2] The averaging time for evaluating non-cancer health effects is the exposure duration expressed in days (e.g., 25 years x 365 days/year = 9,125 days) (USEPA 1989).
- [3] Professional Judgment: Represents the age-weighted average of the mean body weights for boys and girls, ages 1 through 6 years (Table 8-1, USEPA 2011).
- [4] Mean recommended body weight for adults (Table 8-1, USEPA 2011).
- [5] Standard default residential exposure frequency (ADHS 2003; ADEQ 2002).
- [6] Standard default exposure duration for a resident child (ADHS 2003; ADEQ 2002).
- [7] The total exposure duration is 33 years, based on the 95th percentile residential occupancy period (Table 16-5, USEPA 2011). Cancer risks for the resident adult are calculated assuming 6 years at the child's rate of exposure and 27 years at the adult's rate of exposure.
- [8] Professional Judgment: Assumes continuous exposure.

Appendix F, Table F-5 Human Health Exposure Parameters Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

- [9] Recommended default exposure parameter (USEPA 2015g).
- [10] Standard default particulate emission factor (ADHS 2003; ADEQ 2002).
- [11] Based on an age-weighted average of recommended default inhalation rates for a resident child (10m³/day) and resident adult (20m³/day) (USEPA 2015q).
- [12] Recommended upper percentile soil and dust ingestion rate for an individual between the ages of 1 to <6 years (Table 5-1, USEPA 2011).
- [13] Standard default soil ingestion rate for an adult (ADEQ 2002).
- [14] Based on an age-weighted average of recommended default soil ingestion rates for a resident child (100 mg/day) and resident adult (200 mg/day) (USEPA 2015g).
- [15] Based on an age-weighted average of 95th percentile total skin surface areas for combined males and females, ages 1 through 6 (0.94 m² or 9,400 cm²) (Table 7-9; USEPA 2011). The exposed skin surface area was assumed to be 25% of the total skin surface area (ADEQ, 2002); 9,400 cm² x 0.25 = 2.350 cm².
- [16] Based on an age-weighted average of 95^{th} percentile total skin surface areas for combined males and females, ages 18 to 60 (2.45 m² or 24,500 cm²) (Table 7-9; USEPA 2011). The exposed skin surface area was assumed to be 25% of the total skin surface area (ADEQ, 2002); 24,500 cm² x 0.25 = 6,125 cm².
- [17] Average of recommended values for mean solids adherence to skin for children's hands (0.17 mg/cm²) and feet (0.20 mg/cm²), during "activities with soil" (Table 7-4, USEPA 2011).
- [18] Average of recommended values for mean solids adherence to skin for adult hands (0.1595 mg/cm²) and feet (0.1393 mg/cm²), during "activities with soil" (Table 7-4, USEPA 2011).

References:

Arizona Department of Environmental Quality. 2002. Appendix P, Table 1: Standard Default Factors. UST Program Release Reporting and Corrective Action Guidance. Accessed online: http://www.azdeq.gov/environ/waste/ust/lust/rbca/appp.pdf

Arizona Department of Health Services. 2003. Table 1: Standard Default Factors. Deterministic Risk Assessment Guidance. ADHS Office of Environmental Health. Accessed online: http://www.azdhs.gov/phs/oeh/pdf/guidance.pdf

- U.S. Environmental Protection Agency. 1989. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part A). EPA/540/1-89/002. Office of Emergency and Remedial Response, USEPA, Washington, DC. (December)
- U.S. Environmental Protection Agency. 2011. Exposure Factors Handbook 2011 Edition (Final). EPA/600/R-09/052F. National Center for Environmental Assessment, Office of Research and Development, USEPA, Washington, DC. (September)
- U.S. Environmental Protection Agency. 2015g. Preliminary Remediation Goals for Radionuclides, User's Guide. Accessed online: http://epaprgs.ornl.gov/radionuclides/prg_guide.html.

ADEQ: Arizona Department of Environmental Quality. ADHS: Arizona Department of Health Services. cm²: square centimeter(s). kg: kilogram(s). m²: square meter(s).
 m³: cubic meter(s).
 mg: milligram(s).
 USEPA: United States Environmental Protection Agency.

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Child/Adult Resident

Former CLEAR Plant - Shallow and Deep Soil/Sediment (0 to 15 ft bgs)

Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita

Sierrita Mine, Green Valley, Arizona

Cancer EPCs P			CANCER RISK Age-Specific Risk for Carcinogenic Constituents							TOTAL ite-Specific	CANCER RISI Risk	K Total	Percent Total	NONCANCER HAZARD Route-Specific Hazard			Total	Percent Total	NONCANCER HAZARD Route-Specific Hazard) Total	Percent Total	
		EPCs	PEF [b]	1 through 6 years			27 years				33 years				1 through 6 years			Hazard	HI	27 years			Hazard	HI
Constituent	Group [a]	(mg/kg)	(m³/kg)	Oral	Dermal	Inhalation	Oral	Dermal	Inhalation	Oral	Dermal	Inhalation	ELCR	ELCR	Oral	Dermal	Inhalation	(Child)	(Child)	Oral	Dermal	Inhalation	(Adult)	(Adult)
				ELCRo	ELCRd	ELCRi	ELCRo	ELCRd	ELCRi	ELCRo	ELCRd	ELCRi			HQo	HQd	HQi			HQo	HQd	HQi		
Inorganics																								
Antimony	NA	6.91E+00	1.40E+09 P	NA	NA	NA	NA	NA	NA	_	-	_	_		1.8E-01	-	NA	1.8E-01	5%	1.7E-02	_	NA	1.7E-02	
Arsenic	Α	9.99E+00	1.40E+09 P	4.7E-06	7.9E-07	2.3E-09	2.5E-06	1.7E-06	1.0E-08	7.2E-06	2.5E-06	1.2E-08	9.7E-06	100%	1.4E-01	2.3E-02	4.6E-04	1.6E-01	5%	1.3E-02	9.0E-03	3.7E-04	2.2E-02	
Copper	D	7.39E+03	1.40E+09 P	NA	NA	NA	NA	NA	NA	_	_	_	_		1.9E+00	_	NA	1.9E+00	58%	1.8E-01	_	NA	1.8E-01	57%
Lead	B2	2.09E+02	1.40E+09 P	NA	NA	NA	NA	NA	NA	_	_	_	_		NA	NA	NA	_		NA	NA	NA	_	
Molybdenum	NA	5.03E+02	1.40E+09 P	NA	NA	NA	NA	NA	NA	-	_				1.0E+00	_	NA	1.0E+00	32%	9.9E-02	_	NA	9.9E-02	31%
				5E-06	8E-07	2E-09	2E-06	2E-06	1E-08	7E-06	2E-06	1E-08			3	0.02	0.0005			0.3	0.009	0.0004		
Total												Total ELCR	1E-05			To	otal Child HI	3]		То	tal Adult HI	0.3]
											Group B Group C	Total ELCR Total ELCR Total ELCR Total ELCR	1E-05 - - -			HI (gas HI (r HI (d	HI (skin) (circulatory) trointestinal) neurological) evelopment) HI (kidney) (whole body)	0.2 1 2 0.0005 0.0005 1						

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table F-7.

ELCRd: excess lifetime cancer risk, dermal pathway. -: not applicable. ELCRi: excess lifetime cancer risk, inhalation pathway. %: percent. ELCRo: excess lifetime cancer risk, oral pathway. ABSd: dermal absorption factor. CSFa: dermal cancer slope factor. EPCs: exposure point concentration in soil/sediment.

CSFo: oral cancer slope factor. ft bgs: feet below ground surface. HI: hazard index.

ELCR: excess lifetime cancer risk.

HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway. HQo: hazard quotient, oral pathway. IUR: inhalation unit risk.

m³/kg: cubic meter(s) per kilogram. mg/kg: milligram(s) per kilogram.

NA: not available or not applicable. RBA: Relative Bioavailability. RfC: reference concentration. RfDa: dermal reference dose. RfDo: oral reference dose.

Receptor-specific exposure parameters are presented in Table F-7. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

Child (1 through 6 years):

ELCRo = (EPCs x 1 x 200 x 350 x 6 x RBA x CSFo) / (1,000,000 x 19 x 28470) ELCRd = (EPCs x 2350 x 0.19 x ABSd x 350 x 6 x CSFa)/(1,000,000 x 19 x 28470) ELCRi = ([EPCs / PEF] x 24 x 0.042 x 350 x 6 x IUR) / (28470)

Adult (7 through 33 years):

ELCRo = (EPCs x 1 x 100 x 350 x 27 x RBA x CSFo) / (1,000,000 x 80 x 28470) ELCRd = (EPCs x 6125 x 0.15 x ABSd x 350 x 27 x CSFa) / (1,000,000 x 80 x 28470) ELCRi = ([EPCs / PEF] x 24 x 0.042 x 350 x 27 x IUR) / (28470)

Child (1 through 6 years):

HQo = (EPCs x 1 x 200 x 350 x 6 x RBA) / (1,000,000 x 19 x 2190 x RfDo) $HQd = (EPCs \times 2350 \times 0.19 \times ABSd \times 350 \times 6) / (1.000.000 \times 19 \times 2190 \times RfDa)$ $HQi = ([EPCs / PEF] \times 24 \times 0.042 \times 350 \times 6) / (2190 \times RfC)$

Adult (7 through 33 years):

HQo = (EPCs x 1 x 100 x 350 x 27 x RBA) / (1,000,000 x 80 x 12045 x RfDo) HQd = (EPCs x 6125 x 0.15 x ABSd x 350 x 27)/(1,000,000 x 80 x 12045 x RfDa) HQi = ([EPCs / PEF] x 24 x 0.042 x 350 x 27) / (12045 x RfC)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Child/Adult Resident

Former Esperanza Mill - Shallow and Deep Soil/Sediment (0 to 15 ft bgs)

Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita

Sierrita Mine, Green Valley, Arizona

					ae-Specifi	CANCE c Risk for Ca	_	Constituer	nts	Rou	TOTAL (CANCER RIS	K Total	Percent Total	Route	NONCANO -Specific H	CER HAZARD	Total	Percent Total	Route	NONCAN Specific	CER HAZARI Hazard) Total	Percent Total
	Cancer	EPCs	PEF [b]		hrough 6 y			27 years			33 years					rough 6 ye		Hazard	HI		27 years		Hazard	
Constituent	Group [a]	(mg/kg)	(m³/kg)	Oral	Dermal	Inhalation	Oral	Dermal	Inhalation	Oral		Inhalation	ELCR	ELCR	Oral		Inhalation	(Child)	(Child)	Oral	Dermal	Inhalation	(Adult)	(Adult)
				ELCRo	ELCRd	ELCRi	ELCRo	ELCRd	ELCRi	ELCRo	ELCRd	ELCRi			HQo	HQd	HQi			HQo	HQd	HQi		
Inorganics																								
Antimony	NA	4.64E+00	1.40E+09 P	NA	NA	NA	NA	NA	NA	_	_	_	_		1.2E-01	_	NA	1.2E-01	3%	1.1E-02	_	NA	1.1E-02	
Arsenic	Α	1.29E+01	1.40E+09 P	6.1E-06	1.0E-06	2.9E-09	3.2E-06	2.2E-06	1.3E-08	9.2E-06	3.2E-06	1.6E-08	1.2E-05	100%	1.7E-01	2.9E-02	5.9E-04	2.0E-01	5%	1.7E-02	1.2E-02	4.8E-04	2.9E-02	7%
Copper	D	4.66E+03	1.40E+09 P	NA	NA	NA	NA	NA	NA	_	_	_	_		1.2E+00	_	NA	1.2E+00	27%	1.1E-01	_	NA	1.1E-01	26%
Lead	B2	1.33E+02	1.40E+09 P	NA	NA	NA	NA	NA	NA	_	_	_	_		NA	NA	NA	_		NA	NA	NA	_	
Molybdenum	NA	1.44E+03	1.40E+09 P	NA	NA	NA	NA	NA	NA	_	_	_	_		2.9E+00	_	NA	2.9E+00	66%	2.8E-01	_	NA	2.8E-01	64%
Uranium [c]	NA	7.16E+00	1.40E+09 P	NA	NA	NA	NA	NA	NA	_	-	_	_		2.4E-02	_	1.2E-04	2.4E-02	<1%	2.3E-03	_	1.0E-04	2.4E-03	<1%
				6E-06	1E-06	3E-09	3E-06	2E-06	1E-08	9E-06	3E-06	2E-08			4	0.03	0.0007			0.4	0.01	0.0006		
Total											•	Total ELCR	1E-05)		То	tal Child HI	4]		To	otal Adult HI	0.4	נ
											Group B	Total ELCR Total ELCR Total ELCR	1E-05 				elopmental) (circulatory) HI (skin)	0.0006 3 0.2						
												Total ELCR				HI (n	eurological)	0.0006						
											0.04,0			ı		(HI (kidney)	3	1					
																HI (whole body)	3						
																(HI (GI)	1	1					

HQd: hazard quotient, dermal pathway.

HQo: hazard quotient, oral pathway.

m³/kg: cubic meter(s) per kilogram.

IUR: inhalation unit risk.

HQi: hazard quotient, inhalation pathway.

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table F-7.

-: not applicable. ELCRd: excess lifetime cancer risk, dermal pathway. ELCRi: excess lifetime cancer risk, inhalation pathway. %: percent. ABSd: dermal absorption factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFa: dermal cancer slope factor. EPC: exposure point concentration in soil/sediment. CSFo: oral cancer slope factor. ft bgs: feet below ground surface.

ELCR: excess lifetime cancer risk. HI: hazard index.

mg/kg: milligram(s) per kilogram. Receptor-specific exposure parameters are presented in Table F-7. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

Child (1 through 6 years):

ELCRo = (EPCs x 1 x 200 x 350 x 6 x RBA x CSFo) / (1,000,000 x 19 x 28470) ELCRd = (EPCs x 2350 x 0.19 x ABSd x 350 x 6 x CSFa) / (1,000,000 x 19 x 28470)

ELCRi = ([EPCs / PEF] x 24 x 0.042 x 350 x 6 x IUR) / (28470)

Adult (7 through 33 years):

ELCRo = (EPCs x 1 x 100 x 350 x 27 x RBA x CSFo)/(1,000,000 x 80 x 28470) ELCRd = (EPCs x 6125 x 0.15 x ABSd x 350 x 27 x CSFa) / (1,000,000 x 80 x 28470)

ELCRi = ([EPCs / PEF] x 24 x 0.042 x 350 x 27 x IUR) / (28470)

NA: not available or not applicable.

RBA: relative bioavailability. RfC: reference concentration. RfDa: dermal reference dose.

RfDo: oral reference dose.

Child (1 through 6 years):

 $HQo = (EPCs \times 1 \times 200 \times 350 \times 6 \times RBA) / (1,000,000 \times 19 \times 2190 \times RfDo)$ $HQd = (EPCs \times 2350 \times 0.19 \times ABSd \times 350 \times 6) / (1,000,000 \times 19 \times 2190 \times RfDa)$ $HQi = ([EPCs / PEF] \times 24 \times 0.042 \times 350 \times 6) / (2190 \times RfC)$

Adult (7 through 33 years):

 $HQo = (EPCs \times 1 \times 100 \times 350 \times 27 \times RBA) / (1,000,000 \times 80 \times 12045 \times RfDo)$ HQd = (EPCs x 6125 x 0.15 x ABSd x 350 x 27) / (1,000,000 x 80 x 12045 x RfDa) $HQi = ([EPCs / PEF] \times 24 \times 0.042 \times 350 \times 27) / (12045 \times RfC)$

Excess Lifetime Cancer Risk Calculations for a Hypothetical Future Child/Adult Resident Exposed to Radionuclides Former CLEAR Plant - Shallow and Deep Soil/Sediment (0 to 15 ft bgs)

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

				CANCE	R RISK		Percent
			F	Route-Specific Ris	k	Total	Total
	EPCs	PEF [a]	Ingestion	Inhalation	External	ELCR	ELCR
Constituent	(pCi/g)	(m³/kg)	ELCRo	ELCRi	ELCRe	-	
Radionuclides							
Uranium-238	3.15E+00	1.40E+09 P	2.4E-07	1.1E-08	4.1E-06	4.4E-06	1%
Uranium-234	3.07E+00	1.40E+09 P	2.1E-07	1.3E-08	8.5E-09	2.3E-07	<1%
Thorium-230	3.07E+00	1.40E+09 P	3.2E-07	1.6E-08	2.8E-08	3.7E-07	<1%
Radium-226	2.58E+00	1.40E+09 P	1.0E-06	1.1E-08	2.4E-04	2.4E-04	66%
Lead-210	2.58E+00	1.40E+09 P	1.3E-06	3.8E-09	2.6E-08	1.3E-06	<1%
Bismuth-210	2.58E+00	1.40E+09 P	7.9E-12	1.1E-13	4.7E-11	5.5E-11	<1%
Polonium-210	2.58E+00	1.40E+09 P	8.4E-08	9.6E-11	2.1E-11	8.4E-08	<1%
Thorium-232	2.52E+00	1.40E+09 P	2.6E-06	3.3E-08	1.1E-04	1.1E-04	32%
Thorium-228	2.52E+00	1.40E+09 P	1.8E-08	4.1E-09	1.3E-08	3.5E-08	<1%
Radium-224	2.52E+00	1.40E+09 P	1.3E-10	1.8E-12	5.1E-10	6.4E-10	<1%
Lead-212	2.52E+00	1.40E+09 P	2.4E-12	1.3E-14	7.3E-10	7.3E-10	<1%
Bismuth-212	2.52E+00	1.40E+09 P	7.7E-15	1.6E-16	6.9E-11	6.9E-11	<1%
Thallium-208	2.52E+00	1.40E+09 P	NA	NA	1.2E-10	1.2E-10	<1%
Uranium-235	1.85E-01	1.40E+09 P	1.3E-08	6.9E-10	1.2E-06	1.2E-06	<1%
Protactinium-231	1.85E-01	1.40E+09 P	3.9E-08	2.1E-09	2.6E-07	3.0E-07	<1%
Actinium-227	1.85E-01	1.40E+09 P	3.1E-08	2.6E-09	2.5E-10	3.4E-08	<1%
Francium-223	1.85E-01	1.40E+09 P	2.2E-15	2.1E-18	5.0E-13	5.0E-13	<1%
Astatine-219	1.85E-01	1.40E+09 P	NA	NA	NA	_	
Bismuth-215	1.85E-01	1.40E+09 P	NA	NA	1.4E-12	1.4E-12	<1%
Thorium-227	1.85E-01	1.40E+09 P	1.2E-11	2.2E-12	2.0E-09	2.0E-09	<1%
Radium-223	1.85E-01	1.40E+09 P	4.2E-11	1.1E-12	1.9E-09	2.0E-09	<1%
Lead-211	1.85E-01	1.40E+09 P	2.0E-16	3.3E-18	1.8E-12	1.8E-12	<1%
Astatine-215	1.85E-01	1.40E+09 P	NA	NA	2.0E-22	2.0E-22	<1%
Bismuth-211	1.85E-01	1.40E+09 P	NA	NA	6.9E-14	6.9E-14	<1%
Thallium-207	1.85E-01	1.40E+09 P	NA	NA	1.3E-14	1.3E-14	<1%
Polonium-211	1.85E-01	1.40E+09 P	NA	NA	5.5E-17	5.5E-17	<1%
			6E-06	1E-07	4E-04		
				-= 01	01		
Total					Total ELCR	4E-04	

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table F-7.

%: percent. ELCRi: excess lifetime cancer risk, inhalation pathway.

ACF: area correction factor. ELCRo: excess lifetime cancer risk, oral pathway.

CSFe: external cancer slope factor. EPCs: exposure point concentration in soil/sediment.

ELCRe: excess lifetime cancer risk, external pathway.

Receptor-specific exposure parameters are presented in Table F-7. Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

ELCRo = (EPCs × 118 × 350 × 33 × [1 - exp($-\lambda$ × 33)] × CSFo) / (1,000 × 33 × λ) ELCRi = (EPCs × 1,000 × 18 × 24 × 0.042 × 350 × 33 × [1 - exp($-\lambda$ × 33)] × CSFi) / (1.40E+09 × 33 × λ) ELCRe = (EPCs × ACF × [(1.752 × 0.042 × 1) + (16.416 × 0.042 × 0.4)] × 350 × 33 × [1 - exp($-\lambda$ × 33)] × CSFe) / (365 × 33 × λ)

Excess Lifetime Cancer Risk Calculations for a Hypothetical Future Child/Adult Resident Exposed to Radionuclides

Former Esperanza Mill - Shallow and Deep Soil/Sediment (0 to 15 ft bgs)

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita

Freeport-Wickloran Sierrita										
Sierrita	Mine.	Green	Valley.	Arizona						

				CANC	ER RISK		- Percent
				Route-Specific R		Total	_ Total
	EPCs	PEF [a]	Ingest		External	ELCR	ELCR
Constituent	(pCi/g)	(m³/kg)	ELCF		ELCRe	ELOIT	LLOIX
Radionuclides							
Uranium-238	2.76E+00	1.40E+09 F	2.1E-	07 9.7E-09	3.6E-06	3.8E-06	1%
Uranium-234	2.71E+00	1.40E+09 F	1.9E-	07 1.1E-08	7.5E-09	2.1E-07	<1%
Thorium-230	2.71E+00	1.40E+09 F	2.8E-	07 1.4E-08	2.5E-08	3.2E-07	<1%
Radium-226	2.43E+00	1.40E+09 F	9.7E-	07 1.0E-08	2.2E-04	2.2E-04	65%
Lead-210	2.43E+00	1.40E+09 F	1.2E-	06 3.6E-09	2.5E-08	1.3E-06	<1%
Bismuth-210	2.43E+00	1.40E+09 F	7.4E-	12 1.0E-13	4.4E-11	5.2E-11	<1%
Polonium-210	2.43E+00	1.40E+09 F	7.9E-	08 9.0E-11	2.0E-11	7.9E-08	<1%
Thorium-232	2.51E+00	1.40E+09 F	2.6E-	06 3.3E-08	1.1E-04	1.1E-04	33%
Thorium-228	2.51E+00	1.40E+09 F	1.8E-	08 4.1E-09	1.3E-08	3.5E-08	<1%
Radium-224	2.51E+00	1.40E+09 F	1.3E-	10 1.8E-12	5.1E-10	6.3E-10	<1%
Lead-212	2.51E+00	1.40E+09 F	2.4E-	12 1.3E-14	7.2E-10	7.3E-10	<1%
Bismuth-212	2.51E+00	1.40E+09 F	7.6E-		6.9E-11	6.9E-11	<1%
Thallium-208	2.51E+00	1.40E+09 F	NA NA	NA	1.2E-10	1.2E-10	<1%
Uranium-235	1.20E-01	1.40E+09 F	8.2E-	09 4.5E-10	7.6E-07	7.7E-07	<1%
Protactinium-231	1.20E-01	1.40E+09 F			1.7E-07	1.9E-07	<1%
Actinium-227	1.20E-01	1.40E+09 F			1.6E-10	2.2E-08	<1%
Francium-223	1.20E-01	1.40E+09 F			3.2E-13	3.3E-13	<1%
Astatine-219	1.20E-01	1.40E+09 F			NA	_	
Bismuth-215	1.20E-01	1.40E+09 F			9.0E-13	9.0E-13	<1%
Thorium-227	1.20E-01	1.40E+09 F			1.3E-09	1.3E-09	<1%
Radium-223	1.20E-01	1.40E+09 F			1.2E-09	1.3E-09	<1%
Lead-211	1.20E-01	1.40E+09 F			1.2E-12	1.2E-12	<1%
Astatine-215	1.20E-01	1.40E+09 F			1.3E-22	1.3E-22	<1%
Bismuth-211	1.20E-01	1.40E+09 F			4.5E-14	4.5E-14	<1%
Thallium-207	1.20E-01	1.40E+09 F			8.3E-15	8.3E-15	<1%
Polonium-211	1.20E-01	1.40E+09 F			3.5E-17	3.5E-17	<1%
. 5.5 211	232 01					0.52 17	-170
			6E-0	6 9E-08	3E-04		
Total					Total ELCR	3E-04	Т

Notes:

 $\hbox{[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table F-7.}$

%: percent. ELCRi: excess lifetime cancer risk, inhalation pathway.

ACF: area correction factor. ELCRo: excess lifetime cancer risk, oral pathway.

CSFe: external cancer slope factor. EPCs: exposure point concentration in soil/sediment.

CSFi: inhalation cancer slope factor. ft bgs: feet below ground surface. CSFo: oral cancer slope factor. m³/kg: cubic meter(s) per kilogram. ELCR: excess lifetime cancer risk. pCi/g: picoCurie(s) per gram.

ELCRe: excess lifetime cancer risk, external pathway.

Receptor-specific exposure parameters are presented in Table F-7. Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

ELCRo = (EPCs × 118 × 350 × 33 × [1 - exp($-\lambda$ × 33)] × CSFo) / (1,000 × 33 × λ) ELCRi = (EPCs × 1,000 × 18 × 24 × 0.042 × 350 × 33 × [1 - exp($-\lambda$ × 33)] × CSFi) / (1.40E+09 × 33 × λ) ELCRe = (EPCs × ACF × [(1.752 × 0.042 × 1) + (16.416 × 0.042 × 0.4)] × 350 × 33 × [1 - exp($-\lambda$ × 33)] × CSFe) / (365 × 33 × λ)

Summary of Calculated Excess Lifetime Cancer Risks and Noncancer Hazard Indices based on 95% UCLs: Former CLEAR Plant, Hypothetical Future Residential Scenario

Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita

Sierrita Mine, Green Valley, Arizona

	e Area						
		TOTAL EXCESS LIF	ETIME CANCER RISK	NONCANCER HAZARD INDEX			
	Exposure Type	Direct Contact with Shallow and Deep Soil/Sediment	COPCs accounting for >10% of ELCR (if ELCR >1E-04)	Direct Contact with Shallow and Deep Soil/Sediment	COPCs accounting for >10% of HI (if HI >1)		
Human Receptors	(Table Reference)	(0 to 15 ft bgs)		(0 to 15 ft bgs)			
Hypothetical Future Sc	enario						
	Chemical (Table F-6)	1E-05	-	3	Copper (57%) Molybdenum (31%)		
Hypothetical Child/Adult Resident	Radiological (Table F-8)	4E-04	Ra-226 (66%) Th-232 (32%)	-	-		
	Receptor Total	4E-04	Ra-226 (66%) Th-232 (32%)	3	Copper (57%) Molybdenum (31%)		

Notes:

The hypothetical future scenarios evaluated for the Former CLEAR Plant Exposure Area are based on soil and sediment data from sample locations that are currently exposed at the surface and from sample locations that are currently covered (i.e., paved or developed) at the surface. This assumes that the currently covered soils will become exposed in the future.

Excess lifetime cancer risks exceeding 1E-04 and noncancer hazard indices exceeding 1 are shown in bold.

- : not applicable.

%: percent.

COPC: constituent of potential concern.

ELCR: excess lifetime cancer risk.

ft bgs: feet below ground surface.

HI: hazard index.

UCL: upper confidence limit of the mean concentration.

Summary of Calculated Excess Lifetime Cancer Risks and Noncancer Hazard Indices based on 95% UCLs: Former Esperanza Mill, Hypothetical Future Residential Scenario

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita

Sierrita Mine, Green Valley, Arizona

	Former Esperanza Mill Exposure Area									
		TOTAL EXCESS LIF	ETIME CANCER RISK	NONCANCER	HAZARD INDEX					
	Exposure Type	Direct Contact with Shallow and Deep Soil/Sediment	COPCs accounting for >10% of ELCR (if ELCR >1E-04)	Direct Contact with Shallow and Deep Soil/Sediment	COPCs accounting for >10% of HI (if HI >1)					
Human Receptors	(Table Reference)	(0 to 15 ft bgs)		(0 to 15 ft bgs)						
Hypothetical Future S	cenario				_					
	Chemical (Table F-7)	1E-05	-	4	Copper (26%) Molybdenum (64%)					
Hypothetical Child/Adult Resident	Radiological (Table F-5)	3E-04	Ra-226 (65%) Th-232 (33%)	-	-					
	Receptor Total	4E-04	Ra-226 (65%) Th-232 (33%)	4	Copper (26%) Molybdenum (64%)					

Notes:

Excess lifetime cancer risks exceeding 1E-04 and noncancer hazard indices exceeding 1 are shown in bold.

-: not applicable.

%: percent.

COPC: constituent of potential concern. ELCR: excess lifetime cancer risk.

ft bgs: feet below ground surface.

HI: hazard index.

UCL: upper confidence limit of the mean concentration.

Summary of Calculated Excess Lifetime Cancer Risks and Noncancer Hazard Indices based on Mean EPCs: Former CLEAR Plant Exposure Area, Background, and Incremental Cancer Risks and Hazard Indices Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita

Sierrita Mine, Green Valley, Arizona

	Former CLEAR Plant Exposure Area				Background		Incremental			
		TOTAL EXCESS LIFETIME CANCER RISK	NONCANCER HAZARD INDEX		TOTAL EXCESS LIFETIME CANCER RISK	NONCANCER HAZARD INDEX		TOTAL EXCESS LIFETIME CANCER RISK	NONCANCER HAZARD INDEX	
Human Receptors	Exposure Type (Table Reference)	Direct Contact with Shallow and Deep Soil/Sediment (0 to 15 ft bgs)	Direct Contact with Shallow and Deep Soil/Sediment (0 to 15 ft bgs)	Exposure Type (Table Reference)	Direct Contact with Shallow and Deep Soil/Sediment (0 to 15 ft bgs)	Direct Contact with Shallow and Deep Soil/Sediment (0 to 15 ft bgs)	Exposure Type	Direct Contact with Shallow and Deep Soil/Sediment (0 to 15 ft bgs)	Direct Contact with Shallow and Deep Soil/Sediment (0 to 15 ft bgs)	
Hypothetical Future S										
Hypothetical	Chemical (Table H-18)	9E-06	2	Chemical (Table G-15)	2E-06	0.1	Chemical	8E-06	2	
Child/Adult Resident	Radiological (Table I-18)	3E-04	-	Radiological (Table G-27)	2E-04		Radiological	1E-04		
Child/Adult Resident	Receptor Total	3E-04	2	Receptor Total	2E-04	0.1	Receptor Total	1E-04	2	

Notes

The hypothetical future scenarios evaluated for the Former CLEAR Plant Exposure Area are based on soil and sediment data from sample locations that are currently exposed at the surface and from sample locations that are currently covered (i.e., paved or developed) at the surface. This assumes that the currently covered soils will become exposed in the future.

Excess lifetime cancer risks exceeding 1E-04 and noncancer hazard indices exceeding 1 are shown in bold.

- : not applicable.

EPC: exposure point concentration.

ft bgs: feet below ground surface.

Summary of Calculated Excess Lifetime Cancer Risks and Noncancer Hazard Indices based on Mean EPCs: Former Esperanza Mill Exposure Area, Background, and Incremental Cancer Risks and Hazard Indices Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

	Fo	Former Esperanza Mill Exposure Area						
Human Receptors	Exposure Type (Table Reference)	TOTAL EXCESS LIFETIME CANCER RISK Direct Contact with Shallow and Deep Soil/Sediment (0 to 15 ft bgs)	NONCANCER HAZARD INDEX Direct Contact with Shallow and Deep Soil/Sediment (0 to 15 ft bgs)					
Illian all all all factories	Na ana art a			L				
Hypothetical Future S	Scenario			lШ				
Hypothetical	Chemical (Table H-19)	8E-06	2	С				
Child/Adult Resident	Radiological (Table I-19)	3E-04	_	R				
Ciliu/Addit Resident	Receptor Total	3E-04	2	П				

	Background		Incremental					
Exposure Type (Table Reference)	TOTAL EXCESS LIFETIME CANCER RISK Direct Contact with Shallow and Deep Soil/Sediment (0 to 15 ft bgs)	NONCANCER HAZARD INDEX Direct Contact with Shallow and Deep Soil/Sediment (0 to 15 ft bgs)	Exposure Type	TOTAL EXCESS LIFETIME CANCER RISK Direct Contact with Shallow and Deep Soil/Sediment (0 to 15 ft bgs)	NONCANCER HAZARD INDEX Direct Contact with Shallow and Deep Soil/Sediment (0 to 15 ft bgs)			
Chemical (Table G-16)	2E-06	0.1	Chemical	6E-06	2			
Radiological (Table G-27)	2E-04		Radiological	1E-04				
Receptor Total	2E-04	0.1	Receptor Total	1E-04	2			

Notes:

Excess lifetime cancer risks exceeding 1E-04 and noncancer hazard indices exceeding 1 are shown in bold.

- : not applicable.

ft bgs: feet below ground surface.

Appendix F Adult Lead Model Worksheets Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

Calculations of Blood Lead Concentrations (PbBs)

U.S. EPA Technical Review Workgroup for Lead, Adult Lead Committee

Version date 6/21/09 EDIT RED CELLS

Exposure Scenario: Future

Exposure Area: Former CLEAR Plant

Soil/Sediment Data Set: 0-15 feet below ground surface Receptor Population: Hypothetical Resident Adult

Variable	Description of Variable	Units	GSDi and PbBo from Analysis of NHANES 2009-2014
PbS	Soil lead concentration	ug/g or ppm	113.5
R _{fetal/maternal}	Fetal/maternal PbB ratio		0.9
BKSF	Biokinetic Slope Factor	ug/dL per ug/day	0.4
GSD_i	Geometric standard deviation PbB		1.8
PbB_0	Baseline PbB	ug/dL	0.6
IR_S	Soil ingestion rate (including soil-derived indoor dust)	g/day	0.100
IR _{S+D}	Total ingestion rate of outdoor soil and indoor dust	g/day	
W_{S}	Weighting factor; fraction of IR _{S+D} ingested as outdoor soil		
K_{SD}	Mass fraction of soil in dust		
$AF_{S, D}$	Absorption fraction (same for soil and dust)		0.12
EF _{S, D}	Exposure frequency (same for soil and dust)	days/yr	350
$AT_{S, D}$	Averaging time (same for soil and dust)	days/yr	365
PbB _{adult}	PbB of adult worker, geometric mean	ug/dL	1.1
PbB _{fetal, 0.95}	95th percentile PbB among fetuses of adult workers	ug/dL	2.7
PbB_t	Target PbB level of concern (e.g., 10 ug/dL)	ug/dL	10.0
$P(PbB_{fetal} > PbB_{t})$	Probability that fetal PbB > PbB _v assuming lognormal distribution	%	0.005%

Appendix F Adult Lead Model Worksheets Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

Calculations of Blood Lead Concentrations (PbBs)

U.S. EPA Technical Review Workgroup for Lead, Adult Lead Committee

Version date 6/21/09 EDIT RED CELLS

Exposure Scenario: Future

Exposure Area: Former Esperanza Mill

Soil/Sediment Data Set: 0-15 feet below ground surface Receptor Population: Hypothetical Resident Adult

Variable	Description of Variable	Units	GSDi and PbBo from Analysis of NHANES 2009-2014
PbS	Soil lead concentration	ug/g or ppm	117
R _{fetal/maternal}	Fetal/maternal PbB ratio		0.9
BKSF	Biokinetic Slope Factor	ug/dL per ug/day	0.4
GSD_i	Geometric standard deviation PbB		1.8
PbB_0	Baseline PbB	ug/dL	0.6
IR_S	Soil ingestion rate (including soil-derived indoor dust)	g/day	0.100
IR _{S+D}	Total ingestion rate of outdoor soil and indoor dust	g/day	
W_{S}	Weighting factor; fraction of IR _{S+D} ingested as outdoor soil		
K_{SD}	Mass fraction of soil in dust		
$AF_{S, D}$	Absorption fraction (same for soil and dust)		0.12
$\mathrm{EF}_{\mathrm{S},\mathrm{D}}$	Exposure frequency (same for soil and dust)	days/yr	350
$AT_{S, D}$	Averaging time (same for soil and dust)	days/yr	365
PbB _{adult}	PbB of adult worker, geometric mean	ug/dL	1.1
PbB _{fetal, 0.95}	95th percentile PbB among fetuses of adult workers	ug/dL	2.7
PbB_t	Target PbB level of concern (e.g., 10 ug/dL)	ug/dL	10.0
$P(PbB_{fetal} > PbB_t)$	Probability that fetal PbB > PbB _v assuming lognormal distribution	%	0.005%

LEAD MODEL FOR WINDOWS Version 1.1

Model Version: 1.1 Build11 User Name: ARCADIS Date: October 2018

Site Name: Sierrita Mine, Green Valley, Arizona

Operable Unit: Former CLEAR Plant (0-15 feet below ground surface)

Run Mode: Research

***** Air *****

Indoor Air Pb Concentration: 30.000 percent of outdoor.

Other Air Parameters:

Age	Time Outdoors	Ventilation Rate	Lung Absorption	Outdoor Ai Pb Conc	
	(hours)	(m³/day)	•	(μg Pb/m³)	
.5-1	1.000	2.000	32.000	0.100	
1-2	2.000	3.000	32.000	0.100	
2-3	3.000	5.000	32.000	0.100	
3-4	4.000	5.000	32.000	0.100	
4-5	4.000	5.000	32.000	0.100	
5-6	4.000	7.000	32.000	0.100	
6-7	4.000	7.000	32.000	0.100	

***** Diet *****

Age	Diet Intake(μg/day)
.5-1	2.260
1-2	1.960
2-3	2.130
3-4	2.040
4-5	1.950
5-6	2.050
6-7	2.220

***** Drinking Water *****

	_	
Water	Consum	ntion.
VVUCCI	CONSUM	p tioii.

Age	Water (L/day)	
.5-1	0.200	
1-2	0.500	
2-3	0.520	
3-4	0.530	
4-5	0.550	
5-6	0.580	
6-7	0.590	

Drinking Water Concentration: 4.000 µg Pb/L

***** Soil & Dust *****

Multiple Source Analysis Used

Average multiple source concentration: 89.450 μg/g

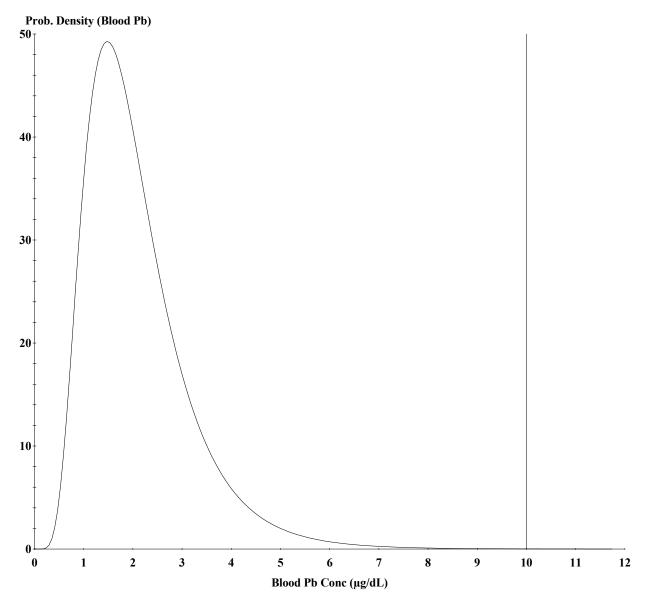
Mass fraction of outdoor soil to indoor dust conversion factor: 0.700 Outdoor airborne lead to indoor household dust lead concentration: 100.000 Use alternate indoor dust Pb sources? No

Age	Soil (µg Pb/g)	House Dust (μg Pb/g)
.5-1	113.500	89.450
1-2	113.500	89.450
2-3	113.500	89.450
3-4	113.500	89.450
4-5	113.500	89.450
5-6	113.500	89.450
6-7	113.500	89.450

***** Alternate Intake *****

Age	Alternate (μg Pb/day)
.5-1	0.000
1-2	0.000
2-3	0.000
3-4	0.000
4-5	0.000
5-6	0.000
6-7	0.000

***** Maternal Contribution: Infant Model *****


Maternal Blood Concentration: 0.600 μg Pb/dL

CALCULATED BLOOD LEAD AND LEAD UPTAKES:

Year	Air (μg/day)	Diet (μg/day)	Alternate (µg/day)	
.5-1	0.021	1.081	0.000	0.383
1-2	0.034	0.932	0.000	0.951
2-3	0.062	1.019	0.000	0.995
3-4	0.067	0.983	0.000	1.021
4-5	0.067	0.949	0.000	1.071
5-6	0.093	1.002	0.000	1.133
6-7	0.093	1.087	0.000	1.155
	Soil+Dust (μg/day) 		Blood (μg/dL)	
.5-1	2.446	3.931	2.1	
1-2	3.862	5.780	2.4	
2-3	3.887	5.964	2.2	
3-4	3.912	5.982	2.1	
4-5	2.928	5.015	1.8	
5-6	2.645	4.874	1.5	
6-7	2.504	4.839	1.4	

Cutoff = 10.000 µg/dl Geo Mean = 1.921 GSD = 1.600 % Above = 0.022 % Below = 99.978 Age Range = 0 to 84 months

Run Mode = Research

LEAD MODEL FOR WINDOWS Version 1.1

Model Version: 1.1 Build11 User Name: ARCADIS Date: October 2018

Site Name: Sierrita Mine, Green Valley, Arizona

Operable Unit: Former Esperanza Mill (0-15 feet below ground surface)

Run Mode: Research

***** Air *****

Indoor Air Pb Concentration: 30.000 percent of outdoor.

Other Air Parameters:

Age	Time	Ventilation	Lung	Outdoor Air
	Outdoors	Rate	Absorption	n Pb Conc
	(hours)	(m³/day)	(%)	(μg Pb/m³)
.5-1	1.000	2.000	32.000	0.100
1-2	2.000	3.000	32.000	0.100
2-3	3.000	5.000	32.000	0.100
3-4	4.000	5.000	32.000	0.100
4-5	4.000	5.000	32.000	0.100
5-6	4.000	7.000	32.000	0.100
6-7	4.000	7.000	32.000	0.100

***** Diet *****

Age	Diet Intake(µg/day)
.5-1	2.260
1-2	1.960
2-3	2.130
3-4	2.040
4-5	1.950
5-6	2.050
6-7	2.220

***** Drinking Water *****

	_	
W/ater	Consum	intion:
vvacci	COLISALI	iptioii.

Age	Water (L/day)	
.5-1	0.200	-
1-2	0.500	
2-3	0.520	
3-4	0.530	
4-5	0.550	
5-6	0.580	
6-7	0.590	

Drinking Water Concentration: 4.000 µg Pb/L

***** Soil & Dust *****

Multiple Source Analysis Used

Average multiple source concentration: 91.900 μg/g

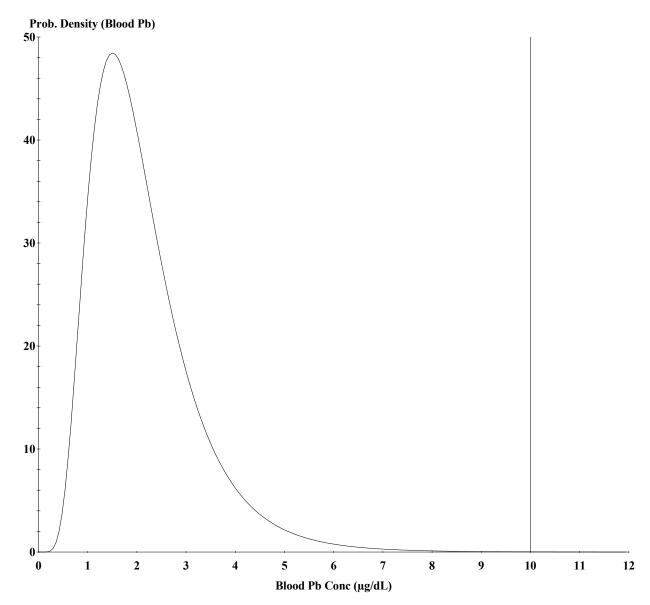
Mass fraction of outdoor soil to indoor dust conversion factor: 0.700 Outdoor airborne lead to indoor household dust lead concentration: 100.000 Use alternate indoor dust Pb sources? No

Age	Soil (μg Pb/g)	House Dust (μg Pb/g)
.5-1	117.000	91.900
1-2	117.000	91.900
2-3	117.000	91.900
3-4	117.000	91.900
4-5	117.000	91.900
5-6	117.000	91.900
6-7	117.000	91.900

***** Alternate Intake *****

Age	Alternate (μg Pb/day)
.5-1	0.000
1-2	0.000
2-3	0.000
3-4	0.000
4-5	0.000
5-6	0.000
6-7	0.000

***** Maternal Contribution: Infant Model *****


Maternal Blood Concentration: 0.600 μg Pb/dL

CALCULATED BLOOD LEAD AND LEAD UPTAKES:

Year			Alternate (μg/day)	
.5-1	0.021	1.080	0.000	0.382
1-2	0.034	0.931	0.000	0.950
2-3	0.062	1.019	0.000	0.995
3-4	0.067	0.982	0.000	1.020
4-5	0.067	0.949	0.000	1.070
5-6	0.093	1.001	0.000	1.133
6-7	0.093	1.087	0.000	1.155
	Soil+Dust (μg/day)		Blood (μg/dL)	
.5-1	(μg/day)	(μg/day) 	(µg/dL)	
.5-1 1-2	(μg/day) 2.515 3.971	(μg/day) 3.999	(μg/dL) 2.2	
.5-1 1-2 2-3	(μg/day) 2.515 3.971	(μg/day) 3.999 5.887	(μg/dL) 2.2 2.4	
.5-1 1-2 2-3 3-4	(μg/day) 2.515 3.971 3.997	(μg/day) 3.999 5.887 6.072	(μg/dL) 2.2 2.4 2.3	
.5-1 1-2 2-3 3-4 4-5	2.515 3.971 3.997 4.023	(μg/day) 3.999 5.887 6.072 6.092	(μg/dL) 2.2 2.4 2.3 2.1	
.5-1 1-2 2-3 3-4 4-5	2.515 3.971 3.997 4.023 3.012	(μg/day) 3.999 5.887 6.072 6.092 5.098	(μg/dL) 2.2 2.4 2.3 2.1 1.8	

Cutoff = 10.000 µg/dl Geo Mean = 1.954 GSD = 1.600 % Above = 0.026 % Below = 99.974

Age Range = 0 to 84 months

Run Mode = Research

APPENDIX G Background Risk Calculations using Mean EPCs

Appendix G, Table G-1 (RME)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Current/Future Outdoor Commercial/Industrial Worker at Former CLEAR Plant

Background - Shallow Soil (0 to 0.5 ft bgs) Baseline Human Health Risk Assessment

Sierrita Mine

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

				Ro	CANC ute-Specific	ER RISK Risk] Percent	Rout	NON-CAN e-Specific H	CER HAZARD		Percent
Constituent	Cancer Group [a]	EPCs (mg/kg)	PEF [b] (m³/kg)	Oral	Dermal	Inhalation	Total ELCR	Total ELCR	Oral	Dermal	Inhalation	Total Hazard	Total HI
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics													
Arsenic	Α	2.27E+00	1.40E+09 P	3.4E-07	2.3E-07	4.6E-10	5.7E-07	100%	2.3E-03	1.6E-03	2.2E-05	4.0E-03	46%
Copper	D	2.45E+02	1.40E+09 P	NA	NA	NA	_		4.7E-03	_	NA	4.7E-03	54%
Lead	B2	6.01E+00	1.40E+09 P	NA	NA	NA	_		NA	NA	NA	-	
				3E-07	2E-07	5E-10			0.007	0.002	0.00002		
Total						Total ELCR	6E-07]			Total HI	0.009	
					Group	A Total ELCR	6E-07	1					
					Group	B Total ELCR	_	1					
						C Total ELCR	_]					
					Group	D Total ELCR	_]					

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

-: not applicable.

%: percent.

ABSd: dermal absorption factor.

CSFa: dermal cancer slope factor.

ELCRd: excess lifetime cancer risk, dermal pathway.

ELCRi: excess lifetime cancer risk, inhalation pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

EPCs: exposure point concentration in soil/sediment.

CSFo: oral cancer slope factor. ft bgs: feet below ground surface.

ELCR: excess lifetime cancer risk. HI: hazard index.

HQd: hazard quotient, dermal pathway.

HQi: hazard quotient, inhalation pathway.

HQo: hazard quotient, oral pathway.

HQo: hazard quotient, oral pathway.

HQo: hazard quotient, oral pathway.

RfC: reference concentration.

RfDa: dermal reference dose.

m³/kg: cubic meter(s) per kilogram. RfDo: oral reference dose.

mg/kg: milligram(s) per kilogram. RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

ELCRo = (EPCs x 1 x 100 x 225 x 25 x RBA x CSFo) / (1,000,000 x 80 x 28470) ELCRd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25 x CSFa) / (1,000,000 x 80 x 28470) ELCRi = ([EPCs / PEF] x 8 x 0.042 x 225 x 25 x IUR) / (28470)

HQo = (EPCs x 1 x 100 x 225 x 25 x RBA) / (1,000,000 x 80 x 9125 x RfDo) HQd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25) / (1,000,000 x 80 x 9125 x RfDa) HQi = ([EPCs / PEF] x 8 x 0.042 x 225 x 25) / (9125 x RfC)

Appendix G, Table G-2 (Site-Specific Evaluation)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Current/Future Outdoor Commercial/Industrial Worker at Former CLEAR Plant

Background - Shallow Soil (0 to 0.5 ft bgs) **Baseline Human Health Risk Assessment**

Sierrita Mine

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

					CANO	ER RISK				NON-CAN	CER HAZARI)]
	_			Rou	te-Specific	Risk		Percent	Route	e-Specific I	Hazard		Percent
Constituent	Cancer Group [a]	EPCs (mg/kg)	PEF [b] (m³/kg)	Oral	Dermal	Inhalation	Total ELCR	Total ELCR	Oral	Dermal	Inhalation	Total Hazard	Total HI
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics Arsenic Copper Lead	A D B2	2.27E+00 2.45E+02 6.01E+00	1.40E+09 P 1.40E+09 P 1.40E+09 P	3.4E-07 NA NA	2.3E-07 NA NA	2.3E-10 NA NA	5.7E-07 - -	100%	2.3E-03 4.7E-03 NA	1.6E-03 - NA	1.1E-05 NA NA	3.9E-03 4.7E-03	46% 54%
Total				3E-07	2E-07	2E-10	6E-07	1	0.007	0.002	0.00001 Total HI	0.009	1
Total					Group A Group B Group C	Total ELCR Total ELCR Total ELCR Total ELCR	6E-07 - -				TotalTil	0.003	ı

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

-: not applicable. ELCRd: excess lifetime cancer risk, dermal pathway. %: percent. ELCRi: excess lifetime cancer risk, inhalation pathway. ABSd: dermal absorption factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFa: dermal cancer slope factor. EPCs: exposure point concentration in soil/sediment. CSFo: oral cancer slope factor. ft bgs: feet below ground surface.

ELCR: excess lifetime cancer risk. HI: hazard index. HQi: hazard quotient, inhalation pathway. HQo: hazard quotient, oral pathway. IUR: inhalation unit risk. m³/kg: cubic meter(s) per kilogram.

HQd: hazard quotient, dermal pathway.

mg/kg: milligram(s) per kilogram.

NA: not available or not applicable. RBA: Relative Bioavailability. RfC: reference concentration. RfDa: dermal reference dose. RfDo: oral reference dose.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

ELCRo = (EPCs x 1 x 100 x 225 x 25 x RBA x CSFo) / (1,000,000 x 80 x 28470) $HQo = (EPCs \times 1 \times 100 \times 225 \times 25 \times RBA) / (1,000,000 \times 80 \times 9125 \times RfDo)$ ELCRd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25 x CSFa) / (1,000,000 x 80 x 28470) HQd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25) / (1,000,000 x 80 x 9125 x RfDa) ELCRi = ([EPCs / PEF] x 4 x 0.042 x 225 x 25 x IUR) / (28470) HQi = ([EPCs / PEF] x 4 x 0.042 x 225 x 25) / (9125 x RfC)

Appendix G, Table G-3 (RME)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Adolescent Trespasser at Former CLEAR Plant

Background - Shallow Soil (0 to 0.5 ft bgs) **Baseline Human Health Risk Assessment**

Sierrita Mine

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

				Rou	CANO te-Specific	CER RISK Risk		Percent	Rou	NONCAN te-Specific	CER HAZARD Hazard		Percent
Constituent	Cancer Group [a]	EPCs (mg/kg)	PEF [b] (m³/kg)	Oral	Dermal	Inhalation	Total ELCR	Total ELCR	Oral	Dermal	Inhalation	Total Hazard	Total HI
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics													
Arsenic	Α	2.27E+00	1.40E+09 P	2.8E-08	1.3E-08	5.3E-12	4.1E-08	100%	4.9E-04	2.3E-04	6.4E-07	7.2E-04	42%
Copper	D	2.45E+02	1.40E+09 P	NA	NA	NA	_		9.9E-04	_	NA	9.9E-04	58%
Lead	B2	6.01E+00	1.40E+09 P	NA	NA	NA	_		NA	NA	NA	_	
				3E-08	1E-08	5E-12			0.001	0.0002	0.0000006		
Total						Total ELCR	4E-08]			Total HI	0.002	
					Group B Group C	Total ELCR Total ELCR Total ELCR Total ELCR	4E-08 - - -						

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

ELCRd: excess lifetime cancer risk, dermal pathway. -: not applicable. ELCRi: excess lifetime cancer risk, inhalation pathway. %: percent. ABSd: dermal absorption factor. ELCRo: excess lifetime cancer risk, oral pathway. EPCs: exposure point concentration in soil/sediment. CSFa: dermal cancer slope factor.

CSFo: oral cancer slope factor. ft bas: feet below around surface.

ELCR: excess lifetime cancer risk. HI: hazard index.

HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway. HQo: hazard quotient, oral pathway.

IUR: inhalation unit risk.

m³/kg: cubic meter(s) per kilogram. mg/kg: milligram(s) per kilogram.

NA: not available or not applicable.

RBA: Relative Bioavailability. RfC: reference concentration.

RfDa: dermal reference dose

RfDo: oral reference dose.

RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

ELCRo = (EPCs x 1 x 50 x 52 x 10 x RBA x CSFo) / (1,000,000 x 44 x 28470) $HQo = (EPCs \times 1 \times 50 \times 52 \times 10 \times RBA) / (1,000,000 \times 44 \times 3650 \times RfDo)$ ELCRd = (EPCs x 4400 x 0.07 x ABSd x 52 x 10 x CSFa)/(1,000,000 x 44 x 28470) HQd = (EPCs x 4400 x 0.07 x ABSd x 52 x 10)/(1,000,000 x 44 x 3650 x RfDa) ELCRi = $([EPCs / PEF] \times 1 \times 0.042 \times 52 \times 10 \times IUR) / (28470)$ $HQi = ([EPCs / PEF] \times 1 \times 0.042 \times 52 \times 10) / (3650 \times RfC)$

Appendix G, Table G-4 (RME)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Outdoor Commercial/Industrial Worker at Former CLEAR Plant

Background - Shallow and Deep Soil (0 to 15 ft bgs)

Baseline Human Health Risk Assessment

Sierrita Mine

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

				Roi	CANC ute-Specific	CER RISK Risk		Percent	Rout	NONCAN e-Specific H	CER HAZARD		Percent
	Cancer Group [a]	EPCs (mg/kg)	PEF [b] (m³/kg)	Oral	Dermal	Inhalation	Total ELCR	Total ELCR	Oral	Dermal	Inhalation	Total Hazard	Total HI
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics													
Arsenic	Α	1.69E+00	1.40E+09 P	2.5E-07	1.7E-07	3.4E-10	4.2E-07	100%	1.7E-03	1.2E-03	1.7E-05	2.9E-03	46%
Copper	D	1.81E+02	1.40E+09 P	NA	NA	NA	_		3.5E-03	_	NA	3.5E-03	54%
Lead	B2	4.50E+00	1.40E+09 P	NA	NA	NA	_		NA	NA	NA	_	
				3E-07	2E-07	3E-10			0.005	0.001	0.00002		
Total						Total ELCR	4E-07]			Total HI	0.006	
					•	A Total ELCR	4E-07						
					•	B Total ELCR							
						C Total ELCR D Total ELCR		1					
					Group	D TOTAL ELCR	_	J					

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

-: not applicable. ELCRd: excess lifetime cancer risk, dermal pathway. %: percent. ELCRi: excess lifetime cancer risk, inhalation pathway. ABSd: dermal absorption factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFa: dermal cancer slope factor. EPCs: exposure point concentration in soil/sediment.

CSFo: oral cancer slope factor. ft bgs: feet below ground surface.

ELCR: excess lifetime cancer risk. HI: hazard index.

HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway. HQo: hazard quotient, oral pathway. IUR: inhalation unit risk.

m³/kg: cubic meter(s) per kilogram.

mg/kg: milligram(s) per kilogram.

NA: not available or not applicable. RBA: Relative Bioavailability. RfC: reference concentration. RfDa: dermal reference dose

RfDo: oral reference dose.

RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

ELCRo = (EPCs x 1 x 100 x 225 x 25 x RBA x CSFo)/(1,000,000 x 80 x 28470) ELCRd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25 x CSFa) / (1,000,000 x 80 x 28470) ELCRi = ([EPCs / PEF] x 8 x 0.042 x 225 x 25 x IUR) / (28470)

 $HQo = (EPCs \times 1 \times 100 \times 225 \times 25 \times RBA) / (1,000,000 \times 80 \times 9125 \times RfDo)$ HQd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25) / (1,000,000 x 80 x 9125 x RfDa)

HQi = ([EPCs / PEF] x 8 x 0.042 x 225 x 25) / (9125 x RfC)

Appendix G, Table G-5 (Site-Specific Evaluation)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Outdoor Commercial/Industrial Worker at Former CLEAR Plant

Background - Shallow and Deep Soil (0 to 15 ft bgs)

Baseline Human Health Risk Assessment

Sierrita Mine

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

				Pour	CANC te-Specific	CER RISK] Percent	Pout	NONCAN e-Specific	CER HAZARD] Boroont
	Cancer	EPCs	PEF [b]	Kou	te-Specific	KISK	Total	Total	Koule	e-Specific	пагаги	Total	Percent Total
Constituent	Group [a]	(mg/kg)	(m³/kg)	Oral	Dermal	Inhalation	ELCR	ELCR	Oral	Dermal	Inhalation	Hazard	HI
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics													
Arsenic	Α	1.69E+00	1.40E+09 P	2.5E-07	1.7E-07	1.7E-10	4.2E-07	100%	1.7E-03	1.2E-03	8.3E-06	2.9E-03	46%
Copper	D	1.81E+02	1.40E+09 P	NA	NA	NA	_		3.5E-03	_	NA	3.5E-03	54%
Lead	B2	4.50E+00	1.40E+09 P	NA	NA	NA	-		NA	NA	NA	-	
				3E-07	2E-07	2E-10			0.005	0.001	0.000008		
Total						Total ELCR	4E-07]			Total HI	0.006]
					Group A	Total ELCR	4E-07	1					
					•	Total ELCR	_	1					
					Group C	Total ELCR	_]					
İ					Group D	Total ELCR	_]					

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

-: not applicable.

%: percent.

ABSd: dermal absorption factor.

ELCRd: excess lifetime cancer risk, dermal pathway.

ELCRi: excess lifetime cancer risk, inhalation pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

ELCRo: excess lifetime cancer risk, dermal pathway.

CSFo: oral cancer slope factor. ft bgs: feet below ground surface.

ELCR: excess lifetime cancer risk. HI: hazard index.

HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway. HQo: hazard quotient, oral pathway.

IUR: inhalation unit risk.

m³/kg: cubic meter(s) per kilogram. mg/kg: milligram(s) per kilogram. NA: not available or not applicable. RBA: Relative Bioavailability. RfC: reference concentration. RfDa: dermal reference dose.

RfDo: oral reference dose.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

Appendix G, Table G-6 (RME)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Adolescent Trespasser at Former CLEAR Plant

Background - Shallow and Deep Soil (0 to 15 ft bgs)

Baseline Human Health Risk Assessment

Sierrita Mine

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

				_		CER RISK] _			NCER HAZARD	l] _
	Cancer	EPCs	PEF [b]	Rou	te-Specific	Risk	Total	Percent Total	Rout	te-Specific	Hazard	Total	Percent Total
Constituent	Group [a]	(mg/kg)	(m³/kg)	Oral	Dermal	Inhalation	ELCR	ELCR	Oral	Dermal	Inhalation	Hazard	HI
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics													
Arsenic	Α	1.69E+00	1.40E+09 P	2.1E-08	9.7E-09	4.0E-12	3.1E-08	100%	3.6E-04	1.7E-04	4.8E-07	5.3E-04	42%
Copper	D	1.81E+02	1.40E+09 P	NA	NA	NA	_		7.3E-04	_	NA	7.3E-04	58%
Lead	B2	4.50E+00	1.40E+09 P	NA	NA	NA	_		NA	NA	NA	_	
				2E-08	1E-08	4E-12			0.001	0.0002	0.0000005		
Total						Total ELCR	3E-08]			Total HI	0.001]
					Group A	Total ELCR	3E-08	1					
					•	Total ELCR	_	1					
					Group C	Total ELCR	_						
1					Group D	Total ELCR	_]					

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

–: not applicable.	ELCRd: excess lifetime cancer risk, dermal pathway.
%: percent.	ELCRi: excess lifetime cancer risk, inhalation pathway.
ABSd: dermal absorption factor.	ELCRo: excess lifetime cancer risk, oral pathway.
CSFa: dermal cancer slope factor.	EPCs: exposure point concentration in soil/sediment.
CSFo: oral cancer slope factor.	ft bgs: feet below ground surface.
ELCR: excess lifetime cancer risk.	HI: hazard index.

HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway. HQo: hazard quotient, oral pathway. IUR: inhalation unit risk. m³/kg: cubic meter(s) per kilogram. mg/kg: milligram(s) per kilogram.

ent, inhalation pathway.
ent, oral pathway.
ent, oral pathway.
t risk.

r(s) per kilogram.

RBA: Relative Bioavailability.
RfC: reference concentration.
RfDa: dermal reference dose.
RfDo: oral reference dose.

RME: reasonable maximum exposure.

NA: not available or not applicable.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations

Appendix G, Table G-7 (RME)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Construction Worker at Former CLEAR Plant

Background - Shallow and Deep Soil (0 to 15 ft bgs)

Baseline Human Health Risk Assessment

Sierrita Mine

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

					CANC	CER RISK				NONCAN	CER HAZARD		
				Roi	ute-Specific	Risk		Percent	Rout	te-Specific F	lazard		Percent
Constituent	Cancer Group [a]	EPCs (mg/kg)	PEF [b] (m³/kg)	Oral	Dermal	Inhalation	Total ELCR	Total ELCR	Oral	Dermal	Inhalation	Total Hazard	Total HI
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics													
Arsenic	Α	1.69E+00	1.40E+09 P	3.7E-08	1.5E-08	1.5E-11	5.2E-08	100%	6.4E-03	2.7E-03	1.8E-05	9.0E-03	41%
Copper	D	1.81E+02	1.40E+09 P	NA	NA	NA	_		1.3E-02	_	NA	1.3E-02	59%
Lead	B2	4.50E+00	1.40E+09 P	NA	NA	NA	-		NA	NA	NA	-	
				4E-08	2E-08	2E-11			0.02	0.003	0.00002		
Total						Total ELCR	5E-08]			Total HI	0.02]
					Group	A Total ELCR	5E-08	1					
					Group	B Total ELCR	_						
						C Total ELCR	_						
					Group	D Total ELCR	_]					

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

-: not applicable.

%: percent.

ABSd: dermal absorption factor.

CSFa: dermal cancer slope factor.

CSFo: oral cancer slope factor.

ELCRd: excess lifetime cancer risk, dermal pathway.

ELCRi: excess lifetime cancer risk, oral pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

EPCs: exposure point concentration in soil/sediment.

ft bgs: feet below ground surface.

ELCR: excess lifetime cancer risk. HI: hazard index.

HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway. HQo: hazard quotient, oral pathway.

IUR: inhalation unit risk. m³/kg: cubic meter(s) per kilogram.

mg/kg: milligram(s) per kilogram.

NA: not available or not applicable. RBA: Relative Bioavailability. RfC: reference concentration.

RfDa: dermal reference dose. RfDo: oral reference dose.

RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

ELCRo = (EPCs x 1 x 330 x 250 x 1 x RBA x CSFo) / (1,000,000 x 80 x 28470) ELCRd = (EPCs x 6125 x 0.30 x ABSd x 250 x 1 x CSFa) / (1,000,000 x 80 x 28470) ELCRi = ([EPCs / PEF] x 8 x 0.042 x 250 x 1 x IUR) / (28470) HQo = (EPCs x 1 x 330 x 250 x 1 x RBA) / (1,000,000 x 80 x 365 x RfDo) HQd = (EPCs x 6125 x 0.30 x ABSd x 250 x 1) / (1,000,000 x 80 x 365 x RfDa) HQi = ([EPCs / PEF] x 8 x 0.042 x 250 x 1) / (365 x RfC)

Appendix G, Table G-8 (RME)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Current/Future Outdoor Commercial/Industrial Worker at Esperanza Mill

Background - Shallow Soil (0 to 0.5 ft bgs)

Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita

Sierrita Mine, Green Valley, Arizona

				Rou	CANC ite-Specific	ER RISK Risk		Percent	Rout	NON-CAN e-Specific H	CER HAZARD lazard		Percent
Constituent	Cancer Group [a]	EPCs (mg/kg)	PEF [b] (m³/kg)	Oral	Dermal	Inhalation	Total ELCR	Total ELCR	Oral	Dermal	Inhalation	Total Hazard	Total HI
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics Arsenic Molybdenum	A NA	2.27E+00 4.75E+01	1.40E+09 P 1.40E+09 P	3.4E-07 NA	2.3E-07 NA	4.6E-10 NA	5.7E-07 -	100%	2.3E-03 7.3E-03	1.6E-03 -	2.2E-05 NA	4.0E-03 7.3E-03	35% 65%
Total				3E-07	2E-07	5E-10 Total ELCR	6E-07]	0.01	0.002	0.00002 Total HI	0.01	
					Group (Group (A Total ELCR B Total ELCR C Total ELCR D Total ELCR	6E-07 - - -						

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

-: not applicable. ELCRd: excess lifetime cancer risk, dermal pathway. %: percent. ELCRi: excess lifetime cancer risk, inhalation pathway. ABSd: dermal absorption factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFa: dermal cancer slope factor. EPC: exposure point concentration in soil/sediment.

CSFo: oral cancer slope factor. ft bgs: feet below ground surface. ELCR: excess lifetime cancer risk. HI: hazard index.

HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway. HQo: hazard quotient, oral pathway. IUR: inhalation unit risk.

m³/kg: cubic meter(s) per kilogram.

mg/kg: milligram(s) per kilogram.

NA: not available or not applicable. RBA: relative bioavailability. RfC: reference concentration. RfDa: dermal reference dose.

RfDo: oral reference dose.

RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

ELCRo = (EPCs x 1 x 100 x 225 x 25 x RBA x CSFo) / (1,000,000 x 80 x 28470) $HQo = (EPCs \times 1 \times 100 \times 225 \times 25 \times RBA) / (1,000,000 \times 80 \times 9125 \times RfDo)$ ELCRd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25 x CSFa)/(1,000,000 x 80 x 28470) $HQd = (EPCs \times 6125 \times 0.15 \times ABSd \times 225 \times 25) / (1,000,000 \times 80 \times 9125 \times RfDa)$ ELCRi = ([EPCs / PEF] x 8 x 0.042 x 225 x 25 x IUR) / (28470) HQi = ([EPCs / PEF] x 8 x 0.042 x 225 x 25) / (9125 x RfC)

Appendix G, Table G-9 (Site-Specific Evaluation)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Current/Future Outdoor Commercial/Industrial Worker at Esperanza Mill

Background - Shallow Soil (0 to 0.5 ft bgs) **Baseline Human Health Risk Assessment**

Freeport-McMoRan Sierrita

Sierrita Mine, Green Valley, Arizona

					CANO	CER RISK]		NON-CAN	CER HAZARI)	l
	_			Rou	te-Specific	Risk		Percent	Route	e-Specific	Hazard		Percent
Constituent	Cancer Group [a]	EPCs (mg/kg)	PEF [b] (m³/kg)	Oral	Dermal	Inhalation	Total ELCR	Total ELCR	Oral	Dermal	Inhalation	Total Hazard	Total HI
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics Arsenic Molybdenum	A NA	2.27E+00 4.75E+01	1.40E+09 P 1.40E+09 P	3.4E-07 NA	2.3E-07 NA	2.3E-10 NA	5.7E-07 –	100%	2.3E-03 7.3E-03	1.6E-03 –	1.1E-05 NA	3.9E-03 7.3E-03	35% 65%
				3E-07	2E-07	2E-10			0.01	0.002	0.00001		
Total						Total ELCR	6E-07]			Total HI	0.01	l
					Group B Group C	Total ELCR Total ELCR Total ELCR Total ELCR	6E-07 - - -						

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

-: not applicable. ELCRd: excess lifetime cancer risk, dermal pathway. %: percent. ELCRi: excess lifetime cancer risk, inhalation pathway. ABSd: dermal absorption factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFa: dermal cancer slope factor. EPC: exposure point concentration in soil/sediment.

CSFo: oral cancer slope factor. ft bgs: feet below ground surface.

ELCR: excess lifetime cancer risk. HI: hazard index.

HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway. HQo: hazard quotient, oral pathway. IUR: inhalation unit risk.

m³/kg: cubic meter(s) per kilogram. mg/kg: milligram(s) per kilogram.

NA: not available or not applicable. RBA: relative bioavailability. RfC: reference concentration. RfDa: dermal reference dose. RfDo: oral reference dose.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

ELCRo = (EPCs x 1 x 100 x 225 x 25 x RBA x CSFo) / (1,000,000 x 80 x 28470) HQo = (EPCs x 1 x 100 x 225 x 25 x RBA) / (1,000,000 x 80 x 9125 x RfDo) ELCRd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25 x CSFa) / (1,000,000 x 80 x 28470) HQd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25) / (1,000,000 x 80 x 9125 x RfDa) ELCRi = ([EPCs / PEF] x 4 x 0.042 x 225 x 25 x IUR) / (28470) HQi = ([EPCs / PEF] x 4 x 0.042 x 225 x 25) / (9125 x RfC)

Appendix G, Table G-10 (RME)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Adolescent Trespasser at Esperanza Mill

Background - Shallow Soil (0 to 0.5 ft bgs) **Baseline Human Health Risk Assessment**

Freeport-McMoRan Sierrita

Sierrita Mine, Green Valley, Arizona

						CER RISK					ICER HAZARD		
				Rou	te-Specific	Risk		Percent	Rout	e-Specific	Hazard		Percent
0	Cancer	EPCs	PEF [b]	01	D 1	L. b. d. C.	Total	Total	01	B1	L.b. L.C.	Total	Total
Constituent	Group [a]	(mg/kg)	(m³/kg)	Oral	Dermal	Inhalation	ELCR	ELCR	Oral	Dermal	Inhalation	Hazard	н
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics													
Arsenic	Α	2.27E+00	1.40E+09 P	2.8E-08	1.3E-08	5.3E-12	4.1E-08	100%	4.9E-04	2.3E-04	6.4E-07	7.2E-04	32%
Molybdenum	NA	4.75E+01	1.40E+09 P	NA	NA	NA	-		1.5E-03	_	NA	1.5E-03	68%
				3E-08	1E-08	5E-12			0.002	0.0002	0.0000006		
Total						Total ELCR	4E-08]			Total HI	0.002	
					Group A	Total ELCR	4E-08						
					•	Total ELCR	_						
						Total ELCR							
					Group D	Total ELCR	_						

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

ELCRd: excess lifetime cancer risk, dermal pathway. -: not applicable. %: percent. ELCRi: excess lifetime cancer risk, inhalation pathway. ABSd: dermal absorption factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFa: dermal cancer slope factor. EPC: exposure point concentration in soil/sediment.

CSFo: oral cancer slope factor. ft bgs: feet below ground surface.

ELCR: excess lifetime cancer risk. HI: hazard index

HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway.

HQo: hazard quotient, oral pathway.

IUR: inhalation unit risk.

m³/kg: cubic meter(s) per kilogram. mg/kg: milligram(s) per kilogram.

NA: not available or not applicable. RBA: relative bioavailability.

RfC: reference concentration. RfDa: dermal reference dose.

RfDo: oral reference dose.

RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

ELCRo = (EPCs x 1 x 50 x 52 x 10 x RBA x CSFo) / (1,000,000 x 44 x 28470) ELCRd = (EPCs x 4400 x 0.07 x ABSd x 52 x 10 x CSFa)/(1.000.000 x 44 x 28470) ELCRi = ([EPCs / PEF] x 1 x 0.042 x 52 x 10 x IUR) / (28470)

 $HQo = (EPCs \times 1 \times 50 \times 52 \times 10 \times RBA) / (1,000,000 \times 44 \times 3650 \times RfDo)$ $HQd = (EPCs \times 4400 \times 0.07 \times ABSd \times 52 \times 10) / (1,000,000 \times 44 \times 3650 \times RfDa)$ $HQi = ([EPCs / PEF] \times 1 \times 0.042 \times 52 \times 10) / (3650 \times RfC)$

Appendix G, Table G-11 (RME)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Outdoor Commercial/Industrial Worker at Esperanza Mill

Background - Shallow and Deep Soil (0 to 15 ft bgs)

Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita

Sierrita Mine, Green Valley, Arizona

						ER RISK					ER HAZARD		
				Rou	ute-Specific	Risk		Percent	Route	e-Specific F	lazard		Percent
Constituent	Cancer Group [a]	EPCs (mg/kg)	PEF [b] (m³/kg)	Oral	Dermal	Inhalation	Total ELCR	Total ELCR	Oral	Dermal	Inhalation	Total Hazard	Total HI
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics	Δ.	4.005.00	4.40E:00 B	0.55.07	4 75 07	0.45.40	4.05.07	4000/	4.75.00	4.05.00	4.75.05	0.05.00	400/
Arsenic Lead	A B2	1.69E+00 4.50E+00	1.40E+09 P 1.40E+09 P	2.5E-07 NA	1.7E-07 NA	3.4E-10 NA	4.2E-07 -	100%	1.7E-03 NA	1.2E-03 NA	1.7E-05 NA	2.9E-03 -	49%
Molybdenum	NA	2.00E+01	1.40E+09 P	NA	NA	NA	-		3.1E-03	_	NA	3.1E-03	51%
				3E-07	2E-07	3E-10			0.005	0.001	0.00002		
Total						Total ELCR	4E-07]			Total HI	0.006	
					•	A Total ELCR	4E-07]					
						3 Total ELCR	_	ļ					
					•	C Total ELCR D Total ELCR]					

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

-: not applicable.

%: percent.

ABSd: dermal absorption factor.

CSFa: dermal cancer slope factor.

ELCRd: excess lifetime cancer risk, dermal pathway.

ELCRi: excess lifetime cancer risk, inhalation pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

ELCRo: excess lifetime cancer risk, dermal pathway.

ELCRi: excess lifetime cancer risk, dermal pathway.

ELCRi: excess lifetime cancer risk, dermal pathway.

ELCRi: excess lifetime cancer risk, dermal pathway.

CSFo: oral cancer slope factor. ft bgs: feet below ground surface.

ELCR: excess lifetime cancer risk. HI: hazard index.

HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway. HQo: hazard quotient, oral pathway.

IUR: inhalation unit risk.

m³/kg: cubic meter(s) per kilogram.

mg/kg: milligram(s) per kilogram.

NA: not available or not applicable. RBA: relative bioavailability.

RFA: relative bloavallability.

RfC: reference concentration.

RfDa: dermal reference dose.

RfDo: oral reference dose.

RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

ELCRo = (EPCs x 1 x 100 x 225 x 25 x RBA x CSFo) / (1,000,000 x 80 x 28470) ELCRd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25 x CSFa) / (1,000,000 x 80 x 28470) ELCRi = ([EPCs / PEF] x 8 x 0.042 x 225 x 25 x IUR) / (28470) $\begin{aligned} & \text{HQo} = (\text{ EPCs x 1 x 100 x 225 x 25 x RBA }) \, / \, (1,000,000 \times 80 \times 9125 \times \text{RfDo }) \\ & \text{HQd} = (\text{ EPCs x 6125 x 0.15 x ABSd x 225 x 25 }) \, / \, (1,000,000 \times 80 \times 9125 \times \text{RfDa }) \end{aligned}$

HQi = ([EPCs / PEF] x 8 x 0.042 x 225 x 25) / (9125 x RfC)

Appendix G, Table G-12 (Site-Specific Evaluation)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Outdoor Commercial/Industrial Worker at Esperanza Mill

Background - Shallow and Deep Soil (0 to 15 ft bgs) **Baseline Human Health Risk Assessment**

Freeport-McMoRan Sierrita

Sierrita Mine, Green Valley, Arizona

				Rou	CANO te-Specific	CER RISK		Percent	Route	NONCAN Specific I	CER HAZARD)	Percent
Constituent	Cancer Group [a]	EPCs (mg/kg)	PEF [b] (m³/kg)	Oral	Dermal	Inhalation	Total ELCR	Total ELCR	Oral	Dermal	Inhalation	Total Hazard	Total HI
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics Arsenic Lead Molybdenum	A B2 NA	1.69E+00 4.50E+00 2.00E+01	1.40E+09 P 1.40E+09 P 1.40E+09 P	2.5E-07 NA NA	1.7E-07 NA NA	1.7E-10 NA NA	4.2E-07 - -	100%	1.7E-03 NA 3.1E-03	1.2E-03 NA –	8.3E-06 NA NA	2.9E-03 - 3.1E-03	49% 51%
				3E-07	2E-07	2E-10			0.005	0.001	0.000008		
Total						Total ELCR	4E-07] 1			Total HI	0.006]
					Group B Group C	Total ELCR Total ELCR Total ELCR	- - -						

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

-: not applicable. ELCRd: excess lifetime cancer risk, dermal pathway. %: percent. ELCRi: excess lifetime cancer risk, inhalation pathway. ABSd: dermal absorption factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFa: dermal cancer slope factor. EPC: exposure point concentration in soil/sediment.

CSFo: oral cancer slope factor. ft bgs: feet below ground surface.

ELCR: excess lifetime cancer risk. HI: hazard index. HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway. HQo: hazard quotient, oral pathway.

IUR: inhalation unit risk.

m³/kg: cubic meter(s) per kilogram.

mg/kg: milligram(s) per kilogram.

NA: not available or not applicable. RBA: relative bioavailability.

RfC: reference concentration. RfDa: dermal reference dose. RfDo: oral reference dose.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

ELCRo = (EPCs x 1 x 100 x 225 x 25 x RBA x CSFo) / (1,000,000 x 80 x 28470) ELCRd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25 x CSFa) / (1,000,000 x 80 x 28470) ELCRi = ([EPCs / PEF] x 4 x 0.042 x 225 x 25 x IUR) / (28470)

HQo = (EPCs x 1 x 100 x 225 x 25 x RBA) / (1,000,000 x 80 x 9125 x RfDo) HQd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25) / (1,000,000 x 80 x 9125 x RfDa)

HQi = ([EPCs / PEF] x 4 x 0.042 x 225 x 25) / (9125 x RfC)

Appendix G, Table G-13 (RME)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Adolescent Trespasser at Esperanza Mill

Background - Shallow and Deep Soil (0 to 15 ft bgs)

Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita

Sierrita Mine, Green Valley, Arizona

				Dec	CANC	ER RISK		 	Dout		CER HAZARD]
	Cancer	EPCs	PEF [b]	ROL	ле-эреспіс	RISK	Total	Percent Total	Rout	e-Specific F	iazaru	Total	Percent Total
Constituent	Group [a]	(mg/kg)	(m³/kg)	Oral	Dermal	Inhalation	ELCR	ELCR	Oral	Dermal	Inhalation	Hazard	HI
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics													
Arsenic	A B2	1.69E+00	1.40E+09 P	2.1E-08 NA	9.7E-09	4.0E-12	3.1E-08	100%	3.6E-04	1.7E-04	4.8E-07	5.3E-04	53%
Lead Molybdenum	NA	4.50E+00 2.00E+01	1.40E+09 P 1.40E+09 P	NA NA	NA NA	NA NA	_		NA 6.5E-04	NA –	NA NA	6.5E-04	65%
,													
				2E-08	1E-08	4E-12			0.001	0.0002	0.0000005		
Total						Total ELCR	3E-08				Total HI	0.001]
					Group	A Total ELCR	3E-08						
					•	B Total ELCR	_						
					•	C Total ELCR D Total ELCR	_						
					Group	D TOTAL ELCK							

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

-: not applicable.

ELCRd: excess lifetime cancer risk, dermal pathway.

ELCRi: excess lifetime cancer risk, inhalation pathway.

ELCRi: excess lifetime cancer risk, inhalation pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

ELCRo: exposure point concentration in soil/sediment.

ELCR: excess lifetime cancer risk.

ELCRo: exposure point concentration in soil/sediment.

ELCR: excess lifetime cancer risk.

ELCR: excess lifetime cancer risk, dermal pathway.

HQc: hazard quotien risk application in soil/sediment.

ELCR: exposure point concentration in soil/sediment.

ELCR: excess lifetime cancer risk.

HI: hazard index.

HI: hazard index.

HQd: hazard quotient, dermal pathway.

HQi: hazard quotient, inhalation pathway.

HQo: hazard quotient, oral pathway.

HQo: hazard quotient, oral pathway.

IUR: inhalation unit risk.

m³/kg: cubic meter(s) per kilogram.

NA: not available or not applicable.

RBA: relative bioavailability.

RfC: reference concentration.

RfDa: dermal reference dose.

mg/kg: milligram(s) per kilogram. RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

ELCRo = (EPCs x 1 x 50 x 52 x 10 x RBA x CSFo) / (1,000,000 x 44 x 28470) ELCRd = (EPCs x 4400 x 0.07 x ABSd x 52 x 10 x CSFa) / (1,000,000 x 44 x 28470) ELCRi = ([EPCs / PEF] x 1 x 0.042 x 52 x 10 x IUR) / (28470) HQo = (EPCs x 1 x 50 x 52 x 10 x RBA) / (1,000,000 x 44 x 3650 x RfDo) HQd = (EPCs x 4400 x 0.07 x ABSd x 52 x 10) / (1,000,000 x 44 x 3650 x RfDa) HQi = ([EPCs / PEF] x 1 x 0.042 x 52 x 10) / (3650 x RfC)

Appendix G, Table G-14 (RME)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Construction Worker at Esperanza Mill

Background - Shallow and Deep Soil (0 to 15 ft bgs)

Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita

Sierrita Mine, Green Valley, Arizona

						ER RISK					ER HAZARD]
				Rou	ute-Specific	Risk		Percent	Rout	e-Specific F	lazard		Percent
Constituent	Cancer Group [a]	EPCs (mg/kg)	PEF [b] (m³/kg)	Oral	Dermal	Inhalation	Total ELCR	Total ELCR	Oral	Dermal	Inhalation	Total Hazard	Total HI
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics													
Arsenic	Α	1.69E+00	1.40E+09 P	3.7E-08	1.5E-08	1.5E-11	5.2E-08	100%	6.4E-03	2.7E-03	1.8E-05	9.0E-03	45%
Lead	B2	4.50E+00	1.40E+09 P	NA	NA	NA	_		NA	NA	NA	_	
Molybdenum	NA	2.00E+01	1.40E+09 P	NA	NA	NA	_		1.1E-02	-	NA	1.1E-02	55%
				4E-08	2E-08	2E-11			0.02	0.003	0.00002		
Total						Total ELCR	5E-08]			Total HI	0.02]
					Group	A Total ELCR	5E-08]					
						B Total ELCR	_						
					Group	C Total ELCR	_						
					Group	D Total ELCR	_	J					

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

ELCRd: excess lifetime cancer risk, dermal pathway. -: not applicable. %: percent. ELCRi: excess lifetime cancer risk, inhalation pathway. ABSd: dermal absorption factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFa: dermal cancer slope factor. EPC: exposure point concentration in soil/sediment.

CSFo: oral cancer slope factor. ft bas: feet below ground surface.

ELCR: excess lifetime cancer risk. HI: hazard index. HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway. HQo: hazard quotient, oral pathway. IUR: inhalation unit risk.

m³/kg: cubic meter(s) per kilogram. mg/kg: milligram(s) per kilogram.

NA: not available or not applicable.

RBA: relative bioavailability. RfC: reference concentration. RfDa: dermal reference dose.

RfDo: oral reference dose.

RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

ELCRo = (EPCs x 1 x 330 x 250 x 1 x RBA x CSFo) / (1,000,000 x 80 x 28470) ELCRd = (EPCs x 6125 x 0.30 x ABSd x 250 x 1 x CSFa)/(1,000,000 x 80 x 28470) ELCRi = ([EPCs / PEF] x 8 x 0.042 x 250 x 1 x IUR) / (28470)

 $HQo = (EPCs \times 1 \times 330 \times 250 \times 1 \times RBA) / (1,000,000 \times 80 \times 365 \times RfDo)$ $HQd = (EPCs \times 6125 \times 0.30 \times ABSd \times 250 \times 1) / (1,000,000 \times 80 \times 365 \times RfDa)$ HQi = ([EPCs / PEF] x 8 x 0.042 x 250 x 1) / (365 x RfC)

Appendix G, Table G-15

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Child/Adult Resident at Former CLEAR Plant

Background - Shallow and Deep Soil (0 to 15 ft bgs) **Baseline Human Health Risk Assessment**

Freeport-McMoRan Sierrita
Sierrita Mine, Green Valley, Arizona

				A	ge-Specifi	CANCE c Risk for Ca		Constitue	nts	Rou	TOTAL of te-Specific	CANCER RISI Risk	Κ Total	Percent Total	Route	NONCANG Specific I	CER HAZARD Hazard	Total	Percent Total		NONCAN -Specific	CER HAZARI Hazard) Total	Percent Total
	Cancer	EPCs	PEF [b]	1 t	hrough 6 y	ears		27 years			33 years				1 t	nrough 6 y	ears	Hazard	HI		27 years		Hazard	HI
Constituent	Group [a]	(mg/kg)	(m³/kg)	Oral	Dermal	Inhalation	Oral	Dermal	Inhalation	Oral	Dermal	Inhalation	ELCR	ELCR	Oral	Dermal	Inhalation	(Child)	(Child)	Oral	Dermal	Inhalation	(Adult)	(Adult)
				ELCRo	ELCRd	ELCRi	ELCRo	ELCRd	ELCRi	ELCRo	ELCRd	ELCRi			HQo	HQd	HQi			HQo	HQd	HQi		
Inorganics																								
Antimony	NA	1.98E-01	1.40E+09 P	NA	NA	NA	NA	NA	NA	_	_	_	_		5.0E-03	_	NA	5.0E-03	4%	4.9E-04	-	NA	4.9E-04	
Arsenic	A	1.69E+00	1.40E+09 P	8.0E-07	1.3E-07		4.2E-07	2.9E-07	1.7E-09	1.2E-06	4.2E-07	2.1E-09	1.6E-06	100%	2.3E-02	3.8E-03	7.7E-05	2.7E-02	23%	2.2E-03	1.5E-03	6.3E-05	3.8E-03	30%
Copper	D	1.81E+02	1.40E+09 P	NA	NA	NA	NA	NA	NA	_	_	_	_		4.6E-02	_	NA	4.6E-02	39%	4.4E-03	-	NA	4.4E-03	35%
Lead	B2	4.50E+00	1.40E+09 P	NA	NA	NA	NA	NA	NA	_	_	_	_		NA	NA	NA	_		NA	NA	NA	_	
Molybdenum	NA	2.00E+01	1.40E+09 P	NA	NA	NA	NA	NA	NA	-	_	-	-		4.1E-02	_	NA	4.1E-02	34%	3.9E-03	-	NA	3.9E-03	31%
				8E-07	1E-07	4E-10	4E-07	3E-07	2E-09	1E-06	4E-07	2E-09			0.1	0.004	0.00008			0.01	0.002	0.00006		
Total												Total ELCR	2E-06]		То	tal Child HI	0.1]		То	tal Adult HI	0.01]
											Group B Group C	Total ELCR Total ELCR Total ELCR Total ELCR	2E-06 - - -			HI (gas HI (r HI (d	HI (skin) (circulatory) trointestinal) neurological) evelopment) HI (kidney) whole body)	0.03 0.2 0.05 0.00008 0.00008 0.04 0.2						

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table F-7.

ELCRd: excess lifetime cancer risk, dermal pathway. -: not applicable. ELCRi: excess lifetime cancer risk, inhalation pathway. %: percent. ABSd: dermal absorption factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFa: dermal cancer slope factor. EPCs: exposure point concentration in soil/sediment.

CSFo: oral cancer slope factor. ft bgs: feet below ground surface. ELCR: excess lifetime cancer risk. HI: hazard index.

HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway. HQo: hazard quotient, oral pathway. IUR: inhalation unit risk.

m³/kg: cubic meter(s) per kilogram. mg/kg: milligram(s) per kilogram.

NA: not available or not applicable. RBA: Relative Bioavailability. RfC: reference concentration. RfDa: dermal reference dose. RfDo: oral reference dose.

Receptor-specific exposure parameters are presented in Table F-7. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Child (1 through 6 years):

ELCRo = (EPCs x 1 x 200 x 350 x 6 x RBA x CSFo) / (1,000,000 x 19 x 28470) ELCRd = (EPCs x 2350 x 0.19 x ABSd x 350 x 6 x CSFa)/(1,000,000 x 19 x 28470)

ELCRi = ([EPCs / PEF] x 24 x 0.042 x 350 x 6 x IUR) / (28470)

Adult (7 through 33 years):

ELCRo = (EPCs x 1 x 100 x 350 x 27 x RBA x CSFo)/(1,000,000 x 80 x 28470) ELCRd = (EPCs x 6125 x 0.15 x ABSd x 350 x 27 x CSFa) / (1,000,000 x 80 x 28470) ELCRi = ([EPCs / PEF] x 24 x 0.042 x 350 x 27 x IUR) / (28470)

Child (1 through 6 years):

HQo = (EPCs x 1 x 200 x 350 x 6 x RBA) / (1,000,000 x 19 x 2190 x RfDo) $HQd = (EPCs \times 2350 \times 0.19 \times ABSd \times 350 \times 6) / (1.000.000 \times 19 \times 2190 \times RfDa)$ $HQi = ([EPCs / PEF] \times 24 \times 0.042 \times 350 \times 6) / (2190 \times RfC)$

Adult (7 through 33 years):

HQo = (EPCs x 1 x 100 x 350 x 27 x RBA) / (1,000,000 x 80 x 12045 x RfDo) HQd = (EPCs x 6125 x 0.15 x ABSd x 350 x 27)/(1,000,000 x 80 x 12045 x RfDa) HQi = ([EPCs / PEF] x 24 x 0.042 x 350 x 27) / (12045 x RfC)

Appendix G, Table G-16

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Child/Adult Resident at Esperanza Mill

Background - Shallow and Deep Soil (0 to 15 ft bgs)

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita

Sierrita Mine, Green Valley, Arizona

					Age-Specifi	CANCE c Risk for Ca	_	Constitue	nts	Rou	TOTAL	CANCER RIS	K Total	Percent Total	Route	NONCAN e-Specific I	CER HAZARD) Total	Percent Total	Route	NONCAN e-Specific	CER HAZARI Hazard) Total	Percent Total
	Cancer	EPCs	PEF [b]		hrough 6 y			27 years			33 years					hrough 6 y		Hazard	HI	-	27 years		Hazard	HI
Constituent	Group [a]	(mg/kg)	(m³/kg)	Oral	Dermal	Inhalation	Oral	Dermal	Inhalation	Oral	Dermal	Inhalation	ELCR	ELCR	Oral	Dermal	Inhalation	(Child)	(Child)	Oral	Dermal	Inhalation	(Adult)	(Adult)
				ELCRo	ELCRd	ELCRi	ELCRo	ELCRd	ELCRi	ELCRo	ELCRd	ELCRi			HQo	HQd	HQi			HQo	HQd	HQi		
Inorganics																								
Antimony	NA	1.98E-01	1.40E+09 P	NA	NA	NA	NA	NA	NA	_	_	_	_		5.0E-03	_	NA	5.0E-03	4%	4.9E-04	_	NA	4.9E-04	4%
Arsenic	Α	1.69E+00	1.40E+09 P	8.0E-07	1.3E-07	3.8E-10	4.2E-07	2.9E-07	1.7E-09	1.2E-06	4.2E-07	2.1E-09	1.6E-06	100%	2.3E-02	3.8E-03	7.7E-05	2.7E-02	21%	2.2E-03	1.5E-03	6.3E-05	3.8E-03	28%
Copper	D	1.81E+02	1.40E+09 P	NA	NA	NA	NA	NA	NA	_	_	_	_		4.6E-02	_	NA	4.6E-02	36%	4.4E-03	-	NA	4.4E-03	33%
Lead		4.50E+00	1.40E+09 P	NA	NA	NA	NA	NA	NA	_	_	_	_		NA	NA	NA	_		NA	NA	NA	_	
Molybdenum		2.00E+01	1.40E+09 P	NA	NA	NA	NA	NA	NA	_	_	_	_		4.1E-02	_	NA	4.1E-02	32%	3.9E-03	_	NA	3.9E-03	29%
Uranium [c]	NA	2.76E+00	1.40E+09 P	NA	NA	NA	NA	NA	NA	-	_	_	_		9.4E-03	-	4.7E-05	9.4E-03	7%	9.0E-04	_	3.9E-05	9.4E-04	7%
				8E-07	1E-07	4E-10	4E-07	3E-07	2E-09	1E-06	4E-07	2E-09			0.1	0.004	0.0001			0.01	0.002	0.0001		
Total												Total ELCR	2E-06]		To	otal Child HI	0.1]		To	tal Adult HI	0.01]
												Total ELCR	2E-06]			relopmental)	0.00008]					
											•	Total ELCR		ļ		HI	(circulatory)	0.2	4					
												Total ELCR	_	ŀ		111 /	HI (skin)	0.03	4					
											Group D	Total ELCR	_	J		ш (г	neurological) HI (kidney)	0.00008	4					
																ш./	whole body)	0.03	4					
																пі (HI (GI)	1	4					
																	HI (GI)		J					

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table F-7.

-: not applicable. ELCRd: excess lifetime cancer risk, dermal pathway. %: percent. ELCRi: excess lifetime cancer risk, inhalation pathway. ABSd: dermal absorption factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFa: dermal cancer slope factor. EPC: exposure point concentration in soil/sediment. CSFo: oral cancer slope factor. ft bgs: feet below ground surface.

ELCR: excess lifetime cancer risk. HI: hazard index. HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway. HQo: hazard quotient, oral pathway. IUR: inhalation unit risk.

m³/kg: cubic meter(s) per kilogram. mg/kg: milligram(s) per kilogram.

NA: not available or not applicable. RBA: relative bioavailability. RfC: reference concentration. RfDa: dermal reference dose.

RfDo: oral reference dose.

Receptor-specific exposure parameters are presented in Table F-7. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

Child (1 through 6 years):

ELCRo = (EPCs x 1 x 200 x 350 x 6 x RBA x CSFo) / (1,000,000 x 19 x 28470) ELCRd = (EPCs x 2350 x 0.19 x ABSd x 350 x 6 x CSFa) / (1,000,000 x 19 x 28470)

ELCRi = ([EPCs / PEF] x 24 x 0.042 x 350 x 6 x IUR) / (28470)

Adult (7 through 33 years):

ELCRo = (EPCs x 1 x 100 x 350 x 27 x RBA x CSFo)/(1,000,000 x 80 x 28470) ELCRd = (EPCs x 6125 x 0.15 x ABSd x 350 x 27 x CSFa) / (1,000,000 x 80 x 28470)

ELCRi = ([EPCs / PEF] x 24 x 0.042 x 350 x 27 x IUR) / (28470)

Child (1 through 6 years):

 $HQo = (EPCs \times 1 \times 200 \times 350 \times 6 \times RBA) / (1,000,000 \times 19 \times 2190 \times RfDo)$ $HQd = (EPCs \times 2350 \times 0.19 \times ABSd \times 350 \times 6) / (1,000,000 \times 19 \times 2190 \times RfDa)$ $HQi = ([EPCs / PEF] \times 24 \times 0.042 \times 350 \times 6) / (2190 \times RfC)$

Adult (7 through 33 years):

 $HQo = (EPCs \times 1 \times 100 \times 350 \times 27 \times RBA) / (1,000,000 \times 80 \times 12045 \times RfDo)$ HQd = (EPCs x 6125 x 0.15 x ABSd x 350 x 27) / (1,000,000 x 80 x 12045 x RfDa) $HQi = ([EPCs / PEF] \times 24 \times 0.042 \times 350 \times 27) / (12045 \times RfC)$

Appendix G, Table G-17 (RME)

Excess Lifetime Cancer Risk Calculations for a Hypothetical Future Outdoor Commercial / Industrial Worker Exposed to Radionuclides at Former CLEAR Plant, Background Shallow Soil (0 to 0.5 ft bgs)

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

EPCs pCi/g) E+00 E+00 E+00 E+00	PEF [a] (m³/kg) 1.40E+09 P	Ingestion ELCRo	oute-Specific ELC Inhalation ELCRi	R External ELCRe	Total ELCR	Total ELCR
E+00 E+00 E+00 E+00 E+00	(m³/kg) 1.40E+09 P	ELCRo			ELCR	ELCR
E+00 E+00 E+00 E+00	1.40E+09 P		ELCRi	ELCRe		
E+00 E+00 E+00						
E+00 E+00 E+00						
E+00 E+00	1 40F : 00 B	4.8E-08	2.9E-09	9.4E-07	9.9E-07	<1%
E+00	1.40⊑+09 P	4.3E-08	3.4E-09	2.0E-09	4.9E-08	<1%
	1.40E+09 P	6.6E-08	4.1E-09	6.6E-09	7.6E-08	<1%
	1.40E+09 P	2.5E-07	3.4E-09	6.5E-05	6.5E-05	61%
E+00	1.40E+09 P	3.5E-07	1.4E-09	8.0E-09	3.6E-07	<1%
E+00	1.40E+09 P	2.5E-12	4.4E-14	1.7E-11	2.0E-11	<1%
E+00	1.40E+09 P	2.7E-08	4.0E-11	7.7E-12	2.7E-08	<1%
E+00	1.40E+09 P	7.9E-07	1.3E-08	3.8E-05	3.9E-05	37%
E+00	1.40E+09 P	7.3E-09	2.1E-09	5.9E-09	1.5E-08	<1%
E+00	1.40E+09 P	5.1E-11	9.5E-13	2.3E-10	2.8E-10	<1%
E+00	1.40E+09 P	9.6E-13	6.7E-15	3.3E-10	3.3E-10	<1%
E+00	1.40E+09 P	3.1E-15	8.3E-17	3.1E-11	3.1E-11	<1%
E+00	1.40E+09 P	NA	NA	5.6E-11	5.6E-11	<1%
E-02	1.40E+09 P	2.6E-09	1.9E-10	2.7E-07	2.7E-07	<1%
E-02	1.40E+09 P	8.0E-09	5.6E-10	6.0E-08	6.9E-08	<1%
E-02	1.40E+09 P	7.2E-09	7.7E-10	6.5E-11	8.0E-09	<1%
E-02	1.40E+09 P	6.1E-16	7.3E-19	1.5E-13	1.5E-13	<1%
E-02	1.40E+09 P	NA	NA	NA	_	
E-02	1.40E+09 P	NA	NA	4.3E-13	4.3E-13	<1%
E-02	1.40E+09 P	3.2E-12	7.7E-13	6.2E-10	6.3E-10	<1%
E-02	1.40E+09 P	1.1E-11	3.9E-13	5.9E-10	6.0E-10	<1%
E-02	1.40E+09 P	5.4E-17	1.2E-18	5.5E-13	5.5E-13	<1%
E-02	1.40E+09 P	NA	NA	6.1E-23	6.1E-23	<1%
E-02	1.40E+09 P	NA	NA	2.1E-14	2.1E-14	<1%
E-02	1.40E+09 P	NA	NA	3.9E-15	3.9E-15	<1%
E-02	1.40E+09 P	NA	NA	1.7E-17	1.7E-17	<1%
		2E-06	3E-08	1E-04		
E	-02 -02	-02 1.40E+09 P -02 1.40E+09 P	-02 1.40E+09 P NA -02 1.40E+09 P NA -02 1.40E+09 P NA	-02 1.40E+09 P NA NA -02 1.40E+09 P NA NA -02 1.40E+09 P NA NA	-02 1.40E+09 P NA NA 2.1E-14 -02 1.40E+09 P NA NA 3.9E-15 -02 1.40E+09 P NA NA 1.7E-17	-02 1.40E+09 P NA NA 2.1E-14 2.1E-14 -02 1.40E+09 P NA NA 3.9E-15 3.9E-15 -02 1.40E+09 P NA NA 1.7E-17 1.7E-17

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

 %: percent.
 ELCRi: excess lifetime cancer risk, inhalation pathway.

 ACF: area correction factor.
 ELCRo: excess lifetime cancer risk, oral pathway.

 CSFe: external cancer slope factor.
 EPC: exposure point concentration in soil/sediment.

CSFi: inhalation cancer slope factor. It bgs: feet below ground surface.
CSFo: oral cancer slope factor. m³/kg: cubic meter(s) per kilogram.
ELCR: excess lifetime cancer risk.
ELCRe: excess lifetime cancer risk, external pathway.
ELCRe: excess lifetime cancer risk, external pathway.

RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1. Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

ELCRo = (EPCs × 100 × 225 × 25 × [1 - exp($-\Lambda$ × 25)] × CSFo) / (1,000 × 25 × Λ) ELCRi = (EPCs × 1,000 × 60 × 8 × 0.042 × 225 × 25 × [1 - exp($-\Lambda$ × 25)] × CSFi) / (1.40E+09 × 25 × Λ) ELCRe = (EPCs × ACF × [(8 × 0.042 × 1) + (0 × 0.042 × 0.4)] × 225 × 25 × [1 - exp($-\Lambda$ × 25)] × CSFe) / (365 × 25 × Λ)

Appendix G, Table G-18 (Site-Specific Evaluation)

Excess Lifetime Cancer Risk Calculations for a Hypothetical Future Outdoor Commercial / Industrial Worker Exposed to Radionuclides at Former CLEAR Plant, Background Shallow Soil (0 to 0.5 ft bgs)

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

		_		CANCE	R RISK		Percent
		_	R	oute-Specific ELC	R	Total	Total
	EPCs	PEF [a]	Ingestion	Inhalation	External	ELCR	ELCR
Constituent	(pCi/g)	(m³/kg)	ELCRo	ELCRi	ELCRe		
Radionuclides							
Jranium-238	1.53E+00	1.40E+09 P	4.8E-08	1.5E-09	4.7E-07	5.2E-07	<1%
Jranium-234	1.51E+00	1.40E+09 P	4.3E-08	1.7E-09	9.8E-10	4.6E-08	<1%
horium-230	1.51E+00	1.40E+09 P	6.6E-08	2.1E-09	3.3E-09	7.1E-08	<1%
Radium-226	1.51E+00	1.40E+09 P	2.5E-07	1.7E-09	3.2E-05	3.3E-05	61%
ead-210	1.51E+00	1.40E+09 P	3.5E-07	6.8E-10	4.0E-09	3.6E-07	<1%
3ismuth-210	1.51E+00	1.40E+09 P	2.5E-12	2.2E-14	8.5E-12	1.1E-11	<1%
Polonium-210	1.51E+00	1.40E+09 P	2.7E-08	2.0E-11	3.8E-12	2.7E-08	<1%
horium-232	1.85E+00	1.40E+09 P	7.9E-07	6.5E-09	1.9E-05	2.0E-05	37%
horium-228	1.85E+00	1.40E+09 P	7.3E-09	1.1E-09	3.0E-09	1.1E-08	<1%
Radium-224	1.85E+00	1.40E+09 P	5.1E-11	4.8E-13	1.2E-10	1.7E-10	<1%
.ead-212	1.85E+00	1.40E+09 P	9.6E-13	3.3E-15	1.7E-10	1.7E-10	<1%
Bismuth-212	1.85E+00	1.40E+09 P	3.1E-15	4.2E-17	1.6E-11	1.6E-11	<1%
hallium-208	1.85E+00	1.40E+09 P	NA	NA	2.8E-11	2.8E-11	<1%
Jranium-235	9.20E-02	1.40E+09 P	2.6E-09	9.3E-11	1.4E-07	1.4E-07	<1%
Protactinium-231	9.20E-02	1.40E+09 P	8.0E-09	2.8E-10	3.0E-08	3.8E-08	<1%
ctinium-227	9.20E-02	1.40E+09 P	7.2E-09	3.8E-10	3.2E-11	7.6E-09	<1%
rancium-223	9.20E-02	1.40E+09 P	6.1E-16	3.7E-19	7.7E-14	7.7E-14	<1%
statine-219	9.20E-02	1.40E+09 P	NA	NA	NA	_	
Bismuth-215	9.20E-02	1.40E+09 P	NA	NA	2.1E-13	2.1E-13	<1%
horium-227	9.20E-02	1.40E+09 P	3.2E-12	3.8E-13	3.1E-10	3.1E-10	<1%
Radium-223	9.20E-02	1.40E+09 P	1.1E-11	1.9E-13	2.9E-10	3.1E-10	<1%
.ead-211	9.20E-02	1.40E+09 P	5.4E-17	5.9E-19	2.7E-13	2.7E-13	<1%
Astatine-215	9.20E-02	1.40E+09 P	NA	NA	3.1E-23	3.1E-23	<1%
Bismuth-211	9.20E-02	1.40E+09 P	NA	NA	1.1E-14	1.1E-14	<1%
hallium-207	9.20E-02	1.40E+09 P	NA	NA	2.0E-15	2.0E-15	<1%
Polonium-211	9.20E-02	1.40E+09 P	NA	NA	8.4E-18	8.4E-18	<1%
			2E-06	2E-08	5E-05		
otal					Total ELCR	5E-05	

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

%: percent.

ACF: area correction factor.

ELCRi: excess lifetime cancer risk, inhalation pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

ELCRo: excess lifetime cancer risk, inhalation pathway.

ELCRo: excess lifetime cancer risk, inhalation pathway.

ELCRo: excess lifetime cancer risk, inhalation pathway.

CSFi: inhalation cancer slope factor. It bgs: feet below ground surface.
CSFo: oral cancer slope factor. m³/kg: cubic meter(s) per kilogram.
ELCR: excess lifetime cancer risk. pCi/g: picoCurie(s) per gram.

ELCRe: excess lifetime cancer risk, external pathway.

Receptor-specific exposure parameters are presented in Table 6-1. Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

ELCRo = (EPCs × 100 × 225 × 25 × [1 - exp($-\Lambda$ × 25)] × CSFo) / (1,000 × 25 × Λ) ELCRi = (EPCs × 1,000 × 60 × 8 × 0.042 × 225 × 25 × [1 - exp($-\Lambda$ × 25)] × CSFi) / (1.40E+09 × 25 × Λ) ELCRe = (EPCs × ACF × [(8 × 0.042 × 1) + (0 × 0.042 × 0.4)] × 225 × 25 × [1 - exp($-\Lambda$ × 25)] × CSFe) / (365 × 25 × Λ)

Appendix G, Table G-19 (RME)

Excess Lifetime Cancer Risk Calculations for a Hypothetical Future Adolescent Trespasser Exposed to Radionuclides at Former CLEAR Plant, Background Shallow Soil (0 to 0.5 ft bgs)

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

		-		CANCE	R RISK		Percent	
		_	R	oute-Specific ELC	R	Total	Total ELCR	
	EPCs	PEF [a]	Ingestion	Inhalation	External	ELCR		
Constituent	(pCi/g)	(m³/kg)	ELCRo	ELCRi	ELCRe			
Radionuclides								
Jranium-238	1.53E+00	1.40E+09 P	2.2E-09	7.7E-12	1.1E-08	1.3E-08	1%	
Jranium-234	1.51E+00	1.40E+09 P	2.0E-09	9.0E-12	2.3E-11	2.0E-09	<1%	
Thorium-230	1.51E+00	1.40E+09 P	3.0E-09	1.1E-11	7.6E-11	3.1E-09	<1%	
Radium-226	1.51E+00	1.40E+09 P	1.2E-08	9.1E-12	7.6E-07	7.7E-07	59%	
_ead-210	1.51E+00	1.40E+09 P	2.0E-08	4.4E-12	1.2E-10	2.0E-08	2%	
Bismuth-210	1.51E+00	1.40E+09 P	2.9E-13	2.9E-16	5.0E-13	7.9E-13	<1%	
Polonium-210	1.51E+00	1.40E+09 P	3.1E-09	2.6E-13	2.2E-13	3.1E-09	<1%	
Thorium-232	1.85E+00	1.40E+09 P	3.6E-08	3.4E-11	4.5E-07	4.8E-07	37%	
Thorium-228	1.85E+00	1.40E+09 P	8.3E-10	1.4E-11	1.7E-10	1.0E-09	<1%	
Radium-224	1.85E+00	1.40E+09 P	5.9E-12	6.3E-15	6.7E-12	1.3E-11	<1%	
_ead-212	1.85E+00	1.40E+09 P	1.1E-13	4.4E-17	9.6E-12	9.7E-12	<1%	
Bismuth-212	1.85E+00	1.40E+09 P	3.6E-16	5.5E-19	9.1E-13	9.1E-13	<1%	
Γhallium-208	1.85E+00	1.40E+09 P	NA	NA	1.6E-12	1.6E-12	<1%	
Jranium-235	9.20E-02	1.40E+09 P	1.2E-10	4.9E-13	3.2E-09	3.3E-09	<1%	
Protactinium-231	9.20E-02	1.40E+09 P	3.7E-10	1.5E-12	7.0E-10	1.1E-09	<1%	
Actinium-227	9.20E-02	1.40E+09 P	4.1E-10	2.5E-12	9.3E-13	4.2E-10	<1%	
Francium-223	9.20E-02	1.40E+09 P	7.0E-17	4.8E-21	4.5E-15	4.5E-15	<1%	
Astatine-219	9.20E-02	1.40E+09 P	NA	NA	NA	_		
Bismuth-215	9.20E-02	1.40E+09 P	NA	NA	1.2E-14	1.2E-14	<1%	
Thorium-227	9.20E-02	1.40E+09 P	3.6E-13	5.1E-15	1.8E-11	1.8E-11	<1%	
Radium-223	9.20E-02	1.40E+09 P	1.3E-12	2.6E-15	1.7E-11	1.9E-11	<1%	
_ead-211	9.20E-02	1.40E+09 P	6.2E-18	7.8E-21	1.6E-14	1.6E-14	<1%	
Astatine-215	9.20E-02	1.40E+09 P	NA	NA	1.8E-24	1.8E-24	<1%	
Bismuth-211	9.20E-02	1.40E+09 P	NA	NA	6.1E-16	6.1E-16	<1%	
Γhallium-207	9.20E-02	1.40E+09 P	NA	NA	1.1E-16	1.1E-16	<1%	
Polonium-211	9.20E-02	1.40E+09 P	NA	NA	4.9E-19	4.9E-19	<1%	
			8E-08	9E-11	1E-06			
Total					Total ELCR	1E-06		

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

%: percent. ELCRi: excess lifetime cancer risk, inhalation pathway. ACF: area correction factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFe: external cancer slope factor. EPC: exposure point concentration in soil/sediment.

CSFi: inhalation cancer slope factor. It bgs: feet below ground surface.
CSFo: oral cancer slope factor. m³/kg: cubic meter(s) per kilogram.
ELCR: excess lifetime cancer risk.
ELCRe: excess lifetime cancer risk, external pathway.
ELCRe: excess lifetime cancer risk, external pathway.

RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1. Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

ELCRo = (EPCs × 50 × 52 × 10 × [1 - exp(-h × 10)] × CSFo) / (1,000 × 10 × h) ELCRi = (EPCs × 1,000 × 60 × 1 × 0.042 × 52 × 10 × [1 - exp(-h × 10)] × CSFi) / (1.40E+09 × 10 × h) ELCRe = (EPCs × ACF × [(1 × 0.042 × 1) + (0 × 0.042 × 0.4)] × 52 × 10 × [1 - exp(-h × 10)] × CSFe) / (365 × 10 × h)

Appendix G, Table G-20 (RME)

Excess Lifetime Cancer Risk Calculations for a Current/Future Outdoor Commercial / Industrial Worker Exposed to Radionuclides at Former Esperanza Mill, Background Shallow Soil (0 to 0.5 ft bgs)

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

		_		CANCE	R RISK		Percent		
		=	R	oute-Specific ELC	R	Total	Total		
	EPCs	PEF [a]	Ingestion	Inhalation	External	ELCR	ELCR		
Constituent	(pCi/g)	(m³/kg)	ELCRo	ELCRi	ELCRe				
Radionuclides									
Iranium-238	1.53E+00	1.40E+09 P	4.8E-08	2.9E-09	9.4E-07	9.9E-07	<1%		
Iranium-234	1.51E+00	1.40E+09 P	4.3E-08	3.4E-09	2.0E-09	4.9E-08	<1%		
horium-230	1.51E+00	1.40E+09 P	6.6E-08	4.1E-09	6.6E-09	7.6E-08	<1%		
adium-226	1.51E+00	1.40E+09 P	2.5E-07	3.4E-09	6.5E-05	6.5E-05	61%		
ead-210	1.51E+00	1.40E+09 P	3.5E-07	1.4E-09	8.0E-09	3.6E-07	<1%		
sismuth-210	1.51E+00	1.40E+09 P	2.5E-12	4.4E-14	1.7E-11	2.0E-11	<1%		
olonium-210	1.51E+00	1.40E+09 P	2.7E-08	4.0E-11	7.7E-12	2.7E-08	<1%		
horium-232	1.85E+00	1.40E+09 P	7.9E-07	1.3E-08	3.8E-05	3.9E-05	37%		
horium-228	1.85E+00	1.40E+09 P	7.3E-09	2.1E-09	5.9E-09	1.5E-08	<1%		
adium-224	1.85E+00	1.40E+09 P	5.1E-11	9.5E-13	2.3E-10	2.8E-10	<1%		
ead-212	1.85E+00	1.40E+09 P	9.6E-13	6.7E-15	3.3E-10	3.3E-10	<1%		
ismuth-212	1.85E+00	1.40E+09 P	3.1E-15	8.3E-17	3.1E-11	3.1E-11	<1%		
hallium-208	1.85E+00	1.40E+09 P	NA	NA	5.6E-11	5.6E-11	<1%		
Iranium-235	9.20E-02	1.40E+09 P	2.6E-09	1.9E-10	2.7E-07	2.7E-07	<1%		
rotactinium-231	9.20E-02	1.40E+09 P	8.0E-09	5.6E-10	6.0E-08	6.9E-08	<1%		
ctinium-227	9.20E-02	1.40E+09 P	7.2E-09	7.7E-10	6.5E-11	8.0E-09	<1%		
rancium-223	9.20E-02	1.40E+09 P	6.1E-16	7.3E-19	1.5E-13	1.5E-13	<1%		
statine-219	9.20E-02	1.40E+09 P	NA	NA	NA	_			
ismuth-215	9.20E-02	1.40E+09 P	NA	NA	4.3E-13	4.3E-13	<1%		
horium-227	9.20E-02	1.40E+09 P	3.2E-12	7.7E-13	6.2E-10	6.3E-10	<1%		
adium-223	9.20E-02	1.40E+09 P	1.1E-11	3.9E-13	5.9E-10	6.0E-10	<1%		
ead-211	9.20E-02	1.40E+09 P	5.4E-17	1.2E-18	5.5E-13	5.5E-13	<1%		
statine-215	9.20E-02	1.40E+09 P	NA	NA	6.1E-23	6.1E-23	<1%		
ismuth-211	9.20E-02	1.40E+09 P	NA	NA	2.1E-14	2.1E-14	<1%		
hallium-207	9.20E-02	1.40E+09 P	NA	NA	3.9E-15	3.9E-15	<1%		
olonium-211	9.20E-02	1.40E+09 P	NA	NA	1.7E-17	1.7E-17	<1%		
			2E-06	3E-08	1E-04				
otal					Total ELCR	1E-04			

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

%: percent. ELCRi: excess lifetime cancer risk, inhalation pathway.

ACF: area correction factor. ELCRo: excess lifetime cancer risk, oral pathway.

CSFe: external cancer slope factor. EPC: exposure point concentration in soil/sediment.

CSFi: inhalation cancer slope factor. It bgs: feet below ground surface.
CSFo: oral cancer slope factor. m³/kg: cubic meter(s) per kilogram.
ELCR: excess lifetime cancer risk.
ELCRe: excess lifetime cancer risk, external pathway.

RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1.

Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

Appendix G, Table G-21 (Site-Specific Evaluation)

Excess Lifetime Cancer Risk Calculations for a Current/Future Outdoor Commercial / Industrial Worker Exposed to Radionuclides at Former Esperanza Mill, Background Shallow Soil (0 to 0.5 ft bgs)

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

				CANCE	R RISK		Percent		
		_	R	oute-Specific ELC	R	Total	Total		
	EPCs	PEF [a]	Ingestion	Inhalation	External	ELCR	ELCR		
Constituent	(pCi/g)	(m³/kg)	ELCRo	ELCRi	ELCRe				
Radionuclides									
Uranium-238	1.53E+00	1.40E+09 P	4.8E-08	1.5E-09	4.7E-07	5.2E-07	<1%		
Uranium-234	1.51E+00	1.40E+09 P	4.3E-08	1.7E-09	9.8E-10	4.6E-08	<1%		
Thorium-230	1.51E+00	1.40E+09 P	6.6E-08	2.1E-09	3.3E-09	7.1E-08	<1%		
Radium-226	1.51E+00	1.40E+09 P	2.5E-07	1.7E-09	3.2E-05	3.3E-05	61%		
Lead-210	1.51E+00	1.40E+09 P	3.5E-07	6.8E-10	4.0E-09	3.6E-07	<1%		
Bismuth-210	1.51E+00	1.40E+09 P	2.5E-12	2.2E-14	8.5E-12	1.1E-11	<1%		
Polonium-210	1.51E+00	1.40E+09 P	2.7E-08	2.0E-11	3.8E-12	2.7E-08	<1%		
Thorium-232	1.85E+00	1.40E+09 P	7.9E-07	6.5E-09	1.9E-05	2.0E-05	37%		
Thorium-228	1.85E+00	1.40E+09 P	7.3E-09	1.1E-09	3.0E-09	1.1E-08	<1%		
Radium-224	1.85E+00	1.40E+09 P	5.1E-11	4.8E-13	1.2E-10	1.7E-10	<1%		
Lead-212	1.85E+00	1.40E+09 P	9.6E-13	3.3E-15	1.7E-10	1.7E-10	<1%		
Bismuth-212	1.85E+00	1.40E+09 P	3.1E-15	4.2E-17	1.6E-11	1.6E-11	<1%		
Thallium-208	1.85E+00	1.40E+09 P	NA	NA	2.8E-11	2.8E-11	<1%		
Uranium-235	9.20E-02	1.40E+09 P	2.6E-09	9.3E-11	1.4E-07	1.4E-07	<1%		
Protactinium-231	9.20E-02	1.40E+09 P	8.0E-09	2.8E-10	3.0E-08	3.8E-08	<1%		
Actinium-227	9.20E-02	1.40E+09 P	7.2E-09	3.8E-10	3.2E-11	7.6E-09	<1%		
Francium-223	9.20E-02	1.40E+09 P	6.1E-16	3.7E-19	7.7E-14	7.7E-14	<1%		
Astatine-219	9.20E-02	1.40E+09 P	NA	NA	NA	_			
Bismuth-215	9.20E-02	1.40E+09 P	NA	NA	2.1E-13	2.1E-13	<1%		
Thorium-227	9.20E-02	1.40E+09 P	3.2E-12	3.8E-13	3.1E-10	3.1E-10	<1%		
Radium-223	9.20E-02	1.40E+09 P	1.1E-11	1.9E-13	2.9E-10	3.1E-10	<1%		
Lead-211	9.20E-02	1.40E+09 P	5.4E-17	5.9E-19	2.7E-13	2.7E-13	<1%		
Astatine-215	9.20E-02	1.40E+09 P	NA	NA	3.1E-23	3.1E-23	<1%		
Bismuth-211	9.20E-02	1.40E+09 P	NA	NA	1.1E-14	1.1E-14	<1%		
Thallium-207	9.20E-02	1.40E+09 P	NA	NA	2.0E-15	2.0E-15	<1%		
Polonium-211	9.20E-02	1.40E+09 P	NA	NA	8.4E-18	8.4E-18	<1%		
			2E-06	2E-08	5E-05				

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

%: percent. ELCRi: excess lifetime cancer risk, inhalation pathway. ACF: area correction factor. ELCRo: excess lifetime cancer risk, oral pathway.

CSFe: external cancer slope factor. EPC: exposure point concentration in soil/sediment.

CSFi: inhalation cancer slope factor. It bgs: feet below ground surface. CSFo: oral cancer slope factor. If bgs: feet below ground surface. m³/kg: cubic meter(s) per kilogram. ELCR: excess lifetime cancer risk. pCi/g: picoCurie(s) per gram.

ELCRe: excess lifetime cancer risk, external pathway.

Receptor-specific exposure parameters are presented in Table 6-1.

Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

```
ELCRo = (EPCs × 100 × 225 × 25 × [1 - exp(-\lambda × 25)] × CSFo) / (1,000 × 25 × \lambda)

ELCRi = (EPCs × 1,000 × 60 × 8 × 0.042 × 225 × 25 × [1 - exp(-\lambda × 25)] × CSFi) / (1.40E+09 × 25 × \lambda)

ELCRe = (EPCs × ACF × [(8 × 0.042 × 1) + (0 × 0.042 × 0.4)] × 225 × 25 × [1 - exp(-\lambda × 25)] × CSFe) / (365 × 25 × \lambda)
```

Appendix G, Table G-22 (RME)

Excess Lifetime Cancer Risk Calculations for a Hypothetical Future Adolescent Trespasser Exposed to Radionuclides at Former Esperanza Mill, Background Shallow Soil (0 to 0.5 ft bgs)

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

				CANCE	R RISK		Percent
			R	oute-Specific ELC	R	Total	Total
	EPCs	PEF [a]	Ingestion	Inhalation	External	ELCR	ELCR
Constituent	(pCi/g)	(m³/kg)	ELCRo	ELCRi	ELCRe		
Radionuclides							
Uranium-238	1.53E+00	1.40E+09 P	2.2E-09	7.7E-12	1.1E-08	1.3E-08	1%
Uranium-234	1.51E+00	1.40E+09 P	2.0E-09	9.0E-12	2.3E-11	2.0E-09	<1%
Thorium-230	1.51E+00	1.40E+09 P	3.0E-09	1.1E-11	7.6E-11	3.1E-09	<1%
Radium-226	1.51E+00	1.40E+09 P	1.2E-08	9.1E-12	7.6E-07	7.7E-07	59%
Lead-210	1.51E+00	1.40E+09 P	2.0E-08	4.4E-12	1.2E-10	2.0E-08	2%
Bismuth-210	1.51E+00	1.40E+09 P	2.9E-13	2.9E-16	5.0E-13	7.9E-13	<1%
Polonium-210	1.51E+00	1.40E+09 P	3.1E-09	2.6E-13	2.2E-13	3.1E-09	<1%
Thorium-232	1.85E+00	1.40E+09 P	3.6E-08	3.4E-11	4.5E-07	4.8E-07	37%
Thorium-228	1.85E+00	1.40E+09 P	8.3E-10	1.4E-11	1.7E-10	1.0E-09	<1%
Radium-224	1.85E+00	1.40E+09 P	5.9E-12	6.3E-15	6.7E-12	1.3E-11	<1%
Lead-212	1.85E+00	1.40E+09 P	1.1E-13	4.4E-17	9.6E-12	9.7E-12	<1%
Bismuth-212	1.85E+00	1.40E+09 P	3.6E-16	5.5E-19	9.1E-13	9.1E-13	<1%
Γhallium-208	1.85E+00	1.40E+09 P	NA	NA	1.6E-12	1.6E-12	<1%
Uranium-235	9.20E-02	1.40E+09 P	1.2E-10	4.9E-13	3.2E-09	3.3E-09	<1%
Protactinium-231	9.20E-02	1.40E+09 P	3.7E-10	1.5E-12	7.0E-10	1.1E-09	<1%
Actinium-227	9.20E-02	1.40E+09 P	4.1E-10	2.5E-12	9.3E-13	4.2E-10	<1%
Francium-223	9.20E-02	1.40E+09 P	7.0E-17	4.8E-21	4.5E-15	4.5E-15	<1%
Astatine-219	9.20E-02	1.40E+09 P	NA	NA	NA	_	
Bismuth-215	9.20E-02	1.40E+09 P	NA	NA	1.2E-14	1.2E-14	<1%
Thorium-227	9.20E-02	1.40E+09 P	3.6E-13	5.1E-15	1.8E-11	1.8E-11	<1%
Radium-223	9.20E-02	1.40E+09 P	1.3E-12	2.6E-15	1.7E-11	1.9E-11	<1%
Lead-211	9.20E-02	1.40E+09 P	6.2E-18	7.8E-21	1.6E-14	1.6E-14	<1%
Astatine-215	9.20E-02	1.40E+09 P	NA	NA	1.8E-24	1.8E-24	<1%
Bismuth-211	9.20E-02	1.40E+09 P	NA	NA	6.1E-16	6.1E-16	<1%
Thallium-207	9.20E-02	1.40E+09 P	NA	NA	1.1E-16	1.1E-16	<1%
Polonium-211	9.20E-02	1.40E+09 P	NA	NA	4.9E-19	4.9E-19	<1%
			8E-08	9E-11	1E-06		
Total					Total ELCR	1E-06	

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

%: percent. ELCRi: excess lifetime cancer risk, inhalation pathway.

ACF: area correction factor. ELCRo: excess lifetime cancer risk, oral pathway.

CSFe: external cancer slope factor. EPC: exposure point concentration in soil/sediment.

CSFi: inhalation cancer slope factor.

CSFo: oral cancer slope factor.

ELCR: excess lifetime cancer risk.

ELCRe: excess lifetime cancer risk, external pathway.

RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1.

Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

ELCRo = (EPCs × 50 × 52 × 10 × [1 - exp($-\lambda$ × 10)] × CSFo) / (1,000 × 10 × λ) ELCRi = (EPCs × 1,000 × 60 × 1 × 0.042 × 52 × 10 × [1 - exp($-\lambda$ × 10)] × CSFi) / (1.40E+09 × 10 × λ) ELCRe = (EPCs × ACF × [(1 × 0.042 × 1) + (0 × 0.042 × 0.4)] × 52 × 10 × [1 - exp($-\lambda$ × 10)] × CSFe) / (365 × 10 × λ)

Appendix G, Table G-23 (RME)

Excess Lifetime Cancer Risk Calculations for a Hypothetical Future Outdoor Commercial / Industrial Worker Exposed to Radionuclides Background - Shallow and Deep Soil (0 to 15 ft bgs)

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

		•		CANCE	R RISK		Percent		
		•	F	Route-Specific Ris	k	Total	Total		
	EPCs	PEF [a]	Ingestion	Inhalation	External	ELCR	ELCR		
Constituent	(pCi/g)	(m³/kg)	ELCRo	ELCRi	ELCRe				
Radionuclides									
Jranium-238	1.42E+00	1.40E+09 P	4.5E-08	2.7E-09	8.7E-07	9.2E-07	<1%		
Uranium-234	1.46E+00	1.40E+09 P	4.2E-08	3.3E-09	1.9E-09	4.7E-08	<1%		
Γhorium-230	1.46E+00	1.40E+09 P	6.3E-08	4.0E-09	6.3E-09	7.4E-08	<1%		
Radium-226	1.46E+00	1.40E+09 P	2.4E-07	3.3E-09	6.2E-05	6.3E-05	63%		
Lead-210	1.46E+00	1.40E+09 P	3.4E-07	1.3E-09	7.7E-09	3.5E-07	<1%		
Bismuth-210	1.46E+00	1.40E+09 P	2.4E-12	4.3E-14	1.6E-11	1.9E-11	<1%		
Polonium-210	1.46E+00	1.40E+09 P	2.6E-08	3.9E-11	7.4E-12	2.6E-08	<1%		
Thorium-232	1.68E+00	1.40E+09 P	7.1E-07	1.2E-08	3.5E-05	3.6E-05	36%		
Thorium-228	1.68E+00	1.40E+09 P	6.7E-09	1.9E-09	5.4E-09	1.4E-08	<1%		
Radium-224	1.68E+00	1.40E+09 P	4.6E-11	8.6E-13	2.1E-10	2.6E-10	<1%		
_ead-212	1.68E+00	1.40E+09 P	8.7E-13	6.1E-15	3.0E-10	3.0E-10	<1%		
Bismuth-212	1.68E+00	1.40E+09 P	2.8E-15	7.6E-17	2.8E-11	2.8E-11	<1%		
Thallium-208	1.68E+00	1.40E+09 P	NA	NA	5.1E-11	5.1E-11	<1%		
Jranium-235	1.00E-01	1.40E+09 P	2.8E-09	2.0E-10	3.0E-07	3.0E-07	<1%		
Protactinium-231	1.00E-01	1.40E+09 P	8.7E-09	6.1E-10	6.5E-08	7.4E-08	<1%		
Actinium-227	1.00E-01	1.40E+09 P	7.8E-09	8.3E-10	7.0E-11	8.7E-09	<1%		
Francium-223	1.00E-01	1.40E+09 P	6.6E-16	8.0E-19	1.7E-13	1.7E-13	<1%		
Astatine-219	1.00E-01	1.40E+09 P	NA	NA	NA	_			
Bismuth-215	1.00E-01	1.40E+09 P	NA	NA	4.6E-13	4.6E-13	<1%		
Thorium-227	1.00E-01	1.40E+09 P	3.4E-12	8.3E-13	6.8E-10	6.8E-10	<1%		
Radium-223	1.00E-01	1.40E+09 P	1.2E-11	4.2E-13	6.4E-10	6.5E-10	<1%		
_ead-211	1.00E-01	1.40E+09 P	5.9E-17	1.3E-18	5.9E-13	5.9E-13	<1%		
Astatine-215	1.00E-01	1.40E+09 P	NA	NA	6.7E-23	6.7E-23	<1%		
Bismuth-211	1.00E-01	1.40E+09 P	NA	NA	2.3E-14	2.3E-14	<1%		
Thallium-207	1.00E-01	1.40E+09 P	NA	NA	4.3E-15	4.3E-15	<1%		
Polonium-211	1.00E-01	1.40E+09 P	NA	NA	1.8E-17	1.8E-17	<1%		
			1E-06	3E-08	1E-04				
Total				·	Total ELCR	1E-04			

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

%: percent. ELCRi: excess lifetime cancer risk, inhalation pathway.

ACF: area correction factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFe: external cancer slope factor. EPC: exposure point concentration in soil/sediment.

CSFi: inhalation cancer slope factor. It bgs: feet below ground surface.
CSFo: oral cancer slope factor. m³/kg: cubic meter(s) per kilogram.
ELCR: excess lifetime cancer risk. pCi/g: picoCurie(s) per gram.
ELCRe: excess lifetime cancer risk, external pathway. RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1.

Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

Appendix G, Table G-24 (Site-Specific Evaluation)

Excess Lifetime Cancer Risk Calculations for a Hypothetical Future Outdoor Commercial / Industrial Worker Exposed to Radionuclides Background - Shallow and Deep Soil (0 to 15 ft bgs)

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

				CANCE	R RISK		Percent		
			F	Route-Specific Ris	k	Total	Total		
	EPCs	PEF [a]	Ingestion	Inhalation	External	ELCR	ELCR		
Constituent	(pCi/g)	(m³/kg)	ELCRo	ELCRi	ELCRe				
Radionuclides									
Uranium-238	1.42E+00	1.40E+09 P	4.5E-08	1.4E-09	4.3E-07	4.8E-07	<1%		
Uranium-234	1.46E+00	1.40E+09 P	4.2E-08	1.6E-09	9.5E-10	4.5E-08	<1%		
Thorium-230	1.46E+00	1.40E+09 P	6.3E-08	2.0E-09	3.2E-09	6.9E-08	<1%		
Radium-226	1.46E+00	1.40E+09 P	2.4E-07	1.7E-09	3.1E-05	3.1E-05	62%		
Lead-210	1.46E+00	1.40E+09 P	3.4E-07	6.5E-10	3.9E-09	3.5E-07	<1%		
Bismuth-210	1.46E+00	1.40E+09 P	2.4E-12	2.1E-14	8.2E-12	1.1E-11	<1%		
Polonium-210	1.46E+00	1.40E+09 P	2.6E-08	1.9E-11	3.7E-12	2.6E-08	<1%		
Thorium-232	1.68E+00	1.40E+09 P	7.1E-07	5.9E-09	1.7E-05	1.8E-05	36%		
Thorium-228	1.68E+00	1.40E+09 P	6.7E-09	9.7E-10	2.7E-09	1.0E-08	<1%		
Radium-224	1.68E+00	1.40E+09 P	4.6E-11	4.3E-13	1.0E-10	1.5E-10	<1%		
Lead-212	1.68E+00	1.40E+09 P	8.7E-13	3.0E-15	1.5E-10	1.5E-10	<1%		
Bismuth-212	1.68E+00	1.40E+09 P	2.8E-15	3.8E-17	1.4E-11	1.4E-11	<1%		
Thallium-208	1.68E+00	1.40E+09 P	NA	NA	2.5E-11	2.5E-11	<1%		
Uranium-235	1.00E-01	1.40E+09 P	2.8E-09	1.0E-10	1.5E-07	1.5E-07	<1%		
Protactinium-231	1.00E-01	1.40E+09 P	8.7E-09	3.1E-10	3.3E-08	4.2E-08	<1%		
Actinium-227	1.00E-01	1.40E+09 P	7.8E-09	4.2E-10	3.5E-11	8.3E-09	<1%		
Francium-223	1.00E-01	1.40E+09 P	6.6E-16	4.0E-19	8.4E-14	8.4E-14	<1%		
Astatine-219	1.00E-01	1.40E+09 P	NA	NA	NA	_			
Bismuth-215	1.00E-01	1.40E+09 P	NA	NA	2.3E-13	2.3E-13	<1%		
Thorium-227	1.00E-01	1.40E+09 P	3.4E-12	4.2E-13	3.4E-10	3.4E-10	<1%		
Radium-223	1.00E-01	1.40E+09 P	1.2E-11	2.1E-13	3.2E-10	3.3E-10	<1%		
Lead-211	1.00E-01	1.40E+09 P	5.9E-17	6.4E-19	3.0E-13	3.0E-13	<1%		
Astatine-215	1.00E-01	1.40E+09 P	NA	NA	3.3E-23	3.3E-23	<1%		
Bismuth-211	1.00E-01	1.40E+09 P	NA	NA	1.1E-14	1.1E-14	<1%		
Thallium-207	1.00E-01	1.40E+09 P	NA	NA	2.1E-15	2.1E-15	<1%		
Polonium-211	1.00E-01	1.40E+09 P	NA	NA	9.1E-18	9.1E-18	<1%		
			1E-06	2E-08	5E-05				
Total					Total ELCR	5E-05			

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

%: percent. ELCRi: excess lifetime cancer risk, inhalation pathway. ACF: area correction factor. ELCRo: excess lifetime cancer risk, oral pathway.

CSFe: external cancer slope factor. EPC: exposure point concentration in soil/sediment. CSFi: inhalation cancer slope factor. ft bgs: feet below ground surface.

CSFo: oral cancer slope factor. $m^3/kg: \mbox{ cubic meter(s) per kilogram.}$ ELCR: excess lifetime cancer risk. $pCi/g: \mbox{ picoCurie(s) per gram.}$

ELCRe: excess lifetime cancer risk, external pathway.

Receptor-specific exposure parameters are presented in Table 6-1.

Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

```
ELCRo = (EPCs × 100 × 225 × 25 × [1 - exp(-\lambda × 25)] × CSFo) / (1,000 × 25 × \lambda)

ELCRi = (EPCs × 1,000 × 60 × 8 × 0.042 × 225 × 25 × [1 - exp(-\lambda × 25)] × CSFi) / (1.40E+09 × 25 × \lambda)

ELCRe = (EPCs × ACF × [(8 × 0.042 × 1) + (0 × 0.042 × 0.4)] × 225 × 25 × [1 - exp(-\lambda × 25)] × CSFe) / (365 × 25 × \lambda)
```

Appendix G, Table G-25 (RME)

Excess Lifetime Cancer Risk Calculations for a Hypothetical Future Adolescent Trespasser Exposed to Radionuclides

Background - Shallow and Deep Soil (0 to 15 ft bgs) Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

				CANCE	R RISK		Percent		
			F	Route-Specific Ris	k	Total	Total		
	EPCs	PEF [a]	Ingestion	Inhalation	External	ELCR	ELCR		
Constituent	(pCi/g)	(m³/kg)	ELCRo	ELCRi	ELCRe				
Radionuclides									
Uranium-238	1.42E+00	1.40E+09 P	2.1E-09	7.2E-12	1.0E-08	1.2E-08	<1%		
Uranium-234	1.46E+00	1.40E+09 P	1.9E-09	8.7E-12	2.2E-11	2.0E-09	<1%		
Thorium-230	1.46E+00	1.40E+09 P	2.9E-09	1.1E-11	7.4E-11	3.0E-09	<1%		
Radium-226	1.46E+00	1.40E+09 P	1.1E-08	8.7E-12	7.3E-07	7.4E-07	60%		
Lead-210	1.46E+00	1.40E+09 P	2.0E-08	4.3E-12	1.1E-10	2.0E-08	2%		
Bismuth-210	1.46E+00	1.40E+09 P	2.8E-13	2.8E-16	4.8E-13	7.6E-13	<1%		
Polonium-210	1.46E+00	1.40E+09 P	3.0E-09	2.5E-13	2.2E-13	3.0E-09	<1%		
Thorium-232	1.68E+00	1.40E+09 P	3.3E-08	3.1E-11	4.1E-07	4.4E-07	36%		
Thorium-228	1.68E+00	1.40E+09 P	7.5E-10	1.2E-11	1.5E-10	9.2E-10	<1%		
Radium-224	1.68E+00	1.40E+09 P	5.4E-12	5.7E-15	6.1E-12	1.1E-11	<1%		
Lead-212	1.68E+00	1.40E+09 P	1.0E-13	4.0E-17	8.7E-12	8.8E-12	<1%		
Bismuth-212	1.68E+00	1.40E+09 P	3.2E-16	5.0E-19	8.3E-13	8.3E-13	<1%		
Thallium-208	1.68E+00	1.40E+09 P	NA	NA	1.5E-12	1.5E-12	<1%		
Uranium-235	1.00E-01	1.40E+09 P	1.3E-10	5.3E-13	3.4E-09	3.6E-09	<1%		
Protactinium-231	1.00E-01	1.40E+09 P	4.0E-10	1.6E-12	7.6E-10	1.2E-09	<1%		
Actinium-227	1.00E-01	1.40E+09 P	4.5E-10	2.7E-12	1.0E-12	4.5E-10	<1%		
Francium-223	1.00E-01	1.40E+09 P	7.6E-17	5.3E-21	4.9E-15	4.9E-15	<1%		
Astatine-219	1.00E-01	1.40E+09 P	NA	NA	NA	_			
Bismuth-215	1.00E-01	1.40E+09 P	NA	NA	1.3E-14	1.3E-14	<1%		
Thorium-227	1.00E-01	1.40E+09 P	4.0E-13	5.5E-15	2.0E-11	2.0E-11	<1%		
Radium-223	1.00E-01	1.40E+09 P	1.4E-12	2.8E-15	1.9E-11	2.0E-11	<1%		
Lead-211	1.00E-01	1.40E+09 P	6.8E-18	8.4E-21	1.7E-14	1.7E-14	<1%		
Astatine-215	1.00E-01	1.40E+09 P	NA	NA	1.9E-24	1.9E-24	<1%		
Bismuth-211	1.00E-01	1.40E+09 P	NA	NA	6.7E-16	6.7E-16	<1%		
Thallium-207	1.00E-01	1.40E+09 P	NA	NA	1.2E-16	1.2E-16	<1%		
Polonium-211	1.00E-01	1.40E+09 P	NA	NA	5.3E-19	5.3E-19	<1%		
			8E-08	9E-11	1E-06				
Total					Total ELCR	1E-06	1		

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

%: percent.

ELCRi: excess lifetime cancer risk, inhalation pathway.

ACF: area correction factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFe: external cancer slope factor. EPC: exposure point concentration in soil/sediment.

CSFi: inhalation cancer slope factor.

CSFo: oral cancer slope factor.

ELCR: excess lifetime cancer risk.

ELCRe: excess lifetime cancer risk, external pathway.

ELCRe: excess lifetime cancer risk, external pathway.

RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1.

Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

Appendix G, Table G-26 (RME)

Excess Lifetime Cancer Risk Calculations for a Hypothetical Future Construction Worker Exposed to Radionuclides

Background - Shallow and Deep Soil (0 to 15 ft bgs) Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

				CANCE	R RISK		Percent		
			F	Route-Specific Ris	k	Total	Total		
	EPCs	PEF [a]	Ingestion	Inhalation	External	ELCR	ELCR		
Constituent	(pCi/g)	(m³/kg)	ELCRo	ELCRi	ELCRe				
Radionuclides									
Uranium-238	1.42E+00	1.40E+09 P	6.6E-09	1.2E-10	3.9E-08	4.5E-08	<1%		
Uranium-234	1.46E+00	1.40E+09 P	6.2E-09	1.5E-10	8.4E-11	6.4E-09	<1%		
Thorium-230	1.46E+00	1.40E+09 P	9.3E-09	1.8E-10	2.8E-10	9.8E-09	<1%		
Radium-226	1.46E+00	1.40E+09 P	3.6E-08	1.5E-10	2.8E-06	2.8E-06	60%		
Lead-210	1.46E+00	1.40E+09 P	7.1E-08	8.2E-11	4.9E-10	7.2E-08	2%		
Bismuth-210	1.46E+00	1.40E+09 P	8.9E-12	4.8E-14	1.8E-11	2.7E-11	<1%		
Polonium-210	1.46E+00	1.40E+09 P	8.0E-08	3.6E-11	6.9E-12	8.0E-08	2%		
Thorium-232	1.68E+00	1.40E+09 P	1.0E-07	5.2E-10	1.6E-06	1.7E-06	35%		
Thorium-228	1.68E+00	1.40E+09 P	7.4E-09	6.6E-10	1.8E-09	9.9E-09	<1%		
Radium-224	1.68E+00	1.40E+09 P	1.7E-10	9.6E-13	2.3E-10	4.0E-10	<1%		
Lead-212	1.68E+00	1.40E+09 P	3.2E-12	6.8E-15	3.3E-10	3.4E-10	<1%		
Bismuth-212	1.68E+00	1.40E+09 P	1.0E-14	8.4E-17	3.2E-11	3.2E-11	<1%		
Thallium-208	1.68E+00	1.40E+09 P	NA	NA	5.6E-11	5.6E-11	<1%		
Uranium-235	1.00E-01	1.40E+09 P	4.1E-10	9.0E-12	1.3E-08	1.4E-08	<1%		
Protactinium-231	1.00E-01	1.40E+09 P	1.3E-09	2.7E-11	2.9E-09	4.2E-09	<1%		
Actinium-227	1.00E-01	1.40E+09 P	1.6E-09	5.3E-11	4.4E-12	1.7E-09	<1%		
Francium-223	1.00E-01	1.40E+09 P	2.4E-15	8.8E-19	1.9E-13	1.9E-13	<1%		
Astatine-219	1.00E-01	1.40E+09 P	NA	NA	NA	_			
Bismuth-215	1.00E-01	1.40E+09 P	NA	NA	5.1E-13	5.1E-13	<1%		
Thorium-227	1.00E-01	1.40E+09 P	1.3E-11	9.3E-13	7.5E-10	7.6E-10	<1%		
Radium-223	1.00E-01	1.40E+09 P	4.6E-11	4.7E-13	7.1E-10	7.6E-10	<1%		
Lead-211	1.00E-01	1.40E+09 P	2.2E-16	1.4E-18	6.6E-13	6.6E-13	<1%		
Astatine-215	1.00E-01	1.40E+09 P	NA	NA	7.4E-23	7.4E-23	<1%		
Bismuth-211	1.00E-01	1.40E+09 P	NA	NA	2.5E-14	2.5E-14	<1%		
Thallium-207	1.00E-01	1.40E+09 P	NA	NA	4.8E-15	4.8E-15	<1%		
Polonium-211	1.00E-01	1.40E+09 P	NA	NA	2.0E-17	2.0E-17	<1%		
			3E-07	2E-09	4E-06				
Total					Total ELCR	5E-06			

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

%: percent. ELCRi: excess lifetime cancer risk, inhalation pathway.

ACF: area correction factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFe: external cancer slope factor. EPC: exposure point concentration in soil/sediment.

CSFi: inhalation cancer slope factor. It bgs: feet below ground surface.
CSFo: oral cancer slope factor. m³/kg: cubic meter(s) per kilogram.
ELCR: excess lifetime cancer risk. pCi/g: picoCurie(s) per gram.
ELCRe: excess lifetime cancer risk, external pathway. RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1.

Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

Appendix G, Table G-27

Excess Lifetime Cancer Risk Calculations for a Hypothetical Future Child/Adult Resident Exposed to Radionuclides

Background - Shallow and Deep Soil (0 to 15 ft bgs) Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

					CANCE	R RISK		Percen
			_	F	Route-Specific Ris	k	Total	Total
	EPCs	PEF [a]		Ingestion	Inhalation	External	ELCR	ELCR
Constituent	(pCi/g)	(m³/kg)		ELCRo	ELCRi	ELCRe		
Radionuclides								
Uranium-238	1.42E+00	1.40E+09 I	P	1.1E-07	5.0E-09	1.9E-06	2.0E-06	<1%
Uranium-234	1.46E+00	1.40E+09 I	P	1.0E-07	6.1E-09	4.1E-09	1.1E-07	<1%
Thorium-230	1.46E+00	1.40E+09 I	P	1.5E-07	7.4E-09	1.4E-08	1.7E-07	<1%
Radium-226	1.46E+00	1.40E+09 I	P	5.8E-07	6.1E-09	1.3E-04	1.3E-04	63%
Lead-210	1.46E+00	1.40E+09 I	P	7.4E-07	2.2E-09	1.5E-08	7.6E-07	<1%
Bismuth-210	1.46E+00	1.40E+09 I	P	4.5E-12	6.0E-14	2.7E-11	3.1E-11	<1%
Polonium-210	1.46E+00	1.40E+09 I	P	4.7E-08	5.4E-11	1.2E-11	4.8E-08	<1%
Thorium-232	1.68E+00	1.40E+09 I	P	1.7E-06	2.2E-08	7.5E-05	7.6E-05	36%
Thorium-228	1.68E+00	1.40E+09 I	P	1.2E-08	2.7E-09	8.7E-09	2.4E-08	<1%
Radium-224	1.68E+00	1.40E+09 I	P	8.5E-11	1.2E-12	3.4E-10	4.3E-10	<1%
Lead-212	1.68E+00	1.40E+09 I	P	1.6E-12	8.5E-15	4.9E-10	4.9E-10	<1%
Bismuth-212	1.68E+00	1.40E+09 I	P	5.1E-15	1.1E-16	4.6E-11	4.6E-11	<1%
Thallium-208	1.68E+00	1.40E+09 I	P	NA	NA	8.2E-11	8.2E-11	<1%
Uranium-235	1.00E-01	1.40E+09 I	P	6.8E-09	3.7E-10	6.3E-07	6.4E-07	<1%
Protactinium-231	1.00E-01	1.40E+09 I	P	2.1E-08	1.1E-09	1.4E-07	1.6E-07	<1%
Actinium-227	1.00E-01	1.40E+09 I	P	1.7E-08	1.4E-09	1.3E-10	1.8E-08	<1%
Francium-223	1.00E-01	1.40E+09 I	P	1.2E-15	1.1E-18	2.7E-13	2.7E-13	<1%
Astatine-219	1.00E-01	1.40E+09 I	P	NA	NA	NA	_	
Bismuth-215	1.00E-01	1.40E+09 I	P	NA	NA	7.5E-13	7.5E-13	<1%
Thorium-227	1.00E-01	1.40E+09 I	P	6.3E-12	1.2E-12	1.1E-09	1.1E-09	<1%
Radium-223	1.00E-01	1.40E+09 I	P	2.3E-11	5.9E-13	1.0E-09	1.1E-09	<1%
Lead-211	1.00E-01	1.40E+09 I	P	1.1E-16	1.8E-18	9.6E-13	9.6E-13	<1%
Astatine-215	1.00E-01	1.40E+09 I	P	NA	NA	1.1E-22	1.1E-22	<1%
Bismuth-211	1.00E-01	1.40E+09 I	P	NA	NA	3.7E-14	3.7E-14	<1%
Thallium-207	1.00E-01	1.40E+09 I	P	NA	NA	6.9E-15	6.9E-15	<1%
Polonium-211	1.00E-01	1.40E+09 I	P	NA	NA	2.9E-17	2.9E-17	<1%
				4E-06	5E-08	2E-04		
Total						Total ELCR	2E-04	7

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table F-7.

%: percent. ELCRi: excess lifetime cancer risk, inhalation pathway.

ACF: area correction factor. ELCRo: excess lifetime cancer risk, oral pathway.

CSFe: external cancer slope factor. EPCs: exposure point concentration in soil/sediment.

CSFi: inhalation cancer slope factor. ft bgs: feet below ground surface.
CSFo: oral cancer slope factor. m³/kg: cubic meter(s) per kilogram.
ELCR: excess lifetime cancer risk. pCi/g: picoCurie(s) per gram.

ELCRe: excess lifetime cancer risk, external pathway.

Receptor-specific exposure parameters are presented in Table F-7. Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

```
ELCRo = (EPCs × 118 × 350 × 33 × [1 - exp(-λ × 33)] × CSFo) / (1,000 × 33 × λ)

ELCRi = (EPCs × 1,000 × 18 × 24 × 0.042 × 350 × 33 × [1 - exp(-λ × 33)] × CSFi) / (1.40E+09 × 33 × λ)

ELCRe = (EPCs × ACF × [(1.752 × 0.042 × 1) + (16.416 × 0.042 × 0.4)] × 350 × 33 × [1 - exp(-λ × 33)] × CSFe) / (365 × 33 × λ)
```

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/3/2018 1:10:05 PM

From File Sierrita-bkgd-soils-100318.xls

Full Precision ON
Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Antimony_0-0.5

General Statistics

Total Number of Observations 13.000000	Number of Distinct Observations 9.0000000
Number of Detects 9.0000000	Number of Non-Detects 4.0000000
Number of Distinct Detects 7.0000000	Number of Distinct Non-Detects 3.0000000
Minimum Detect 0.1000000	Minimum Non-Detect 0.0950000
Maximum Detect 0.7300000	Maximum Non-Detect 0.1000000
Variance Detects 0.0378861	Percent Non-Detects 30.769231%
Mean Detects 0.2288889	SD Detects 0.1946435
Median Detects 0.1500000	CV Detects 0.8503844
Skewness Detects 2.6303312	Kurtosis Detects 7.2988262
Mean of Logged Detects -1.669281	SD of Logged Detects 0.5874394

Normal GOF Test on Detects Only

Shapiro Wilk GOF Test	Shapiro Wilk Test Statistic 0.6263816
Detected Data Not Normal at 5% Significance Level	5% Shapiro Wilk Critical Value 0.8290000
Lilliefors GOF Test	Lilliefors Test Statistic 0.3253939
Detected Data Not Normal at 5% Significance Level	5% Lilliefors Critical Value 0.2744000

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Standard Error of Mean 0.0484568	KM Mean 0.1876923
95% KM (BCA) UCL 0.2726923	KM SD 0.1647214
95% KM (Percentile Bootstrap) UCL 0.2723077	95% KM (t) UCL 0.2740562
95% KM Bootstrap t UCL 0.4359492	95% KM (z) UCL 0.2673966
95% KM Chebyshev UCL 0.3989105	90% KM Chebyshev UCL 0.3330627
99% KM Chebyshev UCL 0.6698312	97.5% KM Chebyshev UCL 0.4903048

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	A-D Test Statistic 0.9048213
Detected Data Not Gamma Distributed at 5% Significance Level	5% A-D Critical Value 0.7276245
Kolmogorov-Smirnov GOF	K-S Test Statistic 0.2357529
Detected data appear Gamma Distributed at 5% Significance Level	5% K-S Critical Value 0.2816565

Detected data follow Appr. Gamma Distribution at 5% Significance Level

Gamma Statistics on Detected Data Only

k star (bias corrected MLE) 1.8890093	k hat (MLE) 2.7224028
Theta star (bias corrected MLE) 0.1211687	Theta hat (MLE) 0.0840761
nu star (bias corrected) 34.002167	nu hat (MLE) 49.003251
	Mean (detects) 0.2288889

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Mean 0.1615385	Minimum 0.0100000
Median 0.1300000	Maximum 0.7300000
CV 1.1796732	SD 0.1905626
k star (bias corrected MLE) 0.6610399	k hat (MLE) 0.7926851
Theta star (bias corrected MLE) 0.2443702	Theta hat (MLE) 0.2037864
nu star (bias corrected) 17.187036	nu hat (MLE) 20.609814
	of Significance (B) 0.0300900

Adjusted Level of Significance (β) 0.0300900

Approximate Chi Square Value (17.19, α) 8.8060071 Adjusted Chi Square Value (17.19, β) 7.9640863 95% Gamma Approximate UCL (use when n>=50) 0.3152811 95% Gamma Adjusted UCL (use when n<50) 0.3486109

Estimates of Gamma Parameters using KM Estimates

SD (KM) 0.164	Mean (KM) 0.1876923
SE of Mean (KM) 0.048	Variance (KM) 0.0271331
k star (KM) 1.050	k hat (KM) 1.2983535
nu star (KM) 27.30	nu hat (KM) 33.757191
theta star (KM) 0.178	theta hat (KM) 0.1445618
90% gamma percentile (KM) 0.427	80% gamma percentile (KM) 0.3008492
99% gamma percentile (KM) 0.843	95% gamma percentile (KM) 0.5526823

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (27.30, α) 16.384388	Adjusted Chi Square Value (27.30, β) 15.189346
95% Gamma Approximate KM-UCL (use when n>=50) 0.3127414	95% Gamma Adjusted KM-UCL (use when n<50) 0.3373467

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk GOF Test	Shapiro Wilk Test Statistic 0.8427669
Detected Data appear Lognormal at 5% Significance Level	5% Shapiro Wilk Critical Value 0.8290000
Lilliefors GOF Test	Lilliefors Test Statistic 0.2064927
Detected Data appear Lognormal at 5% Significance Level	5% Lilliefors Critical Value 0.2744000

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Log Scale -2.098746	Mean in Original Scale 0.1729693
SD in Log Scale 0.8287407	SD in Original Scale 0.1813694
95% Percentile Bootstrap UCL 0.2606837	95% t UCL (assumes normality of ROS data) 0.2626234
95% Bootstrap t UCL 0.3788881	95% BCA Bootstrap UCL 0.3059004
	95% H-UCL (Log ROS) 0.3192514

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged) -1.879926	KM Geo Mean 0.1526014
KM SD (logged) 0.5587449	95% Critical H Value (KM-Log) 2.1825598
KM Standard Error of Mean (logged) 0.1643683	95% H-UCL (KM -Log) 0.2536524
KM SD (logged) 0.5587449	95% Critical H Value (KM-Log) 2.1825598
KM Standard Error of Mean (logged) 0.1643683	

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale 0.1735000
 Mean in Log Scale -2.084505

 SD in Original Scale 0.1809307
 SD in Log Scale 0.8065304

 95% t UCL (Assumes normality) 0.2629372
 95% H-Stat UCL 0.3103069

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Detected Data appear Approximate Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Adjusted Gamma UCL 0.3373467

95% GROS Adjusted Gamma UCL 0.3486109

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test

When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Arsenic_0-0.5

General Statistics

Total Number of Observations 13.000000	Number of Distinct Observations 10.000000
	Number of Missing Observations 0
Minimum 1.2000000	Mean 2.2692308
Maximum 4.0000000	Median 2.1000000
SD 0.7110844	Std. Error of Mean 0.1972193
Coefficient of Variation 0.3133592	Skewness 1.1302773

Normal GOF Test

Shapiro Wilk GOF Test	Shapiro Wilk Test Statistic 0.9107294
Data appear Normal at 5% Significance Level	5% Shapiro Wilk Critical Value 0.8660000
Lilliefors GOF Test	Lilliefors Test Statistic 0.2094401
Data appear Normal at 5% Significance Level	5% Lilliefors Critical Value 0.2337000

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)

95% Student's-t UCL 2.6207323 95% Adjusted-CLT UCL (Chen-1995) 2.6596884 95% Modified-t UCL (Johnson-1978) 2.6310365

Gamma GOF Test

A-D Test Statistic 0.3637985	Anderson-Darling Gamma GOF Test
5% A-D Critical Value 0.7336582	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic 0.1820825	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value 0.2365823	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE) 11.995597 k star (bias corrected MLE) 9.2786646
Theta hat (MLE) 0.1891720 Theta star (bias corrected MLE) 0.2445644
nu hat (MLE) 311.88553 nu star (bias corrected) 241.24528
MLE Mean (bias corrected) 2.2692308 MLE Sd (bias corrected) 0.7449651
Approximate Chi Square Value (0.05) 206.28720
Adjusted Level of Significance 0.0300900 Adjusted Chi Square Value 201.68167

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 2.6537818

95% Adjusted Gamma UCL (use when n<50) 2.7143826

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.9635076

Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.8660000

Lilliefors Test Statistic 0.1620821

Shapiro Wilk Lognormal GOF Test

Data appear Lognormal at 5% Significance Level

Lilliefors Critical Value 0.2337000

Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 0.1823216 Mean of logged Data 0.7771802

Maximum of Logged Data 1.3862944 SD of logged Data 0.3003952

Assuming Lognormal Distribution

95% H-UCL 2.6855096 90% Chebyshev (MVUE) UCL 2.8400094 95% Chebyshev (MVUE) UCL 3.0993089 97.5% Chebyshev (MVUE) UCL 3.4592065 99% Chebyshev (MVUE) UCL 4.1661557

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 2.5936277
95% Standard Bootstrap UCL 2.5880041
95% Hall's Bootstrap UCL 2.8334410
95% BCA Bootstrap UCL 2.6230769
90% Chebyshev(Mean, Sd) UCL 2.8608888
95% Chebyshev(Mean, Sd) UCL 3.5008651
99% Chebyshev(Mean, Sd) UCL 4.2315383

Suggested UCL to Use

95% Student's-t UCL 2.6207323

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

General Statistics

Total Number of Observations 13.000000 Number of Distinct Observations 13.000000

Number of Missing Observations 0

Minimum 53.000000 Mean 245.38462 Maximum 710.00000 Median 200.00000

SD 200.59268 Std. Error of Mean 55.634399

Coefficient of Variation 0.8174623 Skewness 1.0844917

Normal GOF Test

Shapiro Wilk Test Statistic 0.8725776 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.8660000 Data appear Normal at 5% Significance Level

Lilliefors Test Statistic 0.1955761 Lilliefors GOF Test

5% Lilliefors Critical Value 0.2337000 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness)

95% Student's-t UCL 344.54111 95% Adjusted-CLT UCL (Chen-1995) 354.77551

95% Modified-t UCL (Johnson-1978) 347.33010

Gamma GOF Test

A-D Test Statistic 0.4538473 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.7483504 Detected data appear Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.1848842 Kolmogorov-Smirnov Gamma GOF Test

5% K-S Critical Value 0.2405093 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE) 1.6374718 k star (bias corrected MLE) 1.3108758
Theta hat (MLE) 149.85578 Theta star (bias corrected MLE) 187.19136

nu hat (MLE) 42.574268 nu star (bias corrected) 34.082770

MLE Mean (bias corrected) 245.38462 MLE Sd (bias corrected) 214.32191

Approximate Chi Square Value (0.05) 21.730552

Adjusted Level of Significance 0.0300900 Adjusted Chi Square Value 20.333885

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 384.86769 95% Adjusted Gamma UCL (use when n<50) 411.30299

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.9223960 Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value 0.8660000 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.1679560 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.2337000 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 3.9702919 Mean of logged Data 5.1674034

Maximum of Logged Data 6.5652650 SD of logged Data 0.8807202

Assuming Lognormal Distribution

95% H-UCL 506.92356	90% Chebyshev (MVUE) UCL 443.16941
95% Chebyshev (MVUE) UCL 531.20007	97.5% Chebyshev (MVUE) UCL 653.38320
99% Chebyshev (MVUE) UCL 893.38832	

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% Jackknife UCL 344.54111	95% CLT UCL 336.89506
95% Bootstrap-t UCL 365.15426	95% Standard Bootstrap UCL 332.51540
95% Percentile Bootstrap UCL 334.15385	95% Hall's Bootstrap UCL 372.24023
	95% BCA Bootstrap UCL 349.38462
95% Chebyshev(Mean, Sd) UCL 487.88934	90% Chebyshev(Mean, Sd) UCL 412.28781
99% Chebyshev(Mean, Sd) UCL 798.93990	97.5% Chebyshev(Mean, Sd) UCL 592.82133

Suggested UCL to Use

95% Student's-t UCL 344.54111

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Lead_0-0.5

General Statistics

Total Number of Observations 13.000000	Number of Distinct Observations	13.000000
	Number of Missing Observations	0
Minimum 4.3000000	Mean	6.0076923
Maximum 8.7000000	Median	5.7000000
SD 1.3530592	Std. Error of Mean	0.3752711
Coefficient of Variation 0.2252211	Skewness	0.6833523

Normal GOF Test

Shapiro Wilk GOF Test	Shapiro Wilk Test Statistic 0.9421750
Data appear Normal at 5% Significance Level	5% Shapiro Wilk Critical Value 0.8660000
Lilliefors GOF Test	Lilliefors Test Statistic 0.1348676
Data appear Normal at 5% Significance Level	5% Lilliefors Critical Value 0.2337000

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

rmal UCL 95%	UCLs (Adjusted for Skewness)
rmai UCL 95%	OCLS (Adjusted for Skewness)

95% Student's-t UCL 6.6765333	95% Adjusted-CLT UCL (Chen-1995) 6.7009557
	95% Modified-t UCL (Johnson-1978) 6.6883874

Gamma GOF Test

A-D Test Statistic 0.2455344	Anderson-Darling Gamma GOF Test
5% A-D Critical Value 0.7332645	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic 0.1375400	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value 0.2361173	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE) 22.427492 k star (bias corrected MLE) 17.303199
Theta hat (MLE) 0.2678718 Theta star (bias corrected MLE) 0.3472013
nu hat (MLE) 583.11479 nu star (bias corrected) 449.88317
MLE Mean (bias corrected) 6.0076923 MLE Sd (bias corrected) 1.4442570
Approximate Chi Square Value (0.05) 401.70688
Adjusted Level of Significance 0.0300900 Adjusted Chi Square Value 395.21821

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 6.7281886

95% Adjusted Gamma UCL (use when n<50) 6.8386517

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.9651802

Shapiro Wilk Lognormal GOF Test

Shapiro Wilk Critical Value 0.8660000

Lilliefors Test Statistic 0.1256225

Lilliefors Critical Value 0.2337000

Shapiro Wilk Lognormal GOF Test

Data appear Lognormal GOF Test

Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 1.4586150 Mean of logged Data 1.7705810

Maximum of Logged Data 2.1633230 SD of logged Data 0.2186399

Assuming Lognormal Distribution

95% H-UCL 6.7588769 90% Chebyshev (MVUE) UCL 7.1034534 95% Chebyshev (MVUE) UCL 7.6009695 97.5% Chebyshev (MVUE) UCL 8.2915026 99% Chebyshev (MVUE) UCL 9.6479212

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 6.6249583
95% Standard Bootstrap UCL 6.6021104
95% Bootstrap UCL 6.7542018
95% Hall's Bootstrap UCL 6.7074538
95% Percentile Bootstrap UCL 6.5923077
95% BCA Bootstrap UCL 6.7153846
90% Chebyshev(Mean, Sd) UCL 7.1335056
95% Chebyshev(Mean, Sd) UCL 7.6434611
97.5% Chebyshev(Mean, Sd) UCL 8.3512596
99% Chebyshev(Mean, Sd) UCL 9.7415927

Suggested UCL to Use

95% Student's-t UCL 6.6765333

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

General Statistics

Total Number of Observations 13.000000 Number of Distinct Observations 13.000000

Number of Missing Observations 0

Minimum 1.2000000 Mean 47.507692 Maximum 270.00000 Median 22.000000

SD 69.664702 Std. Error of Mean 19.321512

Coefficient of Variation 1.4663878 Skewness 3.1221747

Normal GOF Test

Shapiro Wilk Test Statistic 0.5752704 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.8660000 Data Not Normal at 5% Significance Level

Lilliefors Test Statistic 0.3239481 Lilliefors GOF Test

5% Lilliefors Critical Value 0.2337000 Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness)

95% Student's-t UCL 81.944183 95% Adjusted-CLT UCL (Chen-1995) 97.166262

95% Modified-t UCL (Johnson-1978) 84.732714

Gamma GOF Test

A-D Test Statistic 0.5010336 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.7646905 Detected data appear Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.1769729 Kolmogorov-Smirnov Gamma GOF Test

5% K-S Critical Value 0.2446338 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE) 0.8588199 k star (bias corrected MLE) 0.7119128
Theta hat (MLE) 55.317407 Theta star (bias corrected MLE) 66.732462

nu hat (MLE) 22.329319 nu star (bias corrected) 18.509732 MLE Mean (bias corrected) 47.507692 MLE Sd (bias corrected) 56.305464

Approximate Chi Square Value (0.05) 9.7602513

Adjusted Level of Significance 0.0300900 Adjusted Chi Square Value 8.8673150

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 90.095494 95% Adjusted Gamma UCL (use when n<50) 99.168087

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.9359742 Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value 0.8660000 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.1879298 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.2337000 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 0.1823216 Mean of logged Data 3.1761570

Maximum of Logged Data 5.5984220 SD of logged Data 1.3176445

Assuming Lognormal Distribution

95% H-UCL 210.20591	90% Chebyshev (MVUE) UCL 113.27753
95% Chebyshev (MVUE) UCL 141.37078	97.5% Chebyshev (MVUE) UCL 180.36311
99% Chebyshev (MVUE) UCL 256.95600	

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% Jackknife UCL 81.944183	95% CLT UCL 79.288752
95% Bootstrap-t UCL 146.39094	95% Standard Bootstrap UCL 79.188173
95% Percentile Bootstrap UCL 81.800000	95% Hall's Bootstrap UCL 201.55474
	95% BCA Bootstrap UCL 101.56923
95% Chebyshev(Mean, Sd) UCL 131.72821	90% Chebyshev(Mean, Sd) UCL 105.47223
99% Chebyshev(Mean, Sd) UCL 239.75431	97.5% Chebyshev(Mean, Sd) UCL 168.17050

Suggested UCL to Use

95% Adjusted Gamma UCL 99.168087

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Uranium_0-0.5

General Statistics

Total Number of Observations 13.000000	Number of Distinct Observations	13.000000
	Number of Missing Observations	0
Minimum 0.6700000	Mean	2.7515385
Maximum 5.0000000	Median	2.6000000
SD 1.3526631	Std. Error of Mean	0.3751612
Coefficient of Variation 0.4916025	Skewness	0.1578566

Normal GOF Test

Shapiro Wilk GOF Test	Shapiro Wilk Test Statistic 0.9670874
Data appear Normal at 5% Significance Level	5% Shapiro Wilk Critical Value 0.8660000
Lilliefors GOF Test	Lilliefors Test Statistic 0.1201135
Data appear Normal at 5% Significance Level	5% Lilliefors Critical Value 0.2337000

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)

95% Student's-t UCL 3.4201837	95% Adjusted-CLT UCL (Chen-1995) 3.3861743
	95% Modified-t LICL (Johnson-1978) 3 4229212

Gamma GOF Test

A-D Test Statistic 0.2096893	Anderson-Darling Gamma GOF Test
5% A-D Critical Value 0.7377178	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic 0.1195265	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value 0.2378108	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE) 3.7485433 k star (bias corrected MLE) 2.9347769

Theta hat (MLE) 0.7340287 Theta star (bias corrected MLE) 0.9375631

nu hat (MLE) 97.462126 nu star (bias corrected) 76.304199

MLE Mean (bias corrected) 2.7515385 MLE Sd (bias corrected) 1.6061572

Approximate Chi Square Value (0.05) 57.183372

Adjusted Level of Significance 0.0300900 Adjusted Chi Square Value 54.829848

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 3.6715907

95% Adjusted Gamma UCL (use when n<50) 3.8291907

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.9410799

Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.8660000

Lilliefors Test Statistic 0.1307282

Lilliefors Critical Value 0.2337000

Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data -0.400478 Mean of logged Data 0.8728854

Maximum of Logged Data 1.6094379 SD of logged Data 0.5906566

Assuming Lognormal Distribution

95% H-UCL 4.1634643 90% Chebyshev (MVUE) UCL 4.2346356 95% Chebyshev (MVUE) UCL 4.8813261 97.5% Chebyshev (MVUE) UCL 5.7789074 99% Chebyshev (MVUE) UCL 7.5420322

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 3.3686238
95% Jackknife UCL 3.4201837
95% Standard Bootstrap UCL 3.3562996
95% Bootstrap UCL 3.3874971
95% BCA Bootstrap UCL 3.3746154
90% Chebyshev(Mean, Sd) UCL 3.8770222
95% Chebyshev(Mean, Sd) UCL 4.3868284
97.5% Chebyshev(Mean, Sd) UCL 5.0944197
99% Chebyshev(Mean, Sd) UCL 6.4843457

Suggested UCL to Use

95% Student's-t UCL 3.4201837

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

Radium-226_0-0.5

General Statistics

Total Number of Observations 13.000000 Number of Distinct Observations 13.000000

Number of Missing Observations 0

Minimum 1.2700000 Mean 2.0000000 Median 2.0000000 Median 2.0000000

SD 0.5203204 Std. Error of Mean 0.1443109

Coefficient of Variation 0.2601602 Skewness 0.5078272

Normal GOF Test

Shapiro Wilk Test Statistic 0.9669575 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.8660000 Data appear Normal at 5% Significance Level

Lilliefors Test Statistic 0.1193633 Lilliefors GOF Test

5% Lilliefors Critical Value 0.2337000 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness)

95% Student's-t UCL 2.2572036 95% Adjusted-CLT UCL (Chen-1995) 2.2590885

95% Modified-t UCL (Johnson-1978) 2.2605912

Gamma GOF Test

A-D Test Statistic 0.1703464 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.7334842 Detected data appear Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.1301401 Kolmogorov-Smirnov Gamma GOF Test

5% K-S Critical Value 0.2363319 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE) 16.238409 k star (bias corrected MLE) 12.542366
Theta hat (MLE) 0.1231648 Theta star (bias corrected MLE) 0.1594596

nu hat (MLE) 422.19863 nu star (bias corrected) 326.10151 (bias corrected) 2.0000000 MLE Sd (bias corrected) 0.5647292

MLE Mean (bias corrected) 2.0000000 MLE Sd (bias corrected) 0.5647292

Approximate Chi Square Value (0.05) 285.26217

Adjusted Level of Significance 0.0300900 Adjusted Chi Square Value 279.81895

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 2.2863284 95% Adjusted Gamma UCL (use when n<50) 2.3308036

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.9788167 Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value 0.8660000 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.1195309 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.2337000 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 0.2390169 Mean of logged Data 0.6620401

Maximum of Logged Data 1.1281711 SD of logged Data 0.2602688

Assuming Lognormal Distribution

95% H-UCL 2.3091348 90% Chebyshev (MVUE) UCL 2.4366191 95% Chebyshev (MVUE) UCL 2.6343131 97.5% Chebyshev (MVUE) UCL 2.9087048 99% Chebyshev (MVUE) UCL 3.4476941

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 2.2373703
95% Standard Bootstrap UCL 2.2316402
95% Standard Bootstrap UCL 2.2316402
95% Bootstrap UCL 2.2926939
95% Percentile Bootstrap UCL 2.2315385
95% BCA Bootstrap UCL 2.2415385
90% Chebyshev(Mean, Sd) UCL 2.4329328
95% Chebyshev(Mean, Sd) UCL 2.6290367
97.5% Chebyshev(Mean, Sd) UCL 2.9012214
99% Chebyshev(Mean, Sd) UCL 3.4358755

Suggested UCL to Use

95% Student's-t UCL 2.2572036

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Radium-228_0-0.5

General Statistics

Number of Distinct Observations 13.000000	Total Number of Observations 13.000000
Number of Missing Observations 0	
Mean 1.8515385	Minimum 1.2000000
Median 1.7700000	Maximum 2.8400000
Std. Error of Mean 0.1486859	SD 0.5360946
Skewness 0.4520461	Coefficient of Variation 0.2895401

Normal GOF Test

Shapiro Wilk GOF Test	Shapiro Wilk Test Statistic 0.9160711
Data appear Normal at 5% Significance Level	5% Shapiro Wilk Critical Value 0.8660000
Lilliefors GOF Test	Lilliefors Test Statistic 0.1684634
Data appear Normal at 5% Significance Level	5% Lilliefors Critical Value 0.2337000

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 2.1165395

95% Normal UCL 95% UCLs (Adjusted for Skewness)

95% Adjusted-CLT UCL (Chen-1995) 2.1160237 95% Modified-t UCL (Johnson-1978) 2.1196464

Gamma GOF Test

A-D Test Statistic 0.4543474	Anderson-Darling Gamma GOF Test
5% A-D Critical Value 0.7336079	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic 0.1889384	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value 0.2365100	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k star (bias corrected MLE) 10.221213	k hat (MLE) 13.220911
Theta star (bias corrected MLE) 0.1811466	Theta hat (MLE) 0.1400462
nu star (bias corrected) 265.75154	nu hat (MLE) 343.74367
MLE Sd (bias corrected) 0.5791373	MLE Mean (bias corrected) 1.8515385
Approximate Chi Square Value (0.05) 229.00110	
Adjusted Chi Square Value 224.14032	Adjusted Level of Significance 0.0300900

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 2.1486761 95% Adjusted Gamma UCL (use when n<50) 2.1952731

Lognormal GOF Test

Shapiro Wilk Lognormal GOF Test	Shapiro Wilk Test Statistic 0.9301548
Data appear Lognormal at 5% Significance Level	5% Shapiro Wilk Critical Value 0.8660000
Lilliefors Lognormal GOF Test	Lilliefors Test Statistic 0.1846655
Data appear Lognormal at 5% Significance Level	5% Lilliefors Critical Value 0.2337000

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 0.1823216	Mean of logged Data 0.5777215
Maximum of Logged Data 1.0438041	SD of logged Data 0.2875484

Assuming Lognormal Distribution

95% H-UCL 2.1741878	90% Chebyshev (MVUE) UCL 2.2980673
95% Chebyshev (MVUE) UCL 2.5005285	97.5% Chebyshev (MVUE) UCL 2.7815367
99% Chehyshey (MVLIE) LICL 3 3335229	

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 2.0961050	95% Jackknife UCL 2.1165395
95% Standard Bootstrap UCL 2.0830699	95% Bootstrap-t UCL 2.1405087
95% Hall's Bootstrap UCL 2.0934862	95% Percentile Bootstrap UCL 2.0892308
95% BCA Bootstrap UCL 2.1184615	
90% Chebyshev(Mean, Sd) UCL 2.2975961	95% Chebyshev(Mean, Sd) UCL 2.4996452
97.5% Chebyshev(Mean, Sd) UCL 2.7800816	99% Chebyshev(Mean, Sd) UCL 3.3309444

Suggested UCL to Use

95% Student's-t UCL 2.1165395

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

Uranium-238_0-0.5

General Statistics

Total Number of Observations 13.000000 Number of Distinct Observations 11.000000

Number of Missing Observations 0

Minimum 0.9000000 Mean 1.5323077 Maximum 2.5400000 Median 1.4400000

SD 0.5344024 Std. Error of Mean 0.1482166

Coefficient of Variation 0.3487566 Skewness 0.6169681

Normal GOF Test

Shapiro Wilk Test Statistic 0.9199173 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.8660000 Data appear Normal at 5% Significance Level

Lilliefors Test Statistic 0.1617934 **Lilliefors GOF Test**

5% Lilliefors Critical Value 0.2337000 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness)

> 95% Student's-t UCL 1.7964722 95% Adjusted-CLT UCL (Chen-1995) 1.8032022

> > 95% Modified-t UCL (Johnson-1978) 1.8006993

Gamma GOF Test

A-D Test Statistic 0.3429497 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.7340522 Detected data appear Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.1496723 Kolmogorov-Smirnov Gamma GOF Test

5% K-S Critical Value 0.2368055 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE) 9.2871007 k star (bias corrected MLE) 7.1952057 Theta hat (MLE) 0.1649931 Theta star (bias corrected MLE) 0.2129623

nu hat (MLE) 241.46462 nu star (bias corrected) 187.07535 MLE Mean (bias corrected) 1.5323077 MLE Sd (bias corrected) 0.5712476

Approximate Chi Square Value (0.05) 156.43590

Adjusted Level of Significance 0.0300900 Adjusted Chi Square Value 152.44519

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 1.8324246 95% Adjusted Gamma UCL (use when n<50) 1.8803938

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.9449261 **Shapiro Wilk Lognormal GOF Test** 5% Shapiro Wilk Critical Value 0.8660000 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.1352232 **Lilliefors Lognormal GOF Test**

5% Lilliefors Critical Value 0.2337000 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data -0.105361 Mean of logged Data 0.3719717

Maximum of Logged Data 0.9321641 SD of logged Data 0.3433006

Assuming Lognormal Distribution

95% H-UCL 1.8662610 90% Chebyshev (MVUE) UCL 1.9744496 95% Chebyshev (MVUE) UCL 2.1751538 97.5% Chebyshev (MVUE) UCL 2.4537233 99% Chebyshev (MVUE) UCL 3.0009193

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 1.7761022 95% Jackknife UCL 1.7964722
95% Standard Bootstrap UCL 1.7646749 95% Bootstrap-t UCL 1.8491300
95% Hall's Bootstrap UCL 1.7942814 95% Percentile Bootstrap UCL 1.7715385
95% BCA Bootstrap UCL 1.7907692
90% Chebyshev(Mean, Sd) UCL 1.9769573 95% Chebyshev(Mean, Sd) UCL 2.1783687
97.5% Chebyshev(Mean, Sd) UCL 2.4579198 99% Chebyshev(Mean, Sd) UCL 3.0070438

Suggested UCL to Use

95% Student's-t UCL 1.7964722

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

Uranium-234_0-0.5

General Statistics

Total Number of Observations 13.000000 Number of Distinct Observations 13.000000

Number of Missing Observations 0

Minimum 0.9900000 Mean 1.5130769
Maximum 2.4400000 Median 1.4200000

SD 0.4537140 Std. Error of Mean 0.1258376

Coefficient of Variation 0.2998618 Skewness 0.7433070

Normal GOF Test

Shapiro Wilk Test Statistic 0.9151272 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.8660000 Data appear Normal at 5% Significance Level

Lilliefors Test Statistic 0.1879082 Lilliefors GOF Test

5% Lilliefors Critical Value 0.2337000 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness)

95% Student's-t UCL 1.7373558 95% Adjusted-CLT UCL (Chen-1995) 1.7477810

95% Modified-t UCL (Johnson-1978) 1.7416795

Gamma GOF Test

A-D Test Statistic 0.3956690 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.7336234 Detected data appear Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.1858769 Kolmogorov-Smirnov Gamma GOF Test

5% K-S Critical Value 0.2365322 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE) 12.844507 k star (bias corrected MLE) 9.9316719
Theta hat (MLE) 0.1177995 Theta star (bias corrected MLE) 0.1523487

nu hat (MLE) 333.95718 nu star (bias corrected) 258.22347

MLE Mean (bias corrected) 1.5130769 MLE Sd (bias corrected) 0.4801200

Approximate Chi Square Value (0.05) 222.01447

Adjusted Level of Significance 0.0300900 Adjusted Chi Square Value 217.23080

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 1.7598491 95% Adjusted Gamma UCL (use when n<50) 1.7986031

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.9397756 Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value 0.8660000 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.1711423 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.2337000 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data -0.010050 Mean of logged Data 0.3747133

Maximum of Logged Data 0.8919980 SD of logged Data 0.2890148

Assuming Lognormal Distribution

95% H-UCL 1.7770872 90% Chebyshev (MVUE) UCL 1.8784694 95% Chebyshev (MVUE) UCL 2.0446549 97.5% Chebyshev (MVUE) UCL 2.2753139 99% Chebyshev (MVUE) UCL 2.7283989

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% Jackknife UCL 1.7373558	95% CLT UCL 1.7200614
95% Bootstrap-t UCL 1.7724650	95% Standard Bootstrap UCL 1.7110899
95% Percentile Bootstrap UCL 1.7192308	95% Hall's Bootstrap UCL 1.7439659
	95% BCA Bootstrap UCL 1.7484615
95% Chebyshev(Mean, Sd) UCL 2.0615904	90% Chebyshev(Mean, Sd) UCL 1.8905898
99% Chebyshev(Mean, Sd) UCL 2.7651455	97.5% Chebyshev(Mean, Sd) UCL 2.2989327

Suggested UCL to Use

95% Student's-t UCL 1.7373558

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Uranium-235_0-0.5

General Statistics

Total Number of Observations	13.000000	Number of Distinct Observations	13.000000
Number of Detects	6.0000000	Number of Non-Detects	7.0000000
Number of Distinct Detects	6.0000000	Number of Distinct Non-Detects	7.0000000
Minimum Detect	0.0770000	Minimum Non-Detect	0.0680000
Maximum Detect	0.1110000	Maximum Non-Detect	0.0920000
Variance Detects	1.5680E-4	Percent Non-Detects	53.846154%
Mean Detects	0.0920000	SD Detects	0.0125220
Median Detects	0.0875000	CV Detects	0.1361085
Skewness Detects	0.6738151	Kurtosis Detects	-0.619420
Mean of Logged Detects	-2.393479	SD of Logged Detects	0.1334082

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic 0.9108725	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value 0.7880000	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic 0.2919696	Lilliefors GOF Test
5% Lilliefors Critical Value 0.3245000	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Standard Error of Mean 0.0043957	KM Mean 0.0806282
95% KM (BCA) UCL 0.0890220	KM SD 0.0137993
95% KM (Percentile Bootstrap) UCL 0.0879846	95% KM (t) UCL 0.0884627
95% KM Bootstrap t UCL 0.0867025	95% KM (z) UCL 0.0878585
95% KM Chebyshev UCL 0.0997887	90% KM Chebyshev UCL 0.0938154
99% KM Chebyshev UCL 0.1243651	97.5% KM Chebyshev UCL 0.1080795

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	A-D Test Statistic 0.3981075
Detected data appear Gamma Distributed at 5% Significance	5% A-D Critical Value 0.6966559
Kolmogorov-Smirnov GOF	K-S Test Statistic 0.2919767
Detected data appear Gamma Distributed at 5% Significance	5% K-S Critical Value 0.3317197

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k star (bias corrected MLE) 33.472385	k hat (MLE) 66.722547
Theta star (bias corrected MLE) 0.0027485	Theta hat (MLE) 0.0013788
nu star (bias corrected) 401.66862	nu hat (MLE) 800.67056
	Mean (detects) 0.0920000

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum 0.0622192	Mean 0.0782892
Maximum 0.1110000	Median 0.0733020
SD 0.0158806	CV 0.2028453
k hat (MLE) 28.223936	k star (bias corrected MLE) 21.762002
Theta hat (MLE) 0.0027739	Theta star (bias corrected MLE) 0.0035975
nu hat (MLE) 733.82235	nu star (bias corrected) 565.81206
Adjusted Level of Significance (β) 0.0300900	
Approximate Chi Square Value (565.81, α) 511.63994	Adjusted Chi Square Value (565.81, β) 504.29671
95% Gamma Approximate UCL (use when n>=50) 0.0865784	95% Gamma Adjusted UCL (use when n<50) 0.0878391

Estimates of Gamma Parameters using KM Estimates

0806282	SD (KM) 0.0137993
9042E-4	SE of Mean (KM) 0.0043957
.139549	k star (KM) 26.312474
7.62827	nu star (KM) 684.12431
0023617	theta star (KM) 0.0030643
)934726	90% gamma percentile (KM) 0.1013137
1081041	99% gamma percentile (KM) 0.1216253

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (684.12, a) 624.43950 Adjusted Chi Square Value (684.12, β) 616.31043 95% Gamma Approximate KM-UCL (use when n>=50) 0.0883348 95% Gamma Adjusted KM-UCL (use when n<50) 0.0894999

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic 0.9244038 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.7880000 Detected Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.2757342 **Lilliefors GOF Test**

5% Lilliefors Critical Value 0.3245000 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale 0.0794665 Mean in Log Scale -2.547310 SD in Original Scale 0.0148199 SD in Log Scale 0.1764192 95% t UCL (assumes normality of ROS data) 0.0867922 95% Percentile Bootstrap UCL 0.0859002 95% BCA Bootstrap UCL 0.0874143 95% Bootstrap t UCL 0.0895677 95% H-UCL (Log ROS) 0.0872123

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged) -2.531599 KM Geo Mean 0.0795317 KM SD (logged) 0.1628379 95% Critical H Value (KM-Log) 1.8037003 95% H-UCL (KM -Log) 0.0877245 KM Standard Error of Mean (logged) 0.0524654 KM SD (logged) 0.1628379 95% Critical H Value (KM-Log) 1.8037003

KM Standard Error of Mean (logged) 0.0524654

DI /2 Statistics

DL/2 Normal DL/2 Log-Transformed

Mean in Original Scale 0.0636923 Mean in Log Scale -2.848837 SD in Original Scale 0.0286389 SD in Log Scale 0.4547314 95% t UCL (Assumes normality) 0.0778490 95% H-Stat UCL 0.0841692

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.0884627

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

Antimony_0-15

General Statistics

Total Number of Observations 50.000000	Number of Distinct Observations 19.000000
Number of Detects 21.000000	Number of Non-Detects 29.000000
Number of Distinct Detects 12.000000	Number of Distinct Non-Detects 8.0000000
Minimum Detect 0.1000000	Minimum Non-Detect 0.0930000
Maximum Detect 0.7300000	Maximum Non-Detect 0.1000000
Variance Detects 0.0189462	Percent Non-Detects 58.0000009
Mean Detects 0.1980952	SD Detects 0.1376452
Median Detects 0.1500000	CV Detects 0.6948434
Skewness Detects 3.1849206	Kurtosis Detects 11.716509
Mean of Logged Detects -1.750075	SD of Logged Detects 0.4656034

Normal GOF Test on Detects Only

Shapiro Wilk GOF Test	Shapiro Wilk Test Statistic 0.6096121	
Detected Data Not Normal at 5% Significance Level	5% Shapiro Wilk Critical Value 0.9080000 Detected Data Not Normal at 5% Significance L	
Lilliefors GOF Test	Lilliefors Test Statistic 0.2665812	
Detected Data Not Normal at 5% Significance Level	5% Lilliefors Critical Value 0.1881000	

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean 0.1371400	KM Standard Error of Mean 0.0146850
KM SD 0.1013363	95% KM (BCA) UCL 0.1656000
95% KM (t) UCL 0.1617602	95% KM (Percentile Bootstrap) UCL 0.1627200
95% KM (z) UCL 0.1612947	95% KM Bootstrap t UCL 0.1834355
90% KM Chebyshev UCL 0.1811951	95% KM Chebyshev UCL 0.2011505
97.5% KM Chebyshev UCL 0.2288479	99% KM Chebyshev UCL 0.2832541

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	A-D Test Statistic 1.5652070
Detected Data Not Gamma Distributed at 5% Significance Level	5% A-D Critical Value 0.7473555
Kolmogorov-Smirnov GOF	K-S Test Statistic 0.2589539
Detected Data Not Gamma Distributed at 5% Significance Level	5% K-S Critical Value 0.1902973

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k star (bias corrected MLE) 3.4378909	k hat (MLE) 3.9738356
Theta star (bias corrected MLE) 0.0576212	Theta hat (MLE) 0.0498499
nu star (bias corrected) 144.39142	nu hat (MLE) 166.90110
	Mean (detects) 0.1980952

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Mean 0.0894650	Minimum 0.0100000
Median 0.0100000	Maximum 0.7300000
CV 1.4340729	SD 0.1282994
k star (bias corrected MLE) 0.6105016	k hat (MLE) 0.6352854
Theta star (bias corrected MLE) 0.1465435	Theta hat (MLE) 0.1408265
nu star (bias corrected) 61.050164	nu hat (MLE) 63.528543
	of Significance (B) 0.0452000

Adjusted Level of Significance (β) 0.0452000

Approximate Chi Square Value (61.05, α) 44.080573 Adjusted Chi Square Value (61.05, β) 43.652133 95% Gamma Approximate UCL (use when n>=50) 0.1239062 95% Gamma Adjusted UCL (use when n<50) 0.1251223

Estimates of Gamma Parameters using KM Estimates

Mean (KM) 0.1371400	SD (KM) 0.1013363
Variance (KM) 0.0102690	SE of Mean (KM) 0.0146850
k hat (KM) 1.8314642	k star (KM) 1.7349097
nu hat (KM) 183.14642	nu star (KM) 173.49097
theta hat (KM) 0.0748800	theta star (KM) 0.0790473
80% gamma percentile (KM) 0.2087473	90% gamma percentile (KM) 0.2758855
95% gamma percentile (KM) 0.3404825	99% gamma percentile (KM) 0.4850065

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (173.49, α) 144.02996	Adjusted Chi Square Value (173.49, β) 143.23497
95% Gamma Approximate KM-UCL (use when n>=50) 0.1651917	95% Gamma Adjusted KM-UCL (use when n<50) 0.1661085

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk GOF Test	Shapiro Wilk Test Statistic 0.8446517
Detected Data Not Lognormal at 5% Significance Level	5% Shapiro Wilk Critical Value 0.9080000
Lilliefors GOF Test	Lilliefors Test Statistic 0.2429765
Detected Data Not Lognormal at 5% Significance Level	5% Lilliefors Critical Value 0.1881000

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale 0.1115757	Mean in Log Scale -2.525997
SD in Original Scale 0.1159390	SD in Log Scale 0.7897495
95% t UCL (assumes normality of ROS data) 0.1390648	95% Percentile Bootstrap UCL 0.1409505
95% BCA Bootstrap UCL 0.1528939	95% Bootstrap t UCL 0.1570807
95% H-UCL (Log ROS) 0.1388798	

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Geo Mean 0.1209205
95% Critical H Value (KM-Log) 1.8400394
95% H-UCL (KM -Log) 0.1481448
95% Critical H Value (KM-Log) 1.8400394

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed
Mean in Original Scale 0.1116100	Mean in Log Scale -2.484648
SD in Original Scale 0.1151557	SD in Log Scale 0.6982474

DL/2 is not a recommended method, provided for comparisons and historical reasons

95% t UCL (Assumes normality) 0.1389134

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.1617602 KM H-UCL 0.1481448 95% KM (BCA) UCL 0.1656000

95% H-Stat UCL 0.1303222

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

General Statistics

Total Number of Observations 50.000000 Number of Distinct Observations 27.000000

Number of Missing Observations 0

Minimum 0.4800000 Mean 1.6902000

Maximum 4.5000000 Median 1.7000000

SD 0.8094203 Std. Error of Mean 0.1144693

Coefficient of Variation 0.4788902 Skewness 1.2405715

Normal GOF Test

Shapiro Wilk Test Statistic 0.9140182 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.9470000 Data Not Normal at 5% Significance Level

Lilliefors Test Statistic 0.1309551 Lilliefors GOF Test

5% Lilliefors Critical Value 0.1246000 Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness)

95% Student's-t UCL 1.8821136 95% Adjusted-CLT UCL (Chen-1995) 1.8999441

95% Modified-t UCL (Johnson-1978) 1.8854608

Gamma GOF Test

A-D Test Statistic 0.3654505 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.7536273 Detected data appear Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.0946787 Kolmogorov-Smirnov Gamma GOF Test

5% K-S Critical Value 0.1256156 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE) 4.7152782 k star (bias corrected MLE) 4.4456948
Theta hat (MLE) 0.3584518 Theta star (bias corrected MLE) 0.3801880

nu hat (MLE) 471.52782 nu star (bias corrected) 444.56948 MLE Mean (bias corrected) 1.6902000 MLE Sd (bias corrected) 0.8016195

Approximate Chi Square Value (0.05) 396.68559

Adjusted Level of Significance 0.0452000 Adjusted Chi Square Value 395.34876

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 1.8942239 95% Adjusted Gamma UCL (use when n<50) 1.9006291

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.9736216 Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value 0.9470000 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.1194205 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.1246000 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data -0.733969 Mean of logged Data 0.4150771

Maximum of Logged Data 1.5040774 SD of logged Data 0.4839019

Assuming Lognormal Distribution

95% H-UCL 1.9385562 90% Chebyshev (MVUE) UCL 2.0633059 95% Chebyshev (MVUE) UCL 2.2286939 97.5% Chebyshev (MVUE) UCL 2.4582461 99% Chebyshev (MVUE) UCL 2.9091569

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 1.8784853 95% Jackknife UCL 1.8821136
95% Standard Bootstrap UCL 1.8727763 95% Bootstrap-t UCL 1.9184606
95% Hall's Bootstrap UCL 1.9198110 95% Percentile Bootstrap UCL 1.8782000
95% BCA Bootstrap UCL 1.8986000
90% Chebyshev(Mean, Sd) UCL 2.0336079 95% Chebyshev(Mean, Sd) UCL 2.1891602
97.5% Chebyshev(Mean, Sd) UCL 2.4050606 99% Chebyshev(Mean, Sd) UCL 2.8291553

Suggested UCL to Use

95% Approximate Gamma UCL 1.8942239

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

General Statistics

Total Number of Observations 50.000000 Number of Distinct Observations 43.000000

Number of Missing Observations 0

Minimum 7.6000000 Mean 181.09200

Maximum 710.00000 Median 120.00000

SD 168.58372 Std. Error of Mean 23.841339

Coefficient of Variation 0.9309286 Skewness 1.2663417

Normal GOF Test

Shapiro Wilk Test Statistic 0.8545971 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.9470000 Data Not Normal at 5% Significance Level

Lilliefors Test Statistic 0.1814674 Lilliefors GOF Test

5% Lilliefors Critical Value 0.1246000 Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness)

95% Student's-t UCL 221.06322 95% Adjusted-CLT UCL (Chen-1995) 224.86974

95% Modified-t UCL (Johnson-1978) 221.77483

Gamma GOF Test

A-D Test Statistic 0.4391626 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.7768424 Detected data appear Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.0757808 Kolmogorov-Smirnov Gamma GOF Test

5% K-S Critical Value 0.1285773 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE) 1.1224520 k star (bias corrected MLE) 1.0684382
Theta hat (MLE) 161.33607 Theta star (bias corrected MLE) 169.49225

nu hat (MLE) 112.24520 nu star (bias corrected) 106.84382 MLE Mean (bias corrected) 181.09200 MLE Sd (bias corrected) 175.19615

Approximate Chi Square Value (0.05) 83.988755

Adjusted Level of Significance 0.0452000 Adjusted Chi Square Value 83.387792

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 230.37086 95% Adjusted Gamma UCL (use when n<50) 232.03111

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.9575496 Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value 0.9470000 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.0943283 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.1246000 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 2.0281482 Mean of logged Data 4.6914543

Maximum of Logged Data 6.5652650 SD of logged Data 1.1191627

Assuming Lognormal Distribution

95% H-UCL 302.94205 90% Chebyshev (MVUE) UCL 314.98715 95% Chebyshev (MVUE) UCL 367.09896 97.5% Chebyshev (MVUE) UCL 439.42812 99% Chebyshev (MVUE) UCL 581.50477

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 220.30751
95% Standard Bootstrap UCL 220.12113
95% Hall's Bootstrap UCL 226.40478
95% BCA Bootstrap UCL 224.67200
90% Chebyshev(Mean, Sd) UCL 252.61602
97.5% Chebyshev(Mean, Sd) UCL 329.98111
95% Jackknife UCL 221.06322
95% Bootstrap UCL 224.69712
95% Percentile Bootstrap UCL 222.44000
95% Chebyshev(Mean, Sd) UCL 252.61602
95% Chebyshev(Mean, Sd) UCL 418.31033

Suggested UCL to Use

95% Approximate Gamma UCL 230.37086

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

General Statistics

 Total Number of Observations 50.000000
 Number of Distinct Observations 34.000000

 Number of Missing Observations 0
 0

 Minimum 0.7800000
 Mean 4.5042000

 Maximum 8.7000000
 Median 4.3500000

 SD 2.2483210
 Std. Error of Mean 0.3179606

Skewness 0.1264981

Normal GOF Test

Coefficient of Variation 0.4991610

Shapiro Wilk Test Statistic 0.9522028

Shapiro Wilk GOF Test

Shapiro Wilk Critical Value 0.9470000

Lilliefors Test Statistic 0.0724341

Shapiro Wilk GOF Test

Data appear Normal at 5% Significance Level

Lilliefors GOF Test

Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness)

95% Student's-t UCL 5.0372771 95% Adjusted-CLT UCL (Chen-1995) 5.0332765 95% Modified-t UCL (Johnson-1978) 5.0382251

Gamma GOF Test

A-D Test Statistic 0.7385706	Anderson-Darling Gamma GOF Test
5% A-D Critical Value 0.7561603	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic 0.1017560	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value 0.1260872	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE) 3.2234404	k star (bias corrected MLE) 3.0433673
Theta hat (MLE) 1.3973269	Theta star (bias corrected MLE) 1.4800054
nu hat (MLE) 322.34404	nu star (bias corrected) 304.33673
MLE Mean (bias corrected) 4.5042000	MLE Sd (bias corrected) 2.5819063
	Approximate Chi Square Value (0.05) 264.92446
Adjusted Level of Significance 0.0452000	Adjusted Chi Square Value 263.83687

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 5.1742806

95% Adjusted Gamma UCL (use when n<50) 5.1956101

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.9051394

5% Shapiro Wilk Critical Value 0.9470000

Lilliefors Test Statistic 0.1329769

5% Lilliefors Critical Value 0.1246000

Shapiro Wilk Lognormal GOF Test

Data Not Lognormal GOF Test

Data Not Lognormal GOF Test

Data Not Lognormal at 5% Significance Level

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data -0.248461 Mean of logged Data 1.3419504

Maximum of Logged Data 2.1633230 SD of logged Data 0.6341904

Assuming Lognormal Distribution

95% H-UCL 5.6035970 90% Chebyshev (MVUE) UCL 6.0080257 95% Chebyshev (MVUE) UCL 6.6202024 97.5% Chebyshev (MVUE) UCL 7.4698799 99% Chebyshev (MVUE) UCL 9.1389069

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 5.0271987
95% Standard Bootstrap UCL 5.0162659
95% Bootstrap UCL 5.0158563
95% BCA Bootstrap UCL 4.9952000
90% Chebyshev(Mean, Sd) UCL 5.4580818
97.5% Chebyshev(Mean, Sd) UCL 6.4898633
95% Jackknife UCL 5.0372771
95% Jackknife UCL 5.0372771
95% Bootstrap UCL 5.0351754
95% Percentile Bootstrap UCL 5.0372000
95% Chebyshev(Mean, Sd) UCL 5.8901581

Suggested UCL to Use

95% Student's-t UCL 5.0372771

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Molybdenum_0-15

General Statistics

Total Number of Observations 50.000000 Number of Distinct Observations 42.000000

Number of Missing Observations 0

 Minimum 0.9300000
 Mean 19.962600

 Maximum 270.00000
 Median 7.0500000

SD 40.607754 Std. Error of Mean 5.7428037

Coefficient of Variation 2.0341916 Skewness 5.0752190

Normal GOF Test

Shapiro Wilk Test Statistic 0.4616757 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.9470000 Data Not Normal at 5% Significance Level

Lilliefors Test Statistic 0.3196443 Lilliefors GOF Test

5% Lilliefors Critical Value 0.1246000 Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness)

95% Student's-t UCL 29.590702 95% Adjusted-CLT UCL (Chen-1995) 33.812944

95% Modified-t UCL (Johnson-1978) 30.277679

Gamma GOF Test

A-D Test Statistic 2.0590565 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.7991403 Data Not Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.1749876 Kolmogorov-Smirnov Gamma GOF Test

5% K-S Critical Value 0.1309391 Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE) 0.6808048 k star (bias corrected MLE) 0.6532898
Theta hat (MLE) 29.322061 Theta star (bias corrected MLE) 30.557034
nu hat (MLE) 68.080479 nu star (bias corrected) 65.328984
MLE Mean (bias corrected) 19.962600 MLE Sd (bias corrected) 24.698135
Approximate Chi Square Value (0.05) 47.731030
Adjusted Level of Significance 0.0452000 Adjusted Chi Square Value 47.284196

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 27.322612 95% Adjusted Gamma UCL (use when n<50) 27.580809

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.9667804

Shapiro Wilk Lognormal GOF Test

Shapiro Wilk Critical Value 0.9470000

Lilliefors Test Statistic 0.0918857

Shapiro Wilk Lognormal GOF Test

Data appear Lognormal at 5% Significance Level

Lilliefors Critical Value 0.1246000

Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data -0.072571 Mean of logged Data 2.1026996

Maximum of Logged Data 5.5984220 SD of logged Data 1.2634247

Assuming Lognormal Distribution

95% H-UCL 29.316836 90% Chebyshev (MVUE) UCL 29.606961 95% Chebyshev (MVUE) UCL 35.002448 97.5% Chebyshev (MVUE) UCL 42.491174 99% Chebyshev (MVUE) UCL 57.201327

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 29.408671 95% Jackknife UCL 29.590702
95% Standard Bootstrap UCL 29.328842 95% Bootstrap-t UCL 40.861368
95% Hall's Bootstrap UCL 65.968575 95% Percentile Bootstrap UCL 29.782000
95% BCA Bootstrap UCL 35.891800
90% Chebyshev(Mean, Sd) UCL 37.191011 95% Chebyshev(Mean, Sd) UCL 44.994901
97.5% Chebyshev(Mean, Sd) UCL 55.826397 99% Chebyshev(Mean, Sd) UCL 77.102775

Suggested UCL to Use

95% H-UCL 29.316836

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ProUCL computes and outputs H-statistic based UCLs for historical reasons only.

H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples in the Technical Guide.

It is therefore recommended to avoid the use of H-statistic based 95% UCLs.

Use of nonparametric methods are preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution.

Uranium_0-15

General Statistics

Total Number of Observations 50.000000 Number of Distinct Observations 35.000000

Number of Missing Observations 0

Minimum 0.6700000 Mean 2.7608000

Maximum 8.0000000 Median 2.6000000

SD 1.4836591 Std. Error of Mean 0.2098211
Coefficient of Variation 0.5374019 Skewness 1.1038790

Normal GOF Test

Shapiro Wilk Test Statistic 0.9275339 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.9470000 Data Not Normal at 5% Significance Level

Lilliefors Test Statistic 0.0991058 Lilliefors GOF Test

5% Lilliefors Critical Value 0.1246000 Data appear Normal at 5% Significance Level

Data appear Approximate Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness)

95% Student's-t UCL 3.1125757 95% Adjusted-CLT UCL (Chen-1995) 3.1409248

95% Modified-t UCL (Johnson-1978) 3.1180350

Gamma GOF Test

A-D Test Statistic 0.2304147 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.7546464 Detected data appear Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.0693225 Kolmogorov-Smirnov Gamma GOF Test

5% K-S Critical Value 0.1258824 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE) 3.6686979 k star (bias corrected MLE) 3.4619094
Theta hat (MLE) 0.7525286 Theta star (bias corrected MLE) 0.7974790

nu hat (MLE) 366.86979 nu star (bias corrected) 346.19094

MLE Mean (bias corrected) 2.7608000 MLE Sd (bias corrected) 1.4838059

Approximate Chi Square Value (0.05) 304.07615

Adjusted Level of Significance 0.0452000 Adjusted Chi Square Value 302.90906

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 3.1431730 95% Adjusted Gamma UCL (use when n<50) 3.1552835

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.9775876 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.9470000 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.0791962 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.1246000 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data -0.400478 Mean of logged Data 0.8730854

Maximum of Logged Data 2.0794415 SD of logged Data 0.5534494

Assuming Lognormal Distribution

95% H-UCL 3.2503602 90% Chebyshev (MVUE) UCL 3.4735793 95% Chebyshev (MVUE) UCL 3.7873871 97.5% Chebyshev (MVUE) UCL 4.2229402 99% Chebyshev (MVUE) UCL 5.0784998

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 3.1059250
95% Standard Bootstrap UCL 3.1093388
95% Standard Bootstrap UCL 3.1093388
95% Hall's Bootstrap UCL 3.1659087
95% BCA Bootstrap UCL 3.1468000
90% Chebyshev(Mean, Sd) UCL 3.3902632
97.5% Chebyshev(Mean, Sd) UCL 4.0711322
99% Chebyshev(Mean, Sd) UCL 4.8484934

Suggested UCL to Use

95% Student's-t UCL 3.1125757

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Radium-226_0-15

General Statistics

Total Number of Observations 50.000000 Number of Distinct Observations 45.000000

Number of Missing Observations 0

 Minimum 0.9500000
 Mean 2.3060000

 Maximum 9.1000000
 Median 1.9350000

SD 1.3143680 Std. Error of Mean 0.1858797

Coefficient of Variation 0.5699775 Skewness 3.5291519

Normal GOF Test

Shapiro Wilk Test Statistic 0.6513264 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.9470000 Data Not Normal at 5% Significance Level

Lilliefors Test Statistic 0.2082599 Lilliefors GOF Test

5% Lilliefors Critical Value 0.1246000 Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness)

95% Student's-t UCL 2.6176368 95% Adjusted-CLT UCL (Chen-1995) 2.7108732

95% Modified-t UCL (Johnson-1978) 2.6330988

Gamma GOF Test

A-D Test Statistic 2.0413735

Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.7532907

K-S Test Statistic 0.1769030

Kolmogorov-Smirnov Gamma GOF Test

5% K-S Critical Value 0.1255367

Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE) 5.4625573 k star (bias corrected MLE) 5.1481371
Theta hat (MLE) 0.4221466 Theta star (bias corrected MLE) 0.4479290
nu hat (MLE) 546.25573 nu star (bias corrected) 514.81371
MLE Mean (bias corrected) 2.3060000 MLE Sd (bias corrected) 1.0163288
Approximate Chi Square Value (0.05) 463.19521
Adjusted Level of Significance 0.0452000 Adjusted Chi Square Value 461.74848

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 2.5629808 95% Adjusted Gamma UCL (use when n<50) 2.5710110

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.9127220

Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.9470000

Lilliefors Test Statistic 0.1488436

Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.1246000

Data Not Lognormal at 5% Significance Level

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data -0.051293 Mean of logged Data 0.7411987

Maximum of Logged Data 2.2082744 SD of logged Data 0.3983329

Assuming Lognormal Distribution

95% H-UCL 2.5205732 90% Chebyshev (MVUE) UCL 2.6635595 95% Chebyshev (MVUE) UCL 2.8428065 97.5% Chebyshev (MVUE) UCL 3.0915943 99% Chebyshev (MVUE) UCL 3.5802897

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

95% CLT UCL 2.6117449
95% Jackknife UCL 2.6176368
95% Standard Bootstrap UCL 2.6126414
95% Bootstrap UCL 2.8691160
95% Hall's Bootstrap UCL 4.2292443
95% Percentile Bootstrap UCL 2.6112000
95% BCA Bootstrap UCL 2.7172000
90% Chebyshev(Mean, Sd) UCL 2.8636391
95% Chebyshev(Mean, Sd) UCL 3.1162309
97.5% Chebyshev(Mean, Sd) UCL 3.4668184
99% Chebyshev(Mean, Sd) UCL 4.1554797

Suggested UCL to Use

95% Student's-t UCL 2.6176368 or 95% Modified-t UCL 2.6330988

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Radium-228_0-15

General Statistics

Total Number of Observations 50.000000 Number of Distinct Observations 39.000000

Number of Missing Observations 0

Minimum 0.9700000 Mean 1.6816000

Maximum 2.8400000 Median 1.6650000

SD 0.3940960 Std. Error of Mean 0.0557336

Coefficient of Variation 0.2343578 Skewness 0.5535706

Normal GOF Test

Shapiro Wilk Test Statistic 0.9690242 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.9470000 Data appear Normal at 5% Significance Level

Lilliefors Test Statistic 0.1038669 Lilliefors GOF Test

5% Lilliefors Critical Value 0.1246000 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness)

95% Student's-t UCL 1.7750402 95% Adjusted-CLT UCL (Chen-1995) 1.7779357

95% Modified-t UCL (Johnson-1978) 1.7757674

Gamma GOF Test

A-D Test Statistic 0.2733365 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.7483460 Detected data appear Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.0782128 Kolmogorov-Smirnov Gamma GOF Test

5% K-S Critical Value 0.1249722 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE) 18.805897 k star (bias corrected MLE) 17.690876

Theta hat (MLE) 0.0894188 Theta star (bias corrected MLE) 0.0950546

nu hat (MLE) 1880.5897 nu star (bias corrected) 1769.0876
MLE Mean (bias corrected) 1.6816000 MLE Sd (bias corrected) 0.3998048

Approximate Chi Square Value (0.05) 1672.3977

Adjusted Level of Significance 0.0452000 Adjusted Chi Square Value 1669.6241

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 1.7788220 95% Adjusted Gamma UCL (use when n<50) 1.7817769

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.9794606 Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value 0.9470000 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.0836230 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.1246000 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data -0.030459 Mean of logged Data 0.4929228

Maximum of Logged Data 1.0438041 SD of logged Data 0.2352761

Assuming Lognormal Distribution

95% H-UCL 1.7896491 90% Chebyshev (MVUE) UCL 1.8519288
95% Chebyshev (MVUE) UCL 1.9288638 97.5% Chebyshev (MVUE) UCL 2.0356465
99% Chebyshev (MVUE) UCL 2.2454006

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 1.7732736 95% Jackknife UCL 1.7750402
95% Standard Bootstrap UCL 1.7706372 95% Bootstrap-t UCL 1.7818764
95% Hall's Bootstrap UCL 1.7784893 95% Percentile Bootstrap UCL 1.7770000
95% BCA Bootstrap UCL 1.7846000
90% Chebyshev(Mean, Sd) UCL 1.8488008 95% Chebyshev(Mean, Sd) UCL 1.9245371
97.5% Chebyshev(Mean, Sd) UCL 2.0296562 99% Chebyshev(Mean, Sd) UCL 2.2361423

Suggested UCL to Use

95% Student's-t UCL 1.7750402

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Uranium-238_0-2 (also 0-15)

^		Canadanian	
Ger	ıera	I Statistics	

Total Number of Observations	26	Number of Distinct Observations	24	
		Number of Missing Observations	0	
Minimum	0.87	Mean	1.422	
Maximum	2.54	Median	1.305	
SD	0.466	Std. Error of Mean	0.0914	
Coefficient of Variation	0.328	Skewness	0.753	

Normal GOF Test

Shapiro Wilk Test Statistic	0.914	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.92	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.175	Lilliefors GOF Test
5% Lilliefors Critical Value	0.17	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	1.578	95% Adjusted-CLT UCL (Chen-1995)	1.587
		95% Modified-t UCL (Johnson-1978)	1.58

Gamma GOF Test

A-D Test Statistic	0.583	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.744	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.163	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.171	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	10.38	k star (bias corrected MLE)	
Theta hat (MLE)	0.137	Theta star (bias corrected MLE)	
nu hat (MLE)	539.9	nu star (bias corrected)	479
MLE Mean (bias corrected)	1.422	MLE Sd (bias corrected)	0.469
		Approximate Chi Square Value (0.05)	429.2
Adjusted Level of Significance	0.0398	Adjusted Chi Square Value	426.1

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)	1.587	95% Adjusted Gamma UCL (use when n<50)	1.598
33 /0 Approximate Gamma OCL (use when he = 30)	1.007	33 /0 Adjusted Callilla OCE (dse Wileli II \ 30)	1.000

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.942	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.92	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.149	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.17	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-0.139	Mean of logged Data	0.303
Maximum of Logged Data	0.932	SD of logged Data	0.316

Assuming Lognormal Distribution

95% H-UCL	1.597	90% Chebyshev (MVUE) UCL	1.689
95% Chebyshev (MVUE) UCL	1.81	97.5% Chebyshev (MVUE) UCL	1.979
99% Chebyshev (MVUE) UCL	2.31		

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	1.572	95% Jackknife UCL	1.578
95% Standard Bootstrap UCL	1.567	95% Bootstrap-t UCL	1.6
95% Hall's Bootstrap UCL	1.591	95% Percentile Bootstrap UCL	1.564
95% BCA Bootstrap UCL	1.591		
90% Chebyshev(Mean, Sd) UCL	1.696	95% Chebyshev(Mean, Sd) UCL	1.82
97.5% Chebyshev(Mean, Sd) UCL	1.992	99% Chebyshev(Mean, Sd) UCL	2.331

Suggested UCL to Use

95% Adjusted Gamma UCL 1.598

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Uranium-234_0-2 (also 0-15)

A			•
Gener	ลเ รา	ลบรา	IICS

26	Number of Distinct Observations	24
	Number of Missing Observations	0
0.77	Mean	1.464
2.44	Median	1.33
0.449	Std. Error of Mean	0.0881
0.307	Skewness	0.613
	0.77 2.44 0.449	Number of Missing Observations 0.77 Mean 2.44 Median 0.449 Std. Error of Mean

Normal GOF Test

Shapiro Wilk Test Statistic	0.934	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.92	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.191	Lilliefors GOF Test
5% Lilliefors Critical Value	0.17	Data Not Normal at 5% Significance Level

Data appear Approximate Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's	s-t UCL 1.615	95% Adjusted-CLT UCL (Chen-1995)	1.62
		95% Modified-t UCL (Johnson-1978)	1.616

Gamma GOF Test

0.516	A-D Test Statistic
0.744	5% A-D Critical Value
0.173	K-S Test Statistic
0.171	5% K-S Critical Value
	0.744 0.173

Detected data follow Appr. Gamma Distribution at 5% Significance Level

Gamma Statistics

k hat (MLE)	11.5	k star (bias corrected MLE)	10.2
Theta hat (MLE)	0.127	Theta star (bias corrected MLE)	0.144
nu hat (MLE)	597.9	nu star (bias corrected)	530.2
MLE Mean (bias corrected)	1.464	MLE Sd (bias corrected)	0.459
		Approximate Chi Square Value (0.05)	477.8
Adjusted Level of Significance	0.0398	Adjusted Chi Square Value	474.5

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 1 625	95% Adjusted Gamma UCL (use when n<50)	1.636

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.964	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.92	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.157	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.17	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-0.261	Mean of logged Data	0.337
Maximum of Logged Data	0.892	SD of logged Data	0.302

Assuming Lognormal Distribution

95% H-UCL	1.637	90% Chebyshev (MVUE) UCL	1.728
95% Chebyshev (MVUE) UCL	1.848	97.5% Chebyshev (MVUE) UCL	2.014
99% Chebyshev (MVUE) UCL	2.341		

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	1.609	95% Jackknife UCL	1.615
95% Standard Bootstrap UCL	1.605	95% Bootstrap-t UCL	1.632
95% Hall's Bootstrap UCL	1.623	95% Percentile Bootstrap UCL	1.605
95% BCA Bootstrap UCL	1.619		
90% Chebyshev(Mean, Sd) UCL	1.729	95% Chebyshev(Mean, Sd) UCL	1.848
97.5% Chebyshev(Mean, Sd) UCL	2.014	99% Chebyshev(Mean, Sd) UCL	2.341

Suggested UCL to Use

95% Student's-t UCL 1.615

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Uranium-235_0-2 (also 0-15)

General Statistics	
	2

Total Number of Observations	26	Number of Distinct Observations	24
Number of Detects	13	Number of Non-Detects	13
Number of Distinct Detects	13	Number of Distinct Non-Detects	13
Minimum Detect	0.049	Minimum Non-Detect	0.032
Maximum Detect	0.19	Maximum Non-Detect	0.111
Variance Detects	0.00153	Percent Non-Detects	50%
Mean Detects	0.103	SD Detects	0.0391
Median Detects	0.088	CV Detects	0.381
Skewness Detects	1.068	Kurtosis Detects	0.94
Mean of Logged Detects	-2.34	SD of Logged Detects	0.366

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.914	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.866	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.188	Lilliefors GOF Test
5% Lilliefors Critical Value	0.234	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

	KM Mean	0.0775	KM Standard Error of Mean	0.00881
	KM SD	0.0387	95% KM (BCA) UCL	0.0935
ç	95% KM (t) UCL	0.0926	95% KM (Percentile Bootstrap) UCL	0.0929
9	5% KM (z) UCL	0.092	95% KM Bootstrap t UCL	0.0929
90% KM (Chebyshev UCL	0.104	95% KM Chebyshev UCL	0.116
97.5% KM (Chebyshev UCL	0.133	99% KM Chebyshev UCL	0.165

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.304	Anderson-Darling GOF Test
5% A-D Critical Value	0.735	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.159	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.237	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

6.315	k star (bias corrected MLE)	8.143	k hat (MLE)
0.0162	Theta star (bias corrected MLE)	0.0126	Theta hat (MLE)
164.2	nu star (bias corrected)	211.7	nu hat (MLE)
		0.103	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.0733	Mean	0.0142	Minimum
0.0589	Median	0.19	Maximum
0.562	CV	0.0411	SD
3.273	k star (bias corrected MLE)	3.671	k hat (MLE)
0.0224	Theta star (bias corrected MLE)	0.02	Theta hat (MLE)
170.2	nu star (bias corrected)	190.9	nu hat (MLE)
		0.0398	Adjusted Level of Significance (β)
139.3	Adjusted Chi Square Value (170.19, β)	141	Approximate Chi Square Value (170.19, α)
0.0895	95% Gamma Adjusted UCL (use when n<50)	0.0884	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.0775	SD (KM)	0.0387
Variance (KM)	0.0015	SE of Mean (KM)	0.00881
k hat (KM)	4.008	k star (KM)	3.572
nu hat (KM)	208.4	nu star (KM)	185.7
theta hat (KM)	0.0193	theta star (KM)	0.0217
80% gamma percentile (KM)	0.108	90% gamma percentile (KM)	0.133
95% gamma percentile (KM)	0.155	99% gamma percentile (KM)	0.203

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (185.72, α)	155.2	Adjusted Chi Square Value (185.72, β)	153.4
95% Gamma Approximate KM-UCL (use when n>=50)	0.0928	95% Gamma Adjusted KM-UCL (use when n<50)	0.0939

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.975	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.866	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.136	Lilliefors GOF Test
5% Lilliefors Critical Value	0.234	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.0775	Mean in Log Scale	-2.649
SD in Original Scale	0.0376	SD in Log Scale	0.418
95% t UCL (assumes normality of ROS data)	0.0901	95% Percentile Bootstrap UCL	0.0896
95% BCA Bootstrap UCL	0.0912	95% Bootstrap t UCL	0.0937
95% H-UCL (Log ROS)	0.0905		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.674	KM Geo Mean	0.069
KM SD (logged)	0.484	95% Critical H Value (KM-Log)	1.952
KM Standard Error of Mean (logged)	0.128	95% H-UCL (KM -Log)	0.0937
KM SD (logged)	0.484	95% Critical H Value (KM-Log)	1.952
KM Standard Error of Mean (logged)	0.128		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.0711	Mean in Log Scale	-2.802
SD in Original Scale	0.0425	SD in Log Scale	0.574
95% t UCL (Assumes normality)	0.0853	95% H-Stat UCL	0.0904

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.0926

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

APPENDIX H

Excess Lifetime Cancer Risk and Hazard Index Calculations(Chemicals) using Mean EPCs

Appendix H, Table H-1 (RME)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Current/Future Outdoor Commercial/Industrial Worker Former CLEAR Plant - Shallow Soil/Sediment (0 to 0.5 ft bgs), Exposed Samples Only, Mean EPCs

Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

				CANCER RISK Route-Specific Risk				Percent	Rout	NON-CANCER HAZARD Route-Specific Hazard			Percent
	Cancer	EPCs	PEF [b]	1101	ист оросии	- Tion	Total	Total		о оросии г	iuzui u	Total	Total
Constituent	Group [a]	(mg/kg)	(m³/kg)	Oral	Dermal	Inhalation	ELCR	ELCR	Oral	Dermal	Inhalation	Hazard	HI
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics													
Arsenic	Α	1.18E+01	1.40E+09 P	1.7E-06	1.2E-06	2.4E-09	3.0E-06	100%	1.2E-02	8.3E-03	1.2E-04	2.1E-02	17%
Copper	D	5.04E+03	1.40E+09 P	NA	NA	NA	_		9.7E-02	_	NA	9.7E-02	83%
Lead	B2	8.71E+01	1.40E+09 P	NA	NA	NA	_		NA	NA	NA	_	
				2E-06	1E-06	2E-09			0.1	0.008	0.0001		
Total						Total ELCR	3E-06				Total HI	0.1	
						A Total ELCR	3E-06						
						B Total ELCR							
						C Total ELCR	_						
					Group	D Total ELCR	_						

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

-: not applicable. ELCRd: excess lifetime cancer risk, dermal pathway. HQd: hazard quotient, dermal pathway. %: percent. ELCRi: excess lifetime cancer risk, inhalation pathway. ABSd: dermal absorption factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFa: dermal cancer slope factor. EPCs: exposure point concentration in soil/sediment. CSFo: oral cancer slope factor. ft bgs: feet below ground surface. ELCR: excess lifetime cancer risk. HI: hazard index.

HQi: hazard quotient, inhalation pathway. HQo: hazard quotient, oral pathway. IUR: inhalation unit risk. m³/kg: cubic meter(s) per kilogram. mg/kg: milligram(s) per kilogram.

RBA: relative bioavailability. RfC: reference concentration. RfDa: dermal reference dose.

NA: not available or not applicable.

RfDo: oral reference dose.

RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

ELCRo = (EPCs x 1 x 100 x 225 x 25 x RBA x CSFo) / (1,000,000 x 80 x 28470) $HQo = (EPCs \times 1 \times 100 \times 225 \times 25 \times RBA) / (1,000,000 \times 80 \times 9125 \times RfDo)$ ELCRd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25 x CSFa)/(1,000,000 x 80 x 28470) HQd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25) / (1,000,000 x 80 x 9125 x RfDa) ELCRi = ([EPCs / PEF] x 8 x 0.042 x 225 x 25 x IUR) / (28470) $HQi = ([EPCs / PEF] \times 8 \times 0.042 \times 225 \times 25) / (9125 \times RfC)$

Appendix H, Table H-2 (Site-Specific Evaluation)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Current/Future Outdoor Commercial/Industrial Worker Former CLEAR Plant - Shallow Soil/Sediment (0 to 0.5 ft bgs), Exposed Samples Only, Mean EPCs

Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

					CANO	CER RISK				NON-CAN	CER HAZARI)	
				Rou	te-Specific	Risk		Percent	Route	-Specific I	Hazard		Percen
Constituent	Cancer Group [a]	EPCs (mg/kg)	PEF [b] (m³/kg)	Oral	Dermal	Inhalation	Total ELCR	Total ELCR	Oral	Dermal	Inhalation	Total Hazard	Total HI
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics Arsenic	А	1.18E+01	1.40E+09 P	1.7E-06	1.2E-06	1.2E-09	3.0E-06	100%	1.2E-02	8.3E-03	5.8E-05	2.1E-02	17%
Copper Lead	D B2	5.04E+03 8.71E+01	1.40E+09 P 1.40E+09 P	NA NA	NA NA	NA NA	- -	10070	9.7E-02 NA	– NA	NA NA	9.7E-02 -	83%
				2E-06	1E-06	1E-09			0.1	0.008	0.00006		
Total						Total ELCR	3E-06]			Total HI	0.1]
					Group B Group C	Total ELCR Total ELCR Total ELCR Total ELCR	3E-06 - - -						

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

-: not applicable.

ELCRd: excess lifetime cancer risk, dermal pathway.

%: percent.

ELCRi: excess lifetime cancer risk, inhalation pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

EPCs: exposure point concentration in soil/sediment.

CSFo: oral cancer slope factor. ft bas: feet below ground surface.

ELCR: excess lifetime cancer risk. HI: hazard index.

HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway. HQo: hazard quotient, oral pathway.

IUR: inhalation unit risk.

m³/kg: cubic meter(s) per kilogram. mg/kg: milligram(s) per kilogram. NA: not available or not applicable. RBA: relative bioavailability.

RfC: reference concentration. RfDa: dermal reference dose. RfDo: oral reference dose.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

ELCRo = (EPCs x 1 x 100 x 225 x 25 x RBA x CSFo) / (1,000,000 x 80 x 28470) HQo = (EPCs x 1 x 100 x 225 x 25 x RBA) / (1,000,000 x 80 x 9125 x RfDo) ELCRd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25 x CSFa) / (1,000,000 x 80 x 28470) HQd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25) / (1,000,000 x 80 x 9125 x RfDa) ELCRi = (EPCs / PEF] x 4 x 0.042 x 225 x 25 x IUR) / (28470) HQi = (EPCs / PEF] x 4 x 0.042 x 225 x 25) / (9125 x RfC)

Appendix H, Table H-3 (RME)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Adolescent Trespasser Former CLEAR Plant - Shallow Soil (0 to 0.5 ft bgs), Exposed Samples Only, Mean EPCs

Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

				Ro	CANC ute-Specific	ER RISK Risk		Percent	Rout	NONCANC	ER HAZARD azard		Percent
Constituent	Cancer Group [a]	EPCs (mg/kg)	PEF [b] (m³/kg)	Oral	Dermal	Inhalation	Total ELCR	Total ELCR	Oral	Dermal	Inhalation	Total Hazard	Total HI
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics													
Arsenic	Α	1.18E+01	1.40E+09 P	1.5E-07	6.8E-08	2.8E-11	2.1E-07	100%	2.5E-03	1.2E-03	3.3E-06	3.7E-03	15%
Copper	D	5.04E+03	1.40E+09 P	NA	NA	NA	_		2.0E-02	_	NA	2.0E-02	85%
Lead	B2	8.71E+01	1.40E+09 P	NA	NA	NA	_		NA	NA	NA	_	
				1E-07	7E-08	3E-11			0.02	0.001	0.000003		
Total						Total ELCR	2E-07				Total HI	0.02	
					Group Group	A Total ELCR B Total ELCR C Total ELCR D Total ELCR	2E-07 - - -						

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

-: not applicable.

SELCRd: excess lifetime cancer risk, dermal pathway.

SELCRi: excess lifetime cancer risk, inhalation pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

EPCs: exposure point concentration in soil/sediment.

EPCs: exposure point concentration in soil/sediment.

or or ordinarion slope factor.

ELCR: excess lifetime cancer risk. HI: hazard index.

HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway. HQo: hazard quotient, oral pathway. IUR: inhalation unit risk.

m³/kg: cubic meter(s) per kilogram.

mg/kg: milligram(s) per kilogram.

NA: not available or not applicable.

RBA: relative bioavailability. RfC: reference concentration. RfDa: dermal reference dose.

RfDo: oral reference dose.

RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

ELCRo = (EPCs x 1 x 50 x 52 x 10 x RBA x CSFo) / (1,000,000 x 44 x 28470) ELCRd = (EPCs x 4400 x 0.07 x ABSd x 52 x 10 x CSFa) / (1,000,000 x 44 x 28470) ELCRi = ([EPCs / PEF] x 1 x 0.042 x 52 x 10 x IUR) / (28470)

HQo = (EPCs x 1 x 50 x 52 x 10 x RBA) / (1,000,000 x 44 x 3650 x RfDo) HQd = (EPCs x 4400 x 0.07 x ABSd x 52 x 10) / (1,000,000 x 44 x 3650 x RfDa) HQi = ([EPCs / PEF] x 1 x 0.042 x 52 x 10) / (3650 x RfC)

Appendix H, Table H-4 (RME)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Outdoor Commercial/Industrial Worker Former CLEAR Plant - Shallow Soil/Sediment (0 to 0.5 ft bgs), All Samples, Mean EPCs

Baseline Human Health Risk Assessment

Sierrita Mine

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

						CER RISK]		NON-CAN	CER HAZARD		
				Ro	ute-Specific	Risk		Percent	Rout	e-Specific F	lazard		Percent
Constituent	Cancer Group [a]	EPCs (mg/kg)	PEF [b] (m³/kg)	Oral	Dermal	Inhalation	Total ELCR	Total ELCR	Oral	Dermal	Inhalation	Total Hazard	Total HI
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics													
Arsenic	Α	9.73E+00	1.40E+09 P	1.4E-06	9.9E-07	2.0E-09	2.4E-06	100%	1.0E-02	6.9E-03	9.5E-05	1.7E-02	18%
Copper	D	4.05E+03	1.40E+09 P	NA	NA	NA	_		7.8E-02	_	NA	7.8E-02	82%
Lead	B2	1.36E+02	1.40E+09 P	NA	NA	NA	-		NA	NA	NA	-	
				1E-06	1E-06	2E-09			0.09	0.007	0.0001		
Total						Total ELCR	2E-06]			Total HI	0.09	
					Group	A Total ELCR	2E-06	1					
					Group	B Total ELCR	_						
						C Total ELCR	_]					
İ					Group	D Total ELCR	_	J					

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

-: not applicable. ELCRd: excess lifetime cancer risk, dermal pathway. %: percent. ELCRi: excess lifetime cancer risk, inhalation pathway. ABSd: dermal absorption factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFa: dermal cancer slope factor. EPCs: exposure point concentration in soil/sediment. CSFo: oral cancer slope factor. ft bgs: feet below ground surface.

FLCR: excess lifetime cancer risk HI: hazard index HQd: hazard quotient, dermal pathway. NA: not available or not applicable. HQi: hazard quotient, inhalation pathway. RBA: Relative Bioavailability. HQo: hazard quotient, oral pathway. RfC: reference concentration. IUR: inhalation unit risk. RfDa: dermal reference dose

m³/kg: cubic meter(s) per kilogram. RfDo: oral reference dose.

mg/kg: milligram(s) per kilogram. RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

ELCRo = (EPCs x 1 x 100 x 225 x 25 x RBA x CSFo) / (1,000,000 x 80 x 28470) ELCRd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25 x CSFa) / (1,000,000 x 80 x 28470) ELCRi = ([EPCs / PEF] x 8 x 0.042 x 225 x 25 x IUR) / (28470)

HQo = (EPCs x 1 x 100 x 225 x 25 x RBA) / (1,000,000 x 80 x 9125 x RfDo) HQd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25) / (1,000,000 x 80 x 9125 x RfDa) $HQi = ([EPCs / PEF] \times 8 \times 0.042 \times 225 \times 25) / (9125 \times RfC)$

Appendix H, Table H-5 (Site-Specific Evaluation)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Outdoor Commercial/Industrial Worker Former CLEAR Plant - Shallow Soil/Sediment (0 to 0.5 ft bgs), All Samples, Mean EPCs

Baseline Human Health Risk Assessment

Sierrita Mine

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

					CAN	CER RISK		1		NON-CAN	CER HAZARI)	1
				Rou	te-Specific	Risk		Percent	Route	-Specific	Hazard		Percent
Constituent	Cancer Group [a]	EPCs (mg/kg)	PEF [b] (m³/kg)	Oral	Dermal	Inhalation	Total ELCR	Total ELCR	Oral	Dermal	Inhalation	Total Hazard	Total HI
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics Arsenic Copper Lead	A D B2	9.73E+00 4.05E+03 1.36E+02	1.40E+09 P 1.40E+09 P 1.40E+09 P	1.4E-06 NA NA	9.9E-07 NA NA	9.9E-10 NA NA	2.4E-06 - -	100%	1.0E-02 7.8E-02 NA	6.9E-03 - NA	4.8E-05 NA NA	1.7E-02 7.8E-02 -	18% 82%
Total				1E-06	1E-06	1E-09 Total ELCR	2E-06	1	0.1	0.007	0.00005	0.1	1
					Group B Group C	Total ELCR Total ELCR Total ELCR Total ELCR	2E-06 - - -						

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

-: not applicable. ELCRd: excess lifetime cancer risk, dermal pathway. %: percent. ELCRi: excess lifetime cancer risk, inhalation pathway. ABSd: dermal absorption factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFa: dermal cancer slope factor. EPCs: exposure point concentration in soil/sediment.

CSFo: oral cancer slope factor. ft bgs: feet below ground surface.

ELCR: excess lifetime cancer risk. HI: hazard index.

HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway. HQo: hazard quotient, oral pathway. IUR: inhalation unit risk. m³/kg: cubic meter(s) per kilogram.

mg/kg: milligram(s) per kilogram.

NA: not available or not applicable. RBA: Relative Bioavailability. RfC: reference concentration. RfDa: dermal reference dose. RfDo: oral reference dose.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

ELCRo = (EPCs x 1 x 100 x 225 x 25 x RBA x CSFo) / (1,000,000 x 80 x 28470) $HQo = (EPCs \times 1 \times 100 \times 225 \times 25 \times RBA) / (1,000,000 \times 80 \times 9125 \times RfDo)$ ELCRd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25 x CSFa) / (1,000,000 x 80 x 28470) HQd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25) / (1,000,000 x 80 x 9125 x RfDa) ELCRi = ([EPCs / PEF] x 4 x 0.042 x 225 x 25 x IUR) / (28470) HQi = ([EPCs / PEF] x 4 x 0.042 x 225 x 25) / (9125 x RfC)

Appendix H, Table H-6 (RME)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Adolescent Trespasser Former CLEAR Plant - Shallow Soil/Sediment (0 to 0.5 ft bgs), All Samples, Mean EPCs

Baseline Human Health Risk Assessment

Sierrita Mine

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

					CAN	CER RISK]		NONCAN	ICER HAZARD]
				Rou	te-Specific	Risk		Percent	Rout	te-Specific	Hazard		Percent
Canatituant	Cancer	EPCs	PEF [b]		Darmal	Inhalation	Total	Total ELCR		Darmal	Inhalation	Total	Total
Constituent	Group [a]	(mg/kg)	(m³/kg)	Oral	Dermal	Inhalation	ELCR	ELCR	Oral	Dermal	Inhalation	Hazard	HI
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics													
Arsenic	Α	9.73E+00	1.40E+09 P	1.2E-07	5.6E-08	2.3E-11	1.8E-07	100%	2.1E-03	9.7E-04	2.8E-06	3.1E-03	16%
Copper	D	4.05E+03	1.40E+09 P	NA	NA	NA	_		1.6E-02	_	NA	1.6E-02	84%
Lead	B2	1.36E+02	1.40E+09 P	NA	NA	NA	-		NA	NA	NA	_	
				1E-07	6E-08	2E-11			0.02	0.001	0.000003		
Total						Total ELCR	2E-07]			Total HI	0.02]
					Group A	Total ELCR	2E-07]					
					Group B	Total ELCR	_						
						Total ELCR	_]					
					Group D	Total ELCR	_	J					

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

-: not applicable. ELCRd: excess lifetime cancer risk, dermal pathway. %: percent. ELCRi: excess lifetime cancer risk, inhalation pathway. ABSd: dermal absorption factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFa: dermal cancer slope factor. EPCs: exposure point concentration in soil/sediment.

CSFo: oral cancer slope factor. ft bas: feet below ground surface.

ELCR: excess lifetime cancer risk. HI: hazard index. HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway. HQo: hazard quotient, oral pathway.

IUR: inhalation unit risk.

m³/kg: cubic meter(s) per kilogram.

mg/kg: milligram(s) per kilogram.

NA: not available or not applicable.

RBA: Relative Bioavailability. RfC: reference concentration. RfDa: dermal reference dose

RfDo: oral reference dose.

RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

ELCRo = (EPCs x 1 x 50 x 52 x 10 x RBA x CSFo)/(1,000,000 x 44 x 28470) $HQo = (EPCs \times 1 \times 50 \times 52 \times 10 \times RBA) / (1,000,000 \times 44 \times 3650 \times RfDo)$ ELCRd = (EPCs x 4400 x 0.07 x ABSd x 52 x 10 x CSFa) / (1,000,000 x 44 x 28470) $HQd = (EPCs \times 4400 \times 0.07 \times ABSd \times 52 \times 10) / (1,000,000 \times 44 \times 3650 \times RfDa)$ ELCRi = $([EPCs / PEF] \times 1 \times 0.042 \times 52 \times 10 \times IUR) / (28470)$ $HQi = ([EPCs / PEF] \times 1 \times 0.042 \times 52 \times 10) / (3650 \times RfC)$

Appendix H, Table H-7 (RME)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Outdoor Commercial/Industrial Worker Former CLEAR Plant - Shallow and Deep Soil/Sediment (0 to 15 ft bgs), Mean EPCs

Baseline Human Health Risk Assessment

Sierrita Mine

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

				Rou	CANC ute-Specific	CER RISK Risk		Percent	Rout	NONCAN e-Specific H	CER HAZARD		Percent
Constituent	Cancer Group [a]	EPCs (mg/kg)	PEF [b] (m³/kg)	Oral	Dermal	Inhalation	Total ELCR	Total ELCR	Oral	Dermal	Inhalation	Total Hazard	Total HI
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics													
Arsenic	Α	9.68E+00	1.40E+09 P	1.4E-06	9.9E-07	2.0E-09	2.4E-06	100%	9.9E-03	6.9E-03	9.5E-05	1.7E-02	18%
Copper	D	4.03E+03	1.40E+09 P	NA	NA	NA	_		7.8E-02	_	NA	7.8E-02	82%
Lead	B2	1.14E+02	1.40E+09 P	NA	NA	NA	_		NA	NA	NA	_	
				1E-06	1E-06	2E-09			0.1	0.007	0.0001		
Total						Total ELCR	2E-06]			Total HI	0.1	
					Group	A Total ELCR	2E-06	1					
					•	B Total ELCR							
					•	C Total ELCR	_						
						D Total ELCR	_						

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

-: not applicable. ELCRd: excess lifetime cancer risk, dermal pathway. %: percent. ELCRi: excess lifetime cancer risk, inhalation pathway. ABSd: dermal absorption factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFa: dermal cancer slope factor. EPCs: exposure point concentration in soil/sediment.

CSFo: oral cancer slope factor. ft bgs: feet below ground surface.

ELCR: excess lifetime cancer risk. HI: hazard index.

HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway. HQo: hazard quotient, oral pathway. IUR: inhalation unit risk.

m³/kg: cubic meter(s) per kilogram.

mg/kg: milligram(s) per kilogram.

NA: not available or not applicable. RBA: Relative Bioavailability. RfC: reference concentration.

RfDa: dermal reference dose RfDo: oral reference dose.

RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

ELCRo = (EPCs x 1 x 100 x 225 x 25 x RBA x CSFo)/(1,000,000 x 80 x 28470) ELCRd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25 x CSFa) / (1,000,000 x 80 x 28470) ELCRi = ([EPCs / PEF] x 8 x 0.042 x 225 x 25 x IUR) / (28470)

 $HQo = (EPCs \times 1 \times 100 \times 225 \times 25 \times RBA) / (1,000,000 \times 80 \times 9125 \times RfDo)$ HQd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25) / (1,000,000 x 80 x 9125 x RfDa) HQi = ([EPCs / PEF] x 8 x 0.042 x 225 x 25) / (9125 x RfC)

Appendix H, Table H-8 (Site-Specific Evaluation)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Outdoor Commercial/Industrial Worker Former CLEAR Plant - Shallow and Deep Soil/Sediment (0 to 15 ft bgs), Mean EPCs

Baseline Human Health Risk Assessment

Sierrita Mine

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

	Canaar	EPCs	DEE IN	Rou	CANO te-Specific	CER RISK Risk	Total	Percent Total	Route	NONCAN e-Specific	CER HAZARI Hazard	Total	Percent Total
Constituent	Cancer Group [a]	(mg/kg)	PEF [b] (m³/kg)	Oral	Dermal	Inhalation	ELCR	ELCR	Oral	Dermal	Inhalation	Hazard	HI
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics													
Arsenic	Α	9.68E+00	1.40E+09 P	1.4E-06	9.9E-07	9.8E-10	2.4E-06	100%	9.9E-03	6.9E-03	4.7E-05	1.7E-02	18%
Copper	D	4.03E+03	1.40E+09 P	NA	NA	NA	_		7.8E-02	_	NA	7.8E-02	82%
Lead	B2	1.14E+02	1.40E+09 P	NA	NA	NA	_		NA	NA	NA	_	
				1E-06	1E-06	1E-09			0.1	0.007	0.0001		
Total						Total ELCR	2E-06]			Total HI	0.1]
					Group B Group C	Total ELCR Total ELCR Total ELCR Total ELCR	2E-06 - - -						

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

-: not applicable.
 %: percent.
 ABSd: dermal absorption factor.
 CSFa: dermal cancer slope factor.
 ELCRi: excess lifetime cancer risk, inhalation pathway.
 ELCRo: excess lifetime cancer risk, oral pathway.
 EPCs: exposure point concentration in soil/sediment.

CSFo: oral cancer slope factor. ft bgs: feet below ground surface.

ELCR: excess lifetime cancer risk. HI: hazard index.

HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway. HQo: hazard quotient, oral pathway.

IUR: inhalation unit risk.

m³/kg: cubic meter(s) per kilogram. mg/kg: milligram(s) per kilogram. NA: not available or not applicable. RBA: Relative Bioavailability. RfC: reference concentration. RfDa: dermal reference dose.

RfDo: oral reference dose.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

Appendix H, Table H-9 (RME)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Adolescent Trespasser

Former CLEAR Plant - Shallow and Deep Soil/Sediment (0 to 15 ft bgs), Mean EPCs Baseline Human Health Risk Assessment

Sierrita Mine

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

						CER RISK]			NCER HAZARD)]
	0	EDO-	DEE ILI	Rou	te-Specific	Risk	Tatal	Percent	Rou	te-Specific	Hazard	Tatal	Percent
Constituent	Cancer Group [a]	EPCs (mg/kg)	PEF [b] (m³/kg)	Oral	Dermal	Inhalation	Total ELCR	Total ELCR	Oral	Dermal	Inhalation	Total Hazard	Total HI
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics													
Arsenic	Α	9.68E+00	1.40E+09 P	1.2E-07	5.6E-08	2.3E-11	1.8E-07	100%	2.1E-03	9.7E-04	2.7E-06	3.1E-03	16%
Copper	D	4.03E+03	1.40E+09 P	NA	NA	NA	_		1.6E-02	_	NA	1.6E-02	84%
Lead	B2	1.14E+02	1.40E+09 P	NA	NA	NA	_		NA	NA	NA	-	
				1E-07	6E-08	2E-11			0.02	0.001	0.000003		
Total						Total ELCR	2E-07]			Total HI	0.02]
					•	Total ELCR	2E-07]					
						Total ELCR	_	_					
					•	Total ELCR	_	4					
1					Group D	Total ELCR	_	J					

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

ELCR: excess lifetime cancer risk.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

–: not applicable.	ELCRd: excess lifetime cancer risk, dermal pathway.
%: percent.	ELCRi: excess lifetime cancer risk, inhalation pathway.
ABSd: dermal absorption factor.	ELCRo: excess lifetime cancer risk, oral pathway.
CSFa: dermal cancer slope factor.	EPCs: exposure point concentration in soil/sediment.
CSFo: oral cancer slope factor.	ft bgs: feet below ground surface.

HI hazard index

m³/kg: cubic meter(s) per kilogram.
mg/kg: milligram(s) per kilogram.
parameters are presented in Table 6-2.

HQo: hazard quotient, oral pathway.

IUR: inhalation unit risk.

HQd: hazard quotient, dermal pathway.

HQi: hazard quotient, inhalation pathway.

NA: not available or not applicable.
RBA: Relative Bioavailability.
RfC: reference concentration.
RfDa: dermal reference dose.
RfDo: oral reference dose.

RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

<u>Equations:</u>

Appendix H, Table H-10 (RME)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Construction Worker Former CLEAR Plant - Shallow and Deep Soil/Sediment (0 to 15 ft bgs), Mean EPCs

Baseline Human Health Risk Assessment

Sierrita Mine

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

Cancer roup [a]	EPCs		Rou				* <u> </u>					
		PEF [b]		ute-Specific	RISK	Total	Percent Total	Rout	e-Specific H	lazard	Total	Percent Total
.oup [u]	(mg/kg)	(m³/kg)	Oral	Dermal	Inhalation	ELCR	ELCR	Oral	Dermal	Inhalation	Hazard	HI
			ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Α	9.68E+00	1.40E+09 P	2.1E-07	8.8E-08	8.7E-11	3.0E-07	100%	3.6E-02	1.5E-02	1.1E-04	5.2E-02	15%
D	4.03E+03	1.40E+09 P	NA	NA	NA	_		2.8E-01	_	NA	2.8E-01	85%
B2	1.14E+02	1.40E+09 P	NA	NA	NA	-		NA	NA	NA	-	
			2E-07	9E-08	9E-11			0.3	0.02	0.0001		
					Total ELCR	3E-07]			Total HI	0.3	J
				•		3E-07						
						_						
						_						
	D	D 4.03E+03	D 4.03E+03 1.40E+09 P	A 9.68E+00 1.40E+09 P 2.1E-07 D 4.03E+03 1.40E+09 P NA B2 1.14E+02 1.40E+09 P NA	A 9.68E+00 1.40E+09 P 2.1E-07 8.8E-08 D 4.03E+03 1.40E+09 P NA NA B2 1.14E+02 1.40E+09 P NA NA	A 9.68E+00 1.40E+09 P 2.1E-07 8.8E-08 8.7E-11 D 4.03E+03 1.40E+09 P NA NA NA B2 1.14E+02 1.40E+09 P NA NA NA ZE-07 9E-08 9E-11	A 9.68E+00 1.40E+09 P 2.1E-07 8.8E-08 8.7E-11 3.0E-07 D 4.03E+03 1.40E+09 P NA NA NA - B2 1.14E+02 1.40E+09 P NA NA NA NA - 2E-07 9E-08 9E-11 Total ELCR Group A Total ELCR Group B Total ELCR Group C Total ELCR Group C Total ELCR Group C Total ELCR Group C Total ELCR Group C Total ELCR Group C Total ELCR Group C Total ELCR Group C Total ELCR Group C Total ELCR Group C Total ELCR Group C Total ELCR Group C Total ELCR Group C Total ELCR Group C Total ELCR —	A 9.68E+00 1.40E+09 P 2.1E-07 8.8E-08 8.7E-11 3.0E-07 100% D 4.03E+03 1.40E+09 P NA NA NA NA - B2 1.14E+02 1.40E+09 P NA NA NA NA - Total ELCR Group A Total ELCR Group C Total ELCR Group C Total ELCR - Group C Total ELCR - Group C Total ELCR -	A 9.68E+00 1.40E+09 P 2.1E-07 8.8E-08 8.7E-11 3.0E-07 100% 3.6E-02 D 4.03E+03 1.40E+09 P NA NA NA NA - 2.8E-01 B2 1.14E+02 1.40E+09 P NA NA NA NA - NA - NA NA NA NA NA - NA NA NA NA NA NA NA NA NA NA NA NA NA	A 9.68E+00 1.40E+09 P 2.1E-07 8.8E-08 8.7E-11 3.0E-07 100% 3.6E-02 1.5E-02 D 4.03E+03 1.40E+09 P NA NA NA NA - 2.8E-01 - NA NA NA NA NA NA NA NA NA NA NA NA NA	A 9.68E+00 1.40E+09 P 2.1E-07 8.8E-08 8.7E-11 3.0E-07 100% 3.6E-02 1.5E-02 1.1E-04 D 4.03E+03 1.40E+09 P NA NA NA NA - 2.8E-01 - NA B2 1.14E+02 1.40E+09 P NA NA NA NA NA - NA NA NA NA NA NA NA NA NA NA NA NA NA	A 9.68E+00 1.40E+09 P 2.1E-07 8.8E-08 8.7E-11 3.0E-07 100% 3.6E-02 1.5E-02 1.1E-04 5.2E-02 D 4.03E+03 1.40E+09 P NA NA NA NA NA NA NA NA NA NA NA NA NA

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

-: not applicable. ELCRd: excess lifetime cancer risk, dermal pathway. ELCRi: excess lifetime cancer risk, inhalation pathway. %: percent. ABSd: dermal absorption factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFa: dermal cancer slope factor. EPCs: exposure point concentration in soil/sediment. CSFo: oral cancer slope factor. ft bgs: feet below ground surface.

ELCR: excess lifetime cancer risk. HI: hazard index. HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway. HQo: hazard quotient, oral pathway.

IUR: inhalation unit risk. m³/kg: cubic meter(s) per kilogram.

mg/kg: milligram(s) per kilogram.

RME: reasonable maximum exposure.

NA: not available or not applicable.

RBA: Relative Bioavailability.

RfC: reference concentration.

RfDa: dermal reference dose.

RfDo: oral reference dose.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

ELCRo = (EPCs x 1 x 330 x 250 x 1 x RBA x CSFo) / (1,000,000 x 80 x 28470) ELCRd = (EPCs x 6125 x 0.30 x ABSd x 250 x 1 x CSFa) / (1,000,000 x 80 x 28470)

ELCRi = ([EPCs / PEF] x 8 x 0.042 x 250 x 1 x IUR) / (28470)

 $HQo = (EPCs \times 1 \times 330 \times 250 \times 1 \times RBA) / (1,000,000 \times 80 \times 365 \times RfDo)$ $HQd = (EPCs \times 6125 \times 0.30 \times ABSd \times 250 \times 1) / (1,000,000 \times 80 \times 365 \times RfDa)$

 $HQi = ([EPCs / PEF] \times 8 \times 0.042 \times 250 \times 1) / (365 \times RfC)$

Appendix H, Table H-11 (RME)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Current/Future Outdoor Commercial/Industrial Worker Former Esperanza Mill - Shallow Soil/Sediment (0 to 0.5 ft bgs), Mean EPCs

Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita

Sierrita Mine, Green Valley, Arizona

					CANC	ER RISK				NON-CAN	CER HAZARD		
			•	Rou	ıte-Specific	Risk		Percent	Rout	e-Specific H	lazard		Percent
	Cancer	EPCs	PEF [b]				Total	Total				Total	Total
Constituent	Group [a]	(mg/kg)	(m³/kg)	Oral	Dermal	Inhalation	ELCR	ELCR	Oral	Dermal	Inhalation	Hazard	HI
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics													
Arsenic	Α	9.54E+00	1.40E+09 P	1.4E-06	9.7E-07	1.9E-09	2.4E-06	100%	9.8E-03	6.8E-03	9.4E-05	1.7E-02	11%
Molybdenum	NA	8.57E+02	1.40E+09 P	NA	NA	NA	_		1.3E-01	_	NA	1.3E-01	89%
				1E-06	1E-06	2E-09			0.1	0.007	0.00009		
Total						Total ELCR	2E-06]			Total HI	0.1	
					Group /	A Total ELCR	2E-06	1					
						B Total ELCR	_						
						C Total ELCR	_						
					Group [D Total ELCR	_						

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

-: not applicable. ELCRd: excess lifetime cancer risk, dermal pathway. %: percent. ELCRi: excess lifetime cancer risk, inhalation pathway. ABSd: dermal absorption factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFa: dermal cancer slope factor. EPC: exposure point concentration in soil/sediment.

CSFo: oral cancer slope factor. ft bgs: feet below ground surface. ELCR: excess lifetime cancer risk. HI: hazard index.

HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway. HQo: hazard quotient, oral pathway. IUR: inhalation unit risk.

m³/kg: cubic meter(s) per kilogram. mg/kg: milligram(s) per kilogram.

NA: not available or not applicable.

RBA: relative bioavailability. RfC: reference concentration. RfDa: dermal reference dose.

RfDo: oral reference dose.

RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

ELCRo = (EPCs x 1 x 100 x 225 x 25 x RBA x CSFo) / (1,000,000 x 80 x 28470) $HQo = (EPCs \times 1 \times 100 \times 225 \times 25 \times RBA) / (1,000,000 \times 80 \times 9125 \times RfDo)$ ELCRd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25 x CSFa) / (1,000,000 x 80 x 28470) $HQd = (EPCs \times 6125 \times 0.15 \times ABSd \times 225 \times 25) / (1,000,000 \times 80 \times 9125 \times RfDa)$ ELCRi = ([EPCs / PEF] x 8 x 0.042 x 225 x 25 x IUR) / (28470) HQi = ([EPCs / PEF] x 8 x 0.042 x 225 x 25) / (9125 x RfC)

Appendix H, Table H-12 (Site-Specific Evaluation)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Current/Future Outdoor Commercial/Industrial Worker Former Esperanza Mill - Shallow Soil/Sediment (0 to 0.5 ft bgs). Mean EPCs

Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita

Sierrita Mine, Green Valley, Arizona

				Rou	CANO te-Specific	CER RISK		Percent	Route	NON-CAN e-Specific I	CER HAZARI	D	Percent
Constituent	Cancer Group [a]	EPCs (mg/kg)	PEF [b] (m³/kg)	Oral	Dermal	Inhalation	Total ELCR	Total ELCR	Oral	Dermal	Inhalation	Total Hazard	Total HI
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics Arsenic Molybdenum	A NA	9.54E+00 8.57E+02	1.40E+09 P 1.40E+09 P	1.4E-06 NA	9.7E-07 NA	9.7E-10 NA	2.4E-06 –	100%	9.8E-03 1.3E-01	6.8E-03 -	4.7E-05 NA	1.7E-02 1.3E-01	11% 89%
Total				1E-06	1E-06	1E-09 Total ELCR	2E-06]	0.1	0.007	0.00005 Total HI	0.1]
					Group B Group C	Total ELCR Total ELCR Total ELCR Total ELCR	2E-06 - - -						

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

-: not applicable.

%: percent.

ABSd: dermal absorption factor.

CSFa: dermal cancer slope factor.

ELCRd: excess lifetime cancer risk, dermal pathway.

ELCRi: excess lifetime cancer risk, inhalation pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

EPC: exposure point concentration in soil/sediment.

CSFo: oral cancer slope factor. ft bgs: feet below ground surface.

ELCR: excess lifetime cancer risk. HI: hazard index.

HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway. HQo: hazard quotient, oral pathway. IUR: inhalation unit risk.

m³/kg: cubic meter(s) per kilogram. mg/kg: milligram(s) per kilogram.

RfDa: dermal reference dose.

RfDo: oral reference dose.

NA: not available or not applicable.

RBA: relative bioavailability.

RfC: reference concentration.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

ELCRo = (EPCs x 1 x 100 x 225 x 25 x RBA x CSFo) / (1,000,000 x 80 x 28470) HQo = (EPCs x 1 x 100 x 225 x 25 x RBA) / (1,000,000 x 80 x 9125 x RfDo) ELCRd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25 x CSFa) / (1,000,000 x 80 x 28470) HQd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25) / (1,000,000 x 80 x 9125 x RfDa) ELCRi = (EPCs / PEF] x 4 x 0.042 x 225 x 25 x IUR) / (28470) HQi = (EPCs / PEF] x 4 x 0.042 x 225 x 25) / (9125 x RfC)

Appendix H, Table H-13 (RME)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Adolescent Trespasser Former Esperanza Mill - Shallow Soil/Sediment (0 to 0.5 ft bgs), Mean EPCs

Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita

Sierrita Mine, Green Valley, Arizona

						CER RISK] _	_	NONCAN]	
	Canaar	EPCs	PEF [b]	Rou	te-Specific	Risk	Total	Percent Total	Rout	e-Specific	Hazard	Total	Percent Total
Constituent	Cancer Group [a]	(mg/kg)	(m³/kg)	Oral	Dermal	Inhalation	ELCR	ELCR	Oral	Dermal	Inhalation	Hazard	HI
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics Arsenic Molybdenum	A NA	9.54E+00 8.57E+02	1.40E+09 P 1.40E+09 P	1.2E-07 NA	5.5E-08 NA	2.2E-11 NA	1.7E-07 –	100%	2.1E-03 2.8E-02	9.5E-04 –	2.7E-06 NA	3.0E-03 2.8E-02	10% 90%
				1E-07	5E-08	2E-11			0.03	0.001	0.000003		
Total						Total ELCR	2E-07]			Total HI	0.03]
					Group B Group C	Total ELCR Total ELCR Total ELCR Total ELCR	2E-07 - - -						

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

-: not applicable.

SELCRd: excess lifetime cancer risk, dermal pathway.

SELCRi: excess lifetime cancer risk, inhalation pathway.

ELCRi: excess lifetime cancer risk, oral pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

EPC: exposure point concentration in soil/sediment.

CSFo: oral cancer slope factor. ft bgs: feet below ground surface.

ELCR: excess lifetime cancer risk. HI: hazard index.

HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway.

HQo: hazard quotient, oral pathway.

IUR: inhalation unit risk. m³/kg: cubic meter(s) per kilogram.

mg/kg: milligram(s) per kilogram.

NA: not available or not applicable. RBA: relative bioavailability.

RfC: reference concentration. RfDa: dermal reference dose.

RfDo: oral reference dose.

RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

ELCRo = (EPCs x 1 x 50 x 52 x 10 x RBA x CSFo) / (1,000,000 x 44 x 28470) ELCRd = (EPCs x 4400 x 0.07 x ABSd x 52 x 10 x CSFa) / (1,000,000 x 44 x 28470) ELCRi = ([EPCs / PEF] x 1 x 0.042 x 52 x 10 x IUR) / (28470) HQo = (EPCs x 1 x 50 x 52 x 10 x RBA) / (1,000,000 x 44 x 3650 x RfDo) HQd = (EPCs x 4400 x 0.07 x ABSd x 52 x 10) / (1,000,000 x 44 x 3650 x RfDa) HQi = ([EPCs / PEF] x 1 x 0.042 x 52 x 10) / (3650 x RfC)

Appendix H, Table H-14 (RME)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Outdoor Commercial/Industrial Worker Former Esperanza Mill - Shallow and Deep Soil/Sediment (0 to 15 ft bgs). Mean EPCs

Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

						ER RISK					ER HAZARD		I '
				Rou	te-Specific	Risk		Percent	Rout	e-Specific F	lazard		Percent
Constituent	Cancer Group [a]	EPCs (mg/kg)	PEF [b] (m³/kg)	Oral	Dermal	Inhalation	Total ELCR	Total ELCR	Oral	Dermal	Inhalation	Total Hazard	Total HI
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics													
Arsenic	Α	7.91E+00	1.40E+09 P	1.2E-06	8.1E-07	1.6E-09	2.0E-06	100%	8.1E-03	5.6E-03	7.8E-05	1.4E-02	13%
Lead	B2	1.16E+02	1.40E+09 P	NA	NA	NA	_		NA	NA	NA	_	
Molybdenum	NA	6.17E+02	1.40E+09 P	NA	NA	NA	_		9.5E-02	_	NA	9.5E-02	87%
				1E-06	8E-07	2E-09			0.1	0.006	0.00008		
Total						Total ELCR	2E-06				Total HI	0.1]
					•	A Total ELCR	2E-06						
						B Total ELCR	_						
					•	C Total ELCR							
İ					Group I	D Total ELCR	_						

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

-: not applicable. ELCRd: excess lifetime cancer risk, dermal pathway. %: percent. ELCRi: excess lifetime cancer risk, inhalation pathway. ABSd: dermal absorption factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFa: dermal cancer slope factor. EPC: exposure point concentration in soil/sediment.

CSFo: oral cancer slope factor. ft bgs: feet below ground surface.

ELCR: excess lifetime cancer risk. HI: hazard index. HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway. HQo: hazard quotient, oral pathway. IUR: inhalation unit risk.

m³/kg: cubic meter(s) per kilogram.

mg/kg: milligram(s) per kilogram.

RfDa: dermal reference dose. RfDo: oral reference dose.

NA: not available or not applicable.

RBA: relative bioavailability.

RfC: reference concentration.

RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

ELCRo = (EPCs x 1 x 100 x 225 x 25 x RBA x CSFo) / (1,000,000 x 80 x 28470) ELCRd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25 x CSFa) / (1,000,000 x 80 x 28470) ELCRi = ([EPCs / PEF] x 8 x 0.042 x 225 x 25 x IUR) / (28470)

 $HQo = (EPCs \times 1 \times 100 \times 225 \times 25 \times RBA) / (1,000,000 \times 80 \times 9125 \times RfDo)$ HQd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25) / (1,000,000 x 80 x 9125 x RfDa)

HQi = ([EPCs / PEF] x 8 x 0.042 x 225 x 25) / (9125 x RfC)

Appendix H, Table H-15 (Site-Specific Evaluation)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Outdoor Commercial/Industrial Worker Former Esperanza Mill - Shallow and Deep Soil/Sediment (0 to 15 ft bgs), Mean EPCs

Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita Sierrita Mine. Green Valley. Arizona

	Cancer	EPCs	DEC #1	Rou	CANO te-Specific	CER RISK Risk	Total	Percent	Route	NONCAN Specific		Percent Total	
Constituent	Group [a]	(mg/kg)	PEF [b] (m³/kg)	Oral	Dermal	Inhalation	Total ELCR	Total ELCR	Oral	Dermal	Inhalation	Total Hazard	HI
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics													
Arsenic	Α	7.91E+00	1.40E+09 P	1.2E-06	8.1E-07	8.0E-10	2.0E-06	100%	8.1E-03	5.6E-03	3.9E-05	1.4E-02	13%
Lead	B2	1.16E+02	1.40E+09 P	NA	NA	NA	_		NA	NA	NA	_	
Molybdenum	NA	6.17E+02	1.40E+09 P	NA	NA	NA	_		9.5E-02	-	NA	9.5E-02	87%
				1E-06	8E-07	8E-10			0.1	0.006	0.00004		
Total						Total ELCR	2E-06]			Total HI	0.1]
					Group A	Total ELCR	2E-06	1					
					•	Total ELCR	_						
						Total ELCR	_	1					
						Total ELCR	_	1					

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

CSFo: oral cancer slope factor. ft bgs: feet below ground surface.

ELCR: excess lifetime cancer risk. HI: hazard index.

HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway. HQo: hazard quotient, oral pathway.

IUR: inhalation unit risk.

m³/kg: cubic meter(s) per kilogram. mg/kg: milligram(s) per kilogram. NA: not available or not applicable.

RBA: relative bioavailability. RfC: reference concentration. RfDa: dermal reference dose. RfDo: oral reference dose.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

ELCRo = (EPCs x 1 x 100 x 225 x 25 x RBA x CSFo)/(1,000,000 x 80 x 28470)

ELCRd = (EPCs x 1 x 100 x 225 x 25 x RBA)/(1,000,000 x 80 x 9125 x RfDo)

ELCRd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25 x CSFa)/(1,000,000 x 80 x 28470)

ELCRi = ([EPCs / PEF] x 4 x 0.042 x 225 x 25 x IUR)/(28470)

HQo = (EPCs x 1 x 100 x 225 x 25 x RBA)/(1,000,000 x 80 x 9125 x RfDo)

HQd = (EPCs x 6125 x 0.15 x ABSd x 225 x 25)/(1,000,000 x 80 x 9125 x RfDa)

HQi = ([EPCs / PEF] x 4 x 0.042 x 225 x 25)/(9125 x RfC)

Appendix H, Table H-16 (RME)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Adolescent Trespasser Former Esperanza Mill - Shallow and Deep Soil/Sediment (0 to 15 ft bgs). Mean EPCs

Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita

Sierrita Mine, Green Valley, Arizona

					CANC	ER RISK				NON-CAN	CER HAZARD			
				Rou	ıte-Specific	Risk		Percent	Rout	te-Specific H	lazard		Percent	
Constituent	Cancer Group [a]	EPCs (mg/kg)	PEF [b] (m³/kg)	Oral	Dermal	Inhalation	Total ELCR	Total ELCR	Oral	Dermal	Inhalation	Total Hazard	Total HI	
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi			
Inorganics Arsenic Lead Molybdenum	A B2 NA	7.91E+00 1.16E+02 6.17E+02	1.40E+09 P 1.40E+09 P 1.40E+09 P	9.9E-08 NA NA	4.6E-08 NA NA	1.9E-11 NA NA	1.4E-07 - -	100%	1.7E-03 NA 2.0E-02	7.9E-04 NA –	2.2E-06 NA NA	2.5E-03 - 2.0E-02	12% 100%	
				1E-07	5E-08	2E-11			0.02	0.0008	0.000002			
Total						Total ELCR	1E-07]			Total HI	0.02]	
					Group Group	A Total ELCR B Total ELCR C Total ELCR D Total ELCR	1E-07 - - -							

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

-: not applicable.

ELCRd: excess lifetime cancer risk, dermal pathway.

%: percent.

ABSd: dermal absorption factor.

CSFa: dermal cancer slope factor.

EPC: exposure point concentration in soil/sediment.

ELCR: excess lifetime cancer risk, oral pathway.

EPC: exposure point concentration in soil/sediment.

IUR: inhation pathway.

HQo: haz

IUR: inhation pathway.

EPC: exposure point concentration in soil/sediment.

IUR: inhation pathway.

HQo: haz

IUR: inhation pathway.

HB: hazard index.

HI: hazard index.

HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway. HQo: hazard quotient, oral pathway. IUR: inhalation unit risk. m³/kg: cubic meter(s) per kilogram. NA: not available or not applicable. RBA: relative bioavailability. RfC: reference concentration. RfDa: dermal reference dose. RfDo: oral reference dose.

mg/kg: milligram(s) per kilogram. RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

ELCRo = (EPCs x 1 x 50 x 52 x 10 x RBA x CSFo) / (1,000,000 x 44 x 28470) ELCRd = (EPCs x 4400 x 0.07 x ABSd x 52 x 10 x CSFa) / (1,000,000 x 44 x 28470) ELCRi = ([EPCs / PEF] x 1 x 0.042 x 52 x 10 x IUR) / (28470) HQo = (EPCs x 1 x 50 x 52 x 10 x RBA) / (1,000,000 x 44 x 3650 x RfDo) HQd = (EPCs x 4400 x 0.07 x ABSd x 52 x 10) / (1,000,000 x 44 x 3650 x RfDa) HQi = ([EPCs / PEF] x 1 x 0.042 x 52 x 10) / (3650 x RfC)

Appendix H, Table H-17 (RME)

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Construction Worker Former Esperanza Mill - Shallow and Deep Soil/Sediment (0 to 15 ft bgs), Mean EPCs

Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita

Sierrita Mine, Green Valley, Arizona

				Roi	CANC ute-Specific	ER RISK Risk] Percent	Rout	NONCANO e-Specific H		Percent	
Constituent	Cancer Group [a]	EPCs (mg/kg)	PEF [b] (m³/kg)	Oral	Dermal	Inhalation	Total ELCR	Total ELCR	Oral	Dermal	Inhalation	Total Hazard	Total HI
				ELCRo	ELCRd	ELCRi			HQo	HQd	HQi		
Inorganics Arsenic Lead Molybdenum	A B2 NA	7.91E+00 1.16E+02 6.17E+02	1.40E+09 P 1.40E+09 P 1.40E+09 P	1.7E-07 NA NA	7.2E-08 NA NA	7.1E-11 NA NA	2.4E-07 - -	100%	3.0E-02 NA 3.5E-01	1.2E-02 NA –	8.6E-05 NA NA	4.2E-02 - 3.5E-01	11% 89%
Total				2E-07	7E-08	7E-11 Total ELCR	2E-07]	0.4	0.01	0.00009 Total HI	0.4]
					Group (A Total ELCR B Total ELCR C Total ELCR D Total ELCR	2E-07 - - -						

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

ELCRd: excess lifetime cancer risk, dermal pathway. -: not applicable. ELCRi: excess lifetime cancer risk, inhalation pathway. %: percent. ABSd: dermal absorption factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFa: dermal cancer slope factor. EPC: exposure point concentration in soil/sediment.

CSFo: oral cancer slope factor. ft bas: feet below around surface.

ELCR: excess lifetime cancer risk. HI: hazard index. HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway. HQo: hazard quotient, oral pathway. IUR: inhalation unit risk.

m³/kg: cubic meter(s) per kilogram. mg/kg: milligram(s) per kilogram.

NA: not available or not applicable.

RBA: relative bioavailability. RfC: reference concentration. RfDa: dermal reference dose.

RfDo: oral reference dose.

RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

ELCRo = (EPCs x 1 x 330 x 250 x 1 x RBA x CSFo) / (1,000,000 x 80 x 28470) ELCRd = (EPCs x 6125 x 0.30 x ABSd x 250 x 1 x CSFa)/(1,000,000 x 80 x 28470) ELCRi = ([EPCs / PEF] x 8 x 0.042 x 250 x 1 x IUR) / (28470)

 $HQo = (EPCs \times 1 \times 330 \times 250 \times 1 \times RBA) / (1,000,000 \times 80 \times 365 \times RfDo)$ $HQd = (EPCs \times 6125 \times 0.30 \times ABSd \times 250 \times 1) / (1,000,000 \times 80 \times 365 \times RfDa)$ $HQi = ([EPCs / PEF] \times 8 \times 0.042 \times 250 \times 1) / (365 \times RfC)$

Appendix H, Table H-18

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Child/Adult Resident

Former CLEAR Plant - Shallow and Deep Soil/Sediment (0 to 15 ft bgs), Mean EPCs

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita

Sierrita Mine, Green Valley, Arizona

				_		CANCE						CANCER RISH		Percent			CER HAZARD		Percent			CER HAZARI		Percent
				A	ge-Specific	Risk for Ca	rcinogenic	Constitue	nts	Rou	te-Specific	Risk	Total	Total	Route	e-Specific I	Hazard	Total	Total	Route	-Specific	Hazard	Total	Total
	Cancer	EPCs	PEF [b]	1 t	hrough 6 y	ears		27 years			33 years				1 t	hrough 6 y	ears	Hazard	HI		27 years		Hazard	HI
Constituent	Group [a]	(mg/kg)	(m³/kg)	Oral	Dermal	Inhalation	Oral	Dermal	Inhalation	Oral	Dermal	Inhalation	ELCR	ELCR	Oral	Dermal	Inhalation	(Child)	(Child)	Oral	Dermal	Inhalation	(Adult)	(Adult)
				ELCRo	ELCRd	ELCRi	ELCRo	ELCRd	ELCRi	ELCRo	ELCRd	ELCRi			HQo	HQd	HQi			HQo	HQd	HQi		
Inorganics																								
Antimony	NA	3.96E+00	1.40E+09 P	NA	NA	NA	NA	NA	NA	_	_	_	_		1.0E-01	_	NA	1.0E-01	5%	9.7E-03	_	NA	9.7E-03	5%
Arsenic	Α	9.68E+00	1.40E+09 P	4.6E-06	7.6E-07	2.2E-09	2.4E-06	1.7E-06	9.9E-09	7.0E-06	2.4E-06	1.2E-08	9.4E-06	100%	1.3E-01	2.2E-02	4.4E-04	1.5E-01	8%	1.3E-02	8.7E-03	3.6E-04	2.2E-02	11%
Copper	D	4.03E+03	1.40E+09 P	NA	NA	NA	NA	NA	NA	_	_	_	_		1.0E+00	_	NA	1.0E+00	54%	9.9E-02	-	NA	9.9E-02	52%
Lead	B2	1.14E+02	1.40E+09 P	NA	NA	NA	NA	NA	NA	_	_	_	_		NA	NA	NA	_		NA	NA	NA	_	
Molybdenum	NA	3.05E+02	1.40E+09 P	NA	NA	NA	NA	NA	NA	_	-	_	-		6.2E-01	-	NA	6.2E-01	33%	6.0E-02	-	NA	6.0E-02	32%
				5E-06	8E-07	2E-09	2E-06	2E-06	1E-08	7E-06	2E-06	1E-08			2	0.02	0.0004			0.2	0.009	0.0004		
Total												Total ELCR	9E-06]		To	otal Child HI	2]		То	tal Adult HI	0.2]
												Total ELCR	9E-06]			HI (skin)	0.2]					
												Total ELCR Total ELCR					(circulatory) trointestinal)	0.9 1						
												Total ELCR	_	1		,,	neurological)	0.0004	1					
											•			4		,	evelopment)	0.0004	1					
																,	HI (kidney)	0.6	1					
																HI (whole body)	0.8	1					

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table F-7.

ELCRd: excess lifetime cancer risk, dermal pathway. -: not applicable. ELCRi: excess lifetime cancer risk, inhalation pathway. %: percent. ELCRo: excess lifetime cancer risk, oral pathway. ABSd: dermal absorption factor. CSFa: dermal cancer slope factor. EPCs: exposure point concentration in soil/sediment.

CSFo: oral cancer slope factor. ft bgs: feet below ground surface. HI: hazard index.

ELCR: excess lifetime cancer risk.

HQd: hazard quotient, dermal pathway. HQi: hazard quotient, inhalation pathway. HQo: hazard quotient, oral pathway. IUR: inhalation unit risk. m³/kg: cubic meter(s) per kilogram.

mg/kg: milligram(s) per kilogram.

NA: not available or not applicable. RBA: Relative Bioavailability. RfC: reference concentration. RfDa: dermal reference dose. RfDo: oral reference dose.

Receptor-specific exposure parameters are presented in Table F-7. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Child (1 through 6 years):

ELCRo = (EPCs x 1 x 200 x 350 x 6 x RBA x CSFo) / (1,000,000 x 19 x 28470) ELCRd = (EPCs x 2350 x 0.19 x ABSd x 350 x 6 x CSFa)/(1,000,000 x 19 x 28470)

ELCRi = ([EPCs / PEF] x 24 x 0.042 x 350 x 6 x IUR) / (28470)

Adult (7 through 33 years):

ELCRo = (EPCs x 1 x 100 x 350 x 27 x RBA x CSFo)/(1,000,000 x 80 x 28470) ELCRd = (EPCs x 6125 x 0.15 x ABSd x 350 x 27 x CSFa) / (1,000,000 x 80 x 28470) ELCRi = ([EPCs / PEF] x 24 x 0.042 x 350 x 27 x IUR) / (28470)

Child (1 through 6 years):

HQo = (EPCs x 1 x 200 x 350 x 6 x RBA) / (1,000,000 x 19 x 2190 x RfDo) $HQd = (EPCs \times 2350 \times 0.19 \times ABSd \times 350 \times 6) / (1.000.000 \times 19 \times 2190 \times RfDa)$ $HQi = ([EPCs / PEF] \times 24 \times 0.042 \times 350 \times 6) / (2190 \times RfC)$

Adult (7 through 33 years):

HQo = (EPCs x 1 x 100 x 350 x 27 x RBA) / (1,000,000 x 80 x 12045 x RfDo) HQd = (EPCs x 6125 x 0.15 x ABSd x 350 x 27)/(1,000,000 x 80 x 12045 x RfDa) HQi = ([EPCs / PEF] x 24 x 0.042 x 350 x 27) / (12045 x RfC)

Appendix H, Table H-19

Excess Lifetime Cancer Risk and Noncancer Hazard Index Calculations for a Hypothetical Future Child/Adult Resident

Former Esperanza Mill - Shallow and Deep Soil/Sediment (0 to 15 ft bgs), Mean EPCs

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita

Sierrita Mine, Green Valley, Arizona

					age-Specifi	CANCE c Risk for Ca		Constitue	nts	Rou	TOTAL oute-Specific	CANCER RIS Risk	K Total	Percent Total	NONCANCER HAZARD Route-Specific Hazard		Total	Percent Total	NONCANCER HAZARD Route-Specific Hazard) Total	Percent Total	
	Cancer	EPCs	PEF [b]		hrough 6 y			27 years			33 years					rough 6 ye		Hazard	HI		27 years		Hazard	
Constituent	Group [a]	(mg/kg)	(m³/kg)	Oral	Dermal	Inhalation	Oral	Dermal	Inhalation	Oral	Dermal	Inhalation	ELCR	ELCR	Oral	Dermal	Inhalation	(Child)	(Child)	Oral	Dermal	Inhalation	(Adult)	(Adult)
				ELCRo	ELCRd	ELCRi	ELCRo	ELCRd	ELCRi	ELCRo	ELCRd	ELCRi			HQo	HQd	HQi			HQo	HQd	HQi		
Inorganics																								
Antimony	NA	2.33E+00	1.40E+09 P	NA	NA	NA	NA	NA	NA	_	_	_	_		5.9E-02	_	NA	5.9E-02	3%	5.7E-03	_	NA	5.7E-03	
Arsenic	Α	7.91E+00	1.40E+09 P	3.7E-06	6.2E-07	1.8E-09	2.0E-06	1.4E-06	8.1E-09	5.7E-06	2.0E-06	9.9E-09	7.7E-06	100%	1.1E-01	1.8E-02	3.6E-04	1.3E-01	6%	1.0E-02	7.1E-03	3.0E-04	1.8E-02	8%
Copper	D	2.66E+03	1.40E+09 P	NA	NA	NA	NA	NA	NA	_	_	_	_		6.8E-01	_	NA	6.8E-01	32%	6.5E-02	-	NA	6.5E-02	31%
Lead	B2	1.16E+02	1.40E+09 P	NA	NA	NA	NA	NA	NA	_	_	_	_		NA	NA	NA	_		NA	NA	NA	_	
Molybdenum	NA	6.17E+02	1.40E+09 P	NA	NA	NA	NA	NA	NA	_	_	_	_		1.3E+00	_	NA	1.3E+00	59%	1.2E-01	_	NA	1.2E-01	57%
Uranium [c]	NA	5.39E+00	1.40E+09 P	NA	NA	NA	NA	NA	NA	-	-	_	_		1.8E-02	_	9.3E-05	1.8E-02	<1%	1.8E-03	-	7.6E-05	1.8E-03	<1%
				4E-06	6E-07	2E-09	2E-06	1E-06	8E-09	6E-06	2E-06	1E-08			2	0.02	0.0005			0.2	0.007	0.0004		
Total												Total ELCR	8E-06]		То	tal Child HI	2]		To	otal Adult HI	0.2]
												Total ELCR Total ELCR	8E-06				elopmental) (circulatory)	0.0004 2						
											Group C	Total ELCR	_				HI (skin)	0.1						
											Group D	Total ELCR	_			HI (n	eurological)	0.0004						
																	HI (kidney)	1	1					
																HI (whole body)	1						
																	HI (GI)	1						

HQd: hazard quotient, dermal pathway.

HQo: hazard quotient, oral pathway.

m³/kg: cubic meter(s) per kilogram.

IUR: inhalation unit risk.

HQi: hazard quotient, inhalation pathway.

Notes:

[a] United States Environmental Protection Agency (USEPA) cancer weight-of-evidence groups are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - Limited evidence of carcinogenicity in humans.

B2 - Sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate data or no evidence).

[b] Default particulate emission factor ([PEF] identified with [P]) provided in Table F-7.

-: not applicable. ELCRd: excess lifetime cancer risk, dermal pathway. ELCRi: excess lifetime cancer risk, inhalation pathway. %: percent. ABSd: dermal absorption factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFa: dermal cancer slope factor. EPC: exposure point concentration in soil/sediment. CSFo: oral cancer slope factor. ft bgs: feet below ground surface.

ELCR: excess lifetime cancer risk. HI: hazard index.

mg/kg: milligram(s) per kilogram. Receptor-specific exposure parameters are presented in Table F-7. Constituent specific absorption parameters are presented in Table 6-2. Constituent-specific toxicity values are presented in Table 7-1.

Equations:

Child (1 through 6 years):

ELCRo = (EPCs x 1 x 200 x 350 x 6 x RBA x CSFo) / (1,000,000 x 19 x 28470) ELCRd = (EPCs x 2350 x 0.19 x ABSd x 350 x 6 x CSFa) / (1,000,000 x 19 x 28470)

ELCRi = ([EPCs / PEF] x 24 x 0.042 x 350 x 6 x IUR) / (28470)

Adult (7 through 33 years):

ELCRo = (EPCs x 1 x 100 x 350 x 27 x RBA x CSFo)/(1,000,000 x 80 x 28470) ELCRd = (EPCs x 6125 x 0.15 x ABSd x 350 x 27 x CSFa) / (1,000,000 x 80 x 28470) ELCRi = ([EPCs / PEF] x 24 x 0.042 x 350 x 27 x IUR) / (28470)

NA: not available or not applicable. RBA: relative bioavailability.

RfC: reference concentration. RfDa: dermal reference dose. RfDo: oral reference dose.

Child (1 through 6 years):

HQo = (EPCs x 1 x 200 x 350 x 6 x RBA) / (1,000,000 x 19 x 2190 x RfDo) $HQd = (EPCs \times 2350 \times 0.19 \times ABSd \times 350 \times 6) / (1,000,000 \times 19 \times 2190 \times RfDa)$ $HQi = ([EPCs / PEF] \times 24 \times 0.042 \times 350 \times 6) / (2190 \times RfC)$

Adult (7 through 33 years):

 $HQo = (EPCs \times 1 \times 100 \times 350 \times 27 \times RBA) / (1,000,000 \times 80 \times 12045 \times RfDo)$ HQd = (EPCs x 6125 x 0.15 x ABSd x 350 x 27) / (1,000,000 x 80 x 12045 x RfDa) $HQi = ([EPCs / PEF] \times 24 \times 0.042 \times 350 \times 27) / (12045 \times RfC)$

APPENDIX I Excess Lifetime Cancer Risk Calculations (Radionuclides) using Mean EPCs

Appendix I, Table I-1 (RME)

Excess Lifetime Cancer Risk Calculations for a Current/Future Outdoor Commercial / Industrial Worker Exposed to Radionuclides Former CLEAR Plant - Shallow Soil/Sediment (0 to 0.5 ft bgs), Exposed Samples Only, Mean EPCs

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

		_		CANCE	R RISK		Percent
		_	R	oute-Specific ELC	R	Total	Total
	EPCs	PEF [a]	Ingestion	Inhalation	External	ELCR	ELCR
Constituent	(pCi/g)	(m³/kg)	ELCRo	ELCRi	ELCRe		
Radionuclides							
Jranium-238	2.34E+00	1.40E+09 P	7.4E-08	4.5E-09	1.4E-06	1.5E-06	1%
Jranium-234	2.24E+00	1.40E+09 P	6.4E-08	5.0E-09	2.9E-09	7.2E-08	<1%
horium-230	2.24E+00	1.40E+09 P	9.7E-08	6.1E-09	9.7E-09	1.1E-07	<1%
Radium-226	1.94E+00	1.40E+09 P	3.2E-07	4.4E-09	8.3E-05	8.3E-05	61%
.ead-210	1.94E+00	1.40E+09 P	4.5E-07	1.7E-09	1.0E-08	4.6E-07	<1%
Bismuth-210	1.94E+00	1.40E+09 P	3.2E-12	5.7E-14	2.2E-11	2.5E-11	<1%
Polonium-210	1.94E+00	1.40E+09 P	3.4E-08	5.1E-11	9.8E-12	3.4E-08	<1%
horium-232	2.33E+00	1.40E+09 P	9.9E-07	1.6E-08	4.8E-05	4.9E-05	36%
horium-228	2.33E+00	1.40E+09 P	9.2E-09	2.7E-09	7.4E-09	1.9E-08	<1%
adium-224	2.33E+00	1.40E+09 P	6.4E-11	1.2E-12	2.9E-10	3.6E-10	<1%
ead-212	2.33E+00	1.40E+09 P	1.2E-12	8.4E-15	4.2E-10	4.2E-10	<1%
Bismuth-212	2.33E+00	1.40E+09 P	3.9E-15	1.0E-16	3.9E-11	3.9E-11	<1%
hallium-208	2.33E+00	1.40E+09 P	NA	NA	7.0E-11	7.0E-11	<1%
Iranium-235	1.44E-01	1.40E+09 P	4.0E-09	2.9E-10	4.3E-07	4.3E-07	<1%
Protactinium-231	1.44E-01	1.40E+09 P	1.2E-08	8.8E-10	9.4E-08	1.1E-07	<1%
ctinium-227	1.44E-01	1.40E+09 P	1.1E-08	1.2E-09	1.0E-10	1.3E-08	<1%
rancium-223	1.44E-01	1.40E+09 P	9.5E-16	1.1E-18	2.4E-13	2.4E-13	<1%
statine-219	1.44E-01	1.40E+09 P	NA	NA	NA	_	
ismuth-215	1.44E-01	1.40E+09 P	NA	NA	6.7E-13	6.7E-13	<1%
horium-227	1.44E-01	1.40E+09 P	4.9E-12	1.2E-12	9.7E-10	9.8E-10	<1%
adium-223	1.44E-01	1.40E+09 P	1.8E-11	6.1E-13	9.2E-10	9.4E-10	<1%
ead-211	1.44E-01	1.40E+09 P	8.4E-17	1.8E-18	8.5E-13	8.5E-13	<1%
statine-215	1.44E-01	1.40E+09 P	NA	NA	9.6E-23	9.6E-23	<1%
Bismuth-211	1.44E-01	1.40E+09 P	NA	NA	3.3E-14	3.3E-14	<1%
hallium-207	1.44E-01	1.40E+09 P	NA	NA	6.2E-15	6.2E-15	<1%
olonium-211	1.44E-01	1.40E+09 P	NA	NA	2.6E-17	2.6E-17	<1%
			2E-06	4E-08	1E-04		
otal					Total ELCR	1E-04	

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

%: percent.

ACF: area correction factor.

ELCRo: excess lifetime cancer risk, inhalation pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

ELCRo: excess lifetime cancer risk, inhalation pathway.

ELCRo: excess lifetime cancer risk, inhalation pathway.

CSFi: inhalation cancer slope factor. It bgs: feet below ground surface.
CSFo: oral cancer slope factor. m³/kg: cubic meter(s) per kilogram.
ELCR: excess lifetime cancer risk. pCi/g: picoCurie(s) per gram.
ELCRe: excess lifetime cancer risk, external pathway. RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1. Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

ELCRo = (EPCs × 100 × 225 × 25 × [1 - exp($-\Lambda$ × 25)] × CSFo) / (1,000 × 25 × Λ) ELCRi = (EPCs × 1,000 × 60 × 8 × 0.042 × 225 × 25 × [1 - exp($-\Lambda$ × 25)] × CSFi) / (1.40E+09 × 25 × Λ) ELCRe = (EPCs × ACF × [(8 × 0.042 × 1) + (0 × 0.042 × 0.4)] × 225 × 25 × [1 - exp($-\Lambda$ × 25)] × CSFe) / (365 × 25 × Λ)

Appendix I, Table I-2 (Site-Specific Evaluation)

Excess Lifetime Cancer Risk Calculations for a Current/Future Outdoor Commercial / Industrial Worker Exposed to Radionuclides Former CLEAR Plant - Shallow Soil/Sediment (0 to 0.5 ft bgs), Exposed Samples Only, Mean EPCs

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

		_		CANCE	R RISK		Percent
		_	R	oute-Specific ELC	R	Total	Total
	EPCs	PEF [a]	Ingestion	Inhalation	External	ELCR	ELCR
Constituent	(pCi/g)	(m³/kg)	ELCRo	ELCRi	ELCRe		
Radionuclides							
Jranium-238	2.34E+00	1.40E+09 P	7.4E-08	2.2E-09	7.1E-07	7.9E-07	1%
Jranium-234	2.24E+00	1.40E+09 P	6.4E-08	2.5E-09	1.5E-09	6.8E-08	<1%
Γhorium-230	2.24E+00	1.40E+09 P	9.7E-08	3.1E-09	4.9E-09	1.1E-07	<1%
Radium-226	1.94E+00	1.40E+09 P	3.2E-07	2.2E-09	4.1E-05	4.2E-05	61%
_ead-210	1.94E+00	1.40E+09 P	4.5E-07	8.7E-10	5.1E-09	4.6E-07	<1%
Bismuth-210	1.94E+00	1.40E+09 P	3.2E-12	2.8E-14	1.1E-11	1.4E-11	<1%
Polonium-210	1.94E+00	1.40E+09 P	3.4E-08	2.6E-11	4.9E-12	3.4E-08	<1%
Thorium-232	2.33E+00	1.40E+09 P	9.9E-07	8.2E-09	2.4E-05	2.5E-05	37%
Γhorium-228	2.33E+00	1.40E+09 P	9.2E-09	1.3E-09	3.7E-09	1.4E-08	<1%
Radium-224	2.33E+00	1.40E+09 P	6.4E-11	6.0E-13	1.5E-10	2.1E-10	<1%
_ead-212	2.33E+00	1.40E+09 P	1.2E-12	4.2E-15	2.1E-10	2.1E-10	<1%
Bismuth-212	2.33E+00	1.40E+09 P	3.9E-15	5.2E-17	2.0E-11	2.0E-11	<1%
Γhallium-208	2.33E+00	1.40E+09 P	NA	NA	3.5E-11	3.5E-11	<1%
Jranium-235	1.44E-01	1.40E+09 P	4.0E-09	1.5E-10	2.1E-07	2.2E-07	<1%
Protactinium-231	1.44E-01	1.40E+09 P	1.2E-08	4.4E-10	4.7E-08	6.0E-08	<1%
Actinium-227	1.44E-01	1.40E+09 P	1.1E-08	6.0E-10	5.1E-11	1.2E-08	<1%
rancium-223	1.44E-01	1.40E+09 P	9.5E-16	5.7E-19	1.2E-13	1.2E-13	<1%
Astatine-219	1.44E-01	1.40E+09 P	NA	NA	NA	_	
Bismuth-215	1.44E-01	1.40E+09 P	NA	NA	3.3E-13	3.3E-13	<1%
Γhorium-227	1.44E-01	1.40E+09 P	4.9E-12	6.0E-13	4.9E-10	4.9E-10	<1%
Radium-223	1.44E-01	1.40E+09 P	1.8E-11	3.0E-13	4.6E-10	4.8E-10	<1%
_ead-211	1.44E-01	1.40E+09 P	8.4E-17	9.2E-19	4.3E-13	4.3E-13	<1%
Astatine-215	1.44E-01	1.40E+09 P	NA	NA	4.8E-23	4.8E-23	<1%
Bismuth-211	1.44E-01	1.40E+09 P	NA	NA	1.7E-14	1.7E-14	<1%
Γhallium-207	1.44E-01	1.40E+09 P	NA	NA	3.1E-15	3.1E-15	<1%
Polonium-211	1.44E-01	1.40E+09 P	NA	NA	1.3E-17	1.3E-17	<1%
			2E-06	2E-08	7E-05		
Γotal					Total ELCR	7E-05	

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

%: percent.

ACF: area correction factor.

ELCRo: excess lifetime cancer risk, inhalation pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

ELCRo: excess lifetime cancer risk, inhalation pathway.

ELCRo: excess lifetime cancer risk, inhalation pathway.

CSFi: inhalation cancer slope factor. It bgs: feet below ground surface. CSFo: oral cancer slope factor. If bgs: feet below ground surface. m^3 /kg: cubic meter(s) per kilogram. ELCR: excess lifetime cancer risk. pCi/g: picoCurie(s) per gram.

ELCRe: excess lifetime cancer risk, external pathway.

Receptor-specific exposure parameters are presented in Table 6-1. Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

ELCRo = (EPCs × 100 × 225 × 25 × [1 - exp($-\Lambda$ × 25)] × CSFo) / (1,000 × 25 × Λ) ELCRi = (EPCs × 1,000 × 60 × 8 × 0.042 × 225 × 25 × [1 - exp($-\Lambda$ × 25)] × CSFi) / (1.40E+09 × 25 × Λ) ELCRe = (EPCs × ACF × [(8 × 0.042 × 1) + (0 × 0.042 × 0.4)] × 225 × 25 × [1 - exp($-\Lambda$ × 25)] × CSFe) / (365 × 25 × Λ)

Appendix I, Table I-3 (RME)

Excess Lifetime Cancer Risk Calculations for a Hypothetical Future Adolescent Trespasser Exposed to Radionuclides Former CLEAR Plant - Shallow Soil/Sediment (0 to 0.5 ft bgs), Exposed Samples Only, Mean EPCs Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

		_		CANCE	R RISK		Percent
		-	R	oute-Specific ELC	R	Total	Total
	EPCs	PEF [a]	Ingestion	Inhalation	External	ELCR	ELCR
Constituent	(pCi/g)	(m³/kg)	ELCRo	ELCRi	ELCRe		
Radionuclides							
Jranium-238	2.34E+00	1.40E+09 P	3.4E-09	1.2E-11	1.7E-08	2.0E-08	1%
Jranium-234	2.24E+00	1.40E+09 P	3.0E-09	1.3E-11	3.4E-11	3.0E-09	<1%
Thorium-230	2.24E+00	1.40E+09 P	4.5E-09	1.6E-11	1.1E-10	4.6E-09	<1%
Radium-226	1.94E+00	1.40E+09 P	1.5E-08	1.2E-11	9.7E-07	9.8E-07	59%
Lead-210	1.94E+00	1.40E+09 P	2.6E-08	5.7E-12	1.5E-10	2.6E-08	2%
Bismuth-210	1.94E+00	1.40E+09 P	3.7E-13	3.8E-16	6.4E-13	1.0E-12	<1%
Polonium-210	1.94E+00	1.40E+09 P	4.0E-09	3.4E-13	2.9E-13	4.0E-09	<1%
Thorium-232	2.33E+00	1.40E+09 P	4.6E-08	4.3E-11	5.6E-07	6.1E-07	37%
Thorium-228	2.33E+00	1.40E+09 P	1.0E-09	1.7E-11	2.1E-10	1.3E-09	<1%
Radium-224	2.33E+00	1.40E+09 P	7.4E-12	7.9E-15	8.4E-12	1.6E-11	<1%
Lead-212	2.33E+00	1.40E+09 P	1.4E-13	5.6E-17	1.2E-11	1.2E-11	<1%
Bismuth-212	2.33E+00	1.40E+09 P	4.5E-16	6.9E-19	1.1E-12	1.1E-12	<1%
Γhallium-208	2.33E+00	1.40E+09 P	NA	NA	2.0E-12	2.0E-12	<1%
Jranium-235	1.44E-01	1.40E+09 P	1.9E-10	7.7E-13	5.0E-09	5.2E-09	<1%
Protactinium-231	1.44E-01	1.40E+09 P	5.8E-10	2.3E-12	1.1E-09	1.7E-09	<1%
Actinium-227	1.44E-01	1.40E+09 P	6.4E-10	3.9E-12	1.5E-12	6.5E-10	<1%
Francium-223	1.44E-01	1.40E+09 P	1.1E-16	7.6E-21	7.0E-15	7.1E-15	<1%
Astatine-219	1.44E-01	1.40E+09 P	NA	NA	NA	_	
Bismuth-215	1.44E-01	1.40E+09 P	NA	NA	1.9E-14	1.9E-14	<1%
Thorium-227	1.44E-01	1.40E+09 P	5.7E-13	7.9E-15	2.8E-11	2.9E-11	<1%
Radium-223	1.44E-01	1.40E+09 P	2.1E-12	4.0E-15	2.7E-11	2.9E-11	<1%
Lead-211	1.44E-01	1.40E+09 P	9.8E-18	1.2E-20	2.5E-14	2.5E-14	<1%
Astatine-215	1.44E-01	1.40E+09 P	NA	NA	2.8E-24	2.8E-24	<1%
Bismuth-211	1.44E-01	1.40E+09 P	NA	NA	9.6E-16	9.6E-16	<1%
Thallium-207	1.44E-01	1.40E+09 P	NA	NA	1.8E-16	1.8E-16	<1%
Polonium-211	1.44E-01	1.40E+09 P	NA	NA	7.6E-19	7.6E-19	<1%
			1E-07	1E-10	2E-06		
Total					Total ELCR	2E-06	

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

%: percent.

ACF: area correction factor.

ELCRo: excess lifetime cancer risk, inhalation pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

ELCRo: excess lifetime cancer risk, inhalation pathway.

ELCRo: excess lifetime cancer risk, inhalation pathway.

CSFi: inhalation cancer slope factor. It bgs: feet below ground surface.
CSFo: oral cancer slope factor. m³/kg: cubic meter(s) per kilogram.
ELCR: excess lifetime cancer risk. pCi/g: picoCurie(s) per gram.
ELCRe: excess lifetime cancer risk, external pathway. RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1. Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

ELCRo = (EPCs × 50 × 52 × 10 × [1 - exp(-h × 10)] × CSFo) / (1,000 × 10 × h) ELCRi = (EPCs × 1,000 × 60 × 1 × 0.042 × 52 × 10 × [1 - exp(-h × 10)] × CSFi) / (1.40E+09 × 10 × h) ELCRe = (EPCs × ACF × [(1 × 0.042 × 1) + (0 × 0.042 × 0.4)] × 52 × 10 × [1 - exp(-h × 10)] × CSFe) / (365 × 10 × h)

Appendix I, Table I-4 (RME)

Excess Lifetime Cancer Risk Calculations for a Hypothetical Future Outdoor Commercial / Industrial Worker Exposed to Radionuclides Former CLEAR Plant - Shallow Soil/Sediment (0 to 0.5 ft bgs), All Samples, Mean EPCs Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

		_		CANCE	R RISK		Percent
		_	R	oute-Specific ELC	:R	Total	Total
	EPCs	PEF [a]	Ingestion	Inhalation	External	ELCR	ELCR
Constituent	(pCi/g)	(m³/kg)	ELCRo	ELCRi	ELCRe		
Radionuclides							
Uranium-238	2.63E+00	1.40E+09 P	8.3E-08	5.0E-09	1.6E-06	1.7E-06	1%
Uranium-234	2.53E+00	1.40E+09 P	7.3E-08	5.7E-09	3.3E-09	8.2E-08	<1%
Thorium-230	2.53E+00	1.40E+09 P	1.1E-07	6.9E-09	1.1E-08	1.3E-07	<1%
Radium-226	1.97E+00	1.40E+09 P	3.2E-07	4.4E-09	8.4E-05	8.4E-05	62%
Lead-210	1.97E+00	1.40E+09 P	4.6E-07	1.8E-09	1.0E-08	4.7E-07	<1%
Bismuth-210	1.97E+00	1.40E+09 P	3.3E-12	5.8E-14	2.2E-11	2.5E-11	<1%
Polonium-210	1.97E+00	1.40E+09 P	3.5E-08	5.2E-11	1.0E-11	3.5E-08	<1%
Thorium-232	2.32E+00	1.40E+09 P	9.8E-07	1.6E-08	4.8E-05	4.9E-05	36%
Thorium-228	2.32E+00	1.40E+09 P	9.2E-09	2.7E-09	7.4E-09	1.9E-08	<1%
Radium-224	2.32E+00	1.40E+09 P	6.4E-11	1.2E-12	2.9E-10	3.5E-10	<1%
Lead-212	2.32E+00	1.40E+09 P	1.2E-12	8.4E-15	4.1E-10	4.1E-10	<1%
Bismuth-212	2.32E+00	1.40E+09 P	3.8E-15	1.0E-16	3.9E-11	3.9E-11	<1%
Thallium-208	2.32E+00	1.40E+09 P	NA	NA	7.0E-11	7.0E-11	<1%
Uranium-235	1.69E-01	1.40E+09 P	4.8E-09	3.4E-10	5.0E-07	5.1E-07	<1%
Protactinium-231	1.69E-01	1.40E+09 P	1.5E-08	1.0E-09	1.1E-07	1.3E-07	<1%
Actinium-227	1.69E-01	1.40E+09 P	1.3E-08	1.4E-09	1.2E-10	1.5E-08	<1%
Francium-223	1.69E-01	1.40E+09 P	1.1E-15	1.3E-18	2.8E-13	2.8E-13	<1%
Astatine-219	1.69E-01	1.40E+09 P	NA	NA	NA	_	
Bismuth-215	1.69E-01	1.40E+09 P	NA	NA	7.8E-13	7.8E-13	<1%
Thorium-227	1.69E-01	1.40E+09 P	5.8E-12	1.4E-12	1.1E-09	1.1E-09	<1%
Radium-223	1.69E-01	1.40E+09 P	2.1E-11	7.1E-13	1.1E-09	1.1E-09	<1%
Lead-211	1.69E-01	1.40E+09 P	9.9E-17	2.2E-18	1.0E-12	1.0E-12	<1%
Astatine-215	1.69E-01	1.40E+09 P	NA	NA	1.1E-22	1.1E-22	<1%
Bismuth-211	1.69E-01	1.40E+09 P	NA	NA	3.9E-14	3.9E-14	<1%
Thallium-207	1.69E-01	1.40E+09 P	NA	NA	7.2E-15	7.2E-15	<1%
Polonium-211	1.69E-01	1.40E+09 P	NA	NA	3.1E-17	3.1E-17	<1%
			2E-06	5E-08	1E-04		
Total					Total ELCR	1E-04	

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

%: percent. ELCRi: excess lifetime cancer risk, inhalation pathway.
ACF: area correction factor. ELCRo: excess lifetime cancer risk, oral pathway.
CSFe: external cancer slope factor. EPC: exposure point concentration in soil/sediment.

Receptor-specific exposure parameters are presented in Table 6-1. Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

ELCRo = (EPCs × 100 × 225 × 25 × [1 - exp($-\Lambda$ × 25)] × CSFo) / (1,000 × 25 × Λ) ELCRi = (EPCs × 1,000 × 60 × 8 × 0.042 × 225 × 25 × [1 - exp($-\Lambda$ × 25)] × CSFi) / (1.40E+09 × 25 × Λ) ELCRe = (EPCs × ACF × [(8 × 0.042 × 1) + (0 × 0.042 × 0.4)] × 225 × 25 × [1 - exp($-\Lambda$ × 25)] × CSFe) / (365 × 25 × Λ)

Appendix I, Table I-5 (Site-Specific Evaluation)

Excess Lifetime Cancer Risk Calculations for a Hypothetical Future Outdoor Commercial / Industrial Worker Exposed to Radionuclides Former CLEAR Plant - Shallow Soil/Sediment (0 to 0.5 ft bgs), All Samples, Mean EPCs

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

		_		CANCE	R RISK		Percent
		_	R	oute-Specific ELC	R	Total	Total
	EPCs	PEF [a]	Ingestion	Inhalation	External	ELCR	ELCR
Constituent	(pCi/g)	(m³/kg)	ELCRo	ELCRi	ELCRe		
Radionuclides							
Uranium-238	2.63E+00	1.40E+09 P	8.3E-08	2.5E-09	8.0E-07	8.9E-07	1%
Uranium-234	2.53E+00	1.40E+09 P	7.3E-08	2.9E-09	1.6E-09	7.7E-08	<1%
Thorium-230	2.53E+00	1.40E+09 P	1.1E-07	3.5E-09	5.5E-09	1.2E-07	<1%
Radium-226	1.97E+00	1.40E+09 P	3.2E-07	2.2E-09	4.2E-05	4.2E-05	61%
Lead-210	1.97E+00	1.40E+09 P	4.6E-07	8.8E-10	5.2E-09	4.7E-07	<1%
Bismuth-210	1.97E+00	1.40E+09 P	3.3E-12	2.9E-14	1.1E-11	1.4E-11	<1%
Polonium-210	1.97E+00	1.40E+09 P	3.5E-08	2.6E-11	5.0E-12	3.5E-08	<1%
Thorium-232	2.32E+00	1.40E+09 P	9.8E-07	8.1E-09	2.4E-05	2.5E-05	36%
Thorium-228	2.32E+00	1.40E+09 P	9.2E-09	1.3E-09	3.7E-09	1.4E-08	<1%
Radium-224	2.32E+00	1.40E+09 P	6.4E-11	5.9E-13	1.4E-10	2.1E-10	<1%
Lead-212	2.32E+00	1.40E+09 P	1.2E-12	4.2E-15	2.1E-10	2.1E-10	<1%
Bismuth-212	2.32E+00	1.40E+09 P	3.8E-15	5.2E-17	2.0E-11	2.0E-11	<1%
Thallium-208	2.32E+00	1.40E+09 P	NA	NA	3.5E-11	3.5E-11	<1%
Jranium-235	1.69E-01	1.40E+09 P	4.8E-09	1.7E-10	2.5E-07	2.5E-07	<1%
Protactinium-231	1.69E-01	1.40E+09 P	1.5E-08	5.2E-10	5.5E-08	7.0E-08	<1%
Actinium-227	1.69E-01	1.40E+09 P	1.3E-08	7.0E-10	5.9E-11	1.4E-08	<1%
Francium-223	1.69E-01	1.40E+09 P	1.1E-15	6.7E-19	1.4E-13	1.4E-13	<1%
Astatine-219	1.69E-01	1.40E+09 P	NA	NA	NA	_	
Bismuth-215	1.69E-01	1.40E+09 P	NA	NA	3.9E-13	3.9E-13	<1%
Thorium-227	1.69E-01	1.40E+09 P	5.8E-12	7.0E-13	5.7E-10	5.8E-10	<1%
Radium-223	1.69E-01	1.40E+09 P	2.1E-11	3.6E-13	5.4E-10	5.6E-10	<1%
Lead-211	1.69E-01	1.40E+09 P	9.9E-17	1.1E-18	5.0E-13	5.0E-13	<1%
Astatine-215	1.69E-01	1.40E+09 P	NA	NA	5.6E-23	5.6E-23	<1%
Bismuth-211	1.69E-01	1.40E+09 P	NA	NA	1.9E-14	1.9E-14	<1%
Thallium-207	1.69E-01	1.40E+09 P	NA	NA	3.6E-15	3.6E-15	<1%
Polonium-211	1.69E-01	1.40E+09 P	NA	NA	1.5E-17	1.5E-17	<1%
			2E-06	2E-08	7E-05		
Total					Total ELCR	7E-05	İ

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

%: percent. ELCRi: excess lifetime cancer risk, inhalation pathway.

ACF: area correction factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFe: external cancer slope factor. EPC: exposure point concentration in soil/sediment.

CSFi: inhalation cancer slope factor. ft bgs: feet below ground surface.

CSFo: oral cancer slope factor. m³/kg: cubic meter(s) per kilogram.

ELCR: excess lifetime cancer risk. pCi/g: picoCurie(s) per gram.

ELCRe: excess lifetime cancer risk, external pathway.

Receptor-specific exposure parameters are presented in Table 6-1. Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

ELCRo = [EPCs × $100 \times 225 \times 25 \times [1 - \exp(-\lambda \times 25)] \times CSFo) / (1,000 \times 25 \times \lambda)$ ELCRi = (EPCs × $1,000 \times 60 \times 8 \times 0.042 \times 225 \times 25 \times [1 - \exp(-\lambda \times 25)] \times CSFi) / (1.40E+09 \times 25 \times \lambda)$ ELCRe = (EPCs × ACF × [(8 × $0.042 \times 1) + (0 \times 0.042 \times 0.4)] \times 225 \times 25 \times [1 - \exp(-\lambda \times 25)] \times CSFe) / (365 \times 25 \times \lambda)$

Appendix I, Table I-6 (RME)

Excess Lifetime Cancer Risk Calculations for a Hypothetical Future Adolescent Trespasser Exposed to Radionuclides Former CLEAR Plant - Shallow Soil/Sediment (0 to 0.5 ft bgs), All Samples, Mean EPCs Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

				CANCE	R RISK		Percent
		•	R	oute-Specific ELC	R	Total	Total
	EPCs	PEF [a]	Ingestion	Inhalation	External	ELCR	ELCR
Constituent	(pCi/g)	(m³/kg)	ELCRo	ELCRi	ELCRe		
Radionuclides							
Jranium-238	2.63E+00	1.40E+09 P	3.8E-09	1.3E-11	1.9E-08	2.3E-08	1%
Jranium-234	2.53E+00	1.40E+09 P	3.4E-09	1.5E-11	3.8E-11	3.4E-09	<1%
Thorium-230	2.53E+00	1.40E+09 P	5.1E-09	1.8E-11	1.3E-10	5.2E-09	<1%
Radium-226	1.97E+00	1.40E+09 P	1.5E-08	1.2E-11	9.8E-07	1.0E-06	60%
_ead-210	1.97E+00	1.40E+09 P	2.6E-08	5.7E-12	1.5E-10	2.6E-08	2%
3ismuth-210	1.97E+00	1.40E+09 P	3.8E-13	3.8E-16	6.5E-13	1.0E-12	<1%
Polonium-210	1.97E+00	1.40E+09 P	4.0E-09	3.4E-13	2.9E-13	4.0E-09	<1%
Thorium-232	2.32E+00	1.40E+09 P	4.5E-08	4.3E-11	5.6E-07	6.1E-07	36%
Thorium-228	2.32E+00	1.40E+09 P	1.0E-09	1.7E-11	2.1E-10	1.3E-09	<1%
Radium-224	2.32E+00	1.40E+09 P	7.4E-12	7.8E-15	8.4E-12	1.6E-11	<1%
_ead-212	2.32E+00	1.40E+09 P	1.4E-13	5.5E-17	1.2E-11	1.2E-11	<1%
3ismuth-212	2.32E+00	1.40E+09 P	4.4E-16	6.9E-19	1.1E-12	1.1E-12	<1%
Γhallium-208	2.32E+00	1.40E+09 P	NA	NA	2.0E-12	2.0E-12	<1%
Jranium-235	1.69E-01	1.40E+09 P	2.2E-10	9.0E-13	5.8E-09	6.0E-09	<1%
Protactinium-231	1.69E-01	1.40E+09 P	6.8E-10	2.7E-12	1.3E-09	2.0E-09	<1%
Actinium-227	1.69E-01	1.40E+09 P	7.6E-10	4.6E-12	1.7E-12	7.6E-10	<1%
rancium-223	1.69E-01	1.40E+09 P	1.3E-16	8.9E-21	8.2E-15	8.4E-15	<1%
Astatine-219	1.69E-01	1.40E+09 P	NA	NA	NA	_	
3ismuth-215	1.69E-01	1.40E+09 P	NA	NA	2.3E-14	2.3E-14	<1%
Thorium-227	1.69E-01	1.40E+09 P	6.7E-13	9.3E-15	3.3E-11	3.4E-11	<1%
Radium-223	1.69E-01	1.40E+09 P	2.4E-12	4.7E-15	3.2E-11	3.4E-11	<1%
_ead-211	1.69E-01	1.40E+09 P	1.1E-17	1.4E-20	2.9E-14	2.9E-14	<1%
Astatine-215	1.69E-01	1.40E+09 P	NA	NA	3.3E-24	3.3E-24	<1%
Bismuth-211	1.69E-01	1.40E+09 P	NA	NA	1.1E-15	1.1E-15	<1%
Γhallium-207	1.69E-01	1.40E+09 P	NA	NA	2.1E-16	2.1E-16	<1%
Polonium-211	1.69E-01	1.40E+09 P	NA	NA	9.0E-19	9.0E-19	<1%
			1E-07	1E-10	2E-06		
Total .					Total ELCR	2E-06	i

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

%: percent. ELCRi: excess lifetime cancer risk, inhalation pathway.
ACF: area correction factor. ELCRo: excess lifetime cancer risk, oral pathway.
CSFe: external cancer slope factor. EPC: exposure point concentration in soil/sediment.

Receptor-specific exposure parameters are presented in Table 6-1. Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

ELCRo = (EPCs × 50 × 52 × 10 × [1 - exp(-λ × 10)] × CSFo) / (1,000 × 10 × λ)

ELCRi = (EPCs × 1,000 × 60 × 1 × 0.042 × 52 × 10 × [1 - exp($-\lambda$ × 10)] × CSFi) / (1.40E+09 × 10 × λ)

ELCRe = (EPCs × ACF × [(1 × 0.042 × 1) + (0 × 0.042 × 0.4)] × 52 × 10 × [1 - exp($-\lambda$ × 10)] × CSFe) / (365 × 10 × λ)

Appendix I, Table I-7 (RME)

Excess Lifetime Cancer Risk Calculations for a Hypothetical Future Outdoor Commercial / Industrial Worker Exposed to Radionuclides Former CLEAR Plant - Shallow and Deep Soil/Sediment (0 to 15 ft bgs), Mean EPCs

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

				_		CANCE	R RISK		Percent
				_	F	Route-Specific Ris	k	Total	Total
	EPCs		PEF [a]		Ingestion	Inhalation	External	ELCR	ELCR
Constituent	(pCi/g)		(m³/kg)		ELCRo	ELCRi	ELCRe		
Radionuclides									
Jranium-238	2.76E+00	soil	1.40E+09 P		8.7E-08	5.3E-09	1.7E-06	1.8E-06	1%
Jranium-234	2.68E+00	soil	1.40E+09 P		7.7E-08	6.0E-09	3.5E-09	8.7E-08	<1%
horium-230	2.68E+00	soil	1.40E+09 P		1.2E-07	7.3E-09	1.2E-08	1.4E-07	<1%
Radium-226	2.34E+00	soil	1.40E+09 P		3.9E-07	5.3E-09	1.0E-04	1.0E-04	66%
ead-210	2.34E+00	soil	1.40E+09 P		5.5E-07	2.1E-09	1.2E-08	5.6E-07	<1%
Bismuth-210	2.34E+00	soil	1.40E+09 P		3.9E-12	6.9E-14	2.6E-11	3.0E-11	<1%
olonium-210	2.34E+00	soil	1.40E+09 P		4.1E-08	6.2E-11	1.2E-11	4.2E-08	<1%
horium-232	2.30E+00	soil	1.40E+09 P		9.8E-07	1.6E-08	4.8E-05	4.9E-05	32%
horium-228	2.30E+00	soil	1.40E+09 P		9.1E-09	2.7E-09	7.3E-09	1.9E-08	<1%
adium-224	2.30E+00	soil	1.40E+09 P		6.3E-11	1.2E-12	2.9E-10	3.5E-10	<1%
ead-212	2.30E+00	soil	1.40E+09 P		1.2E-12	8.3E-15	4.1E-10	4.1E-10	<1%
ismuth-212	2.30E+00	soil	1.40E+09 P		3.8E-15	1.0E-16	3.9E-11	3.9E-11	<1%
hallium-208	2.30E+00	soil	1.40E+09 P		NA	NA	6.9E-11	6.9E-11	<1%
Iranium-235	1.68E-01	soil	1.40E+09 P		4.7E-09	3.4E-10	5.0E-07	5.0E-07	<1%
rotactinium-231	1.68E-01	soil	1.40E+09 P		1.5E-08	1.0E-09	1.1E-07	1.3E-07	<1%
ctinium-227	1.68E-01	soil	1.40E+09 P		1.3E-08	1.4E-09	1.2E-10	1.5E-08	<1%
rancium-223	1.68E-01	soil	1.40E+09 P		1.1E-15	1.3E-18	2.8E-13	2.8E-13	<1%
statine-219	1.68E-01	soil	1.40E+09 P		NA	NA	NA	_	
sismuth-215	1.68E-01	soil	1.40E+09 P		NA	NA	7.8E-13	7.8E-13	<1%
horium-227	1.68E-01	soil	1.40E+09 P		5.8E-12	1.4E-12	1.1E-09	1.1E-09	<1%
adium-223	1.68E-01	soil	1.40E+09 P		2.1E-11	7.1E-13	1.1E-09	1.1E-09	<1%
ead-211	1.68E-01	soil	1.40E+09 P		9.9E-17	2.1E-18	1.0E-12	1.0E-12	<1%
statine-215	1.68E-01	soil	1.40E+09 P		NA	NA	1.1E-22	1.1E-22	<1%
Bismuth-211	1.68E-01	soil	1.40E+09 P		NA	NA	3.9E-14	3.9E-14	<1%
hallium-207	1.68E-01	soil	1.40E+09 P		NA	NA	7.2E-15	7.2E-15	<1%
olonium-211	1.68E-01	soil	1.40E+09 P		NA	NA	3.1E-17	3.1E-17	<1%
					2E-06	5E-08	2E-04		
otal							Total ELCR	2E-04	

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

%: percent. ELCRi: excess lifetime cancer risk, inhalation pathway.

ACF: area correction factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFe: external cancer slope factor. EPC: exposure point concentration in soil/sediment.

CSFi: inhalation cancer slope factor. ft bgs: feet below ground surface.

CSFo: oral cancer slope factor. m³/kg: cubic meter(s) per kilogram.

ELCR: excess lifetime cancer risk.

ELCRe: excess lifetime cancer risk, external pathway.

ELCRe: excess lifetime cancer risk, external pathway.

RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1.

Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

ELCRo = (EPCs × 100 × 225 × 25 × [1 - exp($-\lambda$ × 25)] × CSFo) / (1,000 × 25 × λ) ELCRi = (EPCs × 1,000 × 60 × 8 × 0.042 × 225 × 25 × [1 - exp($-\lambda$ × 25)] × CSFi) / (1.40E+09 × 25 × λ) ELCRe = (EPCs × ACF × [(8 × 0.042 × 1) + (0 × 0.042 × 0.4)] × 225 × 25 × [1 - exp($-\lambda$ × 25)] × CSFe) / (365 × 25 × λ)

Appendix I, Table I-8 (Site-Specific Evaluation)

Excess Lifetime Cancer Risk Calculations for a Hypothetical Future Outdoor Commercial / Industrial Worker Exposed to Radionuclides Former CLEAR Plant - Shallow and Deep Soil/Sediment (0 to 15 ft bgs), Mean EPCs

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

						CANCE	R RISK		Percent
				_	F	Route-Specific Ris	k	Total	Total
	EPCs		PEF [a]		Ingestion	Inhalation	External	ELCR	ELCR
Constituent	(pCi/g)		(m³/kg)		ELCRo	ELCRi	ELCRe		
Radionuclides									
Uranium-238	2.76E+00	soil	1.40E+09	Р	8.7E-08	2.6E-09	8.4E-07	9.3E-07	1%
Uranium-234	2.68E+00	soil	1.40E+09	Р	7.7E-08	3.0E-09	1.7E-09	8.2E-08	<1%
Thorium-230	2.68E+00	soil	1.40E+09	Р	1.2E-07	3.7E-09	5.8E-09	1.3E-07	<1%
Radium-226	2.34E+00	soil	1.40E+09	Р	3.9E-07	2.6E-09	5.0E-05	5.0E-05	65%
Lead-210	2.34E+00	soil	1.40E+09	Р	5.5E-07	1.0E-09	6.2E-09	5.5E-07	<1%
Bismuth-210	2.34E+00	soil	1.40E+09	Р	3.9E-12	3.4E-14	1.3E-11	1.7E-11	<1%
Polonium-210	2.34E+00	soil	1.40E+09	Р	4.1E-08	3.1E-11	5.9E-12	4.2E-08	<1%
Thorium-232	2.30E+00	soil	1.40E+09	Р	9.8E-07	8.0E-09	2.4E-05	2.5E-05	32%
Thorium-228	2.30E+00	soil	1.40E+09	Р	9.1E-09	1.3E-09	3.7E-09	1.4E-08	<1%
Radium-224	2.30E+00	soil	1.40E+09	Р	6.3E-11	5.9E-13	1.4E-10	2.1E-10	<1%
Lead-212	2.30E+00	soil	1.40E+09	Р	1.2E-12	4.1E-15	2.0E-10	2.1E-10	<1%
Bismuth-212	2.30E+00	soil	1.40E+09	Р	3.8E-15	5.2E-17	1.9E-11	1.9E-11	<1%
Thallium-208	2.30E+00	soil	1.40E+09	Р	NA	NA	3.5E-11	3.5E-11	<1%
Uranium-235	1.68E-01	soil	1.40E+09	Р	4.7E-09	1.7E-10	2.5E-07	2.5E-07	<1%
Protactinium-231	1.68E-01	soil	1.40E+09	Р	1.5E-08	5.1E-10	5.5E-08	7.0E-08	<1%
Actinium-227	1.68E-01	soil	1.40E+09	Р	1.3E-08	7.0E-10	5.9E-11	1.4E-08	<1%
Francium-223	1.68E-01	soil	1.40E+09	Р	1.1E-15	6.7E-19	1.4E-13	1.4E-13	<1%
Astatine-219	1.68E-01	soil	1.40E+09	Р	NA	NA	NA	_	
Bismuth-215	1.68E-01	soil	1.40E+09	Р	NA	NA	3.9E-13	3.9E-13	<1%
Thorium-227	1.68E-01	soil	1.40E+09	Р	5.8E-12	7.0E-13	5.7E-10	5.7E-10	<1%
Radium-223	1.68E-01	soil	1.40E+09	Р	2.1E-11	3.5E-13	5.4E-10	5.6E-10	<1%
Lead-211	1.68E-01	soil	1.40E+09	Р	9.9E-17	1.1E-18	5.0E-13	5.0E-13	<1%
Astatine-215	1.68E-01	soil	1.40E+09	Р	NA	NA	5.6E-23	5.6E-23	<1%
Bismuth-211	1.68E-01	soil	1.40E+09	Р	NA	NA	1.9E-14	1.9E-14	<1%
Thallium-207	1.68E-01	soil	1.40E+09	Р	NA	NA	3.6E-15	3.6E-15	<1%
Polonium-211	1.68E-01	soil	1.40E+09	Р	NA	NA	1.5E-17	1.5E-17	<1%
					2E-06	2E-08	8E-05		
Total							Total ELCR	8E-05	

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

%: percent. ELCR: excess lifetime cancer risk, inhalation pathway.

ACF: area correction factor. ELCRo: excess lifetime cancer risk, oral pathway.

CSFe: external cancer slope factor. EPC: exposure point concentration in soil/sediment.

CSFi: inhalation cancer slope factor.

CSFo: oral cancer slope factor.

ELCR: excess lifetime cancer risk.

ELCR: excess lifetime cancer risk.

ECC. exposure point concentration in section.

ft bgs: feet below ground surface.

m⁹/kg: cubic meter(s) per kilogram.

pCi/g: picoCurie(s) per gram.

ELCRe: excess lifetime cancer risk, external pathway.

Receptor-specific exposure parameters are presented in Table 6-1.

Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

ELCRo = (EPCs × 100 × 225 × 25 × [1 - exp($-\lambda$ × 25)] × CSFo) / (1,000 × 25 × λ) ELCRi = (EPCs × 1,000 × 60 × 8 × 0.042 × 225 × 25 × [1 - exp($-\lambda$ × 25)] × CSFi) / (1.40E+09 × 25 × λ) ELCRe = (EPCs × ACF × [(8 × 0.042 × 1) + (0 × 0.042 × 0.4)] × 225 × 25 × [1 - exp($-\lambda$ × 25)] × CSFe) / (365 × 25 × λ)

Appendix I, Table I-9 (RME)

Excess Lifetime Cancer Risk Calculations for a Hypothetical Future Adolescent Trespasser Exposed to Radionuclides Former CLEAR Plant - Shallow and Deep Soil/Sediment (0 to 15 ft bgs), Mean EPCs

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

			_		CANCE	R RISK		Percent
			-	F	Route-Specific Ris	k	Total	Total
	EPCs	PEF	al	Ingestion	Inhalation	External	ELCR	ELCR
Constituent	(pCi/g)	(m³/k	-	ELCRo	ELCRi	ELCRe		
Radionuclides								
Jranium-238	2.76E+00	soil 1.40E	-09 P	4.0E-09	1.4E-11	2.0E-08	2.4E-08	1%
Jranium-234	2.68E+00	soil 1.40E	-09 P	3.6E-09	1.6E-11	4.1E-11	3.6E-09	<1%
Thorium-230	2.68E+00	soil 1.40E	-09 P	5.4E-09	1.9E-11	1.4E-10	5.5E-09	<1%
Radium-226	2.34E+00	soil 1.40E	-09 P	1.8E-08	1.4E-11	1.2E-06	1.2E-06	64%
_ead-210	2.34E+00	soil 1.40E	-09 P	3.1E-08	6.8E-12	1.8E-10	3.1E-08	2%
Bismuth-210	2.34E+00	soil 1.40E	-09 P	4.5E-13	4.5E-16	7.7E-13	1.2E-12	<1%
Polonium-210	2.34E+00	soil 1.40E	-09 P	4.8E-09	4.1E-13	3.5E-13	4.8E-09	<1%
Thorium-232	2.30E+00	soil 1.40E	-09 P	4.5E-08	4.3E-11	5.6E-07	6.0E-07	32%
Γhorium-228	2.30E+00	soil 1.40E	-09 P	1.0E-09	1.7E-11	2.1E-10	1.2E-09	<1%
Radium-224	2.30E+00	soil 1.40E	-09 P	7.3E-12	7.8E-15	8.3E-12	1.6E-11	<1%
_ead-212	2.30E+00	soil 1.40E	-09 P	1.4E-13	5.5E-17	1.2E-11	1.2E-11	<1%
Bismuth-212	2.30E+00	soil 1.40E	-09 P	4.4E-16	6.8E-19	1.1E-12	1.1E-12	<1%
Γhallium-208	2.30E+00	soil 1.40E	-09 P	NA	NA	2.0E-12	2.0E-12	<1%
Jranium-235	1.68E-01	soil 1.40E	-09 P	2.2E-10	8.9E-13	5.8E-09	6.0E-09	<1%
Protactinium-231	1.68E-01	soil 1.40E	-09 P	6.7E-10	2.7E-12	1.3E-09	2.0E-09	<1%
Actinium-227	1.68E-01	soil 1.40E	-09 P	7.5E-10	4.6E-12	1.7E-12	7.6E-10	<1%
Francium-223	1.68E-01	soil 1.40E	-09 P	1.3E-16	8.8E-21	8.2E-15	8.3E-15	<1%
Astatine-219	1.68E-01	soil 1.40E	-09 P	NA	NA	NA	_	
Bismuth-215	1.68E-01	soil 1.40E	-09 P	NA	NA	2.3E-14	2.3E-14	<1%
Γhorium-227	1.68E-01	soil 1.40E	-09 P	6.6E-13	9.2E-15	3.3E-11	3.4E-11	<1%
Radium-223	1.68E-01	soil 1.40E	-09 P	2.4E-12	4.7E-15	3.1E-11	3.4E-11	<1%
_ead-211	1.68E-01	soil 1.40E	-09 P	1.1E-17	1.4E-20	2.9E-14	2.9E-14	<1%
Astatine-215	1.68E-01	soil 1.40E	-09 P	NA	NA	3.3E-24	3.3E-24	<1%
Bismuth-211	1.68E-01	soil 1.40E	-09 P	NA	NA	1.1E-15	1.1E-15	<1%
Thallium-207	1.68E-01	soil 1.40E	-09 P	NA	NA	2.1E-16	2.1E-16	<1%
Polonium-211	1.68E-01	soil 1.40E	-09 P	NA	NA	8.9E-19	8.9E-19	<1%
				1E-07	1E-10	2E-06		
Γotal						Total ELCR	2E-06	

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

%: percent. ELCRi: excess lifetime cancer risk, inhalation pathway.

ACF: area correction factor. ELCRo: excess lifetime cancer risk, oral pathway. EPC: exposure point concentration in soil/sediment. CSFe: external cancer slope factor.

CSFi: inhalation cancer slope factor. ft bgs: feet below ground surface. CSFo: oral cancer slope factor. m³/kg: cubic meter(s) per kilogram. ELCR: excess lifetime cancer risk. pCi/g: picoCurie(s) per gram. ELCRe: excess lifetime cancer risk, external pathway. RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1.

Radionuclide-specific parameters and slope factors are presented in Table 7-2.

ELCRi = (EPCs × 1,000 × 60 × 1 × 0.042 × 52 × 10 × [1 - exp($-\lambda$ × 10)] × CSFi) / (1.40E+09 × 10 × λ) ELCRe = (EPCs × ACF × $[(1 \times 0.042 \times 1) + (0 \times 0.042 \times 0.4)] \times 52 \times 10 \times [1 - exp(-\lambda \times 10)] \times CSFe) / (365 \times 10 \times \lambda)$

Appendix I, Table I-10 (RME)

Excess Lifetime Cancer Risk Calculations for a Hypothetical Future Construction Worker Exposed to Radionuclides Former CLEAR Plant - Shallow and Deep Soil/Sediment (0 to 15 ft bgs), Mean EPCs

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

				_		CANCE	R RISK		Percent
				-	F	Route-Specific Ris	k	Total	Total
	EPCs		PEF [a]		Ingestion	Inhalation	External	ELCR	ELCR
Constituent	(pCi/g)		(m³/kg)		ELCRo	ELCRi	ELCRe		
Radionuclides									
Uranium-238	2.76E+00	soil	1.40E+09	Р	1.3E-08	2.3E-10	7.5E-08	8.8E-08	1%
Uranium-234	2.68E+00	soil	1.40E+09	Р	1.1E-08	2.7E-10	1.5E-10	1.2E-08	<1%
Thorium-230	2.68E+00	soil	1.40E+09	Р	1.7E-08	3.3E-10	5.2E-10	1.8E-08	<1%
Radium-226	2.34E+00	soil	1.40E+09	Р	5.7E-08	2.4E-10	4.5E-06	4.5E-06	63%
_ead-210	2.34E+00	soil	1.40E+09	Р	1.1E-07	1.3E-10	7.8E-10	1.1E-07	2%
Bismuth-210	2.34E+00	soil	1.40E+09	Р	1.4E-11	7.6E-14	2.9E-11	4.4E-11	<1%
Polonium-210	2.34E+00	soil	1.40E+09	Р	1.3E-07	5.8E-11	1.1E-11	1.3E-07	2%
Thorium-232	2.30E+00	soil	1.40E+09	Р	1.4E-07	7.2E-10	2.1E-06	2.3E-06	31%
Thorium-228	2.30E+00	soil	1.40E+09	Р	1.0E-08	9.0E-10	2.5E-09	1.4E-08	<1%
Radium-224	2.30E+00	soil	1.40E+09	Р	2.3E-10	1.3E-12	3.2E-10	5.5E-10	<1%
_ead-212	2.30E+00	soil	1.40E+09	Р	4.3E-12	9.2E-15	4.6E-10	4.6E-10	<1%
Bismuth-212	2.30E+00	soil	1.40E+09	Р	1.4E-14	1.1E-16	4.3E-11	4.3E-11	<1%
Γhallium-208	2.30E+00	soil	1.40E+09	Р	NA	NA	7.7E-11	7.7E-11	<1%
Jranium-235	1.68E-01	soil	1.40E+09	Р	6.9E-10	1.5E-11	2.2E-08	2.3E-08	<1%
Protactinium-231	1.68E-01	soil	1.40E+09	Р	2.1E-09	4.6E-11	4.9E-09	7.1E-09	<1%
Actinium-227	1.68E-01	soil	1.40E+09	Р	2.7E-09	8.9E-11	7.5E-12	2.8E-09	<1%
Francium-223	1.68E-01	soil	1.40E+09	Р	4.1E-15	1.5E-18	3.1E-13	3.2E-13	<1%
Astatine-219	1.68E-01	soil	1.40E+09	Р	NA	NA	NA	_	
Bismuth-215	1.68E-01	soil	1.40E+09	Р	NA	NA	8.6E-13	8.6E-13	<1%
Γhorium-227	1.68E-01	soil	1.40E+09	Р	2.1E-11	1.6E-12	1.3E-09	1.3E-09	<1%
Radium-223	1.68E-01	soil	1.40E+09	Р	7.7E-11	7.9E-13	1.2E-09	1.3E-09	<1%
_ead-211	1.68E-01	soil	1.40E+09	Р	3.6E-16	2.4E-18	1.1E-12	1.1E-12	<1%
Astatine-215	1.68E-01	soil	1.40E+09	Р	NA	NA	1.2E-22	1.2E-22	<1%
Bismuth-211	1.68E-01	soil	1.40E+09	Р	NA	NA	4.3E-14	4.3E-14	<1%
Thallium-207	1.68E-01	soil	1.40E+09	Р	NA	NA	8.0E-15	8.0E-15	<1%
Polonium-211	1.68E-01	soil	1.40E+09	Р	NA	NA	3.4E-17	3.4E-17	<1%
					5E-07	3E-09	7E-06		
Γotal							Total ELCR	7E-06	

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

%: percent. ELCRi: excess lifetime cancer risk, inhalation pathway.

ACF: area correction factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFe: external cancer slope factor. EPC: exposure point concentration in soil/sediment.

CSFi: inhalation cancer slope factor. ft bgs: feet below ground surface. CSFo: oral cancer slope factor. m³/kg: cubic meter(s) per kilogram. ELCR: excess lifetime cancer risk. pCi/g: picoCurie(s) per gram. ELCRe: excess lifetime cancer risk, external pathway. RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1.

Radionuclide-specific parameters and slope factors are presented in Table 7-2.

```
ELCRi = (EPCs × 1,000 × 60 × 8 × 0.042 × 250 × 1 \times [1 - \exp(-\lambda \times 1)] \times CSFi) / (1.40E+09 \times 1 \times \lambda)
ELCRe = (EPCs × ACF × [(8 × 0.042 × 1) + (0 × 0.042 × 0.4)] × 250 × 1 × [1 - exp(-\lambda × 1)] × CSFe) / (365 × 1 × \lambda)
```

Appendix I, Table I-11 (RME)

Excess Lifetime Cancer Risk Calculations for a Current/Future Outdoor Commercial / Industrial Worker Exposed to Radionuclides Former Esperanza Mill - Shallow Soil/Sediment (0 to 0.5 ft bgs), Mean EPCs

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita

Sierrita Mine, Green Valley, Arizona

				CANCE	R RISK		Percent
			R	oute-Specific ELC	R	Total	Total
	EPCs	PEF [a]	Ingestion	Inhalation	External	ELCR	ELCR
Constituent	(pCi/g)	(m³/kg)	ELCRo	ELCRi	ELCRe		
Radionuclides							
Uranium-238	1.93E+00	1.40E+09 P	6.1E-08	3.7E-09	1.2E-06	1.2E-06	<1%
Uranium-234	1.93E+00	1.40E+09 P	5.5E-08	4.3E-09	2.5E-09	6.2E-08	<1%
Thorium-230	1.93E+00	1.40E+09 P	8.4E-08	5.3E-09	8.4E-09	9.7E-08	<1%
Radium-226	2.25E+00	1.40E+09 P	3.7E-07	5.1E-09	9.6E-05	9.7E-05	68%
Lead-210	2.25E+00	1.40E+09 P	5.3E-07	2.0E-09	1.2E-08	5.4E-07	<1%
Bismuth-210	2.25E+00	1.40E+09 P	3.8E-12	6.6E-14	2.5E-11	2.9E-11	<1%
Polonium-210	2.25E+00	1.40E+09 P	4.0E-08	6.0E-11	1.1E-11	4.0E-08	<1%
Thorium-232	2.05E+00	1.40E+09 P	8.7E-07	1.4E-08	4.2E-05	4.3E-05	30%
Thorium-228	2.05E+00	1.40E+09 P	8.1E-09	2.4E-09	6.5E-09	1.7E-08	<1%
Radium-224	2.05E+00	1.40E+09 P	5.6E-11	1.0E-12	2.5E-10	3.1E-10	<1%
Lead-212	2.05E+00	1.40E+09 P	1.1E-12	7.4E-15	3.7E-10	3.7E-10	<1%
Bismuth-212	2.05E+00	1.40E+09 P	3.4E-15	9.2E-17	3.5E-11	3.5E-11	<1%
Thallium-208	2.05E+00	1.40E+09 P	NA	NA	6.2E-11	6.2E-11	<1%
Uranium-235	1.13E-01	1.40E+09 P	3.2E-09	2.3E-10	3.3E-07	3.4E-07	<1%
Protactinium-231	1.13E-01	1.40E+09 P	9.8E-09	6.9E-10	7.4E-08	8.4E-08	<1%
Actinium-227	1.13E-01	1.40E+09 P	8.8E-09	9.4E-10	7.9E-11	9.8E-09	<1%
Francium-223	1.13E-01	1.40E+09 P	7.5E-16	9.0E-19	1.9E-13	1.9E-13	<1%
Astatine-219	1.13E-01	1.40E+09 P	NA	NA	NA	_	
Bismuth-215	1.13E-01	1.40E+09 P	NA	NA	5.2E-13	5.2E-13	<1%
Thorium-227	1.13E-01	1.40E+09 P	3.9E-12	9.4E-13	7.6E-10	7.7E-10	<1%
Radium-223	1.13E-01	1.40E+09 P	1.4E-11	4.8E-13	7.2E-10	7.4E-10	<1%
Lead-211	1.13E-01	1.40E+09 P	6.6E-17	1.4E-18	6.7E-13	6.7E-13	<1%
Astatine-215	1.13E-01	1.40E+09 P	NA	NA	7.5E-23	7.5E-23	<1%
Bismuth-211	1.13E-01	1.40E+09 P	NA	NA	2.6E-14	2.6E-14	<1%
Thallium-207	1.13E-01	1.40E+09 P	NA	NA	4.8E-15	4.8E-15	<1%
Polonium-211	1.13E-01	1.40E+09 P	NA	NA	2.1E-17	2.1E-17	<1%
			2E-06	4E-08	1E-04		
Total					Total ELCR	1E-04	

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

%: percent. ELCRi: excess lifetime cancer risk, inhalation pathway.

ACF: area correction factor. ELCRo: excess lifetime cancer risk, oral pathway.

CSFe: external cancer slope factor. EPC: exposure point concentration in soil/sediment.

CSFi: inhalation cancer slope factor. ft bgs: feet below ground surface.
CSFo: oral cancer slope factor. m³/kg: cubic meter(s) per kilogram.
ELCR: excess lifetime cancer risk. pCi/g: picoCurie(s) per gram.
ELCRe: excess lifetime cancer risk, external pathway. RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1.

Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

ELCRo = (EPCs × 100 × 225 × 25 × [1 - exp($-\Lambda$ × 25)] × CSFo) / (1,000 × 25 × Λ) ELCRi = (EPCs × 1,000 × 60 × 8 × 0.042 × 225 × 25 × [1 - exp($-\Lambda$ × 25)] × CSFi) / (1.40E+09 × 25 × Λ) ELCRe = (EPCs × ACF × [(8 × 0.042 × 1) + (0 × 0.042 × 0.4)] × 225 × 25 × [1 - exp($-\Lambda$ × 25)] × CSFe) / (365 × 25 × Λ)

Appendix I, Table I-12 (Site-Specific Evaluation)

Excess Lifetime Cancer Risk Calculations for a Current/Future Outdoor Commercial / Industrial Worker Exposed to Radionuclides Former Esperanza Mill - Shallow Soil/Sediment (0 to 0.5 ft bgs), Mean EPCs

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

				CANCER RISK					
			R	oute-Specific ELC	R	Total	Total		
	EPCs	PEF [a]	Ingestion	Inhalation	External	ELCR	ELCR		
Constituent	(pCi/g)	(m³/kg)	ELCRo	ELCRi	ELCRe				
Radionuclides									
Uranium-238	1.93E+00	1.40E+09 P	6.1E-08	1.8E-09	5.9E-07	6.5E-07	<1%		
Uranium-234	1.93E+00	1.40E+09 P	5.5E-08	2.2E-09	1.3E-09	5.9E-08	<1%		
Thorium-230	1.93E+00	1.40E+09 P	8.4E-08	2.6E-09	4.2E-09	9.1E-08	<1%		
Radium-226	2.25E+00	1.40E+09 P	3.7E-07	2.5E-09	4.8E-05	4.9E-05	67%		
Lead-210	2.25E+00	1.40E+09 P	5.3E-07	1.0E-09	5.9E-09	5.3E-07	<1%		
Bismuth-210	2.25E+00	1.40E+09 P	3.8E-12	3.3E-14	1.3E-11	1.6E-11	<1%		
Polonium-210	2.25E+00	1.40E+09 P	4.0E-08	3.0E-11	5.7E-12	4.0E-08	<1%		
Thorium-232	2.05E+00	1.40E+09 P	8.7E-07	7.2E-09	2.1E-05	2.2E-05	31%		
Thorium-228	2.05E+00	1.40E+09 P	8.1E-09	1.2E-09	3.3E-09	1.3E-08	<1%		
Radium-224	2.05E+00	1.40E+09 P	5.6E-11	5.2E-13	1.3E-10	1.8E-10	<1%		
Lead-212	2.05E+00	1.40E+09 P	1.1E-12	3.7E-15	1.8E-10	1.8E-10	<1%		
Bismuth-212	2.05E+00	1.40E+09 P	3.4E-15	4.6E-17	1.7E-11	1.7E-11	<1%		
Thallium-208	2.05E+00	1.40E+09 P	NA	NA	3.1E-11	3.1E-11	<1%		
Uranium-235	1.13E-01	1.40E+09 P	3.2E-09	1.1E-10	1.7E-07	1.7E-07	<1%		
Protactinium-231	1.13E-01	1.40E+09 P	9.8E-09	3.5E-10	3.7E-08	4.7E-08	<1%		
Actinium-227	1.13E-01	1.40E+09 P	8.8E-09	4.7E-10	4.0E-11	9.3E-09	<1%		
Francium-223	1.13E-01	1.40E+09 P	7.5E-16	4.5E-19	9.4E-14	9.5E-14	<1%		
Astatine-219	1.13E-01	1.40E+09 P	NA	NA	NA	_			
Bismuth-215	1.13E-01	1.40E+09 P	NA	NA	2.6E-13	2.6E-13	<1%		
Thorium-227	1.13E-01	1.40E+09 P	3.9E-12	4.7E-13	3.8E-10	3.9E-10	<1%		
Radium-223	1.13E-01	1.40E+09 P	1.4E-11	2.4E-13	3.6E-10	3.8E-10	<1%		
Lead-211	1.13E-01	1.40E+09 P	6.6E-17	7.2E-19	3.3E-13	3.3E-13	<1%		
Astatine-215	1.13E-01	1.40E+09 P	NA	NA	3.8E-23	3.8E-23	<1%		
Bismuth-211	1.13E-01	1.40E+09 P	NA	NA	1.3E-14	1.3E-14	<1%		
Thallium-207	1.13E-01	1.40E+09 P	NA	NA	2.4E-15	2.4E-15	<1%		
Polonium-211	1.13E-01	1.40E+09 P	NA	NA	1.0E-17	1.0E-17	<1%		
			2E-06	2E-08	7E-05				
Total				,	Total ELCR	7E-05			

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

%: percent. ELCRi: excess lifetime cancer risk, inhalation pathway.

ACF: area correction factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFe: external cancer slope factor. EPC: exposure point concentration in soil/sediment.

CSFi: inhalation cancer slope factor. ft bgs: feet below ground surface.

CSFo: oral cancer slope factor. m³/kg: cubic meter(s) per kilogram.

ELCR: excess lifetime cancer risk. pCi/g: picoCurie(s) per gram.

ELCRe: excess lifetime cancer risk, external pathway.

Receptor-specific exposure parameters are presented in Table 6-1.

Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

Appendix I, Table I-13 (RME)

Excess Lifetime Cancer Risk Calculations for a Hypothetical Future Adolescent Trespasser Exposed to Radionuclides

Former Esperanza Mill - Shallow Soil/Sediment (0 to 0.5 ft bgs), Mean EPCs Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

				CANCE	R RISK		Percent
			F	Route-Specific ELC	R	Total	Total
	EPCs	PEF [a]	Ingestion	Inhalation	External	ELCR	ELCR
Constituent	(pCi/g)		ELCRo	ELCRi	ELCRe		
Radionuclides							
Uranium-238	1.93E+00	1.40E+09 P	2.8E-09	9.7E-12	1.4E-08	1.7E-08	<1%
Uranium-234	1.93E+00	1.40E+09 P	2.6E-09	1.1E-11	2.9E-11	2.6E-09	<1%
Thorium-230	1.93E+00	1.40E+09 P	3.9E-09	1.4E-11	9.7E-11	4.0E-09	<1%
Radium-226	2.25E+00	1.40E+09 P	1.7E-08	1.3E-11	1.1E-06	1.1E-06	66%
Lead-210	2.25E+00	1.40E+09 P	3.0E-08	6.6E-12	1.7E-10	3.0E-08	2%
Bismuth-210	2.25E+00	1.40E+09 P	4.3E-13	4.4E-16	7.4E-13	1.2E-12	<1%
Polonium-210	2.25E+00	1.40E+09 P	4.6E-09	3.9E-13	3.3E-13	4.6E-09	<1%
Thorium-232	2.05E+00	1.40E+09 P	4.0E-08	3.8E-11	4.9E-07	5.3E-07	31%
Thorium-228	2.05E+00	1.40E+09 P	9.1E-10	1.5E-11	1.9E-10	1.1E-09	<1%
Radium-224	2.05E+00	1.40E+09 P	6.5E-12	6.9E-15	7.4E-12	1.4E-11	<1%
Lead-212	2.05E+00	1.40E+09 P	1.2E-13	4.9E-17	1.1E-11	1.1E-11	<1%
Bismuth-212	2.05E+00	1.40E+09 P	3.9E-16	6.1E-19	1.0E-12	1.0E-12	<1%
Thallium-208	2.05E+00	1.40E+09 P	NA	NA	1.8E-12	1.8E-12	<1%
Uranium-235	1.13E-01	1.40E+09 P	1.5E-10	6.0E-13	3.9E-09	4.0E-09	<1%
Protactinium-231	1.13E-01	1.40E+09 P	4.5E-10	1.8E-12	8.6E-10	1.3E-09	<1%
Actinium-227	1.13E-01	1.40E+09 P	5.1E-10	3.1E-12	1.1E-12	5.1E-10	<1%
Francium-223	1.13E-01	1.40E+09 P	8.6E-17	5.9E-21	5.5E-15	5.6E-15	<1%
Astatine-219	1.13E-01	1.40E+09 P	NA	NA	NA	_	
Bismuth-215	1.13E-01	1.40E+09 P	NA	NA	1.5E-14	1.5E-14	<1%
Thorium-227	1.13E-01	1.40E+09 P	4.5E-13	6.2E-15	2.2E-11	2.3E-11	<1%
Radium-223	1.13E-01	1.40E+09 P	1.6E-12	3.1E-15	2.1E-11	2.3E-11	<1%
Lead-211	1.13E-01	1.40E+09 P	7.7E-18	9.5E-21	2.0E-14	2.0E-14	<1%
Astatine-215	1.13E-01	1.40E+09 P	NA	NA	2.2E-24	2.2E-24	<1%
Bismuth-211	1.13E-01	1.40E+09 P	NA	NA	7.5E-16	7.5E-16	<1%
Thallium-207	1.13E-01	1.40E+09 P	NA	NA	1.4E-16	1.4E-16	<1%
Polonium-211	1.13E-01	1.40E+09 P	NA	NA	6.0E-19	6.0E-19	<1%
			1E-07	1E-10	2E-06		
Total					Total ELCR	2E-06	

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

%: percent. ELCRi: excess lifetime cancer risk, inhalation pathway.

ACF: area correction factor. ELCRo: excess lifetime cancer risk, oral pathway. CSFe: external cancer slope factor. EPC: exposure point concentration in soil/sediment.

Receptor-specific exposure parameters are presented in Table 6-1.

Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

ELCRo = (EPCs × 50 × 52 × 10 × [1 - exp($-\lambda$ × 10)] × CSFo) / (1,000 × 10 × λ) ELCRi = (EPCs × 1,000 × 60 × 1 × 0.042 × 52 × 10 × [1 - exp($-\lambda$ × 10)] × CSFi) / (1.40E+09 × 10 × λ)

ELCRe = (EPCs × ACF × [(1 × 0.042 × 1) + (0 × 0.042 × 0.4)] × $52 \times 10 \times [1 - \exp(-\lambda \times 10)] \times CSFe) / (365 \times 10 \times \lambda)$

Appendix I, Table I-14 (RME)

Excess Lifetime Cancer Risk Calculations for a Hypothetical Future Outdoor Commercial / Industrial Worker Exposed to Radionuclides Former Esperanza Mill - Shallow and Deep Soil/Sediment (0 to 15 ft bgs), Mean EPCs

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

				_		CANCE	R RISK		Percent
				_	F	Route-Specific Ris	k	Total	Total
	EPO	Cs	PEF [a]		Ingestion	Inhalation	External	ELCR	ELCR
Constituent	(pCi/g)		(m³/kg)		ELCRo	ELCRi	ELCRe		
Radionuclides									
Uranium-238	2.49E+00	soil	1.40E+09	Р	7.9E-08	4.8E-09	1.5E-06	1.6E-06	1%
Uranium-234	2.44E+00	soil	1.40E+09	Р	7.0E-08	5.5E-09	3.2E-09	7.9E-08	<1%
Thorium-230	2.44E+00	soil	1.40E+09	Р	1.1E-07	6.7E-09	1.1E-08	1.2E-07	<1%
Radium-226	2.24E+00	soil+sed	1.40E+09	Р	3.7E-07	5.1E-09	9.6E-05	9.6E-05	65%
Lead-210	2.24E+00	soil+sed	1.40E+09	Р	5.2E-07	2.0E-09	1.2E-08	5.4E-07	<1%
Bismuth-210	2.24E+00	soil+sed	1.40E+09	Р	3.7E-12	6.6E-14	2.5E-11	2.9E-11	<1%
Polonium-210	2.24E+00	soil+sed	1.40E+09	Р	4.0E-08	5.9E-11	1.1E-11	4.0E-08	<1%
Thorium-232	2.34E+00	soil	1.40E+09	Р	9.9E-07	1.6E-08	4.8E-05	4.9E-05	33%
Thorium-228	2.34E+00	soil	1.40E+09	Р	9.3E-09	2.7E-09	7.5E-09	1.9E-08	<1%
Radium-224	2.34E+00	soil	1.40E+09	Р	6.4E-11	1.2E-12	2.9E-10	3.6E-10	<1%
Lead-212	2.34E+00	soil	1.40E+09	Р	1.2E-12	8.4E-15	4.2E-10	4.2E-10	<1%
Bismuth-212	2.34E+00	soil	1.40E+09	Р	3.9E-15	1.1E-16	4.0E-11	4.0E-11	<1%
Thallium-208	2.34E+00	soil	1.40E+09	Р	NA	NA	7.0E-11	7.0E-11	<1%
Jranium-235	1.35E-01	soil	1.40E+09	Р	3.8E-09	2.7E-10	4.0E-07	4.0E-07	<1%
Protactinium-231	1.35E-01	soil	1.40E+09	Р	1.2E-08	8.3E-10	8.8E-08	1.0E-07	<1%
Actinium-227	1.35E-01	soil	1.40E+09	Р	1.1E-08	1.1E-09	9.5E-11	1.2E-08	<1%
Francium-223	1.35E-01	soil	1.40E+09	Р	8.9E-16	1.1E-18	2.3E-13	2.3E-13	<1%
Astatine-219	1.35E-01	soil	1.40E+09	Р	NA	NA	NA	_	
Bismuth-215	1.35E-01	soil	1.40E+09	Р	NA	NA	6.3E-13	6.3E-13	<1%
Thorium-227	1.35E-01	soil	1.40E+09	Р	4.6E-12	1.1E-12	9.1E-10	9.2E-10	<1%
Radium-223	1.35E-01	soil	1.40E+09	Р	1.7E-11	5.7E-13	8.7E-10	8.8E-10	<1%
Lead-211	1.35E-01	soil	1.40E+09	Р	7.9E-17	1.7E-18	8.0E-13	8.0E-13	<1%
Astatine-215	1.35E-01	soil	1.40E+09		NA	NA	9.0E-23	9.0E-23	<1%
Bismuth-211	1.35E-01	soil	1.40E+09	Р	NA	NA	3.1E-14	3.1E-14	<1%
Thallium-207	1.35E-01	soil	1.40E+09	Р	NA	NA	5.8E-15	5.8E-15	<1%
Polonium-211	1.35E-01	soil	1.40E+09	Р	NA	NA	2.5E-17	2.5E-17	<1%
					2E-06	5E-08	1E-04		
Total							Total ELCR	1E-04	Ī

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

%: percent.

ACF: area correction factor.

CSFe: external cancer slope factor.

CSFi: inhalation cancer slope factor.

CSFo: oral cancer slope factor.

ELCR: excess lifetime cancer risk.

ELCRe: excess lifetime cancer risk, external pathway.

ELCRi: excess lifetime cancer risk, inhalation pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

EPC: exposure point concentration in soil/sediment.

ft bgs: feet below ground surface.

m³/kg: cubic meter(s) per kilogram.

pCi/g: picoCurie(s) per gram.

RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1.

Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

```
ELCRo = (EPCs × 100 × 225 × 25 × [1 - exp(-\lambda × 25)] × CSFo) / (1,000 × 25 × \lambda)
ELCRi = (EPCs × 1,000 × 60 × 8 × 0.042 × 225 × 25 × [1 - exp(-\lambda × 25)] × CSFi) / (1.40E+09 × 25 × \lambda)
ELCRe = (EPCs × ACF × [(8 × 0.042 × 1) + (0 × 0.042 × 0.4)] × 225 × 25 × [1 - exp(-\lambda × 25)] × CSFe) / (365 × 25 × \lambda)
```

Appendix I, Table I-15 (Site-Specific Evaluation)

Excess Lifetime Cancer Risk Calculations for a Hypothetical Future Outdoor Commercial / Industrial Worker Exposed to Radionuclides Former Esperanza Mill - Shallow and Deep Soil/Sediment (0 to 15 ft bgs), Mean EPCs

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

						CANCE	R RISK		Percent
				_	F	Route-Specific Ris	k	Total	Total
	EPO	Cs	PEF [a]		Ingestion	Inhalation	External	ELCR	ELCR
Constituent	(pCi	/g)	(m³/kg)		ELCRo	ELCRi	ELCRe		
Radionuclides									
Uranium-238	2.49E+00	soil	1.40E+09	Р	7.9E-08	2.4E-09	7.6E-07	8.4E-07	1%
Uranium-234	2.44E+00	soil	1.40E+09	Р	7.0E-08	2.8E-09	1.6E-09	7.4E-08	<1%
Thorium-230	2.44E+00	soil	1.40E+09	Р	1.1E-07	3.3E-09	5.3E-09	1.1E-07	<1%
Radium-226	2.24E+00	soil+sed	1.40E+09	Р	3.7E-07	2.5E-09	4.8E-05	4.8E-05	64%
Lead-210	2.24E+00	soil+sed	1.40E+09	Р	5.2E-07	1.0E-09	5.9E-09	5.3E-07	<1%
Bismuth-210	2.24E+00	soil+sed	1.40E+09	Р	3.7E-12	3.3E-14	1.3E-11	1.6E-11	<1%
Polonium-210	2.24E+00	soil+sed	1.40E+09	Р	4.0E-08	3.0E-11	5.7E-12	4.0E-08	<1%
Thorium-232	2.34E+00	soil	1.40E+09	Р	9.9E-07	8.2E-09	2.4E-05	2.5E-05	34%
Thorium-228	2.34E+00	soil	1.40E+09	Р	9.3E-09	1.3E-09	3.7E-09	1.4E-08	<1%
Radium-224	2.34E+00	soil	1.40E+09	Р	6.4E-11	6.0E-13	1.5E-10	2.1E-10	<1%
Lead-212	2.34E+00	soil	1.40E+09	Р	1.2E-12	4.2E-15	2.1E-10	2.1E-10	<1%
Bismuth-212	2.34E+00	soil	1.40E+09	Р	3.9E-15	5.3E-17	2.0E-11	2.0E-11	<1%
Thallium-208	2.34E+00	soil	1.40E+09	Р	NA	NA	3.5E-11	3.5E-11	<1%
Uranium-235	1.35E-01	soil	1.40E+09	Р	3.8E-09	1.4E-10	2.0E-07	2.0E-07	<1%
Protactinium-231	1.35E-01	soil	1.40E+09	Р	1.2E-08	4.1E-10	4.4E-08	5.6E-08	<1%
Actinium-227	1.35E-01	soil	1.40E+09	Р	1.1E-08	5.6E-10	4.7E-11	1.1E-08	<1%
Francium-223	1.35E-01	soil	1.40E+09	Р	8.9E-16	5.4E-19	1.1E-13	1.1E-13	<1%
Astatine-219	1.35E-01	soil	1.40E+09	Р	NA	NA	NA	_	
Bismuth-215	1.35E-01	soil	1.40E+09	Р	NA	NA	3.1E-13	3.1E-13	<1%
Thorium-227	1.35E-01	soil	1.40E+09	Р	4.6E-12	5.6E-13	4.6E-10	4.6E-10	<1%
Radium-223	1.35E-01	soil	1.40E+09	Р	1.7E-11	2.8E-13	4.3E-10	4.5E-10	<1%
Lead-211	1.35E-01	soil	1.40E+09	Р	7.9E-17	8.6E-19	4.0E-13	4.0E-13	<1%
Astatine-215	1.35E-01	soil	1.40E+09	Р	NA	NA	4.5E-23	4.5E-23	<1%
Bismuth-211	1.35E-01	soil	1.40E+09	Р	NA	NA	1.5E-14	1.5E-14	<1%
Thallium-207	1.35E-01	soil	1.40E+09	Р	NA	NA	2.9E-15	2.9E-15	<1%
Polonium-211	1.35E-01	soil	1.40E+09	Р	NA	NA	1.2E-17	1.2E-17	<1%
					2E-06	2E-08	7E-05		
Total							Total ELCR	8E-05	

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

%: percent.

ACF: area correction factor.

CSFe: external cancer slope factor.

CSFi: inhalation cancer slope factor.

CSFo: oral cancer slope factor.

ELCR: excess lifetime cancer risk.

ELCRe: excess lifetime cancer risk, external pathway.

ELCRi: excess lifetime cancer risk, inhalation pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

EPC: exposure point concentration in soil/sediment.

ft bgs: feet below ground surface.

m³/kg: cubic meter(s) per kilogram. pCi/g: picoCurie(s) per gram.

Receptor-specific exposure parameters are presented in Table 6-1.

Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

```
ELCRo = (EPCs × 100 × 225 × 25 × [1 - exp(-\lambda × 25)] × CSFo) / (1,000 × 25 × \lambda)
ELCRi = (EPCs × 1,000 × 60 × 8 × 0.042 × 225 × 25 × [1 - exp(-\lambda × 25)] × CSFi) / (1.40E+09 × 25 × \lambda)
ELCRe = (EPCs × ACF × [(8 × 0.042 × 1) + (0 × 0.042 × 0.4)] × 225 × 25 × [1 - exp(-\lambda × 25)] × CSFe) / (365 × 25 × \lambda)
```

Appendix I, Table I-16 (RME)

Excess Lifetime Cancer Risk Calculations for a Hypothetical Future Adolescent Trespasser Exposed to Radionuclides

Former Esperanza Mill - Shallow and Deep Soil/Sediment (0 to 15 ft bgs), Mean EPCs Baseline Human Health Risk Assessment

Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

						CANCE	R RISK		Percent
				_	F	Route-Specific Ris	k	Total	Total
	EPO	Cs	PEF [a]		Ingestion	Inhalation	External	ELCR	ELCR
Constituent	(pCi	/g)	(m³/kg)		ELCRo	ELCRi	ELCRe		
Radionuclides									
Jranium-238	2.49E+00	soil	1.40E+09	Р	3.6E-09	1.3E-11	1.8E-08	2.1E-08	1%
Jranium-234	2.44E+00	soil	1.40E+09	Р	3.2E-09	1.5E-11	3.7E-11	3.3E-09	<1%
Γhorium-230	2.44E+00	soil	1.40E+09	Р	4.9E-09	1.8E-11	1.2E-10	5.0E-09	<1%
Radium-226	2.24E+00	soil+sed	1.40E+09	Р	1.7E-08	1.3E-11	1.1E-06	1.1E-06	62%
_ead-210	2.24E+00	soil+sed	1.40E+09	Р	3.0E-08	6.5E-12	1.7E-10	3.0E-08	2%
Bismuth-210	2.24E+00	soil+sed	1.40E+09	Р	4.3E-13	4.3E-16	7.3E-13	1.2E-12	<1%
Polonium-210	2.24E+00	soil+sed	1.40E+09	Р	4.6E-09	3.9E-13	3.3E-13	4.6E-09	<1%
horium-232	2.34E+00	soil	1.40E+09	Р	4.6E-08	4.3E-11	5.6E-07	6.1E-07	34%
horium-228	2.34E+00	soil	1.40E+09	Р	1.0E-09	1.7E-11	2.1E-10	1.3E-09	<1%
Radium-224	2.34E+00	soil	1.40E+09	Р	7.4E-12	7.9E-15	8.5E-12	1.6E-11	<1%
_ead-212	2.34E+00	soil	1.40E+09	Р	1.4E-13	5.6E-17	1.2E-11	1.2E-11	<1%
3ismuth-212	2.34E+00	soil	1.40E+09	Р	4.5E-16	6.9E-19	1.2E-12	1.2E-12	<1%
hallium-208	2.34E+00	soil	1.40E+09	Р	NA	NA	2.1E-12	2.1E-12	<1%
Jranium-235	1.35E-01	soil	1.40E+09	Р	1.8E-10	7.2E-13	4.7E-09	4.8E-09	<1%
Protactinium-231	1.35E-01	soil	1.40E+09	Р	5.4E-10	2.2E-12	1.0E-09	1.6E-09	<1%
Actinium-227	1.35E-01	soil	1.40E+09	Р	6.0E-10	3.7E-12	1.4E-12	6.1E-10	<1%
rancium-223	1.35E-01	soil	1.40E+09	Р	1.0E-16	7.1E-21	6.6E-15	6.7E-15	<1%
Astatine-219	1.35E-01	soil	1.40E+09	Р	NA	NA	NA	_	
Bismuth-215	1.35E-01	soil	1.40E+09	Р	NA	NA	1.8E-14	1.8E-14	<1%
Γhorium-227	1.35E-01	soil	1.40E+09	Р	5.3E-13	7.4E-15	2.7E-11	2.7E-11	<1%
Radium-223	1.35E-01	soil	1.40E+09	Р	1.9E-12	3.8E-15	2.5E-11	2.7E-11	<1%
_ead-211	1.35E-01	soil	1.40E+09	Р	9.2E-18	1.1E-20	2.3E-14	2.3E-14	<1%
Astatine-215	1.35E-01	soil	1.40E+09	Р	NA	NA	2.6E-24	2.6E-24	<1%
3ismuth-211	1.35E-01	soil	1.40E+09	Р	NA	NA	9.0E-16	9.0E-16	<1%
hallium-207	1.35E-01	soil	1.40E+09	Р	NA	NA	1.7E-16	1.7E-16	<1%
Polonium-211	1.35E-01	soil	1.40E+09	Р	NA	NA	7.2E-19	7.2E-19	<1%
					1E-07	1E-10	2E-06		
Γotal							Total ELCR	2E-06	

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

%: percent. ELCRi: excess lifetime cancer risk, inhalation pathway. ACF: area correction factor. ELCRo: excess lifetime cancer risk, oral pathway.

CSFe: external cancer slope factor. EPC: exposure point concentration in soil/sediment.

CSFi: inhalation cancer slope factor.

CSFo: oral cancer slope factor.

ELCR: excess lifetime cancer risk.

ELCR: excess lifetime cancer risk, external pathway.

ELCR: excess lifetime cancer risk, external pathway.

RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1. Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

Appendix I, Table I-17 (RME)

Excess Lifetime Cancer Risk Calculations for a Hypothetical Future Construction Worker Exposed to Radionuclides Former Esperanza Mill - Shallow and Deep Soil/Sediment (0 to 15 ft bgs), Mean EPCs

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

				_		CANCE	R RISK		Percent
				_	F	Route-Specific Ris	k	Total	Total
	EPO	Cs	PEF [a]		Ingestion	Inhalation	External	ELCR	ELCR
Constituent	(pCi	/g)	(m³/kg)		ELCRo	ELCRi	ELCRe		
Radionuclides									
Jranium-238	2.49E+00	soil	1.40E+09	Р	1.2E-08	2.1E-10	6.8E-08	7.9E-08	1%
Jranium-234	2.44E+00	soil	1.40E+09	Р	1.0E-08	2.4E-10	1.4E-10	1.1E-08	<1%
Thorium-230	2.44E+00	soil	1.40E+09	Р	1.6E-08	3.0E-10	4.7E-10	1.6E-08	<1%
Radium-226	2.24E+00	soil+sed	1.40E+09	Р	5.4E-08	2.3E-10	4.3E-06	4.3E-06	62%
Lead-210	2.24E+00	soil+sed	1.40E+09	Р	1.1E-07	1.3E-10	7.4E-10	1.1E-07	2%
Bismuth-210	2.24E+00	soil+sed	1.40E+09	Р	1.4E-11	7.3E-14	2.8E-11	4.2E-11	<1%
Polonium-210	2.24E+00	soil+sed	1.40E+09	Р	1.2E-07	5.5E-11	1.1E-11	1.2E-07	2%
Thorium-232	2.34E+00	soil	1.40E+09	Р	1.5E-07	7.3E-10	2.2E-06	2.3E-06	33%
Thorium-228	2.34E+00	soil	1.40E+09	Р	1.0E-08	9.1E-10	2.5E-09	1.4E-08	<1%
Radium-224	2.34E+00	soil	1.40E+09	Р	2.4E-10	1.3E-12	3.2E-10	5.6E-10	<1%
_ead-212	2.34E+00	soil	1.40E+09	Р	4.4E-12	9.4E-15	4.6E-10	4.7E-10	<1%
Bismuth-212	2.34E+00	soil	1.40E+09	Р	1.4E-14	1.2E-16	4.4E-11	4.4E-11	<1%
Thallium-208	2.34E+00	soil	1.40E+09	Р	NA	NA	7.8E-11	7.8E-11	<1%
Jranium-235	1.35E-01	soil	1.40E+09	Р	5.6E-10	1.2E-11	1.8E-08	1.8E-08	<1%
Protactinium-231	1.35E-01	soil	1.40E+09	Р	1.7E-09	3.7E-11	3.9E-09	5.7E-09	<1%
Actinium-227	1.35E-01	soil	1.40E+09	Р	2.2E-09	7.1E-11	6.0E-12	2.3E-09	<1%
Francium-223	1.35E-01	soil	1.40E+09	Р	3.3E-15	1.2E-18	2.5E-13	2.5E-13	<1%
Astatine-219	1.35E-01	soil	1.40E+09	Р	NA	NA	NA	_	
Bismuth-215	1.35E-01	soil	1.40E+09	Р	NA	NA	6.9E-13	6.9E-13	<1%
Thorium-227	1.35E-01	soil	1.40E+09	Р	1.7E-11	1.3E-12	1.0E-09	1.0E-09	<1%
Radium-223	1.35E-01	soil	1.40E+09	Р	6.2E-11	6.3E-13	9.6E-10	1.0E-09	<1%
_ead-211	1.35E-01	soil	1.40E+09	Р	2.9E-16	1.9E-18	8.9E-13	8.9E-13	<1%
Astatine-215	1.35E-01	soil	1.40E+09	Р	NA	NA	1.0E-22	1.0E-22	<1%
Bismuth-211	1.35E-01	soil	1.40E+09	Р	NA	NA	3.4E-14	3.4E-14	<1%
Thallium-207	1.35E-01	soil	1.40E+09	Р	NA	NA	6.4E-15	6.4E-15	<1%
Polonium-211	1.35E-01	soil	1.40E+09	Р	NA	NA	2.7E-17	2.7E-17	<1%
					5E-07	3E-09	7E-06		
Total							Total ELCR	7E-06	_

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table 6-1.

%: percent.

ACF: area correction factor.

CSFe: external cancer slope factor.

CSFi: inhalation cancer slope factor.

CSFo: oral cancer slope factor.

ELCR: excess lifetime cancer risk.

ELCR: excess meanie cancer risk.

ELCRe: excess lifetime cancer risk, external pathway.

ELCRi: excess lifetime cancer risk, inhalation pathway.

ELCRo: excess lifetime cancer risk, oral pathway.

EPC: exposure point concentration in soil/sediment.

ft bgs: feet below ground surface.

m³/kg: cubic meter(s) per kilogram.

pCi/g: picoCurie(s) per gram.

RME: reasonable maximum exposure.

Receptor-specific exposure parameters are presented in Table 6-1.

Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

Appendix I, Table I-18

Excess Lifetime Cancer Risk Calculations for a Hypothetical Future Child/Adult Resident Exposed to Radionuclides Former CLEAR Plant - Shallow and Deep Soil/Sediment (0 to 15 ft bgs), Mean EPCs

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

			-	CANCE	R RISK		Percent
				Route-Specific Ris	k	Total	Total
	EPCs	PEF [a]	Ingestion	Inhalation	External	ELCR	ELCR
Constituent	(pCi/g)	(m³/kg)	ELCRo	ELCRi	ELCRe		
Radionuclides							
Uranium-238	2.76E+00	1.40E+09 P	2.1E-07	9.7E-09	3.6E-06	3.8E-06	1%
Uranium-234	2.68E+00	1.40E+09 P	1.9E-07	1.1E-08	7.4E-09	2.1E-07	<1%
Thorium-230	2.68E+00	1.40E+09 P	2.8E-07	1.4E-08	2.5E-08	3.2E-07	<1%
Radium-226	2.34E+00	1.40E+09 P	9.3E-07	9.8E-09	2.1E-04	2.1E-04	66%
Lead-210	2.34E+00	1.40E+09 P	1.2E-06	3.5E-09	2.4E-08	1.2E-06	<1%
Bismuth-210	2.34E+00	1.40E+09 P	7.2E-12	9.6E-14	4.3E-11	5.0E-11	<1%
Polonium-210	2.34E+00	1.40E+09 P	7.6E-08	8.7E-11	1.9E-11	7.6E-08	<1%
Thorium-232	2.30E+00	1.40E+09 P	2.4E-06	3.0E-08	1.0E-04	1.0E-04	32%
Thorium-228	2.30E+00	1.40E+09 P	1.7E-08	3.7E-09	1.2E-08	3.2E-08	<1%
Radium-224	2.30E+00	1.40E+09 P	1.2E-10	1.6E-12	4.6E-10	5.8E-10	<1%
Lead-212	2.30E+00	1.40E+09 P	2.2E-12	1.2E-14	6.6E-10	6.7E-10	<1%
Bismuth-212	2.30E+00	1.40E+09 P	7.0E-15	1.4E-16	6.3E-11	6.3E-11	<1%
Thallium-208	2.30E+00	1.40E+09 P	NA	NA	1.1E-10	1.1E-10	<1%
Uranium-235	1.68E-01	1.40E+09 P	1.1E-08	6.3E-10	1.1E-06	1.1E-06	<1%
Protactinium-231	1.68E-01	1.40E+09 P	3.5E-08	1.9E-09	2.3E-07	2.7E-07	<1%
Actinium-227	1.68E-01	1.40E+09 P	2.9E-08	2.3E-09	2.3E-10	3.1E-08	<1%
Francium-223	1.68E-01	1.40E+09 P	2.0E-15	1.9E-18	4.5E-13	4.6E-13	<1%
Astatine-219	1.68E-01	1.40E+09 P	NA	NA	NA	_	
Bismuth-215	1.68E-01	1.40E+09 P	NA	NA	1.3E-12	1.3E-12	<1%
Thorium-227	1.68E-01	1.40E+09 P	1.1E-11	2.0E-12	1.8E-09	1.8E-09	<1%
Radium-223	1.68E-01	1.40E+09 P	3.9E-11	9.9E-13	1.7E-09	1.8E-09	<1%
Lead-211	1.68E-01	1.40E+09 P	1.8E-16	3.0E-18	1.6E-12	1.6E-12	<1%
Astatine-215	1.68E-01	1.40E+09 P	NA	NA	1.8E-22	1.8E-22	<1%
Bismuth-211	1.68E-01	1.40E+09 P	NA	NA	6.2E-14	6.2E-14	<1%
Thallium-207	1.68E-01	1.40E+09 P	NA	NA	1.2E-14	1.2E-14	<1%
Polonium-211	1.68E-01	1.40E+09 P	NA	NA	5.0E-17	5.0E-17	<1%
			5E-06	9E-08	3E-04		
			02.00	02 00	02 0.		
Total					Total ELCR	3E-04	1

Notes:

 $\hbox{[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table F-7.}$

%: percent. ELCRi: excess lifetime cancer risk, inhalation pathway. ACF: area correction factor. ELCRo: excess lifetime cancer risk, oral pathway.

CSFe: external cancer slope factor. EPCs: exposure point concentration in soil/sediment. CSFi: inhalation cancer slope factor. ft bgs: feet below ground surface.

CSFr: inhalation cancer slope factor.

CSFo: oral cancer slope factor.

ELCR: excess lifetime cancer risk.

This pgs: feet below ground surface.

m³/kg: cubic meter(s) per kilogram.

pCi/g: picoCurie(s) per gram.

ELCRe: excess lifetime cancer risk, external pathway.

Receptor-specific exposure parameters are presented in Table F-7. Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

ELCRo = (EPCs × 118 × 350 × 33 × [1 - exp($-\lambda$ × 33)] × CSFo) / (1,000 × 33 × λ) ELCRi = (EPCs × 1,000 × 18 × 24 × 0.042 × 350 × 33 × [1 - exp($-\lambda$ × 33)] × CSFi) / (1.40E+09 × 33 × λ) ELCRe = (EPCs × ACF × [(1.752 × 0.042 × 1) + (16.416 × 0.042 × 0.4)] × 350 × 33 × [1 - exp($-\lambda$ × 33)] × CSFe) / (365 × 33 × λ)

Appendix I, Table I-19

Excess Lifetime Cancer Risk Calculations for a Hypothetical Future Child/Adult Resident Exposed to Radionuclides Former Esperanza Mill - Shallow and Deep Soil/Sediment (0 to 15 ft bgs), Mean EPCs

Baseline Human Health Risk Assessment Freeport-McMoRan Sierrita Sierrita Mine, Green Valley, Arizona

			_		CANCE	R RISK		Percen
			_	F	oute-Specific Ris	k	Total	Total
	EPCs	PEF [a]		Ingestion	Inhalation	External	ELCR	ELCR
Constituent	(pCi/g)	(m³/kg)		ELCRo	ELCRi	ELCRe		
Radionuclides								
Uranium-238	2.49E+00	1.40E+09	Р	1.9E-07	8.8E-09	3.3E-06	3.5E-06	1%
Uranium-234	2.44E+00	1.40E+09	Р	1.7E-07	1.0E-08	6.8E-09	1.9E-07	<1%
Thorium-230	2.44E+00	1.40E+09	Р	2.6E-07	1.2E-08	2.3E-08	2.9E-07	<1%
Radium-226	2.24E+00	1.40E+09	Р	8.9E-07	9.3E-09	2.0E-04	2.0E-04	65%
Lead-210	2.24E+00	1.40E+09	Р	1.1E-06	3.3E-09	2.3E-08	1.2E-06	<1%
Bismuth-210	2.24E+00	1.40E+09	Р	6.8E-12	9.2E-14	4.1E-11	4.8E-11	<1%
Polonium-210	2.24E+00	1.40E+09	Р	7.3E-08	8.3E-11	1.8E-11	7.3E-08	<1%
Thorium-232	2.34E+00	1.40E+09	Р	2.4E-06	3.0E-08	1.0E-04	1.1E-04	33%
Thorium-228	2.34E+00	1.40E+09	Р	1.7E-08	3.8E-09	1.2E-08	3.3E-08	<1%
Radium-224	2.34E+00	1.40E+09	Р	1.2E-10	1.7E-12	4.7E-10	5.9E-10	<1%
Lead-212	2.34E+00	1.40E+09	Р	2.2E-12	1.2E-14	6.7E-10	6.8E-10	<1%
Bismuth-212	2.34E+00	1.40E+09	Р	7.1E-15	1.5E-16	6.4E-11	6.4E-11	<1%
Γhallium-208	2.34E+00	1.40E+09	Р	NA	NA	1.1E-10	1.1E-10	<1%
Jranium-235	1.35E-01	1.40E+09	Р	9.2E-09	5.0E-10	8.5E-07	8.6E-07	<1%
Protactinium-231	1.35E-01	1.40E+09	Р	2.8E-08	1.5E-09	1.9E-07	2.2E-07	<1%
Actinium-227	1.35E-01	1.40E+09	Р	2.3E-08	1.9E-09	1.8E-10	2.5E-08	<1%
Francium-223	1.35E-01	1.40E+09	Р	1.6E-15	1.5E-18	3.6E-13	3.7E-13	<1%
Astatine-219	1.35E-01	1.40E+09	Р	NA	NA	NA	_	
Bismuth-215	1.35E-01	1.40E+09	Р	NA	NA	1.0E-12	1.0E-12	<1%
Thorium-227	1.35E-01	1.40E+09	Р	8.5E-12	1.6E-12	1.5E-09	1.5E-09	<1%
Radium-223	1.35E-01	1.40E+09	Р	3.1E-11	8.0E-13	1.4E-09	1.4E-09	<1%
Lead-211	1.35E-01	1.40E+09	Р	1.5E-16	2.4E-18	1.3E-12	1.3E-12	<1%
Astatine-215	1.35E-01	1.40E+09	Р	NA	NA	1.5E-22	1.5E-22	<1%
Bismuth-211	1.35E-01	1.40E+09	Р	NA	NA	5.0E-14	5.0E-14	<1%
Thallium-207	1.35E-01	1.40E+09	Р	NA	NA	9.3E-15	9.3E-15	<1%
Polonium-211	1.35E-01	1.40E+09	Р	NA	NA	4.0E-17	4.0E-17	<1%
				5E-06	8E-08	3E-04		
Total						Total ELCR	3E-04	7

Notes:

[a] Default particulate emission factor ([PEF] identified with [P]) provided in Table F-7.

%: percent. ELCRi: excess lifetime cancer risk, inhalation pathway.

ACF: area correction factor. ELCRo: excess lifetime cancer risk, oral pathway.

CSFe: external cancer slope factor. EPCs: exposure point concentration in soil/sediment.

CSFi: inhalation cancer slope factor. ft bgs: feet below ground surface.

CSFo: oral cancer slope factor. ft bgs: feet below ground surface.

m³/kg: cubic meter(s) per kilogram.

CSFo: oral cancer slope factor. m^{*}/kg: cubic meter(s) per kilogra ELCR: excess lifetime cancer risk. pCi/g: picoCurie(s) per gram.

ELCRe: excess lifetime cancer risk, external pathway.

Receptor-specific exposure parameters are presented in Table F-7. Radionuclide-specific parameters and slope factors are presented in Table 7-2.

Equations:

ELCRo = (EPCs × 118 × 350 × 33 × [1 - exp($-\lambda$ × 33)] × CSFo) / (1,000 × 33 × λ) ELCRi = (EPCs × 1,000 × 18 × 24 × 0.042 × 350 × 33 × [1 - exp($-\lambda$ × 33)] × CSFi) / (1.40E+09 × 33 × λ) ELCRe = (EPCs × ACF × [(1.752 × 0.042 × 1) + (16.416 × 0.042 × 0.4)] × 350 × 33 × [1 - exp($-\lambda$ × 33)] × CSFe) / (365 × 33 × λ)

APPENDIX J Summary and Response Intentions for Comments on the Baseline Human Health Risk Assessment

Ms. Joey Pace Project Manager, Voluntary Remediation Program Arizona Department of Environmental Quality 1110 West Washington Street Phoenix, Arizona 85007

Arcadis U.S., Inc.
410 N. 44th Street
Suite 1000
Phoenix
Arizona 85008
Tel 602 438 0883
Fax 602 438 0102
www.arcadis.com

Subject:

Summary and Response Intentions for Comments on the Baseline Human Health Risk Assessment, Freeport Sierrita Inc., 6200 W. Duvall Mine Rd., Green Valley, Arizona. VRP Site Code: 100073-03

ENVIRONMENT

Date:

December 19, 2017

Contact:

Katy Brantingham

Phone:

602.797.4523

Email:

Katy.Brantingham @arcadis.com

Our ref:

AZ001233.0022.00001

Dear Ms. Pace:

On behalf of Freeport Sierrita Inc. (Freeport), Arcadis is providing this letter to summarize Arizona Department of Environmental Quality's (ADEQ's) August 18, 2016 comments to the Baseline Human Health Risk Assessment (BHHRA) dated June 7, 2016 for the Freeport Site referenced above. This letter also documents Freeport's intent to respond or not respond to each comment when revising the BHHRA as requested during the call between Freeport, Arcadis, ADEQ, and the Arizona Department of Health Services (ADHS) on December 14, 2017.

The table below lists the comment number in the left column, the comments in the center column, and Freeport's intent to respond or not respond in the right column. Comments tagged with "SC" are ADEQ's comments related to site characterization. Comments tagged with "RA" are ADEQ's comments related to the BHHRA. Comments tagged with "K" are Kleinfelder's comments on the BHHRA.

#	Comment	Intend to Respond
SC1	The VRP has determined the nature and extent of all source areas within the EAs were not fully characterized for the nature and extent of source contamination, pursuant to A.R.S. § 49- 175(A), before the areas were evaluated for potential risks to receptors. The process of completing characterization for any area for which an NFA is sought should be completed before the submittal of a remedial action document or any document which seeks VRP concurrence that no further characterization and/or remediation is warranted.	No
SC2	The VRP does not concur with the incorporation of the Demetrie Wash within the boundaries of the CLEAR Plant EA (BHHRA Figure 5-2a). The Demetrie Wash has not been characterized, and should not be included in other release areas identified in the CLEAR Plant EA. The Demetrie Wash should be characterized separately and should be isolated as its own EA in future risk evaluations.	No
SC3	The VRP cannot accept the inclusion of facilities which are currently under the authority of another program into an EA which will be used to support an NFA area. For example, section 2.3 of the BHHRA states that the EAs "encompass nine subareas identified as the focus of VRP site investigations because they are operations identified as "to be closed" under the A[quifer] P[rotection] P[rogram]". The VRP does not have the authority to issue an NFA for areas currently overseen by another program in the agency. In addition, VRP will not issue an NFA for areas which are still actively utilized by the mine for purposes which may continue to contribute to soil impacts. This includes areas such as "active operations with the potential to releases mining-related constituents to groundwater", as cited in section 2.3 of the BHHRA.	No
SC4	As indicated in an August 29, 2013 letter from the VRP for this Site, FMI should not compare the 95% Upper Confidence Limit (UCL) to Groundwater Protection Levels (GPLs). The GPLs are screening levels treated as not-to-exceed values, based on the consideration that individual, isolated areas may contribute to groundwater contamination. As such, samples within each EA must be compared to the default GPL and/or compared to an EA-specific alternate GPL that has been developed based on data collected within that EA.	Yes
SC5	Pursuant to A.R.S. § 49-152(B) and (C), and Arizona Administrative Code (A.A.C.) R18-7-208, a Declaration of Environmental Use Restriction (DEUR) is required for an NFA determination in any instance, regardless of current land use or zoning, where characterization and/or compliance data used in support of closure exceeds the residential soil remediation levels (SRLs) or when a site-specific (ss)-SRL is developed for any receptor other than a residential scenario. If FMI is seeking an NFA for the EAs without conditions, as indicated in the June 7, 2016 cover letter for the BHHRA, then FMI must submit a risk assessment that adequately and appropriately evaluates a residential scenario for each EA. All other risk-based scenarios will require a DEUR and result in a conditional NFA for any EA not evaluated to a residential scenario. In addition, any NFA issued with conditions will supersede prior unconditional NFAs for areas incorporated into the EAs.	No

#	Comment	Intend to Respond
RA1	Pursuant to the Arizona Department of Health Services (ADHS) 2003 Deterministic Risk Assessment Guidance, site-specific screening/initial remediation levels usually limit Excess Lifetime Cancer Risk (ELCR) to one-in-one million (10 ⁻⁶) for Class A proven human carcinogens and to one-in-one-hundred-thousand (10 ⁻⁵) for Class B probable and Class C possible human carcinogens. ADEQ will not consider a 10 ⁻⁴ ELCR without ADHS review and evaluation. Upon revision to the BHHRA, if FMI resubmits a risk assessment containing ELCR values of 10 ⁻⁴ ADEQ will rely on ADHS for review of the document.	No
	FMI should note, since 1997, ADEQ has had a policy decision to use 1 x 10 ⁻⁵ as the ELCR for Class B and C carcinogens. ADEQ documented this decision in the Arizona Administrative Record, 1997 Volume 3, Issue #52, on page 3652.	
K1	Executive Summary, Human Receptors and Exposure Routes: The BHHRA notes that groundwater is not used for potable purposes. Identify current source and system supplying potable water to the site.	Yes
K2	Executive Summary, Key Findings, last sentence on page ES-5: Reference is made to "these data" but it's not clear what data are being invoked.	Yes
K3	Introduction, fourth paragraph: The BHHRA notes that the potential for exposure to site-related constituents in groundwater was not evaluated because groundwater is not apotable supply. Could site-related constituents migrate to groundwater and affect a potable supply elsewhere? A discussion about the potential to affect water supplies should be included.	Yes
K4	Section 2 – Geology and Hydrogeology: It would be helpful to know how this information relates to the assessment of health risk at the subject site. For example, are there characteristics of the geology known to be high in metals that might be of health concern? Are there characteristics of the geology and hydrogeology that could affect migration of COPCs within and beyond the subject site?	No
K5	Section 3 – Previous Site Investigations, first paragraph: First appearance of the acronym "COIs." How are COIs identified? How do they relate to COPCs? Is there purpose behind using the two classifications instead of one or the other?	Yes
K6	Section 3.1.1, first paragraph: The BHHRA states that 54 surface soil and 39 subsurface soil samples were collected but these numbers do not match up with sample numbers reported in Table 5-1. Second paragraph of this section also reports sample numbers for CLEAR and Esperanza that do not match Table 5-1.	Yes
K7	Section 3.1.2.1, first paragraph: Similar to preceding comment, sample numbers (n=171) do not match Table 5-1.	Yes
K8	Section 3.1.3: Data discussed are not referenced to a specific report.	Yes
K9	Section 3.1.3: Similar to preceding comments, sample numbers do not match Table 5-1.	Yes
K10	Section 3.1.4: Similar to preceding comments, sample numbers do not match Table 5-1.	Yes

#	Comment	Intend to Respond
K11	Section 3.1.2.2: The BHHRA states that, "The unconsolidated deposits and parent bedrock complex at the Sierrita minecontain natural levels of radioactivity." Where in the BHHRA are natural levels of radioactivity presented? Later in the paragraph, maximum activities for Ra-226 are reported – are these the natural levels? If so, more detail about the range of activities (not just the maximums) should be provided.	Yes
K12	Section 3.1.4, second paragraph: The BHHRA notes that ten percent of the grid samples were analyzed – does that mean three samples? Ten percent of 29 is about three.	Yes
K13	Section 5.1, second paragraph: The BHHRA notes that groundwater is not currently used or likely to be used in the future as a potable supply. Is it possible, however, that site-related constituents could migrate to groundwater and affect potable supplies off-site?	Yes
K14	Section 5.1, third paragraph: The BHHRA notes natural levels of radionuclides but does not provide evidence to support that statement. If such evidence appears in ARCADIS (2013a) [not (2013b) as indicated in report], then that evidence should be presented in the BHHRA.	Yes
K15	Section 5.3: Data usability was evaluated based on several criteria, including spatial characteristics and sampling size and density. These criteria, however, were not defined and the data were not evaluated, except in a cursory way, against these criteria. For example, the report states that randomly selected sample locations were identified based on a 200-square foot grid system in the CLEAR and Esperanza areas but no information is provided regarding how many samples were collected based on that grid or the locations of those samples on a grid.	No
	Sample location and density can be ascertained to some extent from Figures 5-2a through 5-2C, 5-3, and 5-4, however the sample locations appear clustered or of insufficient number to adequately characterize the various sites, particularly for residential land use where standard lot sizes may be in the range of 0.25 acres. Some areas also appear to have been not sampled (large swaths of the CLEAR and Esperanza areas) or minimally sampled (Former Evaporation Pond, Old D Pond, and the Former Rhenium Ponds). As an example, the Former C Pond Spoils area is approximately 1,000 feet long and as much as 350 feet wide but only four samples have been collected from that area. Also, no analysis is provided to demonstrate data sufficiency.	
K16	Section 5.5.1, second bullet: Verify that ADEQ (2002) is the correct reference for the statement regarding future unrestricted land use.	Yes
K17	Section 5.5.2: Are samples presented on Figure 5-2b not actually included in the BHHRA data set used to estimate cancer risk and noncancer hazard for this location? It's not clear from Figure 5-2b which samples characterized current conditions and which characterized future conditions.	Yes
K18	Section 5.5.3: Was the "parent" sample used to characterize the site whether it was greater than the "duplicate" or not? Has the relative percent difference been addressed for parents and duplicates?	Yes

#	Comment	Intend to Respond
K19	Section 5.6, second bullet: Because this bullet refers to radionuclides, highest detected concentration should be "highest reported activity."	Yes
K20	Section 6.1.2, last sentence: Inclusion of sediment data in the 0-15 feet bgs data set is not necessarily a conservative approach if sediment concentrations tend to be lower than soil concentrations. A comparison of sediment data to soil data should be performed to verify whether combining these data is defensible. Also, it's not clear from Table 5-2, which samples are sediment samples.	Yes
K21	Section 6.1.3.1, second paragraph: How was the potential for radon gas evaluated?	Yes
K22	Section 6.1.3.1, third paragraph: Indicate the location in the BHHRA where potential indoor-related exposure to radionuclides is discussed.	No
K23	Section 6.1.3.2: Explain why a future outdoor commercial/industrial worker is not included for evaluation.	Yes
K24	Section 6.2.2: Site specific exposure assumptions are acceptable for use where such assumptions are consistent with current and future land use and activities. Should land use or activities change, site specific assumptions no longer apply and health risk must be re-evaluated.	No
K25	Section 6.3.2: The BHHRA notes that for exposure scenarios wherein the exposure duration is less than seven years, subchronic toxicity values were used. The exposure scenarios for which subchronic toxicity values were used should be identified here.	No
K26	Section 6.3.3.1: The relative bioavailability factor for arsenic should be noted here.	Yes
K27	Section 6.3.3.1: Equation 6-1 includes an "FI" factor but this factor is not defined or discussed.	Yes
K28	Sections 6.3.4.1 and 6.3.4.2: Equations 6-6 and 6-7 includes a factor of 10 ³ (1,000) but this factor is not defined or discussed.	Yes
K29	Section 7.2, Table 7-1: Subchronic toxicity values are discussed (sources and uses) here, however, it does not appear that subchronic toxicity values or the surrogates mentioned (e.g., intermediate MRLs from ATSDR) were actually used in the risk assessment. Also, all subchronic toxicity values presented in Table 7-1 appear to be chronic values adopted for subchronic exposure scenarios. Please identify and discuss subchronic exposure scenarios if such scenarios were evaluated.	Yes
K30	Section 9.1.4, third paragraph: This discussion of radionuclides and background would be helpful in Section 2.4.	Yes
K31	Section 9.1.4, third through sixth paragraph: If an argument is being made that the radionuclides that account for cancer risk within the areas evaluated are background, then a formal evaluation should be provided that at a minimum compares site-specific radionuclide activities to documented background activities.	Yes

#	Comment	Intend to Respond
K32	Section 10.3: The use of site specific exposure assumptions and factors (especially exposure frequency and duration) have not been addressed but are a significant source of uncertainty. The fact that these assumptions and factors address only specific exposure conditions that do not apply to other land uses or human activities should be discussed.	Yes
K33	Section 11.1.1: Much of this section is material that appears in Section 9.1.4 without additional analysis or interpretation particularly with regard to background radionuclides. Again, if an argument that background radionuclides account for the cancer risk associated with radionuclides, then a formal evaluation should be presented.	Yes
K34	Section 11.2: There are no recommendations although this section is titled, "Conclusions and Recommendations".	Yes
K35	Table 6-1: Soil ingestion rate for commercial/industrial worker should be 100 mg/day,not 50 mg/day.	Yes
K36	Appendix F, Results and Discussion, Cancer Risks: Discussion of acceptable risk ranges is provided but an explicit discussion of the applicability of those risk ranges to the subject site is not. The applicability or appropriateness of risk management ranges other than those generally applied at other sites in Arizona is not provided.	Yes
	A discussion of the applicability of background radionuclide activities to the subject site is not provided.	
K37	Appendix F, Results and Discussion, Noncancer Hazards: Although bioavailability may be a factor in the interpretation of the high hazard indices presented, a more rigorousanalysis is necessary before alternative risk calculations should be considered.	Yes
K38	Appendix F: The cancer risk and noncancer hazard estimates presented for the residential exposure scenario do not support an unconditional no further action decision regarding radionuclide and metal contamination based on the significant exceedance of regulatory thresholds.	No
K39	Appendix F, Table F-7: Footnote 14 lists the soil ingestion rates for the child and adult incorrectly. Child should be 200 mg/day, adult should be 100 mg/day. How does the adult value presented in this footnote relate to the 50 mg/day ingestion rate presented for the adult receptor in column 6 of this table?	Yes
K40	Appendix F, Table F-10: Toxicity values for U234 need to be added to Table 7-2.	Yes

#	Comment	Intend to Respond
K41	Cover Letter: The results of the BHHRA do not support an unconditional no further action decision for the areas evaluated on the basis of the exceedance of cancer risk and noncancer hazard thresholds typically accepted on sites in Arizona and throughout the United States and based on the density of soil sampling which does not represent exposure units consistent with residential land use.	No

Please contact the undersigned with any questions

Sincerely,

Arcadis U.S., Inc.

Kathryn Brantingham

Associate Vice President/CPM2

Copies:

Stuart Brown, Freeport-McMoRan William Hart, Freeport-McMoRan David Gosen, Freeport-McMoRan

Arcadis U.S., Inc.

410 N. 44th Street

Suite 1000

Phoenix, Arizona 85008

Tel 602 438 0883

Fax 602 438 0102

www.arcadis.com